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Abstract
Wastewater-based epidemiology has been widely used as a cost-effective method for tracking the COVID-19 pandemic at 
the community level. Here we describe COVIDBENS, a wastewater surveillance program running from June 2020 to March 
2022 in the wastewater treatment plant of Bens in A Coruña (Spain). The main goal of this work was to provide an effective 
early warning tool based in wastewater epidemiology to help in decision-making at both the social and public health levels. 
RT-qPCR procedures and Illumina sequencing were used to weekly monitor the viral load and to detect SARS-CoV-2 muta-
tions in wastewater, respectively. In addition, own statistical models were applied to estimate the real number of infected 
people and the frequency of each emerging variant circulating in the community, which considerable improved the surveil-
lance strategy. Our analysis detected 6 viral load waves in A Coruña with concentrations between  103 and  106 SARS-CoV-2 
RNA copies/L. Our system was able to anticipate community outbreaks during the pandemic with 8–36 days in advance with 
respect to clinical reports and, to detect the emergence of new SARS-CoV-2 variants in A Coruña such as Alpha (B.1.1.7), 
Delta (B.1.617.2), and Omicron (B.1.1.529 and BA.2) in wastewater with 42, 30, and 27 days, respectively, before the health 
system did. Data generated here helped local authorities and health managers to give a faster and more efficient response 
to the pandemic situation, and also allowed important industrial companies to adapt their production to each situation. The 
wastewater-based epidemiology program developed in our metropolitan area of A Coruña (Spain) during the SARS-CoV-2 
pandemic served as a powerful early warning system combining statistical models with mutations and viral load monitoring 
in wastewater over time.

Keywords SARS-CoV-2 · Statistical model · Wastewater-based epidemiology · Early-warning system · Viral load · 
COVID-19

Introduction

SARS-CoV-2, the etiological agent responsible for the 
deadly respiratory disease known as COVID-19, emerged 
in Wuhan (China) in early December 2019. It was on 
March 11, 2020, when the World Health Organization 
(WHO) declared the novel coronavirus outbreak a global 
pandemic (WHO 2020). The transmission dynamics of 

COVID-19 is due to two mechanisms: human-to-human 
and air pollution-to-person transmission. The first one 
is through respiratory droplets and direct contact with 
infected people, and it is influenced by the population den-
sity. However, Coccia (2020) highlighted the importance 
of the air pollution in the rapid spread of COVID-19. They 
suggested that climate and meteorology factors such as 
pollution or wind which affect the content of microbes in 
the atmosphere, accelerating the spread of SARS-CoV-2 in 
the environment, including wastewater. Besides, although 
the fecal–oral transmission of SARS-CoV-2 has not been 
proved yet (Albert et al. 2021; Guo et al. 2021), COVID-19 
dissemination could increase due to inadequate sanitation 
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facilities or poor fecal sludge management in hospitals 
environments (Amin et al. 2023).

The viral surface spike glycoprotein S plays an impor-
tant role in the infection process, mediating viral entry into 
host cells through the union of the spike receptor-binding 
domain (RBD) and the angiotensin-converting enzyme2 
(ACE2) receptor (Lan et al. 2020). ACE2 is abundant in 
glandular cells of the gastric, duodenal, and rectal epithe-
lium (Xiao et al. 2020), where the virus persists longer 
than in the respiratory tract (Hu et al. 2020; Zheng et al. 
2020). Therefore, people infected with SARS-CoV-2 shed 
the virus in their feces despite being asymptomatic (Lai 
et al. 2020; Rothe et al. 2020) or having tested negative 
in nasopharyngeal samples (Jiang et al. 2020; Wu et al. 
2020). It has been shown that the virus can remain in stool 
samples for up to 5 weeks after the onset of symptoms (Wu 
et al. 2020). As a result, SARS-CoV-2 RNA from most 
infected patients ends up in wastewater treatment plants 
(WWTPs). Therefore, the analysis of wastewater samples 
can provide effective epidemiological surveillance.

Wastewater-based epidemiology (WBE) has been 
used as a method of early detection and direct mitigation 
of poliovirus outbreaks in Israel and Egypt (Blomqvist 
et al. 2012; Brouwer et al. 2018; Kopel et al. 2014) or 
Norovirus and Hepatitis A in Sweden (Berchenko et al. 
2017; Duintjer Tebbens et al. 2017; Hellmér et al. 2014). 
Currently, RT-qPCR assays are used for clinical trials 
and the detection of viral RNA in WWT (Acosta et al. 
2022; Kolarević et al. 2022; Tanimoto et al. 2022; Yanaç 
et al. 2022).

In most WBE SARS-CoV-2 studies, a significant cor-
relation has been found between the viral load measured in 
wastewater and clinical cases of COVID-19 (Maida et al. 
2022; Pillay et al. 2021; Vallejo et al. 2022), which demon-
strates that an increase on viral load in WWT can warn about 
the emergence of a new variant or an outbreak (Barua et al. 
2022; Daleiden et al. 2022; Kuhn et al. 2022; Li et al. 2022; 
Monteiro et al. 2022; Padilla-Reyes et al. 2022; Robotto 
et al. 2022; Sangsanont et al. 2022; Wu et al. 2022). In addi-
tion, WBE has been used to estimate the number of people 
infected with SARS-CoV-2 in the population (Chavarria-
Miro et al. 2021; McMahan et al. 2021; Saththasivam et al. 
2021; Tharak et al. 2022; Vallejo et al. 2022). However, 
there are few studies focused on monitoring the virus and 
predicting COVID-19 clinical cases in specifically rural 
areas or at the building level (Jarvie et al. 2023). It should 
be noted that the effectiveness of the post-factum methods 
in WBE studies, that is, an early warning analysis based on 
previously reported both wastewater and clinical data, has 
been proved (Zhao et al. 2023). The implementation of both 
post-factum and real-time early warning methods in a paral-
lel and complementary way could increase the precision of 
the WBE analysis by almost 100%.

