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SUMMARY

Hall & Robinson (2009) proposed and analyzed the use of bagged cross-validation to choose the band-
width of a kernel density estimator. They established that bagging greatly reduces the noise inherent in 
ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asymptotic theory 
of Hall & Robinson (2009) assumes that N , the number of bagged subsamples, is ∞. We expand upon 
their theoretical results by allowing N to be finite, as it is in practice. Our results indicate an impor-tant 
difference in the rate of convergence of the bagged cross-validation bandwidth for the cases N = ∞ and 
N < ∞. Simulations quantify the improvement in statistical efficiency and computational speed that can 
result from using bagged cross-validation as opposed to a binned implementation of ordinary cross-
validation. The performance of the bagged bandwidth is also illustrated on a real, very large, data set. 
Finally, a byproduct of our study is the correction of errors appearing in the Hall & Robinson (2009) 
expression for the asymptotic mean squared error of the bagging selector.

Some key words: Bagging; Bandwidth; Big data; Cross-validation; Kernel density.

1. INTRODUCTION

Cross-validation is a rough-and-ready method of model selection that predates an early exposition of 
the method by Stone (1974). In its simplest form, cross-validation consists of dividing one’s data set into
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988, https://doi.org/10.1093/biomet/asaa092, published by Oxford University Press, is available online at: https://
doi.org/10.1093/biomet/asaa092.
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two parts, using one part to build one or more models, and then predicting the data in the second part with
the models so-built. In this way, one can objectively compare the predictive ability of different models.
The leave-one-out version of cross-validation is somewhat more involved. It excludes one datum from the
data set, fits a model from the remaining observations, uses this model to predict the datum left out, and40

then repeats this process for all the data.
While leave-one-out cross-validation is a very useful method, due in no small part to its wide applica-

bility, it does have its drawbacks. In the context of smoothing parameter selection for function estimation,
it has been regarded skeptically for many years owing to its large variability (see, e.g. Park & Marron,
1990). A number of modified versions of cross-validation have been proposed in an effort to produce45

more stable smoothing parameter selectors. These include partitioned cross-validation (Marron, 1987;
Bhattacharya & Hart, 2016), proposals of Stute (1992) and Feluch & Koronacki (1992), smoothed cross-
validation (Hall et al., 1992), one-sided cross-validation (Hart & Yi, 1998; Miranda et al., 2011), a bagged
version of cross-validation (Hall & Robinson, 2009), indirect cross-validation (Savchuk et al., 2010) and
DO-validation (Mammen et al., 2011).50

The current paper revisits the application of bagging to the selection of a kernel density estimator’s
bandwidth. Given a random sample of size n from an unknown density f , bagging consists of selecting
N subsamples of size m < n, each without replacement, from the n observations. One then computes a
cross-validation bandwidth from each of the N subsets, averages them, and then scales the average down
appropriately to account for the fact that m < n. It is well-known that the use of bagging can lead to55

substantial reductions in the variability of an estimator that is nonlinear in the observations (see Friedman
& Hall, 2007). Indeed, this is true in the bandwidth selection problem, as demonstrated in Hall & Robinson
(2009).

A method closely related to bagging is partitioned cross-validation (Marron, 1987), wherein the data
set is partitioned into mutually exclusive subsets, and a bandwidth is computed from each subset. One60

may then average these bandwidths and rescale as in bagging. A little thought reveals that the statistical
properties of bagging and a replicated version of partitioned cross-validation are essentially equivalent,
and hence to fix ideas we consider only bagging in this paper.

Two other popular methods of bandwidth selection are the plug-in method of Sheather & Jones (1991)
and the bootstrap (Cao, 1993). It is worth mentioning that bagged versions of these two methodologies65

could also be considered. Some readers might argue that plug-in methods are more efficient than any
version of cross-validation and hence should be the method of choice. However, Loader (1999) challenges
this notion and provides good reasons for not discarding cross-validatory methods.

The main contributions of our paper are as follows:

(i) In the case N =∞, we provide a correct expression for the asymptotic mean squared error of the70

bagged bandwidth. The analogous expression given by Hall & Robinson (2009) is in error. Their vari-
ance approximation is of too large an order, thus downplaying the actual reduction in variance that is
possible with the use of bagging. In addition, we provide an expression for the first order bias of the
bagged bandwidth and show that the Hall & Robinson (2009) bias approximation is actually of smaller
order in terms of sample size. (The same bias error appears in the article of Marron, 1987).75

(ii) We provide a first order approximation to the variance in the case where N is finite, which, of course,
is the case in practice. This is important because even if N = n, the asymptotic variance of the bagged
bandwidth is of a different order than it is when N =∞. The relevance of this result is immediate for
massive data sets, since in such cases taking N as large as n can be prohibitive computationally.

(iii) We provide an automatic method to estimate the best (in the sense of minimum mean squared error)80

subsample size.
(iv) Both the automatic method and the bagged bandwidth selector have been implemented into an R (R

Development Core Team, 2020) package, called baggedcv (Barreiro-Ures et al., 2019), which is
already available at CRAN.

The rest of the paper proceeds as follows. In Section 2, we describe the problem of interest and the85

bagging method of bandwidth selection. In Section 3, we derive the asymptotic mean squared error of the
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bagged cross-validation bandwidth. In Section 4, we propose a method to select the size of the subsamples,
m, estimating the optimal value of this parameter. Finally, some concluding remarks are given in Section
5. At Biometrika online, one may find supplementary material that includes a proof of Theorem 1, a
comprehensive simulation study, an application of our approaches to a large dataset involving flight delays, 90

and, finally, derivation of a correct expression for the variance of the bagged cross-validation bandwidth.

2. METHODOLOGY

Let X1, . . . , Xn be a random sample from a density f , and consider estimating f(x) by the kernel
estimator (Parzen, 1962; Rosenblatt, 1956)

f̂h(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
,

where K is a symmetric kernel function and h > 0 is the bandwidth or smoothing parameter. Making a
good choice of the bandwidth is crucial to obtaining a good density estimate. An oft-used criterion for
defining a good bandwidth is based on mean integrated squared error (MISE), defined by

M(h) = E

{∫ ∞
−∞

(f̂h(x)− f(x))2 dx
}
.

Suppose that f has two continuous derivatives. As shown by, for example, Silverman (1986), the mini-
mizer, hn0, of M(h) with respect to h is asymptotic to hna = Cn−1/5 as n→∞, where

C =

{
R(K)

µ2(K)2R(f ′′)

}1/5

, (1)

R(g) =
∫
g2(x) dx and µj(g) =

∫
xjg(x) dx (j = 0, 1, . . .), provided that these integrals exist finite. Ide- 95

ally, one would use hn0 as a bandwidth in the estimator f̂h, but of course hn0 depends on f and so this is
not feasible. A means of estimating hn0 is based on cross-validation.

The leave-one-out cross-validation criterion can be written as:

CV (h) =

∫ ∞
−∞

f̂h(x)
2 dx− 2

n

n∑
i=1

f̂ ih(Xi), h > 0,

where f̂ ih is a kernel estimate computed with the n− 1 observations other than Xi. It is easily shown that,
for any h > 0, CV (h) is an unbiased estimator of M(h)−R(f). It seems natural then to estimate hn0
by ĥn, the minimizer of CV (h). Hall & Marron (1987) show that 100

n1/10

(
ĥn − hn0
hn0

)
→ Z (2)

in distribution, where Z is normally distributed with mean 0. The good news here is that the relative error
(ĥ− hn0)/hn0 converges to 0 in probability, as n→∞. The bad news is that the rate of convergence is
very slow, n−1/10, which confirms the large variability of cross-validation alluded to in the introduction.

