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1 Introduction

The problem of testing a parametric regression model, confronting a para-
metric estimator of the regression function with a smooth alternative esti-
mated by a nonparametric method, has been approached by several authors
in the statistical literature (see, for example Azzalini et al., 1989; Eubank and
Spiegelman, 1990). For instance, Weihrather (1993) and Eubank et al. (2005)
described tests based on an overall distance between parametric and nonpara-
metric regression fits, giving some strategies on bandwidth selection. Härdle
and Mammen (1993) proposed a testing procedure to check if a regression
function belongs to a class of parametric models by measuring a L2-distance
between parametric and nonparametric estimates. Specifically, the Nadaraya-
Watson estimator (Nadaraya, 1964; Watson, 1964) was considered for the non-
parametric approach. The same type of study was performed by Alcalá et al.
(1999), but using a local polynomial regression estimator (Fan and Gijbels,
1996). Following similar ideas, a local test for a univariate parametric model
checking was proposed by Opsomer and Francisco-Fernández (2010), while Li
(2005) assessed the lack of fit of a nonlinear regression model, comparing a
local linear smoother and parametric fits.

The previous testing procedures, all of them formulated with independent
errors, have been also adapted for scenarios where data exhibit correlation
in time. For example, Park et al. (2015) considered a model specification test
based on a kernel for a nonparametric regression model with an equally-spaced
fixed design and correlated errors. Also in the context of time series, goodness-
of-fit tests for linear regression models with correlated errors have been studied
by González-Manteiga and Vilar-Fernández (1995), also considering an equis-
paced fixed design. Biedermann and Dette (2000) extended the previous results
under fixed alternatives, considering a regression model with explanatory vari-
ables xi, i = 1, . . . , n, being fixed and given by i/n =

∫ xi

0
f(t)dt, where f is a

positive density on the interval [0, 1]. For further discussion and examples of
nonparametric specification tests for regression models, see the comprehensive
review by González-Manteiga and Crujeiras (2013).

Although for time dependent errors, the problem of assessing a parametric
regression model has been widely studied, this is not the case for spatial (or
even spatio-temporal) correlated data. Observations from a spatially varying
processes are quite frequent in applied sciences such as ecology, environmental
and soil sciences. In order to gain some insight in the process evolution accross
space, a regression model where the regression function captures the first-order
structure, whereas the error term collects the second-order structure, can be
formulated in the previous contexts. Usually, parametric models are considered
for the regression function, e.g. polynomial models on latitude and longitude
(see Cressie, 1993; Diggle and Ribeiro, 2007), and estimation is accomplished
by least squares methods, providing reliable inferences if the model is correctly
specified. As an example, a classical dataset which is analyzed under this scope
is the Wolfcamp aquifer data presented by Harper and Furr (1986), collect-
ing 85 measurements of levels of piezometric-head. In this example, several
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parametric trend models are considered after performing different analyses,
concluding that a linear trend seems to be a reasonable model (see Figure 1).
However, to determine if this linear model (or in general, any parametric fit) is
an appropriate representation of a dataset, it would be advisable to carry out
a statistical test in order to assess the goodness-of-fit of the selected model.
In this context, the statistical literature initially focused on the assessment of
independence (Diblasi and Bowman, 2001) and on testing a parametric corre-
lation model (Maglione and Diblasi, 2004), considering the variogram as the
function describing the spatial dependence pattern. Also taking the variogram
as the target function, Bowman and Crujeiras (2013) proposed some testing
methods for simplifying hypothesis (namely, stationarity and isotropy). Al-
though these proposals investigate the dependence structure of the data (a
nuisance when the primary goal is the regression or trend function), the ideas
which inspired these methods are common to the goodness-of-fit tests for re-
gression models.

A new proposal for testing a parametric regression model (with univari-
ate responses and possibly d-dimensional covariates), in the presence of spatial
correlation, is presented in this work. Following similar ideas as those of Härdle
and Mammen (1993), the test statistic is based on a comparison between a
smooth version of a parametric fit and a nonparametric estimator of the re-
gression function, using a weighted L2-distance. The null hypothesis that the
regression function follows a parametric model is rejected if the distance ex-
ceeds a certain threshold. To perform the parametric estimation, an iterative
procedure based on generalized least squares is used (see Diggle and Ribeiro,
2007), although other fitting techniques such as maximum likelihood methods
could be employed. For the nonparametric alternative, the multivariate lo-
cal linear regression estimator is used (Liu, 2001; Francisco-Fernandez and
Opsomer, 2005; Hallin et al., 2004), generalizing in some way the results of
Alcalá et al. (1999) for the univariate case with independent errors.

This paper is organized as follows. Section 2 introduces the regression
model, as well as the nonparametric and parametric estimators of the re-
gression function used in our approach. Assumptions and the asymptotic dis-
tribution of the proposed test statistic, jointly with a bootstrap procedure to
calibrate the test are presented in Section 3. A simulation study for assessing
the final performance of the test is provided in Section 4. Finally, Section 5
shows how to apply the testing procedure to the Wolfcamp aquifer dataset in-
troduced above. Supplementary materials with the detailed proofs and further
simulation results are also available.

2 Statistical model

Denote by {(Xi, Zi)}ni=1 a random sample of (d + 1)-valued random vectors,
where Zi denotes a scalar response which depends on a d-dimensional covariate
X, with support D ⊂ R

d, through the following regression model:

Zi = m(Xi) + εi, i = 1, . . . , n, (1)
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where m is the regression function and ε denotes a spatially correlated error
process, which is assumed to be second order stationary, where

E[εi] = 0, Cov(εi, εj) = Σ(i, j) = σ2ρn(Xi −Xj), i, j = 1, . . . , n,

with σ2 being the point variance and ρn a continuous stationary correlation
function satisfying ρn(0) = 1, ρn(x) = ρn(−x), and |ρn(x)| ≤ 1, ∀x. The
subscript n in ρn allows the correlation function to shrink as n → ∞ (this will
be made more precise below). Under these assumptions, the semivariogram
function γn satisfies that γn(u) = σ2(1− ρn(u)), ∀u ∈ R

d. For simplicity, the
subscript n will be sometimes omitted. It should be noted that the previous
expression for the covariance of the errors is correct if the nugget effect, denoted
by c0, is equal to zero. If c0 6= 0, then Cov(εi, εj) = c1ρn(Xi −Xj), if i 6= j,
where c1 = σ2 − c0 is the partial sill. In what follows, only the case of c0 = 0
is considered. However, the case of considering a nugget effect has also been
analyzed through simulations.

The goal of this work is to propose and study a testing procedure to assess
the goodness-of-fit of a parametric regression model, that is:

H0 : m ∈ Mβ = {mβ,β ∈ B}, vs. Ha : m /∈ Mβ, (2)

where B ⊂ R
p is a compact set, and p denotes the dimension of the parameter

space B. For example, in the bidimensional case (d = 2), considering that Mβ

is the family of linear models, then p = 3. In addition, mβ denotes a d-variate
parametric function with parameter vector β. Note that mβ is not restricted
to be polynomial, although that is a common choice in practice.

As pointed out in the Introduction, the goodness-of-fit test is based on a
weighted L2-distance which measures the discrepancy between a smooth ver-
sion of a parametric estimator and a nonparametric estimator of the regres-
sion function. H0 is rejected if the distance between both fits exceeds a critical
value. The estimation methods (parametric and nonparametric) considered in
this proposal will be described below. As it will be seen in Section 3, the pa-
rametric estimator which is used in the test must satisfy a

√
n−consistency

property. As an example, an iterative least squares estimator will be also pre-
sented.

A note of caution should be made about regression estimation in this con-
text: for spatially correlated data, when just a single realization of the process
F{z1, . . . , zn} is available, additional stationarity assumptions on the process
are required in order to enable statistical inference. In addition, it should be
also noted that, from a single realization, it may be difficult to disentangle the
regression and error components, specially if the dependence is strong.

2.1 Nonparametric regression estimation

For the nonparametric estimation of m in model (1), the multivariate local
linear estimator (Fan and Gijbels, 1996) is employed. This nonparametric
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approach presents some advantages over other kernel-type methods (Hallin
et al., 2004). For example, it adapts to a broad class of design densities. More-
over, unlike other kernel-type smoothers, this estimator does not suffer from
boundary effects. In the spatial framework, the local linear estimator for m at
a location x can be explicitly written as:

m̂LL
H

(x) = e′1(X
′
xWxXx)

−1X ′
xWxZ, (3)

where e1 is a vector of length (d + 1) with value 1 in the first entry and all
other entries 0, Xx is a n× (d+1) matrix with i-th row equal to (1, (Xi−x)′),
Wx = diag{KH(X1 − x), . . . ,KH(Xn − x)}, with KH(x) = |H|−1K(H−1x),
being K a d-dimensional kernel function and H a d × d symmetric positive
definite matrix, and Z = (Z1, . . . , Zn)

′.
For the case of uncorrelated data with a random design, Ruppert and

Wand (1994) derived the asymptotic mean squared error (AMSE) formula for
the multivariate local linear estimator, while Liu (2001) generalized those re-
sults when the errors are correlated. The bandwidth matrix H controls the
shape and the size of the local neighborhood used to estimate m(x) and its
selection plays an important role in the estimation process. If H is “small” an
undersmoothed estimator is obtained with high variability and, on the other
hand, if H is “large”, the resulting estimator will be very smooth and possible
with larger bias. Cross-validation procedures for bandwidth selection are the
usual ones in this context, but this type of methods derived under indepen-
dence should not be used directly when data exhibit dependence given that its
expectation is severely affected by the correlation (Liu, 2001). In that case, the
dependence of the observations should be taken into account in some way in
the bandwidth selection method to estimate “optimal” smoothing parameters
(Liu, 2001; Francisco-Fernandez and Opsomer, 2005).

2.2 Parametric regression estimation

As pointed out previously, the goodness-of-fit test proposed in this paper also
requires of a parametric estimation of the regression function. As it will be
remarked in the next section, the test statistic can be applied taking any
parametric estimator, as long as it satisfies a consistency property. Specifically,
if mβ0

denotes the “true” regression function under the null hypothesis, and
m

β̂
the corresponding parametric estimator, it is needed that the difference

m
β̂
(x)−mβ0

(x) = Op(n
−1/2) uniformly in x. A suitable parametric estimator

satisfying this property is, for example, the one considered by Crujeiras and
Van Keilegon (2010), and this is the parametric method employed for the
practical application of the test.

The parametric estimator studied by Crujeiras and Van Keilegon (2010)
is obtained using an iterative least squares algorithm. A feasible version of
this method includes an approximation of the variance-covariance matrix of
the errors. However, for estimating the covariance structure, an initial estima-
tion of the regression is required. This feature leads to the design of iterative
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estimation procedures in this setting. Following these ideas, this parametric
regression estimator is computed as follows:

1. Get an initial estimator of β by least squares regression:

β̃ = argmin
β

(Z−mβ)
′(Z−mβ), (4)

where mβ = (mβ(X1), . . . ,mβ(Xn))
′ is the regression function evaluated

at the explicative variables.
2. Using the residuals ε̃i = Zi −mβ̃(Xi), i = 1, . . . , n, and assuming that the

variogram belongs to a valid parametric family {2γθ, θ ∈ Θ ⊂ R
q} (usually

q = 3, with the vector θ made up of the nugget effect, the partial sill, and
the practical range), obtain a parameter estimate θ̂ of θ. Following a classi-
cal approach, θ is approximated by fitting the parametric model considered
for the variogram to a set of empirical semivariogram estimates, computed
using the residuals ε̃i, applying the weighted least squares method (Cressie,
1985). Under this parametric assumption, the variance-covariance matrix
of the errors can be denoted by Σθ, with elements Σθ(i, j), i, j = 1 . . . , n.

Then, replacing θ by θ̂ in these elements, a parametric estimation of Σθ

(denoted by Σ
θ̂
) is obtained.

3. Using Σ
θ̂
, estimate the regression parameter β applying the weighted least

squares method:

β̂ = argmin
β

(Z−mβ)
′Σ−1

θ̂
(Z−mβ). (5)

Finally, the parametric estimator of m considered is given by m
β̂
.

3 Test statistic

As pointed out in Section 2, the aim of this paper is to propose a goodness-
of-fit test to check if the regression function in model (1) can be assumed to
belong to a certain parametric family, {mβ,β ∈ B}. To tackle this problem,
a natural approach consists in comparing a parametric estimator of the regre-
ssion function with a nonparametric one. The question arises if the differences
between both fits can be explained by small stochastic fluctuations or if such
differences suggest that the parametric assumption is not correct and it is
more reasonable to use nonparametric methods to approximate the regression
function. Using these ideas, one way to proceed is to measure the distance
between both fits and to employ this distance as the test statistic for checking
the parametric model.

The approach followed in this work to solve this problem, as in Alcalá et al.
(1999), considers a test statistic given by a weighted L2-distance between the
nonparametric and parametric fits to address the testing problem (2):

Tn = n|H|1/2
∫

D

(m̂LL
H

(x)− m̂LL
H,β̂

(x))2w(x)dx, (6)
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where w is a weight function that helps in mitigating possible edge effects. The
use of a weight function is quite frequent in this type of tests, both for density
and regression (González-Manteiga and Crujeiras, 2013). Moreover, m̂LL

H,β̂
is a

smooth version of the parametric estimator m
β̂
which is defined by

m̂LL
H,β̂

(x) = e′1(X
′
xWxXx)

−1X ′
xWxmβ̂

, (7)

with m
β̂
= (m

β̂
(X1), . . . ,mβ̂

(Xn))
′.

In the particular situation that the parametric familyMβ in (2) is the class
of polynomials of degree less or equal than k, it could be more reasonable to
use, as the nonparametric fit, the multivariate local polynomial estimator of
degree l, with l ≥ k, and considering the L2-distance between this estimator
and m

β̂
. In that case, it would not be necessary to employ a smooth ver-

sion of m
β̂
, because both are consistent unbiased estimators of the regression

function, under the null hypothesis. However, for a general parametric fami-
ly Mβ, this is not true, and using the simpler local linear estimator, given
that E[m̂LL

H
(x)] = e′1(X

′
xWxXx)

−1X ′
xWxm(x), it is convenient to smooth the

parametric estimator so that the parametric term in (6) has the same expected
value as the nonparametric term, under H0. This fact also justifies the use of
the same bandwidth matrix H in m̂LL

H
and in m̂LL

H,β̂
(see Härdle and Mammen,

1993, p. 1928). It is clear that the statistic Tn will be large when the parametric
and nonparametric fits, evaluated on the domain D, differ substantially.