The emergence of new SARS-CoV-2 variants since late 
2020 prompted the classification by the European Centre 
for Disease Prevention and Control (ECDC) of Variants of 
Interest (VOI) Variants of Concern (VOC), Variants Under 
Monitoring (VUM), and de-escalated variants (ECDC 
2020). VOCs have a significant epidemiological impact due 
to their increase in transmissibility or in the severity of the 
disease they cause (Gobeil et al. 2021; Harvey et al. 2021; 
Riou et al. 2022). From the beginning of the pandemic up to 
now, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta 
(B.1.617.2), and Omicron (B.1.1.529) VOCs have been most 
relevant causing different epidemic waves. The emergence of 
the variants has made the need for sequencing in wastewater 
more evident. On March 17, 2021, the European Commis-
sion (EC) published several recommendations to foster the 
surveillance of SARS-CoV-2 and its variants in wastewa-
ter (EC 2021a). Not surprisingly, genomic surveillance and 
monitoring are highly effective in detecting the emergence 
of SARS-CoV-2 variants in imported cases and in small 
outbreaks (Fontenele et al. 2021; Pechlivanis et al. 2022; 
Pérez-Cataluña et al. 2022; Peterson et al. 2022; Sapoval 
et al. 2021). Moreover, our team has been previously focused 
on estimating the proportions of variants in the population 
based on mutations data found in wastewater samples using 
statistical models (López de Ullibarri et al. 2023). Similar 
models have also been described by other authors (Gafurov 
et al. 2022; Pipes et al. 2022; Valieris et al. 2022).

The COVIDBENS project was one of the earliest WBE 
on COVID-19 projects in the world, starting on April 14, 
2020 (Vallejo et al. 2022). In the present work, we ana-
lysed 863 wastewater samples from June 2020 to March 
2022 collected from the WWTP Bens (A Coruña, Spain), 
a public company that serves a population of ca. 400.000 
inhabitants. The main objectives of this multidisciplinary 
study were the following: (1) to monitor at real time the 
COVID-19 pandemic by tracking SARS-CoV-2 viral load 
in wastewater in the metropolitan area of A Coruña; (2) to 
estimate the number of people infected with SARS-CoV-2 
in the local population, including symptomatic and asymp-
tomatic people, using statistical models described before by 
our team (Vallejo et al. 2022); (3) to act as an early warn-
ing system for predicting new outbreaks before the health 
system; (4) to detect SARS-CoV-2 mutations in wastewater 
by next-generation sequencing (NGS); (5) to estimate the 
percentage of SARS-CoV-2 variants based on the mutations 
found in the wastewater using previous statistical models 
described by our team (López de Ullibarri et al. 2023); and 
(6) to inform the authorities and all citizens about the real 
evolution of the COVID-19 pandemic providing a public 
service. In this manuscript, we describe how COVIDBENS 
alerted about the increase of SARS-CoV-2 in the population 
on multiple occasions, predicting the most significant out-
breaks during the COVID-19 pandemic and the emergence 
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of the different variants that affected this area. COVIDBENS 
has been extremely useful as an early warning system for 
decision-making and for evaluating the impact of SARS-
CoV-2 control measures or vaccination campaigns in our 
local area, A Coruña (Spain).

Materials and methods

Sample and data

Wastewater sampling

The WWTP of Bens serves a population of ca. 400.000 
inhabitants from the metropolitan area of A Coruña (NW, 
Spain) that includes the municipalities of A Coruña, Arteixo, 
Cambre, Culleredo, and Oleiros (Fig. 1). Composite sewage 
samples were collected twice or thrice a week using auto-
matic samplers installed by operators both at the entrance 
(influent) of the WWTP and at the sewers of each municipal-
ity. These automatic samplers were programmed to collect 
150 mL of wastewater every 15 min over a 24-h period, 

resulting in a 600 mL bottle per hour. Then, the resulting 
24 bottles were merged into a larger one, and a sample of 
100 mL was kept on ice and processed immediately after 
reception at the lab. For the present study, samples from 
the WWTP were collected from June 4, 2020, to March 17, 
2022, and, in the case of A Coruña, Arteixo, Cambre, Culler-
edo, and Oleiros, were collected separately from December 
24, 2020, to March 17, 2022.

Sample processing

The 100 mL samples were centrifuged for 30 min at 4000 × g 
at 4  °C and filtered through 0.22-μm pore membranes 
(Merck Millipore, USA). Pellets were discarded, and the 
supernatants were concentrated and dialyzed with SM buffer 
(50 mM Tris–HCL, 100 mM NaCl, and 8 mM MgSO4) 
using the Vivaspin Turbo 15 with a polyethersulfone mem-
brane of 30-kDa (Sartorius, Germany). Finally, samples 
were preserved in 500 μL of RNAlater™ solution (Thermo 
Fisher Scientific, USA) at − 80 °C for further analyses.

For viral load determination, SARS-CoV-2 RNA was iso-
lated from 100 μL of the thawed samples using the QIAamp 

Fig. 1  Map showing the sampling area served by the WWTP of Bens (▲), including the areas of the municipalities of A Coruña, Arteixo, Cam-
bre, Oleiros, and Culleredo which correspond to individual sewers
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Viral RNA Mini Kit (Qiagen, Germany), according to the 
manufacturer’s protocol. Samples were first mixed with AVL 
buffer supplemented with carrier RNA to ensure the binding 
of viral RNA to the QIAamp silica-based membrane. Then, 
samples were washed twice to remove PCR inhibitors and 
eluted in 70 μL of RNase-free water (Thermo Fisher Scien-
tific, USA). For sequencing, RNA was extracted again from 
the remaining amount of sample (400 μL) and eluted in 80 
μL of RNase-free water (Thermo Fisher Scientific, USA). 
Extracted RNA was stored at − 80 °C until use.

SARS-CoV-2 viral RNA was detected by one-step real-
time reverse transcription quantitative PCR (RT-qPCR) 
using the TaqPath COVID-19 RT-PCR Kit (Thermo Fisher 
Scientific, USA) and a CFX96 Thermal cycler (Bio-Rad, 
USA). This kit includes primer pairs targeting SARS-CoV-2 
specific genome regions such as ORF1ab, the N gene, and 
the S gene. Recommendations for minimising errors in 
RT–PCR detection were followed (Ahmed et al. 2022). 
Reactions were initiated with an uracil N-glycosylase (UNG) 
incubation at 25 °C for 2 min and a reverse transcription at 
53 °C for 10 min, followed by a polymerase activation at 
95 °C for 2 min; 40 cycles of 95 °C for 3 s for DNA dena-
turation; and 60 °C for 30 s for annealing and extension. A 
25 μL reaction contained 15 μL of reaction mix (6.25 μL of 
TaqPath 1-Step Multiplex Master Mix, 1.25 μL of COVID-
19 Real-Time PCR Assay Multiplex, and 7.5 μL of nuclease-
free water) and 10 μL of viral RNA extracted from waste-
water samples. All the quantitative assays were performed 
in sextuplicate. All the RT-qPCR reactions were performed 
using Hard-Shell 96-well PCR plates (Bio-Rad, USA) sealed 
with microseal “B” PCR Plate Sealing Film (Bio-Rad, 
USA). A non-template control (NTC) was included on each 
plate by replacing RNA with 10 μL of RNase-free water 
(Thermo Fisher Scientific, USA). Positive controls provided 
in the kit were also included for quality control.