We now explain how bagging may be applied in the cross-validation context. A random sample
X∗1 , . . . , X

∗
m is drawn without replacement from X1, . . . , Xn, where m < n. This subsample is used to 105

calculate a least squares cross-validation bandwidth ĥm. A rescaled version of ĥm, h̃m = (m/n)1/5ĥm, is
a feasible estimator of the optimal MISE bandwidth, hn0, for f̂h. Bagging consists of repeating the resam-
pling independentlyN times, leading to N rescaled bandwidths h̃m,1, . . . , h̃m,N . The bagging bandwidth
is then defined to be

ĥ(m,N) =
1

N

N∑
i=1

h̃m,i. (3)
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This approach was first proposed and studied by Hall & Robinson (2009).110

It is worth mentioning that an alternative approach is to apply bagging to the cross-validation curves,
wherein one averages the cross-validation curves from N independent resamples of size m, finds the
minimizer of the average curve, and then rescales the minimizer as before. The asymptotic properties of
the two approaches are equivalent, but we prefer bagging the bandwidths since doing so requires less
communication between resamples.115

3. ASYMPTOTIC RESULTS

In this section, we provide asymptotic expressions for the bias and variance of the bagging bandwidth
(3). Hall & Robinson (2009) studied this selector only in the case N =∞. We find that the expression
they give for the variance of (3) (at N =∞) is in error. We provide a correct expression for this variance,
and, more importantly, study the case of finite N , since there is an important interplay between the values120

of m and N . Of course, in practice it is not possible to use N =∞, and indeed there is a computational
motivation for limiting the size of N . We will show that if N is, for example, of order n, then the rate of
convergence of the variance to 0 is different than in the case N =∞. This is a new result that does not
arise from the method of proof used in Hall & Robinson (2009).

Obviously E(ĥ(m,N)) = E{(m/n)1/5ĥm}, and hence it suffices to know the bias of (m/n)1/5ĥm as125

an estimator of hn0. We have

E
{
(m/n)1/5ĥm

}
− hn0 = Brescale(m,n) + (m/n)1/5BCV(m),

where

Brescale(m,n) = (m/n)1/5hm0 − hn0 and BCV(m) = E(ĥm)− hm0.

The rescaling bias, Brescale(m,n), is well-understood. Marron (1987) shows that

Brescale(m,n) = µrescalem
−2/5n−1/5 + o

(
m−2/5n−1/5

)
,

where

µrescale =
R(K)3/5R(f ′′′)µ4(K)

20R(f ′′)8/5
.

Hall & Robinson (2009) also provide an expression for Brescale(m,n), although their rate is in error.
The other bias component, BCV, is the bias inherent to cross-validation itself, and has a curious history

in the literature. In establishing (2), Hall & Marron (1987) write

ĥn − hn0 = ξn + en, (4)

where E(ξn) = 0 and en = op(ξn), and hence BCV(n) is lost in the term en. Doing so is acceptable in130

the case of ordinary cross-validation because of the fact that var(ξn) is so large. In the case of bagging,
however, when var(ĥ(m,N)) becomes sufficiently small, one should no longer ignoreBCV(m), although
this seems to be what both Marron (1987) and Hall & Robinson (2009) did.

In the supplementary material, as part of the proof of the main theorem stated below, we prove that
n2/5en converges in distribution to a random variable with mean135

µCV = −
8R(f)

∫
V (u)W (u)du

25R(K)8/5R(f ′′)2/5
, (5)

where V and W are functions determined completely by K. For example,
∫
V (u)W (u)du = 0.1431285

in the case of the standard normal kernel.
The following assumptions are made in order to prove Theorem 1:

Assumption 1. As m,n→∞, m = o(n) and N tends to a positive constant or∞.



Bagging cross-validated bandwidths 5

Assumption 2. K is a symmetric and twice differentiable density function having, without loss of gen- 140

erality, variance µ2(K) = 1.

Assumption 3. As u→∞, both K(u) and K ′(u) are o (exp(−a1ua2)) for positive constants a1 and
a2.

Assumption 4. The first three derivatives of f exist and are bounded and continuous.

THEOREM 1. Under Assumptions 1–4, the bias of the bagged bandwidth (3) is: 145

E
(
ĥ(m,N)

)
− hn0 = m−1/5n−1/5

(
µCV + µrescalem

−1/5
)
+ o

(
m−1/5n−1/5

)
(6)

and its variance is:

var
(
ĥ(m,N)

)
= AC2m−1/5n−2/5

{
1

N
+
(m
n

)2}
(7)

+ o

(
m−1/5n−2/5

N
+m9/5n−12/5

)
,

where A and C are constants defined by (S14) of the supplementary material and (1), respectively.

Expression (3) implies that at N =∞ the asymptotic variance of the bagged bandwidth is completely
determined by the covariance between bandwidths for two different resamples. Furthermore, to first order,
as derived in Bhattacharya & Hart (2016), the correlation between bagged bandwidths from different 150

resamples is independent of f and equal to (m/n)2. This correlation is smaller when m is smaller, which
is due to the fact that two resamples will usually have fewer data values in common when m is smaller. In
fact, taking N =∞ yields the approximation

var
(
ĥ(m,N)

)
= AC2m9/5n−12/5 + o

(
m9/5n−12/5

)
, (8)

which matches precisely one of the two summands in expression (13) of Hall & Robinson (2009). It can
be shown that the other summand, rather than being the dominant term, as claimed by Hall & Robinson 155

(2009), is actually negligible in comparison to (8).
It is easily verified that the choice of m that minimizes the main term of (7) is asymptotic to n/(3

√
N).

Therefore, if N = n, say, then the fastest rate at which var(ĥ(m,N))/h2n0 can converge to 0 is n−11/10.
In contrast, when N =∞, the rate of convergence of var(ĥ(m,N))/h2n0 can be arbitrarily close to n−2

by allowing m to increase sufficiently slowly with n. This makes it clear that the properties of the bagged 160

bandwidth are substantially affected by how many subsamples are taken, and hence it does not suffice to
analyze the bagged bandwidth by setting N =∞.

It is remarkable how much stability bagging can provide. Whether N is ∞ or merely tending to ∞,
var(ĥ(m,N)/hn0) can converge to 0 faster than the usual parametric rate of n−1. This is in stark contrast
to the extremely slow rate of n−1/5 for ordinary cross-validation. Unfortunately, this extreme stability 165

cannot be fully taken advantage of since the bagged bandwidth is more biased than the ordinary cross-
validation bandwidth. The largest reductions in variance are associated with small values ofm, but it turns
out that small m yields the largest bias.

As seen in (6), the bias term BCV, that has been ignored to date, is of a larger order than the rescaling
bias. This and the fact that µCV < 0 suggest that the bagged bandwidth would tend to be smaller than the 170

optimal bandwidth hn0. However, our experience in numerous simulations is that the bagged bandwidth
actually tends to be larger than hn0. The explanation for this phenomenon is simple: µrescale > 0 and
µrescale is larger than |µCV | in every case we have checked. Indeed, we have not found a case where
µrescale/|µCV | is less than 2, and it appears that there is no limit to how large this ratio can be.

Table 1 provides the constants µrescale and µCV for several densities. Two patterns are apparent here: 175

(i) the heavier the tail of the density, the more dominant is the rescaling bias, and (ii) the rescaling bias
is more dominant for multimodal mixtures of normals than for the normal itself. Define mcrit to be the
smallest subsample size at which the asymptotic mean of the bagged bandwidth is not larger than the
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optimal MISE bandwidth, hn0. Since the ratio µrescale/µCV is invariant to location and scale, it follows
that the values of mcrit for any normal, logistic or Cauchy distribution are the same as in Table 1. Except180

in the case of the Beta(5, 5) and normal densities, the values ofmcrit are very large, especially considering
(as we shall subsequently see) that a good choice for m is usually much smaller than n. So, in spite of
what the asymptotics suggest, it will often be the case that the bagged bandwidth is larger on average
than the optimal bandwidth. This is a classic case of asymptotics not “kicking in” until the sample size is
extremely large.185

Table 1. Bias constants and critical m (mcrit) for the Gaus-
sian kernel.

Density µrescale µCV mcrit

Beta(5, 5) 0.06554 −0.03070 45
Standard normal 0.44565 −0.18216 88
Standard logistic 0.92556 −0.25787 596
Bimodal mixture of two normals 0.32809 −0.05988 4, 936
Standard Cauchy 1.24349 −0.09793 330, 154
Claw 0.22774 −0.00766 > 107

The claw density (Marron & Wand, 1992) is a symmetric mixture of six
normals with five modes. The bimodal mixture of two normals has param-
eters µ = (−1.5, 1.5), σ = (0.5, 0.5) and w = (0.5, 0.5), where µ, σ and
w are the mean, standard deviation and weight vectors, respectively, for the
density mixture. See Section 2 of the supplementary material for a defini-
tion of the claw density and notation used for a normal mixture density.