For example, considering the Wolfcamp aquifer dataset described in the
Introduction, Figure 2 shows the smooth version of the parametric (left) and
the nonparametric (right) regression estimators for the level of piezometric-
head in the area of study. In this case, a linear model is considered for the
parametric fit, while the local linear estimator (3) is employed to perform the
nonparametric fit (specific details on the estimation procedures and the fits
will be discussed later). Given that both surfaces are very similar, the value
of the test statistic Tn will be small, and there may be no evidences against
the assumption of a linear trend. This feature will indeed be confirmed with
the statistical illustration of (6) presented in Section 5.

The types of model deviations that can be captured by this test are of
the form m(x) = mβ0

(x) + cng(x), where cn is a sequence, such that cn →
0 and g is a deterministic function collecting the deviation direction from
the null model. In the following section, the asymptotic distribution of the
test statistic (6) is derived under the null hypothesis, and also under local
alternatives converging to the null hypothesis at a certain rate controlled by
cn. Specifically, it is assumed that the function g is bounded (uniformly in x
and n) and cn = n−1/2|H|−1/4. In particular, this contains the null hypothesis
corresponding to g(x) = 0.

It is clear from expression (6) that Tn depends on the bandwidth matrix H.
While the bandwidth selection problem has been well studied in the regression
estimation framework, it is still an open issue in goodness-of-fit studies relying
on nonparametric methods. In this paper, the smoothing parameter selection
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problem is not investigated further. Instead, the performance of the test statis-
tic Tn is analyzed for a range of bandwidths in the numerical studies, allowing
to check how sensitive the results are to variations in H. Note that although
technically it is possible to consider different bandwidth matrices in m̂LL

H
and

m̂LL
H,β̂

, the use of just one bandwidth matrix simplifies the application of the

test in practice.
Note that the test statistic (6) generalizes to the framework of spatial

correlated data (with a d-dimensional covariate) the statistic proposed for
independent data by Härdle and Mammen (1993), using the Nadaraya-Watson
estimator, and that of Alcalá et al. (1999) using the local polynomial estimator
and considering a single covariate.

3.1 Main result

Next, the asymptotic distribution of Tn is derived. The following assumptions
on the stochastic nature of the observations, and on the nonparametric esti-
mator of the regression function are needed:

(A1) The regression and the density functions m and f , respectively, are twice
continuously differentiable.

(A2) The weight function w is continuously differentiable.
(A3) The marginal density f is continuous, bounded away from zero and

f(x) > 0 for all x ∈ D.
(A4) For the correlation function ρn, there exist constants ρM and ρc such that

n
∫

|ρn(x)|dx < ρM and limn→∞ n
∫

ρn(x)dx = ρc. For any sequence
ǫn > 0 satisfying n1/dǫn → ∞,

n

∫

‖x‖≥ǫn

|ρn(x)|dx → 0 as n → ∞.

(A5) For any i, j, k, l,

Cov(εiεj , εkεl) = Cov(εi, εk)Cov(εj , εl) + Cov(εi, εl)Cov(εj , εk).

(A6) It is assumed that errors are a geometrically strong mixing sequence with
mean zero and E|ε(x)|r < ∞ for all r > 4.

(A7) The kernel K is a spherically symmetric density function, twice con-
tinuously differentiable and with compact support (for simplicity with
a nonzero value only if ‖u‖ ≤ 1). Moreover,

∫

uu′K(u)du = µ2(K)Id,
where µ2(K) 6= 0 is scalar and Id is the d× d identity matrix.

(A8) K is Lipschitz continuous. That is, there exists L > 0, such that

|K(X1)−K(X2)| ≤ L‖X1 −X2‖, ∀X1,X2 ∈ D.

(A9) The bandwidth matrixH is symmetric and positive definite, with H → 0
and n|H|λ2

min(H) → ∞, when n → ∞. The ratio λmax(H)/λmin(H) is
bounded above, where λmax(H) and λmin(H) are the maximum and
minimum eigenvalues of H, respectively.
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As for the parametric estimator, just the assumption of being a
√
n-con-

sistent estimator is required. This is guaranteed if the estimator m
β̂
described

in Section 2.2 is employed in the statistic (6). Anyway, as pointed out in the
previous section, a different parametric estimator of the regression function
could be used in the test statistic (6) as long as this property was fulfilled.

Assumption (A4) implies that the correlation function depends on n, and
the integral

∫

|ρn(x)|dx should vanish as n → ∞. The vanishing speed should
not be slower than O(n−1). This assumption also implies that the integral of
|ρn(x)| is essentially dominated by the values of ρn(x) near to the origin 0.
Hence, the correlation is short-range and decreases as n → ∞. Arguing some-
what loosely, this can be considered as a case of increasing-domain spatial
asymptotics (see Cressie, 1993), since this setup can immediately be trans-
formed to one in which the correlation function ρn is fixed with respect to the
sample size, but the support D for x expands. The current setup with fixed
domain D and shrinking ρn is more natural to consider when the primary pur-
pose of the estimation is a fixed regression function m defined over a spatial
domain, not the correlation function itself.

Two examples of commonly used correlation functions that satisfy the con-
ditions of assumption (A4) are the exponential model

ρn(x) = exp(−an‖x‖),

and the rational quadratic model

ρn(x) =
1

1 + a(n‖x‖)2 ,

with a > 0 in both cases (see Cressie, 1993). In general, if ρn(x) = ρ(n1/dx)
and ρ(x) is a fixed valid correlation function, which is continuous everywhere
except at a finite number of points and absolutely integrable in R

d, then it is
easy to check that ρn(x) satisfies assumption (A4).

Assumption (A5) is satisfied, for example, when the errors follow a Gaus-
sian distribution. As for (A6), ifMb

a is the σ−field generated by {ξ(t) : a ≤ t ≤
b}, then {ξ(t) : t ∈ R} is geometrically strong mixing if the mixing coefficients
verify

α(τ) = sup{|P(A ∩B)− P(A)P(B)| : A ∈ M0
−∞ and B ∈ M∞

τ } = O(ζτ ),
(8)

for some 0 < ζ < 1, when τ → ∞. This assumption is needed to apply the
central limit theorem for reduced U-statistics under dependence given by Kim
et al. (2013). Note that if a random variable is a real Gaussian process, the
strong mixing coefficient and the correlation function are equivalent (Rozanov,
1967, p. 181). Therefore, hypotheses (A4)-(A6) could be satisfied by Gaussian
error processes with exponential or rational quadratic (among others) corre-
lation functions, having a decay rate larger than or equal to that indicated in
(8).

In assumption (A9), H → 0 means that every entry of H goes to 0. Since
H is symmetric and positive definite, H → 0 is equivalent to λmax(H) → 0.
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|H| is a quantity of order O(λd
max(H)) because |H| is equal to the product of

all eigenvalues of H.
The following theorem shows the asymptotic distribution of the test statis-

tic (6). A sketch of the proof is provided in the Appendix, while the detailed
proof can be found in the Supplementary Material available in the Online
Resource.

Theorem 1 Under Assumptions (A1)-(A9), and if 0 < V < ∞, it can be
proved that

V −1/2(Tn − b0H − b1H) →L N(0, 1) as n → ∞,

where →L denotes convergence in distribution, with

b0H = |H|−1/2σ2K(2)(0)

[
∫

w(x)

f(x)
dx+ ρc

∫

w(x)dx

]

,

b1H =

∫

(KH ∗ g(x))2w(x)dx,

and

V = 2σ4K(4)(0)

[
∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

,

where K(j) denotes the j-times convolution product of K with itself.

This result generalizes Theorem 2.1 of Alcalá et al. (1999) in the univariate
case and with independent errors (corresponding to ρc = 0), considering the
local polynomial regression estimator.

Remark 1 The asymptotic distribution of the test statistic (6) can be also
obtained under a geostatistical spatial trend model. In this scenario, model (1)
can be viewed as an additive decomposition of the spatial process: the regres-
sion function m corresponds to the first-order moment of the process and cap-
tures the large-scale variability, whereas the error term collects the second-order
structure, reflecting the small-scale variation. The covariates in this setting are
given by the spatial locations (latitude and longitude), which are usually fixed
in a geostatistical setting. In this case, considering assumptions (A1)-(A9), ex-
cept the ones relative to f (given that we are under a fixed design scheme), and
following similar steps to those employed in the proof of Theorem 1, but using
Riemann approximations of sums by integrals, the asymptotic distribution of
Tn is given by:

V −1/2(Tn − b0H − b1H) →L N(0, 1) as n → ∞,

with

b0H = |H|−1/2σ2K(2)(0)

[
∫

w(x)dx+ ρc

∫

w(x)dx

]

,

b1H =

∫

(KH ∗ g(x))2w(x)dx,
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and

V = 2σ4K(4)(0)

[
∫

w2(x)dx+ 2ρc

∫

w2(x)dx+ 4ρ2c

∫

w2(x)dx

]

.

3.2 Calibration in practice

Once a suitable test statistic is available, a crucial task is the calibration of
the critical value for a given level α, namely tα. Usually, the determination of
the critical value tα, such that PH0

(Tn ≥ tα) = α (denoting by PH0
the proba-

bility under H0), can be done by means of the asymptotic distribution of Tn.
However, as noted in other nonparametric testing contexts, the asymptotic
distribution obtained in Theorem 1 is often not sufficiently precise for con-
structing a practical test in small-to-medium sample size situation. Moreover,
to use the asymptotic expression of Tn in practice, it is necessary to estimate
some nuisance functions. The poor performance of the normal approximation
for moderate sample sizes was observed in some simulation studies. A simple
example, taking f and σ2 as known, is included in the Supplementary Material.

Under these circumstances, calibration can be done by means of resampling
procedures, such as bootstrap (see, for example, Francisco-Fernández et al.,
2006). The bootstrap procedure considered (detailed below) extends to the
case of spatially correlated data the parametric bootstrap discussed in Vilar-
Fernández and González-Manteiga (1996). The specific steps are the following:

1. Obtain, using (5), the parametric regression estimator β̂.
2. Compute the estimated variance-covariance matrix of the errors, Σ̂, using

the residuals ε̂ = (ε̂1, . . . , ε̂n)
′, where ε̂i = Zi −m

β̂
(Xi), i = 1, . . . , n.

3. Find the matrix L, such that Σ̂ = LL′, using Cholesky decomposition.
4. Compute the “independent” variables, e = (e1, . . . , en)

′, given by e =
L−1ε̂.

5. The previous independent variables are centered and an independent boot-
strap sample of size n, denoted by e∗ = (e∗1, . . . , e

∗
n), is obtained.

6. Finally, the bootstrap errors ε∗ = (ε∗1, . . . , ε
∗
n) are ε∗ = Le∗, and the

bootstrap samples are Z∗(Xi) = m
β̂
(Xi) + ε∗i .

Using the bootstrap sample {Z∗
i , i = 1, . . . , n}, the bootstrap test statistic

T ∗
n is computed as in (6), by the weighted L2-distance between the bootstrap

versions of the smooth parametric fit (7) and the nonparametric estimator
(3). Once the bootstrap statistic is obtained, the distribution of T ∗

n can be
approximated by Monte Carlo, and the (1 − α) quantile t∗α easily computed.
Finally, the null hypothesis is rejected if Tn > t∗α.

4 Simulations

The finite sample performance of the proposed test, proceeding with a boot-
strap calibration, is illustrated in this section with a simulation study. For
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this purpose, a linear parametric regression surface is chosen, mβ(X1, X2) =
β0 +β1X1 +β2X2, being X = (X1, X2), and for different values of c the mean
function

m(X1, X2) = 2 +X1 +X2 + cX3
1 (9)

is considered. Therefore, the parameter c controls whether the null (c = 0) or
the alternative (c 6= 0) hypotheses are assumed. Values c = 0, 3, and 5 are
considered in the study.

For each value of c, 500 samples of sizes n = 225 and 400 are generated
on a bidimensional regular grid in the unit square, following model (1), with
regression function (9) and random errors εi normally distributed with zero
mean and isotropic exponential covariance function:

Cov(εi, εj) = σ2{exp(−‖Xi −Xj‖/ae)}, (10)

where σ2 is the variance and ae is the practical range. Different degrees of
spatial dependence were studied, considering values of σ = 0.4, 0.6, and 0.8,
and ae = 0.1 (weak correlation), ae = 0.2 (medium correlation) and ae = 0.4
(strong correlation). Note that no nugget effect is considered in this scenario.

To analyze the behavior of the test statistic given in (6) in the different
scenarios, the bootstrap procedure described in Section 3.2 was applied, using
B = 500 replications. The weight function used was taken constant with value
1. The nonparametric fit used for constructing (6) was obtained using the
multivariate local linear estimator with a multiplicative triweight kernel, while
the parametric fit was computed using the iterative least squares procedure,
considering a linear model, these methods described in Sections 2.1 and 2.2,
respectively. The bandwidth selection problem was addressed by using the
same classical procedure as the one used in Härdle and Mammen (1993), Alcalá
et al. (1999), or Opsomer and Francisco-Fernández (2010), among others. The
test was run in a grid of several bandwidths to check how it is affected by
the bandwidth choice. In order to simplify the calculations, the bandwidth
matrix was restricted to a class of diagonal matrices with both equal elements
(scalar matrices). To give a reasonable grid, the optimal bandwidth obtained
by minimizing the mean average squared error (MASE) of the multivariate
local linear estimator (see Francisco-Fernandez and Opsomer, 2005, p. 288)
was calculated for each scenario. These bandwidths were in the interval [0.6, 1],
therefore, the bandwidth was taken as a diagonal matrix H = diag(h, h), and
different values of h were chosen, h = 0.6, 0.7, 0.8, 0.9, 1.