Genomic library preparation and sequencing

Samples from the WWTP and from the municipality of 
A Coruña with lower Cq values were selected weekly for 
genomic library construction. cDNA synthesis was prepared 
from 11 μL of RNA using the SuperScript IV Reverse Tran-
scriptase (Thermo Fisher Scientific, USA) and then ampli-
fied with ARTIC primer set v3 (Artic-network 2020). The 
resulting amplicons were mixed and purified with AMPure 
XP magnetic beads (Beckman Coulter, USA), and concen-
tration was quantified with Qubit dsDNA HS Assay kit (Inv-
itrogen, USA), attending manufacturer’s instructions. A total 
of 100 ng of DNA were taken into library preparation using 
the Illumina DNA Prep kit (Illumina, USA). Library concen-
tration was measured using the Qubit dsDNA HS assay kit 
(Invitrogen, USA), and library validation and mean fragment 
size was determined using a Bioanalyzer DNA Analysis Kit 

(Agilent Technologies, USA). After dilution to 4 nM, librar-
ies were pooled, denatured, diluted to 10 pM, and finally 
sequenced at read length 2 × 150 bp using the MiSeq Rea-
gent Kit v2 (300 cycles) (Illumina, USA) and a MiSeq plat-
form (Illumina, USA).

Measures of variables

Viral load was determined using the human 2019-nCoV 
RNA standard from European Virus Archive Global 
(EVAg). Calibration standards were prepared by diluting a 
stock solution of EVAg (10,000 copies/μL) in RNase-free 
water (Thermo Fisher Scientific, USA) within the range of 
5–500 copies/μL for SARS-CoV-2. For each assay, a linear 
regression fit was established between log10 SARS-CoV-2 
copy number and the Cq (quantification cycle) values for 
the N gene. A linear fit (y = mx + b) was obtained where y 
is SARS-CoV-2 RNA copies per L, x is the RT-qPCR Cq 
value, m is the slope, and b is the y-intercept. The calibration 
was included in every RT-qPCR run. Viral load in waste-
water samples was calculated by using the slope and the 
y-intercept of the corresponding standard curves and the Cq 
values from RT-qPCR data.

The limit of detection (LoD) and the limit of quantifica-
tion (LoQ) were determined from 20 replicates of the stand-
ard curves randomly chosen. LoD was defined as the lowest 
RNA concentration where all replicates were detected. LoQ 
was defined as the lowest concentration where the relative 
standard deviation (RSD) was < 30%. The standard curve 
parameters for the RT-qPCR assay such as the y-intercept 
(b), the slope (m), the linearity (R2), and the amplification 
efficiency (E) were also calculated following the recommen-
dations by the MIQE guidelines (Bustin et al. 2009).

Models and data analysis procedure

Statistical smoothing methods

The use of nonparametric regression models for data 
smoothing is necessary to describe and understand the evo-
lution of the pandemic. The fitting of these models is useful 
to identify outbreaks days from observing variables such 
as the viral load. The nonparametric approaches applied in 
this work were the Generalized Additive Models (GAM) 
(Wood 2017), the Locally Estimated Scatterplot Smooth-
ing (LOESS) (Cleveland 1979), kernel regression (Wand 
and Jones 1994), local polynomial regression (Fan and Gij-
bels 1996 ), and the local bandwidth nonparametric regres-
sion (Herrmann and Maechler 2021).

GAM models are used given their flexibility to repro-
duce complex trajectories without involving experimental 
error fitting as a function of linear and smooth effects of 
the explanatory variables on the response (Vallejo et al. 
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2022). Thus, the expression Y = β0 + β1 X + s(T) + ε shows 
that the response variable Y  can be expressed as a func-
tion of a linear effect of X  and a smooth effect on the 
predictor T  , with �0 and �1 being the parameters defin-
ing the linear effect, s(T) the smooth effect, and � the 
random error. In the present case, the smooth effect of 
time on viral load and the number of identified infected 
persons have been estimated,  E(viralload|time) = s(time) 
and E(N

◦

_of infectedpersons|time) = s(time) by the fitting 
of spline bases whose expression can be summarized 
by s(t) =

∑L+degree

k=1
�k�k(t) = �

�

� , defined by a weighted 
sum of L (number of knots in the time interval) + degree 
(degree of the splines) elements, in which �k(t) are the 
spline functions. In this work, thin plate regression splines 
(fewer parameters to optimize), cubic regression splines 
with shrinkage (that include a penalty on the second deriv-
ative), and Gaussian process smooths (high flexibility) are 
used (Wood 2017).

A popular fitting alternative was the use of the local 
LOESS regression method (Cleveland 1979) incorporating 
two regression or local smoothing models, i.e., kernel and 
linear local polynomial. Kernel regression is also applied. 
Assume that the regression function isr , and Yi(with 
i = 1, ..., n ) are the n observations of the Y response variable. 
Thus, Y  can be expressed as a function of the independent 
variable: Yi = r(ti) + �i , with �i the independent mean-zero 
error terms and ti the values of the t design variable where the 
model is evaluated. In this case, the regression function can 
be estimated using kernel methods, such as Gasser and Müller 
method (Gasser et  al. 1991), r̂(t;h) = 1

h

∑n

i=1

�
gi(t;h) ⋅ Yi

�
 , 

wheregi(t;h) =
si

∫
si−1

W
[
(t − u)∕h

]
du , si =  (ti +  ti+1)/2 withs0 = 0

,sn = 1 , W  is the kernel function (Gaussian, Epanechnikov, 
etc.), and h is the smoothing parameter, also called bandwidth. 
The latter is the expression used in the lokern package (Her-
rmann and Maechler 2021; R Core Team 2022), which also 
includes a plug-in method to estimate locally the bandwidth 
(Herrmann 1997). The optimal bandwidths are obtained by 
minimizing an estimate of the asymptotically optimal mean 
squared error (Herrmann and Maechler 2021).