4. CHOOSING AN OPTIMAL SUBSAMPLE SIZE

In practice, for fixed n and N , our results allow one to estimate an optimal subsample size, m0. This
quantity is defined to be the minimizer of the asymptotic mean squared error (AMSE) of ĥ(m,N) with
respect to m:

AMSE
(
ĥ(m,N)

)
= AC2m−1/5n−2/5

{
1

N
+
(m
n

)2}
+ m−2/5n−2/5

(
µCV + µrescalem

−1/5
)2
. (9)

Since µrescale, µCV , A and C are unknown, we propose the following method to estimate m0 =190

argmin
m>1

AMSE
(
ĥ(m,N)

)
.

Step 1. Consider s subsamples of size r < n, drawn without replacement from the original sample of
size n.

Step 2. For each of these subsamples, fit a normal mixture model. To fit a mixture model with a given
number of components, use the expectation-maximization algorithm initialized by hierarchical model-195

based agglomerative clustering. Then, estimate the optimal number of mixture components by using
BIC, the Bayesian information criterion. In practice, this process is performed employing the R pack-
age mclust (see Scrucca et al., 2016).

Step 3. UseR(f̂i),R(f̂ ′′i ) andR(f̂ ′′′i ) to estimateA,C, µCV and µrescale, where f̂i denotes the density
function of the normal mixture fitted to the i-th subsample. Denote these estimates by Âi, Ĉi, µ̂CV,i and200

µ̂rescale,i.
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Step 4. Compute the bagged estimates of the unknown constants, that is, D̂ = 1
s

s∑
i=1

D̂i, where D̂i can

be Âi, Ĉi, µ̂CV,i or µ̂rescale,i, and obtain ÂMSE(ĥ(m,N)) by plugging these bagged estimates into (9).

Step 5. Finally, estimate m0 by m̂0 = argmin
m>1

ÂMSE
(
ĥ(m,N)

)
.

Regarding the selection of s and r in Step 1, we have performed some empirical tests and observed that 205

the estimation of hn0 by ĥ(m̂0, N) is quite robust to the values of these parameters. For example, values
of s ' 50 and r ' 0.01n have provided, in general, good results.

5. DISCUSSION

In this paper, we have studied the asymptotic properties of a bagged cross-validation bandwidth when
the number of subsamples is finite. This smoothing parameter selector is an alternative to leave-one-out 210

cross-validation and is able to achieve a large reduction in mean squared error due to a decrease in variance
that greatly offsets its increase in bias. In supplementary material, the finite sample behaviour of bagging
was investigated by means of a simulation study, practical performance of the method was illustrated
using a large data set involving flight delays, and it was shown that subsampling can significantly reduce
computing time relative to a binned version of leave-one-out cross-validation. 215

As mentioned in Section 1, bagged versions of other bandwidth selection methodologies, such as plug-
in and bootstrap, could be considered. While both cross-validation and bootstrap approaches try to esti-
mate hn0, plug-in bandwidths are estimators of hna (the bandwidth minimizing the asymptotic MISE)
and hence they only need to estimate R(f ′′). It is worth noting that there is a clear similarity between the
three methods. Both cross-validation (Scott & Terrell, 1987) and bootstrap (Cao, 1993) bandwidths are 220

minimizers of criteria of the form

∑
(i,j)∈I

Hnhg(Xi −Xj) +
R(K)

nh
, (10)

where I ⊂ {1, . . . , n} × {1, . . . , n} and Hnhg is a function that may depend on the sample size, n, the
bandwidth, h, and a pilot bandwidth, g. Note that g plays a role only in the bootstrap criterion. Although
plug-in bandwidths are not solutions to a minimization problem, the nonparametric estimation of R(f ′′)
using pilot bandwidth g requires working with a U -statistic like the one given in the first term in (10), 225

which would only depend on n and g. Due to the nonlinearity of (10) with respect to the observations, it
stands to reason that a bagged implementation of these methods could reduce their variability, as in the
case of cross-validation.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proof of Theorem 1, a compre-240

hensive simulation study, and an application of our approaches to a large dataset involving flight delays.
Finally, derivation of a correct expression for the asymptotic variance of the bagged cross-validation band-
width is provided.
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SUMMARY

This supplementary material for “Bagging cross-validated bandwidths with application to Big 
Data” contains a proof of Theorem 1 of the main paper. In addition, a simulation study 
evaluating the performance of the bagged cross-validation bandwidth is presented, and an 
application of our approaches to a large dataset involving flight delays is provided. Finally, a 
correct expression for the asymptotic variance of the bagging cross-validation bandwidth studied 
in Hall & Robinson (2009) and a proof of that result are also available here.

1. THEORETICAL RESULTS

This section includes the proof of Theorem 1 of the main paper (called Theorem S1 in this doc-
ument), providing the asymptotic bias and variance of our bagged cross-validation bandwidth. 
The assumptions required for this result are as follows:

Assumption S1. As m,n→∞, m = o(n) and N tends to a positive constant or∞.

Assumption S2. K is a symmetric and twice differentiable density function having, without
loss of generality, variance µ2(K) = 1.
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Assumption S3. As u→∞, bothK(u) andK ′(u) are o (exp(−a1ua2)) for positive constants35

a1 and a2.

Assumption S4. The first three derivatives of f exist and are bounded and continuous.

THEOREM S1. Under Assumptions S1–S4, the asymptotic bias of the bagged bandwidth (3)
in the main paper is:

E
(
ĥ(m,N)

)
− hn0 = m−1/5n−1/5

(
µCV + µrescalem

−1/5
)

+ o
(
m−1/5n−1/5

)
(S1)

and its asymptotic variance is:40

var
(
ĥ(m,N)

)
= AC2m−1/5n−2/5

{
1

N
+
(m
n

)2}
(S2)

+ o

(
m−1/5n−2/5

N
+m9/5n−12/5

)
,

where C and A are constants given in (1) of the main paper and by (S14), respectively.

To prove Theorem S1, we establish one lemma in advance.

LEMMA S1. Under Assumptions S1–S4,

n1/5CV ′′′(h̃n) = oP (1), (S3)

where h̃n is a bandwidth between the cross-validation bandwidth ĥn and the MISE minimizer
hn0.45

Proof. First, we write

n1/5CV ′′′(h̃n) = α1 + α2, (S4)

with α1 = n1/5CV ′′′(hn0) and α2 = n1/5
(
CV ′′′(h̃n)− CV ′′′(hn0)

)
. To prove Lemma 1 it is

sufficient to show that α1 = oP (1) and α2 = oP (1). In order to study the term α1, we first
consider the asymptotic MISE of the Parzen–Rosenblatt estimator of the density function. It is
well-known that if K is a second order symmetric kernel function and considering that K has50

variance 1 (Assumption S2), the MISE is:

M(h) =
R(K)

nh
+

1

4
h4R(f ′′) + o

(
(nh)−1 + h4

)
,

and, hence,

M ′′′(h) = −6R(K)

nh4
+ 6hR(f ′′) + o

(
(nh4)−1 + h

)
.

Since

−6R(K)

nh4na
+ 6hnaR(f ′′) = 0,

where hna denotes the bandwidth minimizing the asymptotic MISE, it follows immediately that
n1/5M ′′′(hn0) converges to 0. Now, we can write55

n1/5CV ′′′(hn0) = n1/5M ′′′(hn0) + n1/5ηn,
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where ηn = CV ′′′(hn0)−M ′′′(hn0). Thus, to prove that α1 = oP (1), it is sufficient to prove
that

ηn = oP

(
n−1/5

)
, (S5)

or, by Markov’s inequality, that n2/5var(CV ′′′(hn0)) = o(1). It is easy to prove that, for every
r ≥ 1,

CV (r)(h) = M (r)(h) +
1

n(n− 1)

∑
i6=j

γ̄
(r)
nh (Xi −Xj), (S6)

where γn(u) = n−1
n K ∗K(u)− 2K(u), γnh(u) = γn(u/h)/h, γ̄nh(u) = γnh(u)− 60

E(γnh(X1 −X2)) and γ̄(r)nh (u) = dr

dhr γ̄nh(u). Therefore,

var(CV ′′′(h)) =
1

n2(n− 1)2

n∑
i,j,k,l=1
i6=j
k 6=l

cov (Ψ3(Xi −Xj),Ψ3(Xk −Xl)) ,

where

Ψ3(u) =
d3

dh3
γnh(u) = −

{
6

h4
γn(u/h) +

18u

h5
γ′n(u/h) +

9u2

h6
γ′′n(u/h) +

u3

h7
γ′′′n (u/h)

}
.