Rejection proportions of the null hypothesis, for a significance level α =
0.05, are displayed in Table 1, where it can be observed that the test has
a reasonable behavior. If c = 0 (null hypothesis), the rejection proportions
are similar to the theoretical level, although these proportions are affected
by the value of h. In fact, in most of the cases, the rejection proportions
are smaller when the bandwidth value is larger. As expected, considering a
larger sample size, the bandwidth value should be smaller. For alternative
assumptions (c = 3 and c = 5), a decreasing power of the test when the values
of h increase is observed. For all the scenarios, the power of the test becomes
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Fig. 1 Locations with the levels of piezometric-head for the Wolfcamp Aquifer (left) and
its own 3-dimensional representation (right).

larger as the value of c increases. As expected, large values of the variance σ2

lead to a decrease in power. Regarding the effect of the range ae, when this
parameter is larger, the power of the test increases, which justifies the correct
performance of the bootstrap procedure for dependent data considered. It can
be also noticed that, for large values of ae, the bandwidth values providing an
effective calibration of the test are also large.

Additional simulation studies with other regression functions, selecting
bandwidth matrices with different values in the main diagonal, including a
nugget effect and considering random designs were also performed, obtaining
similar results to those shown in Table 1. These experiments are reported in
the Supplementary Material.

5 Illustration with real data

In order to illustrate the performance in practice of the test statistic Tn, given
in (6), the Wolfcamp aquifer dataset briefly mentioned in the Introduction is
considered. These data were reported and geostatistically analyzed in Harper
and Furr (1986) and Cressie (1993), and are available in the R package npsp

(Fernández-Casal, 2016).
The Deaf Smith County (Texas, bordering New Mexico) was selected as an

alternate site for a possible nuclear waste disposal repository in the 1980s. This
site was later dropped on grounds of contamination of the aquifer, the source
of much of the water supply for west Texas. In a study conducted by the U.S.
Department of Energy, piezometric-head levels were obtained irregularly at 85
locations, shown in the left panel of Figure 1, by drilling a narrow pipe through
the aquifer (see Harper and Furr, 1986). With higher values generally in the
lower left (southwest) and lower values in the upper right (northwest), the
groundwater gradient would cause water to flow in a northeasterly direction
from the repository in Deaf Smith County toward Amarillo in lower Potter
county.
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Table 1 Rejection proportions of the null hypothesis for α = 0.05.

h

σ ae c n 0.6 0.7 0.8 0.9 1
0.4 0.1 0 225 0.092 0.068 0.050 0.038 0.024

400 0.050 0.036 0.024 0.022 0.020
0.4 0.1 3 225 0.522 0.480 0.458 0.446 0.458

400 0.438 0.396 0.360 0.360 0.368
0.4 0.1 5 225 0.988 0.984 0.978 0.980 0.984

400 1.000 1.000 1.000 1.000 1.000
0.4 0.2 0 225 0.082 0.062 0.048 0.032 0.022

400 0.078 0.050 0.032 0.028 0.014
0.4 0.2 3 225 0.902 0.876 0.854 0.840 0.834

400 0.896 0.870 0.832 0.818 0.806
0.4 0.2 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000
0.4 0.4 0 225 0.162 0.126 0.084 0.074 0.068

400 0.164 0.126 0.098 0.076 0.058
0.4 0.4 3 225 0.978 0.976 0.974 0.970 0.970

400 0.990 0.990 0.988 0.986 0.986
0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000
0.6 0.1 0 225 0.090 0.068 0.054 0.038 0.026

400 0.050 0.036 0.022 0.022 0.020
0.6 0.1 3 225 0.096 0.084 0.062 0.056 0.066

400 0.082 0.058 0.046 0.034 0.036
0.6 0.1 5 225 0.684 0.652 0.624 0.602 0.608

400 0.630 0.576 0.538 0.532 0.536
0.6 0.2 0 225 0.082 0.060 0.046 0.034 0.024

400 0.074 0.050 0.032 0.028 0.014
0.6 0.2 3 225 0.492 0.430 0.370 0.332 0.322

400 0.466 0.408 0.362 0.334 0.330
0.6 0.2 5 225 0.964 0.958 0.942 0.930 0.920

400 0.962 0.948 0.930 0.916 0.912
0.6 0.4 0 225 0.158 0.126 0.084 0.074 0.068

400 0.164 0.126 0.100 0.076 0.058
0.6 0.4 3 225 0.766 0.742 0.716 0.694 0.684

400 0.818 0.784 0.744 0.714 0.704
0.6 0.4 5 225 0.998 0.998 0.998 0.998 0.998

400 0.996 0.996 0.994 0.994 0.994
0.8 0.1 0 225 0.088 0.066 0.052 0.038 0.026

400 0.050 0.036 0.022 0.022 0.020
0.8 0.1 3 225 0.080 0.052 0.036 0.030 0.026

400 0.046 0.018 0.008 0.006 0.006
0.8 0.1 5 225 0.282 0.240 0.204 0.196 0.204

400 0.190 0.158 0.128 0.120 0.126
0.8 0.2 0 225 0.082 0.060 0.046 0.032 0.024

400 0.076 0.050 0.032 0.028 0.014
0.8 0.2 3 225 0.282 0.212 0.174 0.142 0.146

400 0.256 0.202 0.164 0.144 0.144
0.8 0.2 5 225 0.716 0.654 0.614 0.588 0.574

400 0.704 0.654 0.628 0.600 0.572
0.8 0.4 0 225 0.158 0.124 0.084 0.074 0.068

400 0.164 0.126 0.100 0.074 0.058
0.8 0.4 3 225 0.556 0.496 0.458 0.434 0.426

400 0.580 0.532 0.484 0.450 0.430
0.8 0.4 5 225 0.928 0.920 0.906 0.888 0.874

400 0.952 0.940 0.930 0.920 0.904
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Figure 1 (right panel) displays the 3-dimensional scatterplot of the piezo-
metric heads levels (feet above sea level) against the coordinates (miles, from
a reference point). This plot shows a clear downwards trend from south-west
to north-east. Cressie (1993) used the median polish approach to model this
trend, whereas Harper and Furr (1986) considered a linear trend surface, that
is, a linear regression model on latitude and longitude. In order to check if a
linear model is plausible, the test Tn, using the bootstrap procedure described
in Section 3.2 with B = 1000 replications, was applied considering a linear
parametric model, mβ(X1, X2) = β0 + β1X1 + β2X2, as the null hypothesis,
being X1 and X2 the spatial coordinates of the points where the process is
observed. It should be noted that the (nonparametric) detrended data were
also tested for isotropy and stationarity, following the proposals by Bowman
and Crujeiras (2013), obtaining p-values of 0.838 for isotropy and 0.031 for
stationarity.

To apply the test (6), the parametric fit was carried out using the iterative
least squares estimator described in Section 2.2, assuming a linear regression
model. After analyzing the initial residuals obtained by least squares regre-
ssion, a spherical correlation model (as it was suggested by Harper and Furr,
1986) was considered to estimate the variance-covariance matrix of the errors,
needed to obtain a feasible estimate of β. As for the nonparametric fit in (6),
the local linear estimator (3) with a multiplicative triweight kernel was consi-
dered. The bandwidth was taken as a diagonal matrix H = diag(h1, h2), being
the values of h1 and h2 different. Note that the corrected generalized cross-
validation bandwidth (Francisco-Fernandez and Opsomer, 2005; Francisco-
Fernández et al., 2012) is H = diag(403.19, 226.20).

Figure 2 shows the smooth version of the parametric (left panel) and the
nonparametric (right panel) regression estimators using the corrected genera-
lized cross-validation bandwidth for the level of piezometric-head in the area
of study. These regression surfaces are compared in the proposed test statistic.
Figure 3 shows the p-values of the test using the so-called significance trace
(Bowman and Azzalini, 1997), that is, the proportions of empirical rejections
for different bandwidths. Taking into account this plot, there are no evidences
against a linear spatial regression. Note that smaller bandwidths than those
considered should not be taken to avoid boundary problems.

6 Discussion

A goodness-of-fit test for a parametric regression model with correlated er-
rors is presented in this work, based on a L2-distance between a parametric
and a nonparametric fits. A least squares procedure has been considered as a
parametric approach, given its efficiency, but other methods such as maximum
likelihood methods, could be also used, as long as a

√
n−consistency property

is satisfied. In this case, it should be noted that both the regression function
and the dependence structure of the errors are jointly estimated, but usually
restricted to a (multivariate) Gaussian distribution of the process realization.
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Fig. 2 Smooth version of the parametric fit (left) and nonparametric estimator of the re-
gression (right) using the corrected generalized cross-validation bandwidth for the Wolfcamp
Aquifer.

In both cases (least squares and maximum likelihood), a parametric form for
the correlation is considered. Without being the target function and viewing
spatial correlation as a nuisance (that should certainly be accounted for, but
it is not of primary interest), it is expected that the proposed goodness-of-fit
test has a good performance even when the correlation is misspecified as long
as it can be reasonably well approximated. Testing approaches as those pro-
posed in Maglione and Diblasi (2004) can be useful for this task. Regarding
the nonparametric counterpart in the test statistic, other kernel estimators
such as Priestley-Chao or Nadaraya-Watson estimators could be used.

Asymptotic results, under the null and under local alternatives, support
the proposal but due to the slow convergence to the limit distribution, a boot-
strap procedure is presented. Simulation results confirm that the bootstrap al-
gorithm works, facilitating the practical application of the test, with no other
competitor (up to our knowledge). It may be argued that this simulation study
was limited to bidimensional linear regression models, but it could be extended
to any parametric family. It should be noted (Cressie, 1993; Diggle and Ribeiro,
2007) that, in the geostatistical context, simple parametric models are usually
preferred in order to preserve interpretability. If one would be interested in a
more sophisticated regression structure, then a nonparametric fit could pro-
vide an appealing alternative. In any case, the bandwidth matrix needed to
apply (6) can be selected by cross-validation but recall that this bandwidth
is not necessary a good one for testing. With this purpose, it is advisable to
explore a range of bandwidths, taking a data-driven one as a reference.

Although a homoscedastic regression model has been considered in this
paper, under suitable assumptions, the asymptotic results of the test statistic
could be also derived for certain heteroscedastic regression models. In such
a context, the bootstrap method to calibrate the test, described in Section
3.2, could be also modified, using an appropriate route to estimate the de-
pendence of the model. To do this, the nonparametric approach described by
Fernández-Casal et al. (2017) could be used. Note that in that case, due to
heteroscedasticity, the use of a wild bootstrap procedure in the resampling pro-
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Fig. 3 Significance trace of the test for α = 0.05 for the Wolfcamp aquifer dataset.

cess could be more convenient. The design of this type of resampling approach
in this context is, indeed, an interesting issue for a future research.

The procedures used in the simulation study as well as in the illustration
with real data were implemented in the statistical environment R (R Devel-
opment Core Team, 2019), using functions included in the geoR and npsp

packages (Ribeiro and Diggle, 2016; Fernández-Casal, 2016) to estimate the
variogram and the spatial regression functions.
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Appendix A. Proof of Theorem 1

The test statistic (6) can be written as

Tn = n|H|1/2
∫

(m̂LL
H

(x)− m̂LL
H,β̂

(x))2w(x)dx

= n|H|1/2
∫

[

e′1

(

1
n

∑n
i=1 KH(Xi − x) 1

n

∑n
i=1 KH(Xi − x)(Xi − x)′

1
n

∑n
i=1 KH(Xi − x)(Xi − x) 1

n

∑n
i=1 KH(Xi − x)(Xi − x)(Xi − x)′

)−1

·
( 1

n

∑n
i=1 KH(Xi − x)(Zi −m

β̂
(Xi))

1
n

∑n
i=1 KH(Xi − x)(Xi − x)(Zi −m

β̂
(Xi))

)]2

w(x)dx.

Taking into account that, for every η > 0, f̂H(x) = 1
n

∑n
i=1 KH(Xi −x) =

f(x) +Op(n
−2/(4+d)+η) uniformly in x (see Härdle and Mammen, 1993), and
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according to Liu (2001), it follows that

Tn = n|H|1/2
∫

[

1

nf(x)

n
∑

i=1

KH(Xi − x)(Zi −m
β̂
(Xi))

− ∇f(x)
1

nf2(x)

n
∑

i=1

KH(Xi − x)(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx+Op(n
−2/(4+d)+η)

= Tn1 + Tn2 + 2Tn12 +Op(n
−2/(4+d)+η), (11)

where ∇f(x) denotes the d × 1 vector of first-order partial derivatives of f ,
and

Tn1 = n|H|1/2
∫

[

1

nf(x)

n
∑

i=1

KH(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx,

Tn2 = n|H|1/2
∫

[

∇f(x)
1

nf2(x)

n
∑

i=1

KH(Xi − x)(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx,

denoting by Tn12 the integral of the cross product. Regarding Tn1, taking
into account that the regression models considered are of the form m(x) =
mβ0

(x) + n−1/2|H|−1/4g(x), one gets that

Tn1 = n|H|1/2
∫

[

1

nf(x)

n
∑

i=1

KH(Xi − x)(mβ0
(Xi) + n−1/2|H|−1/4g(Xi)

+ εi −m
β̂
(Xi))

]2

w(x)dx

= n|H|1/2
∫

1

f2(x)
(I1(x) + I2(x) + I3(x))

2w(x)dx,

where

I1(x) =
1

n

n
∑

i=1

KH (Xi − x) (mβ0
(Xi)−m

β̂
(Xi)),

I2(x) =
1

n

n
∑

i=1

KH (Xi − x)n−1/2|H|−1/4g(Xi),

I3(x) =
1

n

n
∑

i=1

KH (Xi − x) εi.

Under assumptions (A1)–(A3) and (A7), and given that the difference
m

β̂
(x)−mβ0

(x) = Op(n
−1/2) uniformly in x, it is obtained that

n|H|1/2
∫

1

f2(x)
I21 (x)w(x)dx = Op(|H|1/2). (12)
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As for the term I2(x), taking into account Lemma 1 (available in the Online
Supplementary Material), by straightforward calculations it follows that

n|H|1/2
∫

1

f2(x)
I22 (x)w(x)dx

=

∫

(KH ∗ g)2(x)w(x)dx · {1 + op(1)}. (13)

Note that the leading term of (13) is the term b1H in Theorem 1. Finally,
I3(x) (associated with the error component) can be decomposed as

n|H|1/2
∫

1

f2(x)
I23 (x)w(x)dx = n|H|1/2

∫

1

f2(x)n2

n
∑

i=1

K2
H
(Xi − x) ε2(Xi)w(x)dx

+n|H|1/2
∫

1

f2(x)n2

∑

i6=j

KH (Xi − x)KH (Xj − x) εiεjw(x)dx

= I31 + I32.