On the other hand, the local linear regression estimator is 
also applied (Francisco-Fernández et  al. 2015). Consider 
{(ti, Yi)}

n

i=1
 the observed values of a curve of viral load or num-

ber of infected persons, Yi , evaluated at different times, ti , with 
i = 1, 2,… , n , thus the he response variable can be expressed 
as a sum of the regression function r(ti) as follows, 
Yi = r(ti) + �i , with 1 ≤ i ≤ n and �i are the random errors. Of 
course, the aim is smoothing the data to reduce the noise of the 
experiment. This is done by fitting the data via local polynomial 
regression with a p-degree polynomial as shown by the expres-
sion r̂h(t) = e

�

1(X
�

tUtXt)
−1
X

�

tUtY  , with e1 = (1, 0,… , 0)
�

 , 

Y = (Y1,… , Yn)
�

 ,   Xt =

⎡⎢⎢⎣

1

⋮

1

�
t1 − t

�
⋮�

tn − t
�
⋯

⋯

�
t1 − t

�p
⋮�

tn − t
�p

⎤⎥⎥⎦
 and 

Ut = diag{W((t1 − t)∕h),… ,W((tn − t)∕h)} , while W(⋅) is a 
kernel function, p the degree of the local polynomial ( p = 1 for 
the local linear), and h the bandwidth. The bandwidth h is cru-
cial to obtain a proper fit. In the specific case of the viral load 
fitting by a linear local polynomial, the bandwidth is locally 
estimated by using cross-validation (Vieu 1991).

The three alternatives for smoothing have provided a way 
to properly estimate the trend of viral load of COVID-19 
in wastewaters. For the application of these techniques, the 
following R packages (R Core Team 2022), mgcv (Wood 
2017), lokern (Herrmann and Maechler 2021), sm (Bowman 
and Azzalini 2021), and kernsmooth (Wand 2021), among 
others, have been used.

Estimation of the real number of infected people 
from SARS‑CoV‑2 viral load in wastewater

Statistical models previously developed by our team and 
described in detail in Vallejo et al. (2022) were used to 
estimate the positive cases in the metropolitan area of 
A Coruña served by the WWTP using the proportion of 
cumulative positive cases in the same area from the viral 
load data detected in wastewater. The population reported 
for each sampler has been obtained from the INE (Span-
ish National Statistics Institute). More concretely, data by 
census sections was first obtained from the statistics of the 
Continuous Register Statistics on January 1, 2019 (INE 
2019), the last data available, and then, the census sec-
tions’ data corresponding to the sewage subnetwork of the 
sampler was aggregated.

Estimation of the frequency of SARS‑CoV‑2 variants

To estimate the frequency of the SARS-CoV-2 VOCs, we 
have previously implemented a maximum likelihood model 
that is described in detail in López de Ullibarri et al. (2023).

Bioinformatic analysis

Single-nucleotide variants (SNVs) and indels were identified 
with iVar (Grubaugh et al. 2019). We aligned the paired-end 
reads to the reference sequence MN908947.3 from Wuhan 
using the BWA-mem tool (Li 2013) and sorted them using 
SAMtools (Danecek et al. 2021). Then, iVar trim was used 
to soft-clip the primer sequences and low-quality bases and 
remove reads shorter than 30 bp. Then, iVAR consensus 
was applied, with a minimum frequency threshold of 0.5. In 
addition, iVar functions getmasked and removereads were 
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used to remove the reads corresponding to the indexes of the 
mismatched primers. SAMtools mpileup and iVar variants 
were used to identify single nucleotide changes and indels. 
A minimum frequency threshold of 0.0001 and a minimum 
depth of 1 were set for running iVar. The minimum base 
quality score threshold was left as default, 20. Then, iVar’s 
output was processed in R software (R Core Team 2022) to 
detect typical mutations of specific SARS-CoV-2 variants, 
which were obtained from the website http:// outbr eak. info.

Open access data sharing

A public website was developed to show the current epide-
miological situation over time in A Coruña (Spain), avail-
able at https:// edarb ens. es/ covid 19/. The Leaflet library 
(Agafonkin 2020) was used to include maps showing the 
historical viral load (copies of viral RNA per L) in the dif-
ferent districts over time. These maps use viral load data 
included as JSON on the website. Daily estimations of the 
viral load are also publicly available on the website. COVID-
BENS is included in the NORMAN SCORE “SARS-CoV-2 
in sewage” (SC2S) database (NORMAN 2021), an inter-
national platform for rapid, open access data sharing about 
wastewater pathogen surveillance.

Results

RT‑qPCR standard curve characteristics

LoD and LoQ values of the RT-qPCR assay were determined 
using 20 replicates of serial dilutions of EVAg standard ranging 
from 5 to 500 RNA copies/µL. Cq values and detection rates 
are shown in Table S1 (Online Resource 1), showing that 10 
copies/µL is the LoD and 5 copies/µL is de LoQ. The slope of 
the standard curve for the N gene was − 3.1709, the y-intercept 
was 41.134, the  R2 value was 0.9918, and the amplification 
efficiency was above 106.71% (Online Resource 2).

Evolution of SARS‑CoV‑2 viral load over time

For the present study, viral load was analysed over 
22 months in the metropolitan area of A Coruña (Spain). 
The COVIDBENS monitoring program collected a total of 
863 samples of sewage from the Bens WWTP and from the 
municipalities of A Coruña, Arteixo, Culleredo, Oleiros, and 
Cambre. RT-qPCR results of viral load (copies of viral RNA 
per L) and Cq values obtained for the N gene are given in 
Online Resource 3.