Counting the different possible cases, we get

var(CV ′′′(h)) =
1

n2(n− 1)2
{4n(n− 1)(n− 2)cov (Ψ3(X1 −X2),Ψ3(X1 −X3))

+ 2n(n− 1)var (Ψ3(X1 −X2))} .

Let us now define the function Ψ̃3(u), such that, Ψ3(u) = Ψ̃3(u/h)/h. Consequently,

Ψ̃3(u) = − 1

h3
{

6γn(u) + 18uγ′n(u) + 9u2γ′′n(u) + u3γ′′′n (u)
}
.

Taking into account the definition of µj(g) =
∫
xjg(x) dx, j = 0, 1, . . ., for any function g, 65

we shall now proceed to compute µj
(

Ψ̃3

)
, for j = 0, 2, 4, 6, and µj

(
Ψ̃2

3

)
, for j = 0, 2, since

we will need these quantities later on. Note that µj
(

Ψ̃3

)
= 0, for every odd j, since Ψ̃3 is

symmetric.
For j = 0,

µ0(Ψ̃3) = − 1

h3
{

6µ0(γn) + 18µ1(γ
′
n) + 9µ2(γ

′′
n) + µ3(γ

′′′
n )
}
.

Using integration by parts and the fact that µ0(K) = µ0(K ∗K) = 1, we get 70

µ0(γn) = −n+ 1

n
,

µ1(γ
′
n) =

n+ 1

n
,

µ2(γ
′′
n) = −2

(
n+ 1

n

)
,

µ3(γ
′′′
n ) = 6

(
n+ 1

n

)
,
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and, hence,

µ0(Ψ̃3) = 0.

Now,

µ2(Ψ̃3) = − 1

h3
{

6µ2(γn) + 18µ3(γ
′
n) + 9µ4(γ

′′
n) + µ5(γ

′′′
n )
}
.

Partial integration and the equality µ2(K ∗K) = 2µ2(K) give

µ2(γn) = −2µ2(K)/n,

µ3(γ
′
n) = 6µ2(K)/n,

µ4(γ
′′
n) = −24µ2(K)/n,

µ5(γ
′′′
n ) = 120µ2(K)/n,

and, therefore,

µ2(Ψ̃3) = 0.

We have75

µ4(Ψ̃3) = − 1

h3
{

6µ4(γn) + 18µ5(γ
′
n) + 9µ6(γ

′′
n) + µ7(γ

′′′
n )
}
.

Using integration by parts and the fact that µ4(K ∗K) = 2µ4(K) + 6µ2(K)2, we get

µ4(γn) = 6µ2(K)2 − 2µ4(K)/n,

µ5(γ
′
n) = −30µ2(K)2 + 10µ4(K)/n,

µ6(γ
′′
n) = 180µ2(K)2 − 60µ4(K)/n,

µ7(γ
′′′
n ) = −1260µ2(K)2 + 420µ4(K)/n,

and, therefore,

µ4(Ψ̃3) =
144µ2(K)2

h3
+O

(
1

nh3

)
.

Finally,

µ6(Ψ̃3) = − 1

h3
{

6µ6(γn) + 18µ7(γ
′
n) + 9µ8(γ

′′
n) + µ9(γ

′′′
n )
}
.

Using integration by parts and the fact that µ6(K ∗K) = 2µ6(K) + 30µ2(K)µ4(K), we get

µ6(γn) = 30µ2(K)µ4(K) +O(1/n),

µ7(γ
′
n) = −210µ2(K)µ4(K) +O(1/n),

µ8(γ
′′
n) = 1680µ2(K)µ4(K) +O(1/n),

µ9(γ
′′′
n ) = −15120µ2(K)µ4(K) +O(1/n),

and so80

µ6(Ψ̃3) =
3600µ2(K)µ4(K)

h3
+O

(
1

nh3

)
.

Analogously, it can be proved that

µ0(Ψ̃
2
3) = µ2(Ψ̃

2
3) = O

(
1

h6

)
.
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On the other hand,

var (Ψ3(X1 −X2)) = I1 − I22
and

cov (Ψ3(X1 −X2),Ψ3(X1 −X3)) = I3 − I22 ,

where

I1 =

∫
Ψ2

3 ∗ f(x)f(x)dx,

I2 =

∫
Ψ3 ∗ f(x)f(x)dx,

I3 =

∫
Ψ3 ∗ f(x)2f(x)dx.

Simple algebra and Taylor expansions give 85

I1 =
1

h

∫ ∫
Ψ̃3(u)2f(x)

{
f(x) +

h2u2

2
f ′′(ζ)

}
dxdu

=
1

h

{
µ0(Ψ̃

2
3)R(f) +O

(
h2µ2(Ψ̃

2
3)
)}

= O

(
1

h7

)
,

I2 =

∫ ∫
Ψ̃3(u)f(x)

{
h4u4

4!
f (4)(x) +

h6u6

6!
f (6)(ξ)

}
dxdu

=
h4

24
µ4(Ψ̃3)R(f ′′) +O

(
h6µ6(Ψ̃3)

)
= 6µ2(K)2R(f ′′)h+O

(
h3
)
,

and

I3 =

∫
f(x)

{∫
1

h
Ψ̃3

(
x− y
h

)
f(y)dy

}2

dx

=

∫
f(x)

{
6µ2(K)2f (4)(x)h+O

(
h3
)}2

dx

= 36µ2(K)4
∫
f (4)(x)2f(x)dxh2 +O

(
h4
)
.

Therefore,

var (Ψ3(X1 −X2)) = O

(
1

h7

)
,

cov (Ψ3(X1 −X2),Ψ3(X1 −X3)) = Lh2 +O
(
h4
)
,

where L = 36µ2(K)4
(∫
f (4)(x)2f(x)dx−R(f ′′)2

)
. Consequently,

var
(
CV ′′′(h)

)
= O

(
1

n2h7

)
, (S7)

and var (CV ′′′(hn0)) = O
(
n−3/5

)
. Therefore, as required, var (CV ′′′(hn0)) = o

(
n−2/5

)
and 90

so α1 = oP (1).
To handle the term α2 in (S4), we write

α2 = n1/5
(
CV ′′′(h̃n)− CV ′′′(hn0)

)
= n1/5(h̃n − hn0)CV (4)(hn), (S8)
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where hn is an intermediate value between h̃n and hn0. The results of Hall & Marron (1987)
imply that h̃n − hn0 = OP

(
n−3/10

)
. Thus, in view of (S8), to prove α2 = oP (1) it is sufficient

to show that95

n−1/10 sup
h∈I(hn,hn0)

|CV (4)(h)| = oP (1), (S9)

where I(hn, hn0) is the interval with endpoints hn and hn0.
Let a be arbitrarily small but fixed, and such that an−1/5 < hn0 < a−1n−1/5. With-

out loss of generality, we suppose that CV (h) is minimized over a finite set In having
equally spaced points on the interval (an−1/5, a−1n−1/5). It is assumed that the number of
points in In is n2/5−d, where 0 < d < 1/5. Let h∗n be the minimizer of M(h) over In.100

Then optimizing CV over In suffices since h∗n − hn0 is of order n−3/5+d, implying that
this source of error is smaller than n−2/5 and hence negligible for the current argument.
It is enough to show that n−1/10 maxh∈In |CV (4)(h)| converges in probability to 0. Since
|CV (4)(h)| ≤ |CV (4)(h)− En(h)|+ |En(h)|, where En(h) = E

(
CV (4)(h)

)
, it suffices to

show that limn→∞ n
−1/10 maxh∈In |En(h)| = 0 and n−1/10 maxh∈In |CV (4)(h)− En(h)| =105

oP (1).
For any ε > 0, we have

P

(
n−1/10 max

h∈In
|CV (4)(h)− En(h)| ≥ ε

)
≤ P

 ⋃
h∈In

{
n−1/10|CV (4)(h)− En(h)| ≥ ε

}
≤
∑
h∈In

P
(
n−1/10|CV (4)(h)− En(h)| ≥ ε

)
≤
∑
h∈In

var(CV (4)(h))

n1/5ε2

≤ n1/5−d

ε2
max
h∈In

var(CV (4)(h)).

