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Abstract 16 

Adequate gestational progression depends to a great extent on placental development, which can 17 

modify maternal and neonatal outcomes. Any environmental toxicant, including metals, with the 18 

capacity to affect the placenta can alter the development of the pregnancy and its outcome. The 19 

objective of this study was to correlate the placenta levels of 14 essential and non-essential 20 

elements with neonatal weight. We examined relationships between placental concentrations of 21 

arsenic, cadmium, cobalt, copper, mercury, lithium, manganese, molybdenum, nickel, lead, 22 

rubidium, selenium, strontium, and zinc from 79 low obstetric risk pregnant women in Ourense 23 

(Northwestern Spain, 42°20′12.1″N 7°51.844′O) with neonatal weight. We tested associations 24 

between placental metal concentrations and neonatal weight by conducting multivariable linear 25 

regressions using generalized linear models (GLM) and generalized additive models (GAM). 26 

While placental Co (p = 0.03) and Sr (p = 0.048) concentrations were associated with higher 27 

neonatal weight, concentrations of Li (p = 0.027), Mo (p = 0.049), and Se (p = 0.02) in the placenta 28 

were associated with lower newborn weight. Our findings suggest that the concentration of some 29 

metals in the placenta may affect fetal growth. 30 
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Introduction 33 

The placenta has a number of essential functions for maintaining pregnancy. It allows the 34 

transfer of gases and nutrients as well as acting as a selective barrier to adverse 35 

environmental factors. Similarly, it presents a great plasticity, adapting structurally and 36 

functionally to various noxae that may alter fetal normal development. If placental 37 

function is altered or its capacity for adaptation is exceeded, placental development will 38 

be compromised. It may cause a deficiency of protective elements or an excess of harmful 39 

elements in the fetus. Therefore, an oxidative stress response, epigenetic changes, or 40 

abnormal apoptosis affecting cell differentiation and development will be occurred. As a 41 

result, abnormalities in fetal development and later life can be induced (Burton et al. 2016; 42 

Al-Enazy et al. 2017; Iyengar and Rapp 2001; Iyengar and Rapp 2001). 43 

Exposure to harmful toxic elements in the preconception period or in the first trimester 44 

of gestation could produce a structural alteration when organogenesis is affected. 45 

Exposure in more advanced stages of pregnancy will affect fetal growth and maturation 46 

(Stasenko et al. 2010). 47 

It has been seen that fetuses with growth disturbances compared to fetuses that develop 48 

properly have higher rates of morbidity and mortality and a higher incidence of chronic 49 

diseases in adulthood (Barker 2004; Crump et al. 2011). To this end, the appearance of 50 

different chronic disorders has been related to events that occurred during the intrauterine 51 

phase. Fetal exposure to environmental heavy metals has been mainly linked to 52 

intrauterine growth restriction and neonatal death. 53 

There is controversy over which chemical compounds should be categorized as toxic, 54 

beneficial, or essential (Maret 2016). Metals such as Na, K, Mg, Ca, Fe, Mn, Co, Cu, Zn, 55 

and Mo are essential for life in adequate amounts, while others, such as V, Ni, and Sn, 56 

are conjectured as essential for humans, though with less evidence. Recent studies have 57 

excluded Cr as essential in our species (Vincent 2017; Di Bona et al. 2011). Non-essential 58 

elements are a set of metals and metalloids widespread in the environment that are 59 

obtained from natural and anthropogenic sources. Our body also accumulates non-60 

essential beneficial metals such as Li, Rb, Sr, Pb, Au, and some others (Zoroddu el al. 61 

2019). Alteration in these compound levels could adversely impact human health. In 62 

addition, some of these non-essential metals can be toxic regardless of their concentration 63 

and are included as environmental pollutants (Cortés-Eslava et al. 2018). They 64 

accumulate in the tissues and cross the placenta giving rise to morphological and 65 

functional alterations (Omeljaniuk et al. 2018; Taylor et al. 2018).  66 
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In the last years, several studies have focused on the determination of essential and non-67 

essential elements in different biological matrices such as maternal and cord blood 68 