SARS-CoV-2 RNA was detected in 96.5% of the waste-
water samples. Detection rates of the viral RNA of the 
different sampling points are represented in Fig. 2. Viral 
load calculated from the N gene ranged from 1.30 ×  103 
to 5.87 ×  106 copies/L (Table 1). The detection of SARS-
CoV-2 in wastewater in the metropolitan area of A 
Coruña, including the five municipalities, collected in the 
WWTP of Bens (Fig. 3) showed six viral load waves in 
wastewater after the first COVID-19 outbreak reported in 
March 2020 (Vallejo et al. 2022). After the lockdown and 
the imposition of new restriction measures by the govern-
ment the lowest viral load in wastewater was obtained, 
failing to amplify between June and July 2020. Neverthe-
less, in July 2020 the viral load increased again begin-
ning the first wave, obtaining a maximum of 218.755 
copies per L. The second wave covered the period from 
September to November 2020, where a maximum of 
831.309 copies per L was obtained. After this second 
wave, viral load in wastewater increased again making 
way for the third wave that began with the emergence 
of the Alpha variant (B.1.1.7) in January 2021, reaching 
a maximum of 1.276,329 copies per L. Then, the viral 
load decreased again until the emergence of the fourth 
wave, where a peak between March and April 2021 was 
detected. Although the viral load values remained high, 
a fifth wave was observed from May to September 2021, 
where viral load reached around 3 million copies per L 
due to the appearance of the Delta variant (B.1.617.2). 

Fig. 2  Detection rates of SARS-
CoV-2 in wastewater samples 
of the different sampling points 
located in the metropolitan area 
of A Coruña (Spain). N repre-
sented the number of collected 
samples

http://outbreak.info
https://edarbens.es/covid19/
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The last wave reported in this study is represented by the 
progressive increase in viral load from November 2021 
to February 2022 due to the irruption of Omicron variant 
(B.1.1.529), obtaining a maximum of 5.102.970 copies 
per L. The evolution of the viral load measured sepa-
rately in the different municipalities, which started some 
months later than in the whole area, followed a similar 
trend (Fig. 4), being consistent with that observed at the 
WWTP of Bens.

COVIDBENS as an early warning system

SARS-CoV-2 viral load measured at the Bens WWTP was 
plotted and compared with the number of active clini-
cal cases reported by the health authorities in A Coruña 
(Fig. 5). The comparison revealed that an increase in viral 
load in wastewater clearly preceded a subsequent increase 
in clinical cases in each of the successive pandemic waves. 
Official COVID-19 cases reported by the health authorities 
are given in Online Resource 4. Remarkably, increases in 

Table 1  Summary of SARS-
CoV-2 monitoring results at the 
different sampling points in the 
metropolitan area of A Coruña 
(Spain) from June 2020 to 
March 2022

WWTP, wastewater treatment plant
a Refers to the total number of collected samples

Area Population in number of 
inhabitants

SARS-CoV-2 detection rate SARS-CoV-2 viral 
load range (copies/L)

WWTP 369,098 94% (Na = 200) 1.30 ×  103–5.10 ×  106

A Coruña 166,279 91% (N = 188) 1.68 ×  103–5.87 ×  106

Arteixo 30,942 100% (N = 102) 1.56 ×  104–5.85 ×  106

Culleredo 23,101 99% (N = 121) 2.00 ×  104–4.38 ×  106

Cambre 30,006 100% (N = 126) 1.18 ×  104–5.84 ×  106

Oleiros 33,663 99% (N = 122) 1.25 ×  104–3.98 ×  106

Fig. 3  Evolution of the SARS-CoV-2 viral load measured at the Bens WWTP (A Coruña, Spain). The transition to each new variant is indicated 
with grey shadows
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viral load corresponding to the different epidemic waves 
were detected in wastewater before the clinical outbreaks 
were reported (Fig.  5) with 8–36 days of anticipation 
(Table 2).

The monitorization of SARS-CoV-2 mutations in 
wastewater was carried out from November 2020 to 
March 2022. Moreover, the evolution of variants’ fre-
quency in the local population over time was determined 
from May 2021 to March 2022 (Fig. 6) using the statisti-
cal method previously described by our team (López de 
Ullibarri et al. 2023). We detected the Alpha variant in 
the wastewater samples on December 16, 2020, 42 days 
before it was detected in the clinical samples (January 27, 
2021) (Fig. 6), being the longest lead time achieved here 
(Table 3). Thus, Alpha was the predominant variant during 
the third viral load wave. Similarly, we detected the Delta 
variant in wastewater on May 18, 2021, 30 days before 
the appearance of clinical cases (June 17, 2021). Delta 
became predominant during the fifth viral load wave. After 
that, the Delta abundance in wastewater decreased pro-
gressively until it was replaced by the Omicron variant in 
January 2022. Finally, we could also anticipate the emer-
gence of the Omicron lineage BA.2, detected in wastewater 
on January 18, 2022, 27 days before its identification in 
clinical samples on February 14, 2022.

Evolution of the estimated number of infected 
people over time

Statistical models previously developed by our team (Vallejo 
et al. 2022) were leveraged to estimate the number of people 
infected by SARS-CoV-2 over time in the successive epi-
demic waves (Online Resource 5), including symptomatic 
and asymptomatic people. The SARS-CoV-2 viral load in 
wastewater (Fig. 3) and the estimated number of infected 
people followed similar trends (Fig. 7) and peaks coincided 
with the emergence of SARS-CoV-2 variants.

Discussion

Although many efforts have been made by researchers all 
over the world to detect asymptomatic people infected with 
SARS-CoV-2, using nasopharyngeal PCR or antigen and 
antibodies tests, to date, we are still not able to identify the 
entire population infected and, therefore the real magnitude 
of the epidemic is difficult to understand. Wastewater moni-
toring stands as a powerful tool to monitor the COVID-19 
epidemic in the entire infected population, including symp-
tomatic and asymptomatic people.

Fig. 4  Evolution of the SARS-CoV-2 viral load in samples obtained from sewage from the municipalities of A Coruña, Arteixo, Cambre, Culler-
edo, and Oleiros from December 19, 2020 to March 17, 2022. The transition periods to new variants are indicated with grey shadows



79323Environmental Science and Pollution Research (2023) 30:79315–79334 

1 3

SARS-CoV-2 was absent in wastewater during the 
period June-July 2020, which can be explained by the effi-
cacy of the hard restriction measures implemented from 
mid-March to the end of June. But, unfortunately, at the 
beginning of July the first new epidemic outbreak after 
restrictions occurred, followed by a long succession of epi-
demic waves. During the period of the present study, the 
maximum viral load detected in wastewater samples ranged 
from  105 to  106 RNA copies per L, similar to that reported 

in other studies (Gerrity et al. 2021; Padilla-Reyes et al. 
2022; Pillay et al. 2021; Saththasivam et al. 2021). How-
ever, Yaniv et al. (2021) showed higher viral load values, 
around  107 RNA copies per L, which could be related to 
the length of their study (4 days) and to the type of sam-
ple collecting (8 h composite samples). On the contrary, 
Kumar et al. (2021) reported a low viral load range,  104 
RNA copies per L, probably due to the use of grab samples, 
which, as reported by Rafiee et al. (2021), makes difficult 