Let us now obtain uniform bounds for the expectation and variance of CV (4)(h). It is straight-
forward to prove that

En(h) = M (4)(h) ∼ 6µ2(K)2R(f ′′) + 24R(K)n−1h−5

and, since hn0 ∼ hna = Cn−1/5, we have that En(hn0) ∼ D, for some constant D > 0. On the110

other hand, since In ⊂ [an−1/5, a−1n−1/5], we get

max
h∈In

E
(
CV (4)(h)

)
= O(1). (S10)

To obtain a uniform bound for the variance, long and tedious calculations can be performed to
get a similar expression to (S7), but for the fourth derivative:

var
(
CV (4)(h)

)
= O

(
1

n2h9

)
.

Using again hn0 ∼ Cn−1/5 and In ⊂ [an−1/5, a−1n−1/5], we obtain

max
h∈In

var
(
CV (4)(h)

)
= O(n−1/5). (S11)
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Using expressions (S10) and (S11), it now follows that

max
h∈In

n−1/10|CV (4)(h)| = oP (1),

thus completing the proof. � 115

Proof of Theorem S1. The variance of the bagging bandwidth is:

var
(
ĥ(m,N)

)
=

1

N
var
(
h̃m,1

)
+
N − 1

N
cov

(
h̃m,1, h̃m,2

)
. (S12)

The work of Hall & Marron (1987) provides an approximation to the variance of h̃m,1:

var
(
h̃m,1

)
h2n0

= Am−1/5 + o
(
m−1/5

)
, (S13)

where

A =
8R(V )R(f)µ2(K)4/5

25R(K)9/5R(f ′′)
, (S14)

the function V is defined in Bhattacharya & Hart (2016) and only depends on the kernel K
and µj(g) =

∫
xjg(x) dx for j = 0, 1, 2, . . . Bhattacharya & Hart (2016) derive the following 120

approximation to the last term in (S12):

cov
(
h̃m,1, h̃m,2

)
= var

(
h̃m,1

)(m
n

)2
+ o

(
m9/5n−12/5

)
. (S15)

Plugging (S13) and (S15) into (S12), when N is either fixed or tending to∞ with n, then,

var
(
ĥ(m,N)

)
∼ AC2m−1/5n−2/5

{
1

N
+
(m
n

)2}
.

Regarding the bias of ĥ(m,N), as explained in Section 3 of the main paper, we only have
to focus on deriving the bias inherent to cross-validation itself. Let ĥn be the ordinary cross-
validation bandwidth for a sample of size n, and let hn0 be the minimizer of MISE, M(h). 125

Using the fact that CV ′(ĥn) = 0, a Taylor expansion gives

ĥn − hn0 = −CV
′(hn0)

CV ′′(hn)

for hn between ĥn and hn0. Now expand 1/CV ′′(hn) in a Taylor series about ∆ = M ′′(hn0),
yielding

ĥn − hn0 = −CV
′(hn0)

∆
+
CV ′(hn0)(CV

′′(hn)−∆)

∆̂2
,

where ∆̂ is between CV ′′(hn) and M ′′(hn0).
Using the notation in equation (4) of the main paper, ξn = −CV ′(hn0)/∆ and

en =
CV ′(hn0)(CV

′′(hn)−∆)

∆̂2
.

The random variable −CV ′(hn0)/∆ has mean 0 and is OP
(
n−3/10

)
, as shown by Hall & 130

Marron (1987). We will show that n2/5en → Y in distribution, where E(Y ) = µCV < 0 and
var(Y ) > 0, with µCV as in equation (5) in the main paper. In effect, this will establish the first
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order bias of ĥn as an estimator of hn0. Using results of Hall & Marron (1987), n4/5∆̂2 → D2 >
0 in probability, where D is the limit of n2/5M ′′(hn0) as n→∞. It is sufficient then to consider

n6/5CV ′(hn0)(CV
′′(hn)−∆) = n6/5CV ′(hn0)(CV

′′(hn0)−∆ + δn), (S16)

where δn = CV ′′(hn)− CV ′′(hn0). Now,135

δn = (hn − hn0)CV ′′′(h̃n),

where h̃n is between hn and hn0. From Hall & Marron (1987), we know that CV ′(hn0) =
OP
(
n−7/10

)
and hn − hn0 = OP

(
n−3/10

)
. It follows that

n6/5CV ′(hn0)δn = CV ′′′(h̃n)OP (n1/5).

Considering Lemma S1, in equation (S16), we need only investigate

n6/5CV ′(hn0)(CV
′′(hn0)−∆).

Hall & Marron (1987) show that

n7/10CV ′(hn0)→ N(0, σ21)

in distribution. As shown in Bhattacharya & Hart (2016), hn0(CV ′′(hn0)−∆) is identical in140

structure to CV ′(hn0) and, hence,

n7/10hn0(CV
′′(hn0)−∆) ∼ C0

√
n(CV ′′(hn0)−∆)→ N(0, σ22)

in distribution. Using the Cramér-Wold device, it follows that
√
n
(
n1/5CV ′(hn0), CV

′′(hn0)−∆
)

converges in distribution to a bivariate normal random variable with mean vector 0 and covari-
ance matrix Σ. Using Theorem B., p. 124 of Serfling (1980), we have

n6/5CV ′(hn0)(CV
′′(hn0)−∆)→ Y1Y2

in distribution, where (Y1, Y2) are bivariate normal with mean vector 0 and covariance matrix Σ.145

Bhattacharya & Hart (2016) show that E(Y1Y2) is

− 8

R(K)4/5R(f ′′)−4/5

∫
V (u)W (u)du

∫
f2(x)dx.

Also, taking into account that (Bhattacharya & Hart, 2016)

M ′′(hn,0) ∼ 5R(K)2/5R(f ′′)3/5n−2/5,

the limiting expectation of n2/5(ĥn − hn0) is

E(Y1Y2)

D2
= µCV = −

8R(f)
∫
V (u)W (u)du

25R(K)8/5R(f ′′)2/5
,

which completes the proof. �

2. SIMULATION STUDY

To test the behaviour of the bagged cross-validation bandwidth (3) in the main paper, some
simulation studies were performed considering different density functions, sample sizes (n), sub-150

sample sizes (m), and number of subsamples (N ). For the sake of brevity, we only present
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the results obtained for two normal mixture densities, although similar results were obtained
for other densities. We denote by µ = (µ1, . . . , µk), σ = (σ1, . . . , σk) and w = (w1, . . . , wk)
the mean, standard deviation and weight vectors, respectively, for the density mixture f (x) =∑k

i=1wiφµi,σi , with φµi,σi a N (µi, σi) density, i = 1, . . . , k. Here, we consider the density 155

mixture of two normals (denoted by D1), with parameters µ = (0, 1.5), σ = (1, 1/3) and
w = (0.75, 0.25), and the claw density (denoted by D2), mixture of six normals, with parameters
µ = (0,−1,−0.5, 0, 0.5, 1), σ = (1, 0.1, 0.1, 0.1, 0.1, 0.1) and w = (0.5, 0.1, 0.1, 0.1, 0.1, 0.1).

In this experiment, 1, 000 samples of size n = 105 were simulated from the previous densities
and the bagged, ĥ(m,N), and leave-one-out cross-validation, ĥn, bandwidths were computed. 160

The bagged bandwidths were calculated using N = 500 subsamples and considering four values
for the size of the subsamples, m, including the theoretical optimal values, m0 = 13, 081 and
m0 = 20, 326, for densities D1 and D2, respectively. For each sample, we also computed the
estimated m0 using the algorithm presented in Section 4 of the main paper, with values s = 50
and r ∈ {500, 1, 000, 5, 000} in Step 1. The Gaussian kernel was used throughout the study. 165

The R (R Development Core Team, 2020) package baggedcv (Barreiro-Ures et al., 2019) was
employed to carry out the simulation experiments.