For the first term, one gets that

E(I31) = E

[

σ2n|H|1/2
∫

1

f2(x)

1

n2

n
∑

i=1

K2
H
(Xi − x)w(x)dx

]

= σ2|H|−1/2K(2)(0)

∫

w(x)

f(x)
dx · {1 + o(1)}.

Similarly, it is obtained that Var(I31) = Op(n
−1|H|−1), and, therefore,

I31 = σ2|H|−1/2K(2)(0)

∫

w(x)

f(x)
dx · {1 + op(1)}. (14)

The leading term of (14) corresponds to the first term of b0H in Theorem
1. For the term I32, let

κij = n|H|1/2
∫

1

f2(x)

1

n2
KH (Xi − x)KH (Xj − x) εiεjw(x)dx,

thus,

I32 =
∑

i6=j

κij ,

and this can be seen as a U-statistic with degenerate kernel. To obtain the
asymptotic normality of I32, considering assumption (A6), Theorem 2 given
in Kim et al. (2013) will be applied. For this term, under assumptions (A4),
(A7), (A8) and (A9), and according to Liu (2001), one gets that

E(I32) =
n− 1

n
|H|−1/2σ2

∫
(

n|H|
∫ ∫

K (p)K (q) ρn(H(p− q))dpdq

+ o(1)

)

w(x)dx

= |H|−1/2σ2K(2)(0)ρc

∫

w(x)dx · {1 + o(1)}, (15)
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corresponding to the second term of b0H in Theorem 1.

Similarly, it can be shown that the leading term of the variance of I32 is
given by:

V = 2σ4K(4)(0)

[
∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

. (16)

Therefore, using the central limit theorem for degenerate reduced U-statis-
tics under α-mixing conditions, given in Kim et al. (2013), it is obtained that
the term I32 converges, in distribution, to a normal distribution with mean
the leading term of (15) and variance (16).

On the other hand, in virtue of the Cauchy-Schwarz inequality, the cross
terms in Tn1 resulting from the products of I1(x), I2(x) and I3(x) are all of
smaller order. Therefore, combining the results given in (12), (13) and (14),
and the asymptotic normality of I32 (with bias the leading term of (15) and
variance (16)), one gets

V −1/2(Tn1 − b0H − b1H) →L N(0, 1) as n → ∞, (17)

where

b0H = |H|−1/2σ2K(2)(0)

[
∫

w(x)

f(x)
dx+ ρc

∫

w(x)dx

]

,

b1H =

∫

(KH ∗ g)2(x)w(x)dx,

and

V = 2σ4K(4)(0)

[
∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

.

The term Tn2 in Tn is of smaller order than Tn1 (specifically, Tn2 =
Op(tr(H

2)Tn1)), and by the Cauchy-Schwarz inequality, the cross term Tn12

is of smaller order as well. Therefore, from (11), it follows that

Tn = Tn1 +Op(tr(H
2)) +Op(n

−2/(4+d)+η).

Taking into account (17), it follows that

V −1/2(Tn − b0H − b1H) →L N(0, 1) as n → ∞.

with b0H, b1H and V given above.
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This supplementary material for “A goodness-of-fit test for regression models with spa-

tially correlated errors” provides a detailed proof of the main theorem, jointly with the

required auxiliary lemmas. Some additional simulation results, illustrating the asymptotic

distribution of the test, the use of other type of bandwidths and the performance of the

test in different settings (random design and nugget effect in the dependence structure) are

included in this document.

1 Theoretical results

Theorem 1 in the paper establishes the asymptotic distribution of

Tn = n|H|1/2
∫

D
(m̂LL

H (x)− m̂LL
H,β̂

(x))2w(x)dx, (1)

defined in Equation (6), under the null and under local alternatives. Denoting by β0 the “true”

parameter under the null hypothesis, the types of model deviations that can be captured by this

test are of the form m(x) = mβ0
(x) + cng(x), where cn is a sequence, such that cn → 0 and g is a

deterministic function collecting the deviation direction for the alternative hypothesis. In Theorem 1,

the asymptotic distribution of the test statistic (1) is stablished under the null hypothesis, and also

under local alternatives converging to the null hypothesis at a certain rate controlled by cn. Specifically,

it is assumed that the function g is bounded uniformly in x and n, and cn = n−1/2|H|−1/4. In particular,

this setting includes the null hypothesis corresponding to g(x) = 0. The assumptions required for that

result are the following:

(A1) The regression and the density functions m and f , respectively, are twice continuously differen-

tiable.
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(A2) The weight function w is continuously differentiable.

(A3) The marginal density f is continuous, bounded away from zero and f(x) > 0 for all x ∈ D.

(A4) For the correlation function ρn, there exist constants ρM and ρc such that n
∫

|ρn(x)|dx < ρM

and limn→∞ n
∫

ρn(x)dx = ρc. For any sequence ǫn > 0 satisfying n1/dǫn → ∞,

n

∫

‖x‖≥ǫn

|ρn(x)|dx → 0 as n → ∞.

(A5) For any i, j, k, l,

Cov(εiεj , εkεl) = Cov(εi, εk)Cov(εj , εl) + Cov(εi, εl)Cov(εj , εk).

(A6) It is assumed that the errors are a geometrically strong mixing sequence with mean zero and

E|ε|r < ∞ for all r > 4.

(A7) The kernel K is a spherically symmetric density function, twice continuously differentiable

and with compact support (for simplicity with a nonzero value only if ‖u‖ ≤ 1). Moreover,
∫

uu′K(u)du = µ2(K)Id, where µ2(K) 6= 0 is scalar and Id is the d× d identity matrix.

(A8) K is Lipschitz continuous. That is, there exists an L > 0, such that

|K(X1)−K(X2)| ≤ L‖X1 −X2‖, ∀X1,X2 ∈ D.

(A9) The d×d bandwidth matrixH is symmetric and positive definite, withH → 0 and n|H|λ2
min(H) →

∞, when n → ∞. The ratio λmax(H)/λmin(H) is bounded above, where λmax(H) and λmin(H)

are the maximum and minimum eigenvalues of H, respectively.

In what follows, 1d and 1d×d are used to denote the d × 1 vector and the d × d matrix with all

entries equal to 1, respectively. Moreover, if Un is a random matrix, then Op(Un) and op(Un) are to

be taken componentwise.

Before deriving the proof of Theorem 1, some auxiliary lemmas are required.

Lemma 1. Let

W1n(x) =
1

n

n
∑

i=1

KH (Xi − x) g(Xi),

where g is a bounded function uniformly at x. For any x ∈ D, under assumptions (A1),(A3), (A7)

and (A9), one gets that

W1n(x) =

∫

K (p) g(x+Hp)f(x+Hp)dp+ op(1).

Proof of Lemma 1. For any x ∈ D, under assumptions (A1),(A3), (A7) and (A9), it follows that

E(W1n(x)) =

∫

KH (u− x) g(u)f(u)du

=

∫

K (p) g(x+Hp)f(x+Hp)dp

2



and

Var(W1n(x)) ≤
1

n

∫

K2
H (u− x) g2(u)f(u)du

=
1

n|H|

∫

K2 (p) g2(x+Hp)f(x+Hp)dp

= op(1)

Lemma 2. Let

W2n(x, t) =
1

n

n
∑

i=1

KH (Xi − x)KH (Xi − t) .

For any x ∈ D, under assumptions (A1), (A3), (A7) and (A9), then

W2n(x, t) = |H|−1K(2)(H−1(x− t))f(t) · {1 + op(1)}.

Proof of Lemma 2. For any x, t ∈ D

E(|H|W2n(x, t)) = |H|

∫

KH (u− x)KH (u− t) f(u)du

=

∫

K (p)K
(

p−H−1(x− t)
)

f(t+Hp)dp

= K(2)(H−1(x− t)){f(t) + o(1)}.

Moreover,

Var(|H|W2n(x, t)) ≤
|H|2

n

∫

K2
H (u− x)K2

H (u− t) f(u)du

=
1

n|H|

∫

K2 (p)K2
(

p−H−1(x− t)
)

f(t+Hp)dp

= op(1).

Lemma 3. Let

W3n(x, t) =
1

n2

n
∑

i=1

n
∑

j=1

K2
H (Xi − x)K2

H (Xj − t) ρ2n(Xi −Xj).

For any x, t ∈ D, under assumptions (A1), (A3) and (A9), then

E(W3n(x, t)) = |H|−2f(x)f(t)

∫ ∫

K2(p)K2(q)ρ2n(x− t+H(p− q))dpdq · {1 + o(1)}.

Proof of Lemma 3. For any x, t ∈ D

E(W3n(x, t)) =

∫ ∫

K2
H (u− x)K2

H (v − t) ρ2n(u− v)f(u)f(v)dudv

= |H|−2

∫ ∫

K2(p)K2(q)ρ2n(x− t+H(p− q))f(x+Hp)f(t+Hq)dpdq

= |H|−2f(x)f(t)

∫ ∫

K2(p)K2(q)ρ2n(x− t+H(p− q))dpdq · {1 + o(1)}.
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Lemma 4. Let

W4n(x, t) =
1

n2

n
∑

i=1

n
∑

j=1

KH (Xi − x)KH (Xj − t) ρn(Xi −Xj).

For any x, t ∈ D, under assumptions (A1), (A3) and (A9), then

E(W4n(x, t)) = f(x)f(t)

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdq+ o(1).

Proof of Lemma 4. For any x, t ∈ D,

E(W4n(x, t)) =

∫ ∫

KH (u− x)KH (v − t) ρn(u− v)f(u)f(v)dudv

=

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))f(x+Hp)f(t+Hq)dpdq

= f(x)f(t)

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdq+ o(1).

Lemma 5. Let

W5n(x, t) =
1

n2

n
∑

i=1

n
∑

j=1

KH (Xi − x)KH (Xi − t)KH (Xj − x)KH (Xj − t) ρ2n(Xi −Xj).

For any x, t ∈ D, under assumptions (A1), (A3) and (A9), then

E(W5n(x, t)) = |H|−2f2(t)

∫ ∫

K
(

−p+H−1(x− t)
)

K
(

−q+H−1(x− t)
)

· K(p)K(q)ρ2n(H(p− q))dpdq · {1 + o(1)}.

Proof of Lemma 5. For any x, t ∈ D,

E(W5n(x, t)) =

∫ ∫

KH (u− x)KH (u− t)KH (v − x)KH (v − t) ρ2n(u− v)

· f(u)f(v)dudv

= |H|−2

∫ ∫

K
(

−p+H−1(x− t)
)

K
(

−q+H−1(x− t)
)

K (p)K (q)

· f(t+Hp)f(t+Hq)ρ2n(H(p− q))dpdq

= |H|−2f2(t)

∫ ∫

K
(

−p+H−1(x− t)
)

K
(

−q+H−1(x− t)
)

· K (p)K (q) ρ2n(H(p− q))dpdq · {1 + o(1)}.

Lemma 6. Let

W6n(x, t) =
1

n3

∑

i 6=j

∑

k 6=i,j

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xk − t)ρn(Xi −Xk)ρn(Xj −Xi).

For any x, t ∈ D, under assumptions (A1), (A3) and (A9), then

E(W6n(x, t)) = |H|−1f2(x)f(t)

∫ ∫ ∫

K(p)K (q)K
(

−p+H−1(x− t)
)

K (r)

· ρn(H(p− q))ρn(x− t+H(p− r))dpdqdr · {1 + o(1)}.
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Proof of Lemma 6. For any x, t ∈ D,

E(W6n(x, t)) =

∫ ∫ ∫

KH (u− x)KH (v − x)KH (u− t)KH (y − t)

· ρn(u− y)ρn(u− v)f(u)f(v)f(y)dudvdy

= |H|−1

∫ ∫ ∫

K(p)K (q)K
(

−p+H−1(x− t)
)

K (r)

· f(x+Hp)f(x+Hq)f(t+Hr)ρn(H(p− q))ρn(x− t+H(p− r))dpdqdr

= |H|−1f2(x)f(t)

∫ ∫ ∫

K(p)K (q)K
(

−p+H−1(x− t)
)

K (r)

· ρn(H(p− q))ρn(x− t+H(p− r))dpdqdr · {1 + o(1)}.

Next, the proof of Theorem 1 of the main paper is presented.

Theorem 1. Under Assumptions (A1)-(A10), and if 0 < V < ∞, it can be proved that

V −1/2(Tn − b0H − b1H) →L N(0, 1) as n → ∞,

where →L denotes convergence in distribution, with

b0H = |H|−1/2σ2K(2)(0)

[ ∫

w(x)

f(x)
dx+ ρc

∫

w(x)dx

]

,

b1H =

∫

(KH ∗ g(x))2w(x)dx,

and

V = 2σ4K(4)(0)

[ ∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

,

where K(j) denotes the j-times convolution product of K with itself.

Proof of Theorem 1. The test statistic (1) can be written as

Tn = n|H|1/2
∫

(m̂LL
H (x)− m̂LL

H,β̂
(x))2w(x)dx

= n|H|1/2
∫ [

e′1

(

1

n
X ′

xWxXx

)−1 1

n

n
∑

i=1

(1, (Xi − x)′)KH(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx

= n|H|1/2
∫ [

e′1

(

1
n

∑n
i=1KH(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)′

1
n

∑n
i=1KH(Xi − x)(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)′

)−1

·

( 1
n

∑n
i=1KH(Xi − x)(Zi −m

β̂
(Xi))

1
n

∑n
i=1KH(Xi − x)(Xi − x)(Zi −m

β̂
(Xi))

)]2

w(x)dx.