Fig. 5  Representation of the early warning system as assessed by 
COVIDBENS. Smoothed viral load measured at the Bens WWTP 
(red line), official number of active cases (blue line), reported by 
the health authorities (XUGA, Spain), and percentage of vaccinated 

population (green line) in the metropolitan area of A Coruña (Spain). 
Vertical dotted lines highlight increases of viral load (red) and clini-
cal cases (blue). The transition periods to new emerging variants are 
indicated with grey shadow

Table 2  SARS-CoV-2 detection results and prediction of COVID-19 clinical cases (lead time) in this study (A Coruña, Spain) from June 2020 to 
March 2022, and in other studies

ND, not determined
WWTP, wastewater treatment plant

Reference Location Sampling data Maximum concentration Lead time

This study A Coruña (Spain) 1 WWTP and 6 sewers; composite samples; 
21 months

106 copies per L 36 days

Yaniv et al. 2021 Ashkelon (Israel) 1 WWTP and 9 sewers; composite samples; 4 days 107 copies per L ND
Kumar et al. 2021 Ahmedabad (India) 1 WWTP and 8 sewage pumping stations; grab 

samples; 13 weeks
104 copies per L 1–2 weeks

Chavarria-Miro et al. 2021 Barcelona (Spain) 2 WTTP; composite samples; 3 months 105 copies per L 41 days
Reynolds et al. 2022 Dublin (Ireland) 1 WWTP; composite samples; 14 months 1.5e + 14 genome copies/day 0 days
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to follow the evolution of viral load or to perform statistical 
approaches. Wastewater epidemiology is influenced by many 
factors such as the SARS-CoV-2 shedding pattern of each 
variant, the population size of each location, the physico-
chemical characteristics of the wastewater, and others such 
as the commercial activity, or the international trade within 
and between countries, which induces variability in viral 
load data. Accordingly, the shedding of SARS-CoV-2 RNA 
in the human body depends on the stage of the disease in 
which the patient is. Wu et al. (2022) demonstrated an early 
SARS-CoV-2 shedding peak before symptom onset with a 

subsequent progressive reduction in RNA load in the last 
stages of the disease. The age also affects viral shedding, in 
such a way that a higher viral load is detected in older peo-
ple (Vellas et al. 2020). Moreover, it can be established that 
the recovery of COVID-19 patients implies less shedding. 
Also, the total population covered by the sampling area is 
a crucial factor in WBE since the larger the population, the 
greater the flow of wastewater, thus diluting the viral RNA 
that reaches the WWTP (Wilder et al. 2021). It also should 
be taken into account that tourism and travel, which sig-
nificantly change during summer, vary the population size. 

Fig. 6  Evolution of the SARS-CoV-2 variant frequency over time 
based on mutations detected in wastewater samples from the met-
ropolitan area of A Coruña (Spain) from May 2021 to March 2022 

using statistical models previously described. Arrows indicate the 
first clinical case reported by the health system infected with each 
variant (data recovered by the Galician Health Service, SERGAS)

Table 3  SARS-CoV-2 variants predicting results in this work (A Coruña, Spain) from November 2020 to March 2022, and in other studies

WWTP, wastewater treatment plant

Reference Location Sampling data Variant detected Variant prediction

This study A Coruña (Spain) 1 WWTP and 6 sewers; composite samples; 
21 months

Alpha, Delta, and Omicron 42 days

Joshi et al. 2022 Ahmedabad (India) 2 WTTP and 1 river; grab samples; 3 months Delta 1 month
Vo et al. 2022 Las Vegas (EEUU) 7 WTTP; grab and composite samples; 1 year Alpha and Epsilon 1 month
Jahn et al. 2022 Zurich, Lausanne, 

and alpine ski resort 
(Swiss)

3 WWTP; grab and composite samples; 
8 months

Alpha 13 days

Karthikeyan et al. 2022 San Diego (California) 1 WWTP and campus sewers; composite 
samples; 1 year

Alpha and Delta 14 days

Kirby et al. 2022 California, Colorado, 
New York, Texas 
(EEUU)

Multiple sewersheds; 1 month Omicron 1 week
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In addition, wastewater properties such as pH, temperature, 
humidity, ammonia or solid composition, or chlorination are 
directly associated with SARS-CoV-2 viral load measured 
in sewage samples (Ahmed et al. 2020; Amoah et al. 2022; 
Zhang et al. 2020). SARS-CoV-2 detection differs between 
the solid and the liquid phase of the wastewater influent, 
reporting a higher viral load in the liquid fraction (Weidhaas 
et al. 2021). In our previous work (Vallejo et al. 2022), we 
suggested that a high flow rate due to the rainfall and long 
transit times through the sanitary network until the WWTP, 
reduced SARS-CoV-2 concentration in wastewater, because 
the viral RNA was exponentially degraded during transpor-
tation. Therefore, the population living near the WWTP is 
probably the main contributor to the viral load detected in 
wastewater. The dilution effect of rainfall reduces SARS-
CoV-2 RNA levels in wastewater. Saingam et al. (2023) used 
chemical indicators (phosphate and ammonia) to calibrate 
this dilution effect improving the correlation between viral 
load in wastewater and clinical data over time. Lastly, one 
of the factors that influence the amount of SARS-CoV-2 in 
wastewater and the detection of new mutations is interna-
tional trade. This factor is a good indicator of the spread of 
the COVID-19 disease, since the most active areas in trade 
have greater population mobility and more group activities, 

increasing interpersonal contacts. Thus, social interactions 
are the main source of the spread of SARS-CoV-2 in society 
and it is correlated with confirmed clinical cases (Bontempi 
and Coccia 2021). In addition, international trade promotes 
the contact with foreign populations and consequently 
increases the risk of SARS-CoV-2 transmission between 
communities (Bontempi et al. 2021). These indicators help 
in the design of new effective policy responses to reduce the 
impact of future pandemics on society.