To compute the different cross-validation bandwidths involved in this simulation (ĥn and ĥm,i,
i = 1, . . . , N ), we employed the R function bw.ucv. This function uses a binned implementa-
tion and, therefore, it is extremely fast. However, when the number of bins, nb, is significantly 170

smaller than the sample size, bw.ucv has the disturbing tendency to choose the very smallest
bandwidth allowed. This is illustrated in Listing 1, where we show the output of the bw.ucv
function applied to a sample of size n = 106 drawn from a standard normal and the number of
bins set to its default value of nb = 1, 000. In this case the true cross-validation bandwidth is
approximately 0.06, while bw.ucv returned a much smaller smoothing parameter (the lower 175

bound of the search interval).

set.seed(1)
x = rnorm(10ˆ6)
bw.ucv(x,lower=0.001,upper=1) 180

[1] 0.001045393
Warning message:
In bw.ucv(x, lower = 0.001, upper = 1) :

minimum occured at one end of the range 185

Listing 1. Bad behaviour of bw.ucv when using the default number of bins

For some densities, bw.ucv works fine with nb being relatively small with respect to the
sample size. However, for more complex (heavy-tailed or multimodal) densities, nb needs to
be quite close to the sample size for bw.ucv to give sensible results. This limits the computa-
tional gain that binned cross-validation could in principle achieve. Even when nb is equal to the 190

sample size, bw.ucv returns an incorrect value in a small proportion of cases. In spite of this,
in practice, we recommend using bw.ucv with nb close to the sample size. Taking this sug-
gestion into account, if nb = m at the subsample level for ĥ(m,N), we found that the average
of the bagged bandwidths obtained using bw.ucv is usually quite close to the results obtained
employing the more accurate non-binned version of ĥ(m,N). Moreover, by using bw.ucv in 195

the implementation of ĥ(m,N), its runtime can obviously be significantly reduced, even being
much shorter than the time needed for the computation of the binned cross-validation selector,
especially for large sample sizes and certain values of m and N . This can be observed in Table
S1, which shows the computing time for the binned version of leave-one-out cross-validation
and the bagged bandwidth selector for different values of n, m and N . For ĥ(m,N), we consid- 200

ered nb = m at the subsample level and the code was run in parallel on an Intel Core i5-8600K
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3.6GHz using the R package baggedcv (Barreiro-Ures et al., 2019). In the case of the binned
version of leave-one-out cross-validation, the number of bins was also set equal to n to provide a
fair comparison of both methods. As we can see the bagged bandwidth can achieve a significant
reduction in computing time with respect to binned leave-one-out cross-validation for samples205

of considerable size.

Table S1. Elapsed time (seconds) for binned leave-one-out
cross-validation and the bagged bandwidth selector.

Bagged CV
m = 1, 000 m = 5, 000 m = 10, 000

n bw.ucv( . , nb=n) N = 500 N = 500 N = 500

105 3.1 1.1 2.0 4.3
106 367 1.3 2.2 4.4

Computing time for bagged cross-validation depends on m, N and the num-
ber of CPU cores.

In addition to the substantial reduction in computing time, the bagged cross-validation band-
width yielded, in general, greater statistical precision. This can be observed in Figure S1, where
the sampling distributions of log

(
ĥn/hn0

)
and log

(
ĥ(m,N)/hn0

)
, for different values of m,

for models D1 (left panel) and D2 (right panel) are presented. Specifically, we considered,210

for D1, the values of m: 5, 000, 13, 081 (m0), 20, 000, and m̂0 computed with s = 50 and
r = 500, 1, 000, 5, 000, while, for D2, the values of m employed were: 5, 000, 20, 326 (m0),
25, 000, and m̂0 computed with s = 50 and r = 500, 1, 000, 5, 000. It is clear that the bagged
bandwidth achieves, in general, an important reduction in the mean squared error with respect
to the leave-one-out cross-validation selector. Namely, the bagged bandwidth with m = m0 pro-215

duced a mean squared error which is 95.3% and 92.2% lower than that of the leave-one-out
cross-validation bandwidth for models D1 and D2, respectively. This significant reduction is also
observed (in general) when usingm = m̂0 for each simulated sample. In that case, for r = 1, 000
(r = 5, 000), the mean squared error reduction with respect to leave-one-out cross-validation is
95.9% (95.9%) for model D1 and 92.3% (93.5%) for model D2.220

The mean squared error of the bagged bandwidth usingm = m̂0 may be larger than the one for
leave-one-out cross-validation for density D2 using r = 500 (left blue box-plot on the right panel
in Figure S1). These results are somewhat misleading because the final behaviour of the kernel
density estimator with the bagged bandwidth selector (denoted by ĥ, for simplicity) is still very
good in this setting. The distribution of ĥ is biased upward, and there are numerous extremely225

large values of ĥ. However, it turns out that even the largest of these bandwidths produces very
effective density estimates, as observed in Figure S2. Consider, for example, log(ĥ/hn0) = 1,
which means that ĥ ' 2.72hn0. In Figure S2, we provide the claw density and two kernel es-
timates from a sample of size 105. The bandwidths of the two estimates are hn0 = 0.031 and
2.72hn0 ' 0.084. The kernel estimate with larger bandwidth captures the five modes and has230

better tail behaviour than the estimate based on the MISE bandwidth. Figure S2 illustrates the
fact that integrated squared error (ISE) loss is not always ideal. One might well prefer an estimate
with larger than optimum ISE, as long as it captures all the important features of the underlying
density and is smoother than the ISE optimal estimate. However, despite this remark, ISE error
criterion can be used to see the effect of the different bandwidth selectors on the kernel density235

estimates. Figure S3 shows the sampling distribution of ratio of the ISE of the kernel density
estimates using the bagging cross-validation bandwidths and the classical cross-validation one,
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bagged bandwidths, we considered N = 500 and m ∈
{5, 000, 13, 081 (red), 20, 000, m̂0 (blue)}, for density D1
(left panel); and m ∈ {5, 000, 20, 326 (red), 25, 000, m̂0

(blue)}, for density D2 (right panel). The two white boxes
correspond, from left to right, to m = 5, 000 and 20, 000,
for D1 (left panel); and to m = 5, 000 and 25, 000, for D2
(right panel). The three blue boxes correspond, from left to
right, to r = 500, 1, 000, 5, 000. Red dotted lines are plot-

ted at values 0.9 and 1.1 for reference.

ISE(ĥ(m,N))/ISE(ĥn), for both models and the same values of m considered in Figure S1.
In this case, outliers were omitted in order to be able to appreciate the differences between the
different box-plots. 240

The means of ISE(ĥ(m,N))/ISE(ĥn) for the values of m and N , and densities considered in
Figure S3, as well as the proportion of times where the ISE of the kernel density estimates using
ĥ(m,N) is lower than using ĥn are shown in Table S2. In general, it can be observed a slightly
better performance of the estimators when using the bagged bandwidths than when employing
the leave-one-out cross-validation selector, except when considering the density D2 and using 245

m = m̂0, with r = 500 (left blue box-plot on the right panel in Figure S3). These results are
totally consistent with those shown in Figure S1 for the bandwidths.

In Figure S4, the sampling distribution of m̂0/m0 is shown. It can be observed that the mean
squared error of m̂0 is reduced as r increases. Furthermore, the bias of the estimator depends
on the complexity of the target density. For small values of r, in spite of the high variability 250
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Fig. S2. Claw density (black line) and kernel estimates (red
and blue lines). The kernel estimates are computed from
a sample of size 105. The red estimate uses the MISE
optimal bandwidth of 0.031 and the blue uses bandwidth

0.084.

of m̂0, the sampling distribution of the bagged bandwidth, considering m = m̂0, is virtually
unchanged with respect to the case m = m0 for densities that are not very complex, such as D1.
For more complex densities, such as D2, the effect that the variability of m̂0 has on the bagged
bandwidth is more noticeable for small values of r, translating into a more biased bandwidth.
More importantly, when we compare the errors in Figure S4 and Figure S1, it is clear that there255

is a large range of values for m around its optimal value, m0, such that the effect the error of m̂0

has on the sampling distribution of ĥ(m̂0, N) is very small.

3. REAL DATA EXAMPLE

To further explore the performance of the bagged bandwidth selector, we considered the pub-
lic dataset “On-Time: Reporting Carrier On-Time Performance” corresponding to the year 2017,260

available at https://www.transtats.bts.gov/Fields.asp. In particular, we were
interested in the variable ArrDelay, which measures the difference in minutes between sched-
uled and actual arrival time (note that early arrivals show negative numbers). Due to the fact that
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the dataset contains many ties and in order to avoid problems when performing cross-validation,
we decided to remove the ties by jittering the data. In particular, we worked with the sample 265

of size n = 5, 579, 346 which results from adding a random sample of size n, drawn from a
continuous uniform distribution defined on the interval (−0.5, 0.5), to the original dataset.