According to Liu (2001) and taking into account that for every η > 0, f̂H(x) = 1
n

∑n
i=1KH(Xi −

x) = f(x) +Op(n
−2/(4+d)+η) uniformly in x (see Härdle and Mammen 1993), it follows that

1

n
X ′

xWxXx =

(

1
n

∑n
i=1KH(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)′

1
n

∑n
i=1KH(Xi − x)(Xi − x) 1

n

∑n
i=1KH(Xi − x)(Xi − x)(Xi − x)′

)

=

(

f(x) +Op(n
−2/(4+d)+η) µ2(K)∇f(x)′H2 +Op(n

−2/(4+d)+ηH2)

µ2(K)H2∇f(x) +Op(n
−2/(4+d)+ηH2) µ2(K)f(x)H2 +Op(H1d×dH)

)

,

5



where ∇f(x) denotes the d× 1 vector of first-order partial derivatives of f (and ∇f(x)′ its transpose).

Therefore,

Tn = n|H|1/2

·

∫ [

e′1

(

f(x) +Op(n
−2/(4+d)+η) µ2(K)∇f(x)′H2 +Op(n

−2/(4+d)+ηH2)

µ2(K)H2∇f(x) +Op(n
−2/(4+d)+ηH2) µ2(K)f(x)H2 +Op(H1d×dH)

)−1

·

( 1
n

∑n
i=1KH(Xi − x)(Zi −m

β̂
(Xi))

1
n

∑n
i=1KH(Xi − x)(Xi − x)(Zi −m

β̂
(Xi))

)]2

w(x)dx

= n|H|1/2

·

∫ [

e′1

(

f−1(x) +Op(n
−2/(4+d)+η) −f−2(x)∇f(x)′ +Op(n

−2/(4+d)+η1′d)

−f−2(x)∇f(x) +Op(n
−2/(4+d)+η1) {µ2(K)f(x)H2}−1 +Op(n

−2/(4+d)+ηH1d×dH)

)

·

( 1
n

∑n
i=1KH(Xi − x)(Zi −m

β̂
(Xi))

1
n

∑n
i=1KH(Xi − x)(Xi − x)(Zi −m

β̂
(Xi))

)]2

w(x)dx

= n|H|1/2
∫ [

1

nf(x)

n
∑

i=1

KH(Xi − x)(Zi −m
β̂
(Xi))

− ∇f(x)
1

nf2(x)

n
∑

i=1

KH(Xi − x)(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx+Op(n
−2/(4+d)+η)

= Tn1 + Tn2 + 2Tn12 +Op(n
−2/(4+d)+η), (2)

with

Tn1 = n|H|1/2
∫ [

1

nf(x)

n
∑

i=1

KH(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx,

Tn2 = n|H|1/2
∫ [

∇f(x)
1

nf2(x)

n
∑

i=1

KH(Xi − x)(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx,

and the Tn12 term is the integral of the cross product.

Regarding Tn1, taking into account that the regression functions considered are of the form m =

mβ0
+ n−1/2|H|−1/4g (see the main paper), one gets

Tn1 = n|H|1/2
∫ [

1

nf(x)

n
∑

i=1

KH(Xi − x)(Zi −m
β̂
(Xi))

]2

w(x)dx

= n|H|1/2
∫ [

1

nf(x)

n
∑

i=1

KH(Xi − x)(m(Xi) + εi −m
β̂
(Xi))

]2

w(x)dx

= n|H|1/2
∫ [

1

nf(x)

n
∑

i=1

KH(Xi − x)(mβ0
(Xi) + n−1/2|H|−1/4g(Xi) + εi −m

β̂
(Xi))

]2

w(x)dx

= n|H|1/2
∫

1

f2(x)
(I1(x) + I2(x) + I3(x))

2w(x)dx,

6



where

I1(x) =
1

n

n
∑

i=1

KH (Xi − x) (mβ0
(Xi)−m

β̂
(Xi)),

I2(x) =
1

n

n
∑

i=1

KH (Xi − x)n−1/2|H|−1/4g(Xi),

I3(x) =
1

n

n
∑

i=1

KH (Xi − x) εi.

With respect to the term I1(x), using assumptions (A1)–(A3) and (A7), and given that the differ-

ence m
β̂
(x)−mβ0

(x) = Op(n
−1/2) uniformly in x (see the main paper), it is obtained that

n|H|1/2
∫

1

f2(x)
I21 (x)w(x)dx

= n|H|1/2
∫

1

f2(x)

[

1

n

n
∑

i=1

KH (Xi − x) (mβ0
(Xi)−m

β̂
(Xi))

]2

w(x)dx

= Op(|H|1/2). (3)

As for the term I2(x), taking into account Lemma 1, it follows that

n|H|1/2
∫

1

f2(x)
I22 (x)w(x)dx

= n|H|1/2
∫

1

f2(x)

[

1

n

n
∑

i=1

KH (Xi − x)n−1/2|H|−1/4g(Xi)

]2

w(x)dx

=

∫

1

f2(x)

[ ∫

K (p) g(x+Hp)f(x+Hp)dp+ op(1)

]2

w(x)dx

=

∫

1

f2(x)

[ ∫

K (p) g(x+Hp){f(x) + o(1)}dp

]2

w(x)dx · {1 + op(1)}

=

∫ [ ∫

KH (u− x) g(u)du

]2

w(x)dx · {1 + op(1)}

=

∫

(KH ∗ g)2(x)w(x)dx · {1 + op(1)}. (4)

The leading term of (4) is the term b1H in Theorem 1. Finally, the term I3(x), associated with the

error component of the model, can be split as

n|H|1/2
∫

1

f2(x)
I23 (x)w(x)dx = n|H|1/2

∫

1

f2(x)

[

1

n

n
∑

i=1

KH (Xi − x) εi

]2

w(x)dx

= n|H|1/2
∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x) ε2iw(x)dx

+ n|H|1/2
∫

1

f2(x)

1

n2

∑

i 6=j

KH (Xi − x)KH (Xj − x) εiεjw(x)dx

= I31 + I32.
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Close expressions of I31 and I32 can be obtained computing the expectation and the variance of

these terms. For doing so, general results on the conditional expectation and conditional variance can

be used. Specifically, given two random variables X and Y , it is known that E(X) = E(E(X|Y )) and

Var(X) = E(Var(X|Y )) + Var(E(X|Y )).

For I31, using the result for the conditional mean, it follows that E(I31) = E(E(I31|X1, . . . ,Xn)).

Firstly,

E(|H|1/2I31|X1, . . . ,Xn) = E

[

n|H|

∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x) ε2iw(x)dx|X1, . . . ,Xn

]

= σ2n|H|

∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x)w(x)dx. (5)

Considering the first part of the proof of Lemma 2, one gets that,

E(|H|1/2I31) = E(E(|H|1/2I31|X1, . . . ,Xn)) = E

[

σ2n|H|

∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x)w(x)dx

]

= σ2|H|

∫

1

f2(x)
|H|−1K(2)(0){f(x) + o(1)}w(x)dx

= σ2K(2)(0)

∫

w(x)

f(x)
dx · {1 + o(1)}. (6)

On the other hand,

Var(I31) = E(Var(I31|X1, . . . ,Xn)) + Var(E(I31|X1, . . . ,Xn)). (7)

Using assumption (A5), it is obtained that

Var(|H|1/2I31|X1, . . . ,Xn)

= Var

[

n|H|

∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x) ε2iw(x)dx|X1, . . . ,Xn

]

=
1

n2
|H|2

n
∑

i=1

n
∑

j=1

∫ ∫

1

f2(x)f2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

· Cov(ε2i , ε
2
j )

=
1

n2
|H|2

n
∑

i=1

n
∑

j=1

∫ ∫

1

f2(x)f2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

· 2(Cov(εi, εj))
2

=
2σ4

n2
|H|2

n
∑

i=1

n
∑

j=1

∫ ∫

1

f2(x)f2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

· ρ2n(Xi −Xj)
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and, therefore by using and Lemma 3,

E(Var(|H|1/2I31|X1, . . . ,Xn))

= E

[

2σ4

n2
|H|2

n
∑

i=1

n
∑

j=1

∫ ∫

1

f2(x)f2(t)
K2

H (Xi − x)K2
H (Xj − t)w(x)w(t)dxdt

· ρ2n(Xi −Xj)

]

= 2σ4|H|2
∫ ∫

1

f2(x)f2(t)
|H|−2

∫ ∫

K2(p)K2(q)ρ2n(x− t+H(p− q))dpdq

· f(x)f(t)w(x)w(t)dxdt · {1 + o(1)}

= 2σ4

∫ ∫ ∫ ∫

K2(p)K2(q)

f(x)f(t)
w(x)w(t)ρ2n(x− t+H(p− q))dpdqdxdt

· {1 + o(1)}

= 2σ4|H|

∫ ∫ ∫ ∫

K2(p)K2(q)

f(x)f(x+Hu)
w(x)w(x+Hu)ρ2n(H(p− q+ u))dpdqdxdu

· {1 + o(1)}

= 2σ4|H|

∫ ∫ ∫ ∫

K2(p)K2(q)

f2(x)
w2(x)ρ2n(H(p− q+ u))dpdqdxdu

· {1 + o(1)}.

Let

jn(p,u) = n|H|

∫

K2(q)ρ2n(H(p− q+ u))dq.

Notice that, using assumption (A4),

|jn(p,u)| ≤ K2
M (n|H|

∫

|ρ2n(H(p− q+ u))|dq)

≤ K2
M (n

∫

|ρn(t)|dt)

≤ K2
MρM ,

where KM ≡ max
x

(K(x)) and ρM ≡ max
x

(ρ(x)), and using assumptions (A2), (A3), (A7) and (A9),

one gets that

E(Var(I31|X1, . . . ,Xn)) = op(1). (8)

On the other hand, using expression (5), the second part of Lemma 2 and assumption (A9), it

follows that

Var(E(|H|1/2I31|X1, . . . ,Xn))

= Var

[

σ2n|H|

∫

1

f2(x)

1

n2

n
∑

i=1

K2
H (Xi − x)w(x)dx

]

=

n
∑

i=1

Var

[

σ2n|H|

∫

1

f2(x)

1

n2
K2

H (Xi − x)w(x)dx

]

≤ σ4|H|2
n
∑

i=1

E

[ ∫ ∫

1

f2(x)f2(t)

1

n2
K2

H (Xi − x)K2
H (Xi − t)w(x)w(t)dxdt

]

= op(1). (9)
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Now, considering (7), (8) and (9), it is obtained that

Var(|H|1/2I31) = op(1), (10)

and considering (6) and (10),

I31 = σ2|H|−1/2K(2)(0)

∫

w(x)

f(x)
dx · {1 + op(1))}. (11)

Taking into account assumption (A9), the leading term of (11) corresponds to the first term of b0H

in Theorem 1 of the main paper.

Now, consider the term

I32 = n|H|1/2
∫

1

f2(x)

1

n2

∑

i 6=j

KH (Xi − x)KH (Xj − x) εiεjw(x)dx.

Let

κij = n|H|1/2
∫

1

f2(x)

1

n2
KH (Xi − x)KH (Xj − x) εiεjw(x)dx,

thus,

I32 =
∑

i 6=j

κij ,

and this can be seen as a U-statistic with degenerate kernel. To obtain the asymptotic normality of

I32, Theorem 2 given in Kim et al. (2013) will be applied. In this work, the central limit theorem

for degenerate reduced U-statistics under α−mixing is derived. The assumptions of this result hold

(specifically, assumption (A6)) and the expectation and the variance of I32 should be computed.

Proceeding as for I31, it follows that E(I32) = E(E(I32|X1, . . . ,Xn)). Taking into account the first

part of Lemma 4, one gets that

E(I32|X1, . . . ,Xn) = E

[

n|H|1/2
1

n2

∑

i 6=j

∫

1

f2(x)
KH (Xi − x)KH (Xj − x)w(x)dx · εiεj |X1, . . . ,Xn

]

= n|H|1/2
1

n2

∫

1

f2(x)

∑

i 6=j

E(εiεj)KH (Xi − x)KH (Xj − x)w(x)dx

= n|H|1/2
∫

1

f2(x)

1

n2

∑

i 6=j

Cov(εi, εj)KH (Xi − x)KH (Xj − x)w(x)dx

= |H|1/2σ2

∫

1

f2(x)

1

n

∑

i 6=j

ρn(Xi −Xj)KH (Xi − x)KH (Xj − x)w(x)dx, (12)

and, therefore,

E(E(I32|X1, . . . ,Xn))

= E

[

n|H|1/2σ2

∫

1

f2(x)

1

n2

∑

i 6=j

ρn(Xi −Xj)KH (Xi − x)KH (Xj − x)w(x)dx

]

= n|H|1/2σ2

∫

1

f2(x)

(

n− 1

n
f2(x)

∫ ∫

K (p)K (q) ρn(H(p− q))dpdq+ o(1)

)

· w(x)dx

=
n− 1

n
|H|−1/2σ2

∫ (

n|H|

∫ ∫

K (p)K (q) ρn(H(p− q))dpdq+ o(1)

)

· w(x)dx.

10



Under the assumptions (A4), (A7), (A8) and (A9), as shown in Liu (2001),

lim
n→∞

n|H|

∫

K(p)K(q)ρn(H(p− q))dpdq = K(2)(0)ρc,

and, therefore,

E (I32) = |H|−1/2σ2K(2)(0)ρc

∫

w(x)dx · {1 + o(1)}, (13)

corresponding to the second term of b0H in Theorem 1 of the main paper.

The variance of I32 can be computed considering that:

Var(I32) = E(Var(I32|X1, . . . ,Xn)) + Var(E(I32|X1, . . . ,Xn)). (14)

Let

Wij =

∫

1

f2(x)
KH (Xi − x)KH (Xj − x)w(x)dx,

thus,

Var(I32|X1, . . . ,Xn) = Var



n−1|H|1/2
∑

i 6=j

Wijεiεj |X1, . . . ,Xn





= 4n−2|H|
n−1
∑

i=1

n
∑

j=i+1

n−1
∑

k=1

n
∑

l=k+1

WijWklCov(εiεj , εkεl)

= T31 + T32 + T33, (15)

where

T31 = 4n−2|H|
n−1
∑

i=1

n
∑

j=i+1

W 2
ijCov(εiεj , εiεj),

T32 = 4n−2|H|

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

l=i+2

WijWilCov(εiεj , εiεl),

T33 = 4n−2|H|
∑

all different indices i, j, k, l

WijWklCov(εiεj , εkεl).