COVIDBENS was able to anticipate up to 36  days’ 
increases in clinical cases, or epidemic waves. Similar WBE 
studies resulted in 7–24 days of anticipation (Claro et al. 
2021; Kumar et al. 2021; Robotto et al. 2022; Sangsanont 
et al. 2022). Remarkably, in Barcelona, Chavarria-Miro 
et al. (2021) reported an outbreak 41 days before the first 
clinical sample was detected. They performed different RT-
qPCR assays targeting 5 SARS-CoV-2 genes instead of only 
one, increasing the robustness of the data. In other studies, 
despite using 24-h composite samples over a long surveil-
lance period, no lead time was observed, as in the study 
reported by Reynolds et al. (2022). The ability to anticipate 
to early outbreaks depends on the sampling strategy used, 
the frequency of sampling and on the smoothing statistical 
methods used, among other factors. It has to be taken into 

Fig. 7  Evolution of the number of people infected by SARS-CoV-2 in the metropolitan area of A Coruña (Spain) during the pandemic from July 
2020 to March 2022. Data have been estimated using COVIDBENS statistical models (Vallejo et al. 2022)
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account that, in general, limited data or punctual analyses 
do not allow establishing a reliable relationship between 
viral load and clinical cases using statistical models. COV-
IDBENS recruited samples at the Bens WWTP including 
all the municipalities of the metropolitan area of A Coruña, 
but also monitored the wastewater from specific locations, 
which was essential to detect local outbreaks. Regarding the 
sampling frequency, we collected samples twice or three 
times per week, during the period of the present study, 
depending on the evolution of the epidemic. After a pre-
liminary study, we chose 24-h composite sampling as the 
best scheme for monitoring the epidemic in the metropoli-
tan area of A Coruña.

A large proportion of people infected by SARS-CoV-2 
have no symptoms, so they are not usually detected and thus 
reported by the health system. The statistical model used 
in this study (Vallejo et al. 2022) allowed us to estimate 
the proportion of people infected in the metropolitan area 
of A Coruña. However, this model was developed when 
lineage B.1.177 was prevalent in Spain. After that, several 
new VOCs have emerged with potentially larger viral shed-
ding and consequently higher load in the wastewater. This 
fact requires an adaptation of the statistical models to the 
new situation of higher viral load excreted per person as 
new variants appear. Several studies confirmed the longer 
duration of Alpha variant in the respiratory tract of infected 
people resulting in higher RNA load compared to previous 
lineages (Calistri et al. 2021; Lyngse et al. 2021). Similarly, 
both Delta and Omicron variants seem to result in higher 
RNA load per patient than earlier variants (Riediker et al. 
2022). Other authors suggested that the Omicron was more 
transmissible and contagious than Delta, but nevertheless 
they conclude that this variant does not generate a higher 
viral load per person than Delta (Chen et al. 2022; Migueres 
et al. 2022; Sentis et al. 2022). This explains the higher viral 
load values observed in wastewater in January 2022 due to 
the rapid spread of Omicron in the population. Therefore, 
epidemiological surveillance models for SARS-CoV-2 in 
wastewater must consider these differences in the levels of 
excretion of VOCs. Results of the estimated number of peo-
ple infected by SARS-CoV-2 until January 2021 are 90% 
reliable as described by Vallejo et al. (2022), but from then 
on, a specific model adjustment would be necessary for each 
new variant emerged over time.

A relevant problem in the context of the COVID-19 pan-
demic was the monitorization of the progression of SARS-
COV-2 variants. The most used classification tools, such 
as pangolin, were designed for clinical samples in which 
only one lineage predominates, but in case of wastewater 
samples, several variants coexist at the same time, which 
makes the bioinformatics analysis harder. SARS-CoV-2 
genome sequencing from wastewater allows the detec-
tion of emerging variants far before they appear in clinical 

samples. We reported the Alpha, Delta, and Omicron vari-
ants up to 42 days earlier than the clinical cases detected by 
the regional health system. This anticipation demonstrates 
the great potential of genomic surveillance in wastewater 
samples. Ideally, for best WBE, variant detection and viral 
load monitoring in wastewater over time should be investi-
gated in a complementary way (Galani et al. 2022; Johnson 
et al. 2022; Masachessi et al. 2022; Rubio-Acero et al. 2021). 
Few studies reported similar lead times (Joshi et al. 2022; Vo 
et al. 2022) while other achieved shorter lead times, around 
7 days (Kirby et al. 2022). The genomic surveillance method 
used by Kirby et al. (2022) does not allow knowing if all the 
variant-associated mutations are present in a single genome, 
making difficult to confirm the presence of a specific vari-
ant in the wastewater sample. However, the statistical meth-
ods previously developed by our team (López de Ullibarri 
et al. 2023), used in the present study, allowed the determi-
nation of the percentage of each variant in the population 
over time from mutations data obtained from pool samples 
such as wastewater. More and more studies are implement-
ing bioinformatic tools and statistical approaches for the 
early detection of low-frequency variants and the quantita-
tive monitoring (Jahn et al. 2022). Karthikeyan et al. (2022) 
developed software for SARS-CoV-2 variants differentiation 
from wastewater samples. In addition, it was shown that the 
combined use of arctic v4 primers and the Maxwell® RSC 
Enviro Wastewater TNA Kit (TNA) increases the sensitiv-
ity and genome coverage of the virus sequencing (Girón-
Guzmán et al. 2023).

The irruption of the Delta variant in the summer of 2021 
had a much greater impact on viral load in wastewater than 
the Alpha variant had, probably due to its mutations in the 
spike protein which highly impact in its transmissibility and 
immune evasion (Tian et al. 2021). However, the number 
of COVID-19 reported cases during the Delta wave was 
lower, reflecting the vaccination effectiveness. The transition 
to the Omicron variant corresponds to the last viral load 
wave reported in this study. Despite the high vaccination rate 
in A Coruña (above 90%), the higher transmission rate of 
Omicron compared to Delta (Allen et al. 2022; Kumar et al. 
2022) and its immune escape ability (Zhang et al. 2021) 
probably explain a larger viral load in the wastewater, in 
contrast to the low rate of hospitalized people (data not 
shown), which indicates the benefit of vaccines. Omicron 
continues to accumulate mutations, emerging several 
lineages which have rapidly spread globally during 2022 
(Parums 2022). The BA.2 sublineage became the dominant 
variant at the end of this monitoring program due to its 
higher transmissibility and its capacity to reduce the effect 
of vaccination (Lyngse et al. 2022). Currently, the XBB.1.5 
Omicron, detected for the first time in the USA, became 
predominant in Spain. The great impact of the VOCs in the 
population and their capability of reducing the protective 
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effect of the vaccines increased the transmissibility of the 
infection, reporting a higher proportion of COVID-19 cases. 
However, hospitalization and mortality in COVID-19 cases 
were significantly reduced as the percentage of vaccinated 
people increased. This demonstrates the effectiveness of 
mass vaccination campaigns to contain the COVID-19 
pandemic.