To estimate the optimal subsample size, m0, for the bagged bandwidth, we used the procedure
described in Section 4 of the main paper, considering N = 100 subsamples. In particular, using
r = 1, 000 and s = 500, yielded the estimate m̂0 = 272, 222. The process of estimatingm0 with 270

those parameters took 32 seconds. The estimated bagged bandwidth with these values of m and
N was ĥ(m = 272, 222, N = 100) = 0.490. Its calculation took 63 seconds. The calculation
of both m̂0 and ĥ(m,N) were executed in parallel on an Intel Core i5-8600K 3.6GHz. Figure
S5 shows the kernel density estimates obtained when considering the bagged bandwidth h =
ĥ(m̂0, N = 100) = 0.490 and the bandwidth produced by the R function bw.ucv, using the 275

same number of bins and search interval as in the case of the bagged bandwidth, that is, h =
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Table S2. Top Table: means of ISE(ĥ(m,N))/ISE(ĥn), with ĥ(m,N)
computed using the combinations ofm andN and densities considered
in Figure S3. Bottom Table: proportion of values of ĥ(m,N) whose

ISE is lower than that of ĥn.

Means
Density B1 B2 B3 B4 B5 B6

D1 0.98533 0.98505 0.98512 0.98448 0.98428 0.98537
D2 0.99624 0.99594 0.99530 1.23742 0.99539 0.99494

Proportions
Density B1 B2 B3 B4 B5 B6

D1 0.606 0.603 0.609 0.590 0.593 0.590
D2 0.584 0.622 0.637 0.461 0.604 0.599

Bi refers to the i-th box-plot in order of appearance in Figure S3.

bw.ucv(·, nb=1e5, lower=0.01, upper=1), that returned the value 0.01039. As we
can see, even with those parameters, bw.ucv basically returns the lower bound of the search
interval thus producing a heavily undersmoothed estimate of the underlying density.

Computing the leave-one-out cross-validation bandwidth for the whole sample is prohibitive280

due to the huge amount of time it would require. Even with a binned implementation, as em-
ployed in the R function bw.ucv, the computing time would be very high (as highlighted in
Section 2). In order for this function to produce accurate results the number of bins must be very
close to n. Therefore, to predict the value of the cross-validation bandwidth for the original sam-
ple size, n, and also the time required for its computation, we used appropriate regression models.285

We repeated these experiments considering binned and non-binned cross-validation bandwidths.
The predicted cross-validation bandwidth for the whole sample is practically identical whether
or not one uses binning (with a large enough number of bins), and hence we just describe the
experiment when using a binned implementation. Nevertheless, the predicted time is obviously
much higher when binning is not used (as we will see later). Specifically, we selected 100 sub-290

samples of sizes 557, 5, 579 and 55, 793 from the whole dataset. For each size and subsample,
we computed the binned version of the leave-one-out cross-validation bandwidth, using the R
function bw.ucv with nb (number of bins) equal to the corresponding sample size (see Figure
S6). Finally, we considered the parametric regression model:

Yi = β0n
β1
i , (S17)

where ni ∈ {557, 5, 579, 55, 793} and Yi ∈ {3.606, 2.129, 1.352} denotes the mean of the295

binned cross-validation bandwidths using the subsamples of size ni. Taking logarithms in (S17),
we get a linearized version of (S17),

log Yi = log β0 + β1 log ni, (S18)

which we can see as a linear regression model with parameters log β0 (intercept) and β1 (slope).
Applying least squares, we obtained the following estimates for the parameters of model (S17):

β̂0 = 13.69,

β̂1 = −0.213.

With these values of β̂0 and β̂1, the predicted value of the leave-one-out cross-validation band-300

width for the original sample size is ĥn = 0.501, very close to the value produced by the bagged
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approach, ĥ(m = 272, 222, N = 100) = 0.490. Figure S7 shows the fitted values for the non-
linear model defined in (S17). Analogously, we considered a model similar to the one described
in (S17) to predict the time required to compute a binned version of the ordinary cross-validation
bandwidth for the original sample (fitted values for this model are shown in Figure S8). As pre- 305

viosuly, we employed the R function bw.ucv with nb equal to the corresponding sample size
to compute the different cross-validation bandwidths. In this case and using the same notation
as in (S17), we considered ni = {5, 579, 55, 793, 557, 934} and Yi = {0.0102, 0.959, 103.08},
with Yi now denoting the elapsed time (in seconds) needed to compute bw.ucv(·, nb=ni),
that is, the binned cross-validation bandwidth for a sample of size ni with the number of bins set 310

to ni. Again, using the same notation as in (S17), we obtained the following estimates for the
model parameters:

β̂0 = 3.14× 10−10,

β̂1 = 2.002.

This means that the time needed to compute the binned cross-validation bandwidth for the
original sample is predicted to be approximately 2.8 hours. Analogously, we repeated the ex-
periment to predict the time required to compute a non-binned leave-one-out cross-validation 315



16 BARREIRO-URES ET AL.

−50 0 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

N = 5579346   Bandwidth = 0.4901

D
en

si
ty

−50 0 50 100

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0

N = 5579346   Bandwidth = 0.01039

D
en

si
ty

Fig. S5. Kernel density estimates with bandwidths h =

ĥ(m̂0, N = 100) (left) and h = bw.ucv(·, nb=1e5,
lower=0.01, upper=1) (right).

bandwidth for the whole sample and this predicted time turned out to be 5.1 years (fitted values
for the model are shown in Figure S9).

4. VARIANCE OF THE BAGGED BANDWIDTH (HALL AND ROBINSON, 2009)
In this section, we show that the variance approximation of the bagged bandwidth studied

in Hall & Robinson (2009) is in error. We also provide the correct expression for this variance320

and the corresponding proof. The bagged bandwidth studied in Hall & Robinson (2009), ĥbagg,
corresponds to the case where N =∞ in the smoothing parameter (3) of the main paper, that
is, ĥbagg = ĥ(m,∞), following the notation adopted. From equation (7) in the main paper, it
follows that

var
(
ĥbagg

)
= AC2m9/5n−12/5 + o

(
m9/5n−12/5

)
, (S19)

which exactly matches the second term given in equation (13) of Hall & Robinson (2009). How-325

ever, it is claimed in that paper that the dominant term is of order m4/5n−7/5. We will prove
that this last statement is wrong and that, in fact, the dominant term is precisely the one given in
(S19).

It can be easily proved that for a sample of size n we have

CV (h) = M(h)−R(f) + S(h), (S20)
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where, as previously, M(h) denotes the MISE function of the Parzen–Rosenblatt kernel density 330

estimator for a sample of size n, and S(h) = S1(h) + S2(h) is defined on p. 184 of Hall &
Robinson (2009). From (S20) it follows that, for any r ∈ N,

var
(
CV (r)(h)

)
= var

(
S(r)(h)

)
.

More importantly, finding the asymptotic variance of the cross-validation bandwidth, whether
bagged or ordinary, boils down to finding var (S′(h)). As stated in equation (S6) in Section 1 of
this document, for any r ≥ 1, 335

CV (r)(h) = M (r)(h) +
1

n(n− 1)

∑
i6=j

γ̄
(r)
nh (Xi −Xj),

where γ̄
(r)
nh (u) = γ

(r)
nh (u)− E

(
γ
(r)
nh (X1 −X2)

)
, γ(r)nh (u) = d

dhγnh(u), γnh(u) = γn(u/h)/h

and γn(u) = n−1
n K ∗K(u)− 2K(u). Therefore,

var
(
S′(h)

)
=

1

n4h2
var

∑
i6=j

H(Xi −Xj)

 , (S21)
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Fig. S7. Fitted values for the regression model defined in
(S17). White dots correspond to the observations used to

fit the model.

whereH(u) = γe,h(u) + u(γe,h)′(u), γe,h(u) = γe(u/h)/h and γe(u) = n
n−1γn(u). Let us now

define H̃(u) = γe(u) + uγ′e(u), so we have that H(u) = H̃h(u). Standard algebra gives

var

∑
i6=j

H(Xi −Xj)

 = 4n(n− 1)(n− 2)Cb + 2n(n− 1)Cc, (S22)

where Cb = cov (H(X1 −X2), H(X1 −X3)) and Cc = var (H(X1 −X2)). These terms can340

be further decomposed into

Cb = Cb1 − C2
b2 (S23)

and

Cc = Cc1 − C2
b2, (S24)
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where

Cb1 =

∫
H ∗ f(x)2f(x) dx,

Cc1 =

∫
H2 ∗ f(x)f(x) dx,

Cb2 =

∫
H ∗ f(x)f(x) dx.
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Fig. S9. Fitted values for the regression model that re-
lates the elapsed time needed to compute the standard
non-binned cross-validation bandwidth to the sample size.
White dots correspond to the observations used to fit the

model.