First, when i = k and j = l, the total number of terms is n(n − 1)/2. Second, when one of the

i and j is equal to one of the k and l (without loss of generality, assume i = k and j 6= l), the total

number of terms can be bounded by n3. Finally, when i, j, k, and l are all different, the total number

of terms can be bounded by n4.

The expected value of Var(I32|X1, . . . ,Xn) is computed, calculating the mean of the terms T31,

T32, and T33,

E(Var(I32|X1, . . . ,Xn)) = E(T31) + E(T32) + E(T33). (16)

As for T31, using assumption (A5), this term can be split as

T31 = 4n−2|H|

n−1
∑

i=1

n
∑

j=i+1

W 2
ijCov(εiεj , εiεj)

= 4n−2|H|
n−1
∑

i=1

n
∑

j=i+1

W 2
ij [σ

4 +Cov2(εi, εj)]

= T311 + T312,
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where

T311 = 4σ4n−2|H|

∫ ∫

1

f2(x)f2(t)

n−1
∑

i=1

n
∑

j=i+1

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xj − t)

· w(x)w(t)dxdt,

and

T312 = 4σ4n−2|H|

∫ ∫

1

f2(x)f2(t)

n−1
∑

i=1

n
∑

j=i+1

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xj − t)

· ρ2n(Xi −Xj)w(x)w(t)dxdt.

Taking into account the first part of Lemma 2,

E(T311) = 4σ4|H|
n− 1

2n

∫ ∫

1

f2(x)f2(t)

[

|H|−1(K(2)(H−1(x− t)){f(t) + o(1)}

]2

w(x)w(t)dxdt

= 2σ4|H|
n− 1

n

∫ ∫

1

f2(x)f2(t)
|H|−2(K(2)(H−1(x− t))2f2(t)w(x)w(t)dxdt · {1 + o(1)}

= 2σ4n− 1

n

∫ ∫

1

f2(x)
(K(2)(p))2w(x)w(x+Hp)dxdt · {1 + o(1)}

= 2
n− 1

n
σ4K(4)(0)

∫

w2(x)

f2(x)
dx · {1 + o(1)}

= 2σ4K(4)(0)

∫

w2(x)

f2(x)
dx · {1 + o(1)}. (17)

Similarly for T312, using assumptions (A2), (A3) and (A7), and taking into account Lemma 5, this

term becomes

E(T312) = 4σ4|H|
n− 1

2n

∫ ∫

1

f2(x)f2(t)

[

|H|−2

(

f2(t)

∫ ∫

K(−p+H−1(x− t))

· K(−q+H−1(x− t))K(p)K(q)ρ2n(H(p− q))dpdq · {1 + o(1)}

)]

w(x)w(t)dxdt

= 2
n− 1

n
σ4

∫ ∫ ∫ ∫

1

f2(x)
K (−p+ u)K (−q+ u)K (p)K (q)w(x)w(x+Hu)

· ρ2n(H(p− q))dpdqdxdu · {1 + o(1)}

≤ 2
n− 1

n2|H|

σ4K4
Mw2

M

f2
M

∫

{n|H|

∫

ρ2n(H(p− q))dp}dq · {1 + o(1)},

where fM denotes the lower bound of f (assumption (A3)).

Since

n|H|

∫

ρ2n(H(p− q))dp ≤ n

∫

|ρn(t)|dt ≤ C1,

it is obtained that

E(T312) ≤ 2
σ4K4

Mw2
M

f2
M

C1

n|H|

n− 1

n

= Op(n
−1|H|−1). (18)
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Then, from (17) and (18), it follows that

E(T31) = 2σ4K(4)(0)

∫

w2(x)

f2(x)
dx · {1 + o(1)}+Op(n

−1|H|−1). (19)

With respect to the term T32 (corresponding to the case with i = k and j 6= l in (15)), using

assumption (A5), it follows that

T32 = 4n−2|H|
n−2
∑

i=1

n−1
∑

j=i+1

n
∑

j=i+2

WijWilCov(εiεj , εiεl)

= 4n−2|H|

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

j=i+2

WijWil[Var(εi)Cov(εj , εl) + Cov(εi, εl)Cov(εj , εi)]

= T321 + T322,

where

T321 = 4σ4n−2|H|

∫ ∫

1

f2(x)f2(t)

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

l=i+2

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xl − t)

· ρn(Xj −Xl)w(x)w(t)dxdt,

and

T322 = 4σ4n−2|H|

∫ ∫

1

f2(x)f2(t)

n−2
∑

i=1

n−1
∑

j=i+1

n
∑

l=i+2

KH (Xi − x)KH (Xj − x)KH(Xi − t)KH(Xl − t)

· ρn(Xi −Xl)ρn(Xj −Xi)w(x)w(t)dxdt.

Using the assumption (A4) and the first part of Lemma 2 and of Lemma 4, one gets

E(T321) = 4σ4n|H|

∫ ∫

1

f2(x)f2(t)

1

|H|
(K(2)(H−1(x− t))f(t) · {1 + o(1)}

·

(∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdqf(x)f(t) · {1 + o(1)}

)

w(x)w(t)dxdt

= 4σ4n

∫ ∫

1

f2(x)f2(t)

(

K(2)(H−1(x− t))f(t)

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))

dpdqf(x)f(t)

)

w(x)w(t)dxdt · {1 + o(1)}

= 4σ4n

∫ ∫

1

f(x)
K(2)(H−1(x− t))

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdq

· w(x)w(t)dxdt{1 + o(1)}

= 4σ4n|H|

∫ ∫ ∫ ∫

1

f(x)
K(2) (r)K (p)K (q)w(x)w(x−Hr)ρn(H(p− q+ r))dpdqdxdr

· {1 + o(1)}

= 4σ4

∫ ∫ ∫

1

f(x)
K(2) (r)K (q)w2(x){n|H|

∫

K (p) ρn(H(p− q+ r))dp}dqdxdr

· {1 + o(1)}.

As it was shown in Liu (2001),

lim
n→∞

n|H|

∫

K (p) ρn(H(p− q+ r))dp = K(q− r)ρc,
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and, therefore,

E(T321) = 4σ4ρc

∫ ∫ ∫

1

f(x)
K(2) (r)K (q)K(r− q)w2(x)dqdxdr · {1 + o(1)}

= 4σ4ρc

∫ ∫

1

f(x)
(K(2) (r))2w2(x)drdx · {1 + o(1)}

= 4σ4K(4)(0)ρc

∫

w2(x)

f(x)
dx · {1 + o(1)}. (20)

Similarly, taking into account that K is bounded, assumption (A4) and Lemma 6, the expected

value of T322 becomes

E(T322) = 4σ4n|H|

∫ ∫

1

f2(x)f2(t)
|H|−1

(

f2(x)f(t)

∫ ∫ ∫

K(p)K (q)K
(

−p+H−1(x− t)
)

K (r)

· ρn(H(p− q))ρn(x− t+H(p− r))dpdqdr · {1 + o(1)}

)

w(x)w(t)dxdt

= 4σ4n

∫ ∫ ∫ ∫ ∫

1

f(t)
K (p)K

(

−p+H−1(x− t)
)

K (q)K (r)w(x)w(t)

· ρn(x− t+H(p− r))ρn(H(p− q))dpdqdrdxdt · {1 + o(1)}

= 4σ4n|H|

∫ ∫ ∫ ∫ ∫

1

f(t)
K (p)K (−p+ u))K (q)K (r)w(t+Hu)w(t)

· ρn(H(p− r+ u))ρn(H(p− q))dpdqdrdudt · {1 + o(1)}

= 4σ4n−1|H|−1

∫ ∫ ∫

1

f(t)
K (p)K (−p+ u)w2(t){n|H|

∫

K (r) ρn(H(p− r+ u))dr}

· {n|H|

∫

K (q) ρn(H(p− q))dq}dpdudt · {1 + o(1)}.

Since

lim
n→∞

n|H|

∫

K(r)ρn(H(p− r+ u))dr = K(p+ u)ρc,

lim
n→∞

n|H|

∫

K(q)ρn(H(p− q))dq = K(p)ρc,

and taking into account that the functions K, w are bounded, and f is bounded away from zero, it

follows that

E(T322) = Op(n
−1|H|−1). (21)

Then, from (20) and (21), one gets that

E(T32) = 4σ4K(4)(0)ρc

∫

w2(x)

f(x)
dx · {1 + o(1)}+Op(n

−1|H|−1). (22)

Regarding the term T33 (when all i, j, k, l are different in (15)), using assumption (A5), it follows

that

T33 = 4n−2|H|
∑

all different indices i, j, k, l

WijWklCov(εiεj , εkεl)

= 4n−2|H|
∑

all different indices i, j, k, l

WijWkl[Cov(εi, εk)Cov(εj , εl)

+ Cov(εi, εl)Cov(εj , εk)]

= T331 + T332,
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where

T331 = 4σ4n−2|H|
∑

all different indices i, j, k, l

∫ ∫

1

f2(x)f2(t)
KH (Xi − x)KH (Xj − x)

· KH(Xk − t)KH(Xl − t)w(x)w(t)dxdtρn(Xi −Xk)ρn(Xj −Xl),

and

T332 = 4σ4n−2|H|
∑

all different indices i, j, k, l

∫ ∫

1

f2(x)f2(t)
KH (Xi − x)KH (Xj − x)

· KH(Xk − t)KH(Xl − t)w(x)w(t)dxdtρn(Xi −Xl)ρn(Xj −Xk).

Using the assumption (A4) and Lemma 4,

E(T331) = 4σ4n2|H|

∫ ∫

1

f2(x)f2(t)

[

f(x)f(t)

∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdq

· {1 + o(1)}

]2

w(x)w(t)dxdt

= 4σ4n2|H|

∫ ∫ [ ∫ ∫

K (p)K (q) ρn(x− t+H(p− q))dpdq

·

∫ ∫

K (m)K (r) ρn(x− t+H(m− r))dmdr

]

w(x)w(t)dxdt · {1 + o(1)}

= 4σ4n2|H|

∫ ∫ ∫ ∫ ∫ ∫

K (p)K (q)K (m)K (r)w(x)w(t)

· ρn(x− t+H(p− q))ρn(x− t+H(m− r))dpdqdmdrdxdt · {1 + o(1)}

= 4σ4n2|H|2
∫ ∫ ∫ ∫ ∫ ∫

K (p)K (q)K (m)K (r)w(x)w(x−Hu)

· ρn(H(p− q+ u))ρn(H(m− r+ u))dpdqdmdrdxdu · {1 + o(1)}

= 4σ4

∫ ∫ ∫ ∫

K (q)K (r)w2(x){n|H|

∫

K (m) ρn(H(m− r+ u))dm}

· {n|H|

∫

K (p) ρn(H(p− q+ u))dp}dqdrdxdu · {1 + o(1)}.

Since

lim
n→∞

n|H|

∫

K(p)ρn(H(p− q+ u))dp = K(q− u)ρc,

and

lim
n→∞

n|H|

∫

K(m)ρn(H(m− r+ u))dm = K(r− u)ρc,

it follows that

E(T331) = 4σ4ρ2c

∫ ∫ ∫ ∫

K (q)K (u− q)K (r)K (u− r)w2(x)dqdrdxdu · {1 + o(1)}

= 4σ4ρ2c

∫ ∫

(K(2)(u))2w2(x)dxdu · {1 + o(1)}

= 4σ4ρ2cK
(4)(0)

∫

w2(x)dx · {1 + o(1)}. (23)

For symmetry, E(T332) = E(T331) and, therefore, using (23), it follows that

E(T33) = 8σ4K(4)(0)ρ2c

∫

w2(x)dx · {1 + o(1)}. (24)
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So, from (16), (19), (22) and (24), it is obtained that

E(Var(I32|X1, . . . ,Xn)) = 2σ4K(4)(0)

∫

w2(x)

f2(x)
dx · {1 + o(1)}+Op(n

−1|H|−1)

+ 4σ4K(4)(0)ρc

∫

w2(x)

f(x)
dx · {1 + o(1)}+Op(n

−1|H|−1)

+ 8σ4K(4)(0)ρ2c

∫

w2(x)dx · {1 + o(1)}. (25)

With respect to the Var(E(I32|X1, . . . ,Xn)), the second term in equation (14), denoting by

φij =

∫

1

f2(x)
KH (Xi − x)KH (Xj − x)ρn(Xi −Xj)w(x)dx,

and using the expression of the E(I32|X1, . . . ,Xn), given in (12), it can be split as:

Var(E(I32|X1, . . . ,Xn)) = Var



|H|1/2σ2 1

n

∑

i 6=j

φij





= 4σ4n−2|H|
n−1
∑

i=1

n
∑

j=i+1

n−1
∑

k=1

n
∑

l=k+1

Cov(φij , φkl). (26)

Now, consider the value of Cov(φij , φkl) according to the following three exclusive cases. First,

when i = k and j = l, the total number of such terms is n(n− 1)/2. In this case, using Lemma 5, one

gets

Cov(φij , φij) ≤ E

(∫ ∫

1

f2(x)f2(t)
KH (Xi − x)KH (Xi − t)KH(Xj − x)KH (Xj − t)

· ρ2n(Xi −Xj)w(x)w(t)dxdt

)

=

∫ ∫

1

f2(x)f2(t)
|H|−2

(

f2(t)

∫ ∫

K
(

−p+H−1(x− t)
)

K
(

−q+H−1(x− t)
)

· K (p)K (q) ρ2n(H(p− q))dpdq+ o(1)

)

w(x)w(t)dxdt

= |H|−1

∫ ∫ ∫ ∫

1

f2(x)
K (−p+ u)K (−q+ u)K (p)K (q)w(x)w(x−Hu)

· ρ2n(H(p− q))dpdqdxdu · {1 + o(1)}

≤
K4

Mw2
M

f2
Mn|H|2

∫

{n|H|

∫

ρ2n(H(p− q))dp}dq · {1 + o(1)}.