SARS-CoV-2 surveillance in wastewater in A Coruña 
helped in decision-making at both the political and 
hospital levels. Both the regional and local government 
used COVIDBENS data to implement the corresponding 
restriction measures, and hospitals were able to anticipate 
and prepare for an increase of cases. In addition, important 
companies have followed our data to plan their production 
according to the COVID-19 pandemic, suggesting 
that industry, among other sectors, can benefit from 
the implementation of these epidemiological models. 
Nevertheless, in addition to the implementation of an 
effective WBE system, it is essential to have effective and 
preventive strategies against future pandemic threats, not 
only focused on the health level but also on the social, 
environmental, and institutional levels. During the COVID-
19 pandemic, it has been shown that measures such as 
the use of masks or lockdown considerably stopped 
the transmission of SARS-CoV-2 in the population. 
Other necessary preventive measures are the control of 
the transport and trade of pathogenic microorganisms, 
the reduction of air pollution levels in big cities, and 
transparent, responsive, and effective governance (Coccia 
2021). Strategies such as contact tracing and clinical testing 
to diagnose SARS-CoV-2 infections in the population 
would reduce the transmission of the disease, minimizing 
the number of infected people and avoiding the greatest 
possible number of deaths, especially in the initial stages of 
a pandemic situation when effective drugs or vaccines are 
not yet available (Benati and Coccia 2022). In addition, the 
implementation of a rapid vaccination plan at the beginning 
of the pandemic, the negative impact of the pathogen on 
society would be reduced and future outbreaks and similar 
pandemics would be prevented (Coccia 2022a). For this 
reason, countries have to increase the R&D investment for 
the development of new effective vaccines and drugs. Coccia 
(2022b) developed the r (resilience) and p (preparedness) 
indexes, which measure the ability of countries to face the 
COVID-19 crisis based on their level of support for vaccine 
development and their mortality reduction policies. It is an 
effective method that could be implemented in prevention 
strategies for future similar pandemics. Even so, new 
improvements and scientific advances are still needed 
on WBE, not only focused on SARS-CoV-2 but also on 
other pathogenic microorganisms with pandemic potential 
(Núñez-Delgado et al. 2021).

Even though COVIDBENS monitoring program ended in 
March 2022, SARS-CoV-2 wastewater, we strongly believe 
that wastewater surveillance should continue for monitoring 
the COVID-19 pandemic. WBE is an effective tool with 
various applications that support public health actions (Prado 
et al. 2023): (i) provides information about the transmission 
of SARS-CoV-2 and other potentially dangerous pathogens; 
(ii) detects early outbreaks; (iii) allows monitoring the 
effectiveness of the measures imposed by governments 
and local authorities to contain the viral transmission; 
(iv) alerts about the emergence of new pathogens, such as 
Crimean Congo Haemorrhagic Fever virus or Monkeypox 
virus, recently considered in Europe; (v) serves to monitor 
antimicrobials resistance in the community; and (vi) helps 
political authorities to be prepared for future pandemics. For 
these reasons, the European Commission recommended the 
inclusion of WBE in the national detection strategies (EC 
2021b).

Limitations of the present study

Our study has some limitations that must be taken into account. 
First, we did not consider the dilution rate in wastewater. Flow 
normalization is commonly used when reliable flow data are 
available, but in the absence of these, alternative methods such 
as electrical conductivity and crAssphage can be very effective 
(Langeveld et al. 2023). Secondly, we assumed no variation 
in the shedding pattern along the surveillance period, but the 
different VOC excretion levels in feces affect both the early 
warning condition of the WBE for COVID-19 and the esti-
mated infected people results. This could be related with a 
decrease in the ability to anticipate the emergence of Omicron 
with respect to Delta. As we described before, our statistical 
model to estimate the people infected with SARS-CoV-2 was 
only designed for the original variant (B.1.177), so it must be 
adjusted for new each new emerging variant over time. Thirdly, 
WBE has a low sensitivity and recovery of the SARS-CoV-2 
detection in sewage due to the complexity of the wastewater 
samples, so new methods are needed to improve the sensitiv-
ity and virus recovery such as the EM-VIP-Mag-RT-qPCR 
method (Kumblathan et al. 2023). In addition, due to the dis-
tribution of the sewerage network, the specific location of the 
sewers installed in the five municipalities of the metropolitan 
area of A Coruña do not cover the entire population, which 
may affect the WBE system efficiency, given that we lost a 
small part of the infected population. A deeper redesign would 
be necessary to resolve this issue. Lastly, the use of automatic 
samplers is highly expensive, so it is not valid for all types 
of regions. Studies have demonstrated the efficacy of passive 
sampling in WBE in small areas using Moore’s swabs, which 
are more sensitive, precise, and cost-effective, so they could 
be implemented in low-resource areas where clinical testing 
is scarce (Cha et al. 2023).
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Conclusions

This work demonstrates that SARS-CoV-2 viral load mon-
itoring in wastewater is a very efficient way to report on 
COVID-19 evolution in the community, anticipating new 
outbreaks long before the health system, and therefore allow-
ing the public authorities to take reliable decisions, saving 
precious time and public resources. SARS-CoV-2 moni-
toring in wastewater detects increases in viral load before 
clinical cases appear being able to predict epidemic waves 
in the population. Viral load data combined with statistical 
models allows estimating the total number of infected people 
(symptomatic and asymptomatic), improving significantly 
the WBE strategy. In addition, sequencing of SARS-CoV-2 
in wastewater allows a real-time epidemiological surveil-
lance of SARS-CoV-2 mutations and combined with sta-
tistical models, can anticipate the appearance of emerging 
VOCs before clinical testing. COVIDBENS has served as 
an effective early warning system for anticipating new out-
breaks and variants of concern in the metropolitan area of 
A Coruña and, it also provided a public health service open 
to all citizens with an important social impact throughout 
the entire pandemic. Nations should implement the WBE 
system in their prevention strategies for future pandemic 
crises, which also include social, environmental, and health 
policies, to reduce the socioeconomic impact of the virus or 
other potentially dangerous pathogens.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11356- 023- 27877-3.
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