Using the facts that H̃ is symmetric, µ0

(
H̃
)

= 0, µ2

(
H̃
)

= 4µ2(K)/(n− 1), and

µ4

(
H̃
)

= µ6

(
H̃
)

= O (1), we have345

Cb2 =

∫ ∫
1

h
H̃

(
x− y
h

)
f(y)f(x) dx dy =

∫ ∫
H̃(u)f(x− hu)f(x) dx du

=

∫ ∫
H̃(u)

{
f(x)− huf ′(x) + · · · − h5u5

5!
f (5)(x) +

h6u6

6!
f (6)(x̃)

}
f(x) dx du

=

∫
f(x)

{
h2

2
µ2

(
H̃
)
f ′′(x) +

h4

4!
µ4

(
H̃
)
f (4)(x) +O

(
h6
)}

dx

=
1

4
µ2(K)2R(f ′′)h4 +O

(
h6
)
,

and, therefore,

C2
b2 =

1

16
µ2(K)4R(f ′′)2h8 +O

(
h10
)
. (S25)
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For the term Cb1,

Cb1 =

∫
f(x)

{∫
1

h
H̃

(
x− y
h

)
f(y) dy

}2

dx =

∫
f(x)

{∫
H̃(u)f(x− hu) du

}2

dx

=

∫
f(x)

{
1

4
µ2(K)2f (4)(x)h4 +O

(
h6
)}2

dx =

∫
f(x)

{
1

16
µ2(K)4f (4)(x)2h8 +O

(
h10
)}

dx

=
1

16
µ2(K)4J1h

8 +O
(
h10
)
, (S26)

where J1 =
∫
f (4)(x)2f(x) dx.

The term Cb1 can be handled in a similar way

Cc1 =
1

h2

∫ ∫
H̃

(
x− y
h

)2

f(y)f(x) dx dy =
1

h

∫ ∫
H̃(u)2f(x− hu)f(x) dx du

=
1

h

∫ ∫
H̃(u)2f(x)

{
f(x)− huf ′(x) +

h2u2

2
f ′′(x̃)

}
dx du

=
R(f)R

(
H̃
)

h
+O (h) . (S27)

Plugging (S25), (S26) and (S27) into (S23) and (S24) yields, respectively, 350

Cb =
1

16
µ2(K)4

{
J1 −R(f ′′)2

}
h8 +O

(
h10
)
, (S28)

Cc =
R(f)R

(
H̃
)

h
+O (h) . (S29)

Now, plugging (S28) and (S29) into (S22) and then into (S21), and using the fact that
2R (f)R

(
H̃
)

= A3 +O
(
n−1

)
, we get

var
(
S′(h)

)
= A3

1

n2h3
+O

(
1

n2h

)
, (S30)

where A3 is defined on p. 183 of Hall & Robinson (2009). Equation (S30) is completely con-
sistent with the results obtained in Hall & Marron (1987) and Scott & Terrell (1987). Now, 355

taking variance in equation (A2) of Hall & Robinson (2009) and plugging (S30) into that expres-
sion yields (S19). Equation (S30) is enough to show that expression (A3) of Hall & Robinson
(2009) is wrong, which in turn explains the error in their equation (13) regarding the variance of
the bagged bandwidth. Nonetheless, we will provide an asymptotic expression for var (S′1(h)),
since that is where the error in Hall & Robinson (2009) comes from. 360

From the definition of Vnh(Xi) and S1(h) given on p. 184 of Hall & Robinson (2009), it is
easy to show that

Vnh(X1) =
(
1− n−1

)
z̃
(h)
1 − T̃ (h)

1 ,

where

z̃
(h)
1 = Kh ∗Kh ∗ f(X1)−

∫
Kh ∗ f(x)2 dx
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and

T̃
(h)
1 = 2

{
Kh ∗ f(X1)−

∫
Kh ∗ f(x)f(x) dx

}
.

Let us define the functions ν and η, where365

ν(x) = K(x) + xK(x)

and

η(x) = K ∗K(x) + x(K ∗K)′(x).

Then, we have that

d

dh
T̃
(h)
1 = −1

h
νh ∗ f(X1)

and

d

dh
z̃
(h)
1 = −1

h
{ηh ∗ f(X1)− E (ηh ∗ f(X1))} .

Therefore,

d

dh
Vnh(X1) =

1

h
{τh ∗ f(X1)− E (τh ∗ f(X1))} ,

where370

τ(x) = 2K(x) + 2xK ′(x)− n− 1

n

{
K ∗K(x) + x(K ∗K)′(x)

}
.

We have that

var

(
d

dh
Vnh(X1)

)
=

1

h

{
E
(
τh ∗ f(X1)

2
)
− E (τh ∗ f(X1))

2
}
.

It is easy to show that

µ0(τ) = 0,

µ2(τ) = − 4

n
µ2(K),

µ4(τ) = − 8

n
µ4(K) + 24

n− 1

n
µ2(K)2,

µ6(τ) = −12

n
µ6(K) + 180

n− 1

n
µ2(K)µ4(K).

Using standard calculations, one can see that

E (τh ∗ f(X1)) =

∫ ∫
τ(u)f(x)f(x− hu) dx du

=

∫ ∫
τ(u)f(x)

{
f(x)− huf ′(x) + · · · − h7u7

7!
f (7)(x) +

h8u8

8!
f (8)(x̃)

}
dx du

= −h
2

2
µ2(τ)R(f ′) +

h4

24
µ4(τ)R(f ′′)− h6

6!
µ6(τ)R(f ′′′) +O

(
h8
)
.
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Therefore,

E (τh ∗ f(X1))
2 =

h4

4
µ2(τ)2R(f ′)2 − h6

24
µ2(τ)µ4(τ)R(f ′)R(f ′′)

+
h8

242
µ4(τ)2R(f ′′)2 +

h8

6!
µ2(τ)µ6(τ)R(f ′)R(f ′′′) +O

(
h10
)
.

On the other hand, 375

E
(
τh ∗ f(X1)

2
)

=

∫ ∫ ∫
τ(u)f(x− hu)τ(v)f(x− hv)f(x) dx du dv

=

∫ ∫ ∫
τ(u)τ(v)f(x)

{
f(x)− huf ′(x) + · · ·+O

(
h10
)}

{
f(x)− hvf ′(x) + · · ·+O

(
h10
)}

dx du dv

=
h4

4
µ2(τ)2J2 +

h6

24
µ2(τ)µ4(τ)J3 +

h8

6!
µ2(τ)µ6(τ)J4 +

h8

242
µ4(τ)2J1 +O

(
h10
)
,

where

J2 =

∫
f(x)f ′′(x)2 dx,

J3 =

∫
f(x)f ′′(x)f (4)(x) dx,

J4 =

∫
f(x)f ′′(x)f (6)(x) dx.

So, we have that

var

(
d

dh
Vnh(X1)

)
=
h2

4
µ2(τ)2

{
J2 −R(f ′)2

}
+
h4

24
µ2(τ)µ4(τ)

{
J3 +R(f ′)R(f ′′)

}
+
h6

6!
µ2(τ)µ6(τ)

{
J4 −R(f ′)R(f ′′′)

}
+

h6

242
µ4(τ)2

{
J1 −R(f ′′)2

}
+O

(
h8
)
.

Finally, since

var
(
S′1(h)

)
=

4

n
var

(
d

dh
Vnh(X1)

)
,

it follows that

var
(
S′1(h)

)
= 4µ2(K)4

{
J1 −R(f ′′)2

} h6
n

+O

(
h8

n

)
.

This, in conjunction with (S30), proves that var (S′1(h)) is negligible with respect to 380

var (S′2(h)) and, in particular, that var (S′1(h)) cannot be asymptotic to A2 h
2/n as claimed

in Hall & Robinson (2009).
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