Since

n|H|

∫

ρ2n(H(p− q))dp ≤ n

∫

|ρn(t)|dt ≤ C2,

then

Cov(φij , φij) ≤
K4

Mw2
M

f2
M

C2

n|H|2
. (27)
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Second, when i = k and j 6= l in (26). In this case, the total number of such terms can be bounded

by n3. Using Lemma 6, it follows that

Cov(φij , φil) = E(φij , φil)− E(φij)E(φil)

= E(φij , φil)− (E(φij))
2

≤ E(φij , φil)

= E

(∫ ∫

1

f2(x)f2(t)
KH (Xi − x)KH (Xi − t)KH(Xj − x)KH (Xl − t)

· ρn(Xi −Xj)ρn(Xi −Xl)w(x)w(t)dxdt

)

=

∫ ∫

1

f2(x)f2(t)
|H|−1

(

f2(x)f(t)

∫ ∫ ∫

K(p)K (q)K
(

−p+H−1(x− t)
)

K (r)

· ρn(H(p− q))ρn(x− t+H(p− r))dpdqdr · {1 + o(1)}

)

w(x)w(t)dxdt

=

∫ ∫ ∫ ∫ ∫

1

f(t)
K (p)K (−p+ u))K (q)K (r)w(t+Hu)w(t)

· ρn(H(p− r+ u))ρn(H(p− q))dpdqdrdudt · {1 + o(1)}

= n−2|H|−2

∫ ∫ ∫

1

f(t)
K (p)K (−p+ u)w2(t){n|H|

∫

K (r) ρn(H(p− r+ u))dr}

· {n|H|

∫

K (q) ρn(H(p− q))dq}dpdudt · {1 + o(1)}.

Since

lim
n→∞

n|H|

∫

K(r)ρn(H(p− r+ u))dr = K(p+ u)ρc,

lim
n→∞

n|H|

∫

K(q)ρn(H(p− q))dq = K(p)ρc,

and taking into account that the functions K, w are bounded, and f is bounded away from zero, it is

obtained that

Cov(φij , φil) ≤
C3

n2|H|2
. (28)

Finally, when i, j, k, l are all distinct in (26), as φij and φkl are independent,

Cov(φij , φkl) = 0, (29)

Then, considering (26), (27), (28) and (29), it follows that

Var(E(I32|X1, . . . ,Xn)) = Var



|H|1/2σ2 1

n

∑

i 6=j

φij





= 4σ4n−2|H|

(

n2 − n

2

C2

n|H|2
+ n3 C3

n2|H|2

)

= Op(n
−1|H|−1). (30)

Now, from (14), (25) and (30), the leading term of the variance of I32 is given by:

V = 2σ4K(4)(0)

[ ∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

. (31)
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Therefore, using the central limit theorem for degenerate reduced U-statistics under α−mixing

conditions, given by Kim et al. (2013), it is obtained that the term I32 converges, in distribution, to a

normal distribution with mean the leading term of (13) and variance given by (31).

On the other hand, in virtue of the Cauchy-Schwarz inequality, the cross terms in Tn1 resulting

from the products of I1(x), I2(x) and I3(x) are all of smaller order. Therefore, combining the results in

(3), (4) and (11), and the asymptotic normality of I32 (with bias the leading term of (13) and variance

(31)), one gets

V −1/2(Tn1 − b0H − b1H) →L N(0, 1) as n → ∞, (32)

where

b0H = |H|−1/2σ2K(2)(0)

[ ∫

w(x)

f(x)
dx+ ρc

∫

w(x)dx

]

,

b1H =

∫

(KH ∗ g(x))2w(x)dx,

and

V = 2σ4K(4)(0)

[ ∫

w2(x)

f2(x)
dx+ 2ρc

∫

w2(x)

f(x)
dx+ 4ρ2c

∫

w2(x)dx

]

.

The term Tn2 in Tn is of smaller order than Tn1 (specifically, Tn2 = Op(tr(H
2)Tn1)), and by the

Cauchy-Schwarz inequality, the cross term Tn12 is of smaller order as well. Therefore, from (2), it

follows that

Tn = Tn1 +Op(tr(H
2)) +Op(n

−2/(4+d)+η).

Taking into account (32), it follows that

V −1/2(Tn − b0H − b1H) →L N(0, 1) as n → ∞,

with b0H, b1H and V given above.

2 Simulation results

In this section, additional simulations complementing the study presented in Section 4 of the main

paper are presented. This section is organized as follows. First, the asymptotic distribution of the test

is illustrated with a particular example. The next subsections present an extension of the simulation

results in the main paper, considering the use of non-scalar bandwidth matrices, employing a different

regression function, assuming a random design, and including a nugget effect in dependence structure.

2.1 Asymptotic distribution of the test

Asymptotic distribution of test statistics are usually employed for test calibration in practice. However,

the convergence of Tn to its limit distribution, as it happens with other smooth-based test, is too slow.

This issue is pointed out in Section 3.2 of the main paper: the asymptotic distribution obtained in

Theorem 1 could not be sufficiently precise when the sample size is small or medium. This was also

noted in other nonparametric testing contexts (see, for example, Härdle and Mammen 1993). Moreover,
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the limit distribution of the test statistic depends on unknown quantities such as the design density and

the error variance that, in a practical situation, must be estimated from the data. For these reasons,

resampling methods are considered as an alternative to the asymptotic distribution. As shown in the

main paper (and also in the following sections of this document), the bootstrap approach designed to

be used in this context provides satisfactory results. Nevertheless, and for the sake of illustration, in

this section, a brief simulation experiment is presented to study the performance of the asymptotic

distribution of the test under the null hypothesis. Specifically, we consider the simple case of assuming

f and σ2 known, and the density estimator of V −1/2(Tn − b0H) and the standard normal density

function are compared.

A linear parametric regression family is chosen, mβ(X1, X2) = β0 + β1X1 + β2X2, being X =

(X1, X2), and the regression function considered is:

m(X1, X2) = 2 +X1 +X2. (33)

500 samples of sizes n = 400, 2500 and 10000 are generated from a regression model with explanatory

variables drawn from a bivariate uniform distribution in the unit square, regression function (33),

and random errors εi normally distributed with zero mean and with isotropic exponential covariance

function:

Cov(εi, εj) = σ2{exp(−λn‖Xi −Xj‖)}, (34)

with values of σ2 = 0.4 and λ = 0.0005. Note that with this selection λ, the values for the practical

range are 5, 0.8 and 0.2, for n = 400, 2500 and 10000, respectively. The parametric fit was computed

using the iterative least squares procedure described in Section 2.2 of the main paper, considering

a linear model. The nonparametric fit was obtained using the multivariate local linear estimator

with a multivariate Gaussian kernel and a scalar bandwidth matrix. With this kernel, the quantities

K(2)(0) and K(4)(0) in the asymptotic bias and variance of Tn can be easily calculated. Additionally,

considering (34), it is straightforward to prove that ρc = 1/λ. For simplicity, we also take w(x) = f(x),

∀x ∈ D ∈ R
d. For each sample and in every scenario, the statistic V −1/2(Tn − b0H) is computed.

Figure 1 shows density estimates of V −1/2(Tn− b0H) (blue lines), computed with a Gaussian kernel

and the rule-of-thumb bandwidth selector, and the standard normal densities (red lines). The plot in

the left panel corresponds to n = 2500 and the one in the right panel to n = 10000. When n = 400,

the asymptotic distribution of V −1/2(Tn − b0H) is very far from the standard normal distribution and

it is not shown here. Only when the sample size is very large, the sampling distribution of the test

statistic seems to approximate reasonably well the Gaussian limit distribution. It is expected that this

approximation will be better for larger sample sizes. That means that to obtain reliable results with

the asymptotic distribution of the test, it would be necessary to consider a huge sample size (ignoring f

and σ2, which should be estimated). In this situation, the application of the test will take an enormous

computing time. In such scenarios, the use of binning techniques or big data methods could be of

special interest to accelerate the running time when applying the test. These approaches are out of

the scope of the present paper, but can be an interesting issue of research in future.
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Figure 1: Density estimates of V −1/2(Tn−b0H) (blue lines) and normal standard densities (red lines), considering

n = 2500 (left panel) and n = 10000 (right panel).

2.2 Non-scalar bandwidths

This section contains additional simulations similar to those presented in the main paper, but taking

a different type of bandwidth matrices to compute the nonparametric estimation of the regression

function. While in the main paper, scalar matrix bandwidths (diagonal matrix with equal values in

the main diagonal) were considered, here, diagonal bandwidths with different elements are used. A

linear model mβ(X1, X2) = β0 + β1X1 + β2X2 is chosen, and for different values of c (specifically, 0, 3

and 5) the regression function

m(X1, X2) = 2 +X1 +X2 + cX3
1 (35)

is considered. For each value of c, 500 samples of sizes n = 225 and 400 are generated on a bidimensional

regular grid in the unit square, with regression function (35) and random errors εi normally distributed

with zero mean and isotropic exponential covariance function:

Cov(εi, εj) = σ2{exp(−‖Xi −Xj‖/ae)}, (36)

with σ = 0.4, 0.6, and 0.8. Different values of parameter ae are considered: ae = 0.1 (weak correlation),

ae = 0.2 (medium correlation) and ae = 0.4 (strong correlation). No nugget effect is considered in this

scenario.

Figure 2 shows the different exponential variogram models considered (brown lines for σ = 0.4, red

lines for σ = 0.6, and orange lines for σ = 0.8. For each value of σ, solid, dashed and dotted lines for

ae = 0.1, 0.2 and 0.4, respectively).

Figure 3 shows, for c = 0, in the left panel, the regression function function (35) and, in the right

panel, a simulated spatial process, considering σ = 0.6 and ae = 0.2 in (36).

The regression functions, using (35), for c = 3 (left panel) and for c = 5 (right panel) are shown in

Figure 4.
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Figure 2: Exponential variogram models for the simulation scenario trying different bandwidth matrices.
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Figure 3: Regression model (35) for c = 0 (left panel) and a realization of the spatial process (right panel). The

dependence structure of the errors is explained by an exponential covariogram with parameters σ = 0.4 and

ae = 0.2.

The bootstrap procedure described in Section 3.2 was applied, using B = 500 replicates. The weight

function was taken constant with value 1. The parametric fit used for constructing (1) was computed

using the iterative least squares procedure, considering a linear model, while the nonparametric fit was

obtained using the multivariate local linear estimator estimator with a multiplicative triweight kernel.

The bandwidth is taken as a diagonal matrix H = diag(h1, h2), being the values of h1 and h2 different.

Results are presented in Table 1, where the rejection proportions of the null hypothesis, for α = 0.05,

are displayed. Similarly to the results shown in the main paper, it can be observed that the test has

a reasonable behavior. In particular, if c = 0 (under the null hypothesis) the rejection proportions are

similar to the theoretical level, for the different values of h1 and h2 considered. For the alternative

hypothesis (c = 3 and c = 5), the power of the test becomes larger as the value of c increases. On

the other hand, the power of the test decreases with the point variance σ2. In all scenarios, it can

be seen that the rejection proportions depend on the bandwidth H, especially, under the alternative
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Figure 4: Regression model (35) for c = 3 (left panel) and c = 5 (right panel).

hypothesis.

For example, for a 15×15 grid, with σ = 0.4 and ae = 0.2, it follows that, under the null hypothesis,

the rejection proportions obtained are not significantly different from the theoretical level, considering

both bandwidth matrices H = diag(1, 0.6) and H = diag(0.6, 1). However, the power of the test shows

a different behavior. It is significantly larger when H = diag(0.6, 1) is considered. Then, under the

alternative hypothesis, the rejection proportion depends on the values of h1 and h2. Note that, a

comparison between Table 1 of the main paper and Table 1 of this supplementary material reveals that

there are not relevant differences in terms of rejection proportions if H = diag(h, h) or H = diag(h1, h2)

(with h1 6= h2) is considered, for this particular scenario.

2.3 Alternative regression function

The second framework considered is similar to the previous regression scenario, but with mean function

m(X1, X2) = 3 + 2X1 +X2 + cx31. (37)

The errors of the model are also normally distributed with an exponential dependence structure, and the

same parameters for c, σ, ae, B, and n as in the previous framework are considered in this case. Table 2

shows the rejection proportions of the null hypothesis, for α = 0.05, considering that the bandwidth is

taken as a diagonal matrix H = diag(h, h), and different values of h are chosen, h = 0.6, 0.7, 0.8, 0.9, 1.

Table 3 shows the results when the bandwidth is taken as a diagonal matrix H = diag(h1, h2), being

the values of h1 and h2 different. It can be observed that considering different regression parameters

(β0 = 3, β1 = 2 for the first coordinate and β2 = 1 for the second one), the rejection proportions

(under the null and the alternative hypothesis) are really similar to those obtained in the first setting

(where β0 = 2 and β1 = β2 = 1) and analogous conclusions can be deduced.
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H

σ ae c n

(

0.8 0

0 0.6

) (

1 0

0 0.6

) (

0.6 0

0 0.8

) (

1 0

0 0.8

) (

0.6 0

0 1

) (

0.8 0

0 1

)

0.4 0.1 0 225 0.074 0.054 0.066 0.038 0.052 0.036

400 0.034 0.028 0.032 0.022 0.028 0.024

0.4 0.1 3 225 0.394 0.356 0.576 0.416 0.592 0.478

400 0.298 0.236 0.502 0.322 0.530 0.404

0.4 0.1 5 225 0.998 0.994 1.000 0.998 1.000 1.000

400 0.998 0.994 1.000 0.998 1.000 1.000

0.4 0.2 0 225 0.062 0.050 0.060 0.036 0.050 0.036

400 0.054 0.038 0.054 0.024 0.038 0.022

0.4 0.2 3 225 0.780 0.726 0.870 0.786 0.876 0.822

400 0.796 0.726 0.912 0.772 0.914 0.846

0.4 0.2 5 225 1.000 1.000 1.000 1.000 1.000 1.000

400 0.998 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.126 0.106 0.132 0.070 0.092 0.080

400 0.200 0.164 0.126 0.098 0.076 0.058

0.4 0.4 3 225 0.978 0.970 0.988 0.978 0.990 0.984

400 0.980 0.974 0.992 0.984 0.992 0.988

0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000

0.6 0.1 0 225 0.074 0.062 0.070 0.040 0.056 0.036

400 0.034 0.028 0.032 0.022 0.028 0.022

0.6 0.1 3 225 0.060 0.050 0.154 0.062 0.166 0.086

400 0.026 0.016 0.106 0.032 0.106 0.044

0.6 0.1 5 225 0.552 0.508 0.740 0.562 0.756 0.656

400 0.476 0.434 0.700 0.494 0.708 0.570

0.6 0.2 0 225 0.062 0.050 0.062 0.036 0.050 0.036

400 0.054 0.038 0.054 0.024 0.036 0.022

0.6 0.2 3 225 0.304 0.230 0.498 0.286 0.506 0.382

400 0.322 0.268 0.502 0.314 0.504 0.380

0.6 0.2 5 225 0.888 0.860 0.944 0.882 0.942 0.924

400 0.888 0.858 0.938 0.880 0.940 0.908

0.6 0.4 0 225 0.204 0.172 0.128 0.096 0.076 0.058

400 0.198 0.164 0.126 0.100 0.076 0.058

0.6 0.4 3 225 0.734 0.658 0.844 0.700 0.838 0.752

400 0.718 0.656 0.830 0.698 0.822 0.752

0.6 0.4 5 225 0.996 0.996 0.998 0.996 0.998 0.998

400 0.994 0.994 0.996 0.994 0.996 0.994

0.8 0.1 0 225 0.072 0.060 0.068 0.038 0.052 0.036

400 0.034 0.028 0.032 0.022 0.028 0.022

0.8 0.1 3 225 0.034 0.024 0.086 0.026 0.096 0.042

400 0.008 0.006 0.054 0.004 0.052 0.010

0.8 0.1 5 225 0.154 0.132 0.328 0.180 0.360 0.230

400 0.086 0.070 0.240 0.096 0.248 0.162

0.8 0.2 0 225 0.064 0.050 0.062 0.036 0.050 0.036

400 0.052 0.038 0.050 0.024 0.036 0.022

0.8 0.2 3 225 0.144 0.112 0.280 0.122 0.268 0.166

400 0.158 0.118 0.276 0.134 0.270 0.168

0.8 0.2 5 225 0.534 0.468 0.710 0.524 0.710 0.608

400 0.556 0.472 0.722 0.546 0.722 0.628

0.8 0.4 0 225 0.126 0.110 0.134 0.068 0.094 0.082

400 0.196 0.164 0.126 0.100 0.074 0.058

0.8 0.4 3 225 0.462 0.390 0.610 0.414 0.596 0.496

400 0.472 0.414 0.598 0.426 0.592 0.480

0.8 0.4 5 225 0.902 0.880 0.956 0.898 0.956 0.922

400 0.914 0.868 0.960 0.906 0.958 0.930

Table 1: Rejection proportions of the null hypothesis for α = 0.05. Non-scalar bandwidths.
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h

σ ae c n 0.6 0.7 0.8 0.9 1

0.4 0.1 0 225 0.060 0.042 0.042 0.030 0.024

400 0.044 0.040 0.030 0.022 0.016

0.4 0.1 3 225 0.454 0.408 0.394 0.392 0.398

400 0.420 0.368 0.324 0.316 0.324

0.4 0.1 5 225 1.000 0.998 0.998 0.998 0.998

400 1.000 0.998 0.998 0.996 0.994

0.4 0.2 0 225 0.086 0.058 0.048 0.032 0.024

400 0.104 0.072 0.034 0.024 0.020

0.4 0.2 3 225 0.852 0.838 0.809 0.794 0.790

400 0.886 0.862 0.834 0.822 0.816

0.4 0.2 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.164 0.126 0.084 0.074 0.068

400 0.172 0.130 0.096 0.080 0.064

0.4 0.4 3 225 0.978 0.976 0.974 0.970 0.970

400 0.994 0.994 0.992 0.992 0.988

0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.6 0.1 0 225 0.060 0.042 0.042 0.034 0.024

400 0.044 0.038 0.030 0.022 0.016

0.6 0.1 3 225 0.096 0.084 0.062 0.056 0.066

400 0.072 0.046 0.036 0.030 0.030

0.6 0.1 5 225 0.640 0.606 0.574 0.558 0.568

400 0.604 0.554 0.532 0.508 0.522

0.6 0.2 0 225 0.086 0.060 0.048 0.032 0.026

400 0.104 0.066 0.032 0.022 0.016

0.6 0.2 3 225 0.418 0.362 0.314 0.282 0.272

400 0.460 0.400 0.346 0.306 0.300

0.6 0.2 5 225 0.938 0.920 0.916 0.894 0.890

400 0.944 0.942 0.926 0.916 0.916

0.6 0.4 0 225 0.158 0.126 0.084 0.074 0.068

400 0.168 0.124 0.090 0.076 0.058

0.6 0.4 3 225 0.766 0.742 0.716 0.694 0.684

400 0.810 0.776 0.740 0.716 0.708

0.6 0.4 5 225 1.000 0.998 0.998 0.998 0.998

400 1.000 1.000 0.996 0.996 0.996

0.8 0.1 0 225 0.060 0.040 0.042 0.036 0.026

400 0.044 0.038 0.030 0.022 0.016

0.8 0.1 3 225 0.062 0.028 0.016 0.012 0.018

400 0.040 0.024 0.014 0.010 0.010

0.8 0.1 5 225 0.218 0.196 0.180 0.172 0.166

400 0.164 0.128 0.102 0.110 0.124

0.8 0.2 0 225 0.086 0.060 0.048 0.034 0.026

400 0.104 0.064 0.030 0.022 0.016

0.8 0.2 3 225 0.234 0.180 0.1386 0.118 0.116

400 0.278 0.222 0.176 0.140 0.136

0.8 0.2 5 225 0.654 0.612 0.578 0.560 0.550

400 0.698 0.644 0.586 0.568 0.560

0.8 0.4 0 225 0.158 0.124 0.084 0.074 0.068

400 0.168 0.120 0.092 0.078 0.060

0.8 0.4 3 225 0.556 0.496 0.458 0.434 0.426

400 0.572 0.542 0.494 0.474 0.460

0.8 0.4 5 225 0.928 0.920 0.906 0.888 0.874

400 0.952 0.946 0.928 0.928 0.918

Table 2: Rejection proportions of the null hypothesis for α = 0.05. Regression function (37).
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H

σ ae c n

(

0.8 0

0 0.6

) (

1 0

0 0.6

) (

0.6 0

0 0.8

) (

1 0

0 0.8

) (

0.6 0

0 1

) (

0.8 0

0 1

)

0.4 0.1 0 225 0.050 0.038 0.048 0.036 0.036 0.034

400 0.038 0.032 0.034 0.026 0.030 0.024

0.4 0.1 3 225 0.328 0.272 0.520 0.354 0.538 0.422

400 0.238 0.196 0.462 0.278 0.484 0.364

0.4 0.1 5 225 0.996 0.988 1.000 0.998 1.000 0.998

400 0.992 0.986 1.000 0.990 1.000 0.998

0.4 0.2 0 225 0.062 0.042 0.064 0.032 0.054 0.038

400 0.072 0.048 0.064 0.030 0.030 0.020

0.4 0.2 3 225 0.770 0.706 0.874 0.774 0.876 0.824

400 0.798 0.728 0.904 0.796 0.912 0.848

0.4 0.2 5 225 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.118 0.104 0.110 0.080 0.084 0.072

400 0.136 0.114 0.136 0.084 0.110 0.072

0.4 0.4 3 225 0.970 0.952 0.982 0.966 0.984 0.972

400 0.986 0.974 0.994 0.984 0.996 0.992

0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000 1.000

0.6 0.1 0 225 0.048 0.042 0.046 0.036 0.042 0.034

400 0.038 0.032 0.034 0.026 0.030 0.022

0.6 0.1 3 225 0.052 0.044 0.110 0.054 0.124 0.072

400 0.026 0.014 0.096 0.026 0.108 0.040

0.6 0.1 5 225 0.496 0.442 0.684 0.530 0.708 0.612

400 0.452 0.378 0.680 0.470 0.700 0.562

0.6 0.2 0 225 0.062 0.042 0.066 0.032 0.054 0.038

400 0.070 0.046 0.064 0.028 0.030 0.016

0.6 0.2 3 225 0.278 0.214 0.456 0.258 0.466 0.332

400 0.308 0.240 0.486 0.278 0.486 0.356

0.6 0.2 5 225 0.878 0.846 0.946 0.892 0.948 0.916

400 0.900 0.856 0.954 0.900 0.954 0.934

0.6 0.4 0 225 0.116 0.102 0.108 0.080 0.084 0.072

400 0.134 0.110 0.132 0.078 0.106 0.070

0.6 0.4 3 225 0.664 0.606 0.806 0.654 0.798 0.732

400 0.706 0.646 0.828 0.672 0.826 0.750

0.6 0.4 5 225 0.994 0.988 0.998 0.994 0.998 0.998

400 0.996 0.996 1.000 0.996 1.000 1.000

0.8 0.1 0 225 0.050 0.042 0.048 0.036 0.042 0.036

400 0.038 0.032 0.034 0.026 0.030 0.022

0.8 0.1 3 225 0.010 0.010 0.078 0.012 0.080 0.018

400 0.008 0.006 0.050 0.008 0.054 0.018

0.8 0.1 5 225 0.134 0.118 0.262 0.158 0.274 0.200

400 0.066 0.054 0.222 0.086 0.232 0.138

0.8 0.2 0 225 0.062 0.040 0.064 0.032 0.054 0.040

400 0.068 0.042 0.064 0.028 0.030 0.016

0.8 0.2 3 225 0.132 0.096 0.262 0.108 0.252 0.148

400 0.168 0.110 0.302 0.124 0.282 0.182

0.8 0.2 5 225 0.520 0.456 0.684 0.518 0.684 0.610

400 0.546 0.450 0.720 0.518 0.728 0.612

0.8 0.4 0 225 0.114 0.102 0.110 0.080 0.084 0.074

400 0.134 0.112 0.130 0.080 0.106 0.072

0.8 0.4 3 225 0.432 0.354 0.596 0.406 0.570 0.464

400 0.492 0.418 0.590 0.440 0.588 0.516

0.8 0.4 5 225 0.884 0.834 0.934 0.870 0.932 0.908

400 0.918 0.872 0.958 0.904 0.956 0.930

Table 3: Rejection proportions of the null hypothesis for α = 0.05. Regression function (37).
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2.4 Random design

The methodology is now illustrated with covariate variables generated from a random design. As in the

main paper, the regression function m(X1, X2) = 2+X1+X2+cX3
1 is considered. In this case, for each

value of c (being c equal to 0 or 5), 500 samples of sizes n = 225 and 400 are uniformly sampled in the

unit square. The random errors εi are normally distributed with zero mean and isotropic exponential

covariance function (36), with σ = 0.4, 0.8, and ae = 0.1, 0.4. No nugget effect is considered. Table 4

shows the rejection proportions of the null hypothesis, for α = 0.05, considering that the bandwidth is

taken as a diagonal matrix H = diag(h, h), and different values of h are chosen, h = 0.6, 0.7, 0.8, 0.9, 1.

Similar conclusions as in the case of considering a fixed design can be deduced.

h

σ ae c n 0.6 0.7 0.8 0.9 1

0.4 0.1 0 225 0.066 0.056 0.036 0.028 0.022

400 0.080 0.068 0.058 0.048 0.042

0.4 0.1 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.144 0.100 0.082 0.060 0.052

400 0.146 0.118 0.086 0.068 0.056

0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.8 0.1 0 225 0.072 0.056 0.036 0.030 0.024

400 0.080 0.068 0.058 0.048 0.044

0.8 0.1 5 225 0.916 0.890 0.870 0.860 0.858

400 0.954 0.946 0.944 0.944 0.948

0.8 0.4 0 225 0.142 0.112 0.100 0.090 0.076

400 0.160 0.122 0.086 0.062 0.054

0.8 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

Table 4: Rejection proportions of the null hypothesis for α = 0.05. Random design.

2.5 Nugget effect

Finally, a nugget effect is included in the dependence model. Recall that in the previous frameworks

the nugget effect was zero. In this case, the model considered is similar to the one of the main paper:

the regression function is the same, m(X1, X2) = 2 + X1 + X2 + cX3
1 (the data are generated on a

bidimensional regular grid in the unit square, and c is considered equal to 0 or 5). However, a nugget

effect is included in the dependence structure. Then, the random errors εi are normally distributed

with zero mean and isotropic exponential covariance function: Cov(εi, εj) = ce{exp(−‖Xi−Xj‖/ae)},

if ‖Xi −Xj‖ 6= 0, where ce = σ2 − c0 is the partial sill, with σ = 0.4 and nugget effect c0 being 20%

and 50% of the total variance σ2. Two values for the practical range are considered, ae = 0.1 and

0.4. Table 5 shows the rejection proportions of the null hypothesis, for α = 0.05, considering that

the bandwidth is taken as a diagonal matrix H = diag(h, h), and different values of h are chosen,

h = 0.6, 0.7, 0.8, 0.9, 1. It can be observed that the performance of the test is satisfactory, with similar

results to those in the previous scenarios. As the nugget is larger, the bandwidth value should be

smaller.
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h

c0 σ ae c n 0.6 0.7 0.8 0.9 1

0.4 0.1 0 225 0.078 0.060 0.042 0.030 0.026

400 0.052 0.038 0.028 0.016 0.010

20% 0.4 0.1 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.4 0.1 0 225 0.074 0.056 0.030 0.020 0.020

400 0.028 0.016 0.014 0.012 0.012

50% 0.4 0.1 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.052 0.048 0.036 0.036 0.030

400 0.044 0.040 0.032 0.026 0.020

20% 0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

0.4 0.4 0 225 0.062 0.050 0.044 0.038 0.026

400 0.024 0.024 0.020 0.020 0.014

50% 0.4 0.4 5 225 1.000 1.000 1.000 1.000 1.000

400 1.000 1.000 1.000 1.000 1.000

Table 5: Rejection proportions of the null hypothesis for α = 0.05. Nugget effect.
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