(Murcia et al. 2016; Dack et al. 2021), maternal hair and urine (Wang et al. 2019; Osorio-69 

Yáñez et al. 2018; Zhao et al. 2020; Lozano et al. 2022), or placenta (Freire et al. 2019; 70 

Gómez-Roig et al 2021; Punshon et al. 2021; Al-Saleh et al. 2014). They have 71 

investigated the impact of metal exposure in human health although with conflicting data 72 

(Murcia et al. 2016; Dack et al. 2021; Wang et al. 2019; Osorio-Yáñez et al. 2018; Zhao 73 

et al. 2020; Lozano et al. 2022; Lozano et al. 2019; Gómez-Roig et al. 2021; Punshon et 74 

al. 2019; Al-Saleh et al. 2014). Moreover, the effect that these metals produce on fetal 75 

growth has not yet been clarified. 76 

Based on these theoretical approaches and taking into account that several authors expose 77 

that ensuring optimal placentation offers a new approach for the prevention of different 78 

chronic pathologies (Burton et al. 2016), the aim of the present work is to determine how 79 

the concentrations of 14 metals in placental tissues can be associated with neonatal 80 

weight. 81 

Methods 82 

Study design 83 

A study cohort was established in Ourense by the staff of the University of Vigo and 84 

University Hospital of Ourense (Northwestern Spain; 42°20′12.1″ N 7°51.844′ O). A total 85 

of 79 low obstetric risk pregnant women were randomly recruited between October and 86 

December 2017. The mothers had signed informed consent and answered a questionnaire 87 

related to their diet, lifestyle, and personal habits. 88 

The study was approved by Pontevedra-Vigo-Ourense Research Ethics Committee with 89 

registry code 2014/410. The Declaration of Helsinki on biomedical research was applied 90 

at all times. After being contacted during their antenatal visit, pregnant women received 91 

a thorough explanation of the study and, before being included in it, were invited to sign 92 

an informed consent. 93 

Exclusion criteria are as follows: pregnant women under 18 years of age, twin gestations, 94 

pregnant women diagnosed with chronic diseases prior to gestation, premature labor 95 

(amenorrhea < 37 weeks), women with exclusive follow-up in other centers, women with 96 

follow-up in our center and birth outside the Ourense healthcare area, and patients who 97 

did not agree to participate in the study after reading the informed consent form. 98 

Placenta samples were collected at the time of delivery, and once in the laboratory, 99 

placenta samples, including maternal and fetal sides and central and peripheral parts 100 
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(umbilical cord was kept separate), were placed in a mincer for homogenization. Once 101 

homogenized, aliquots were placed into 250-mL amber glass vials and frozen at − 20 °C 102 

until analysis. 103 

Determination of targeted metals and trace elements 104 

The set of essential and non-essential trace elements are listed in Table S1 in the 105 

supplementary material. Placenta samples were processed following analytical 106 

procedures based on an optimized one by our research team (Fernández-Cruz 2019) (Fig 107 

Suppl 1). Briefly, about 0.300 g of dried sample was weighed directly in the microwave 108 

oven digestion vessels, and 3.0 mL of high-purity HNO3 (≥ 69% w/w, TraceSELECT®, 109 

Fluka, France) and 1.0 mL of H2O2 (30–32% w/w, Primar™, for Trace Metal Analysis, 110 

Fisher Chemical, Loughborough, UK) were added. Digestion was carried out in a MLS-111 

1200 Mega microwave oven (Milestone, Sorisole, Italy) equipped with an HPR-1000/10S 112 

rotor, using the following power (W)/time (min) program: 250/1, 0/2, 250/5, 400/5, and 113 

650/5. After cooling, the digests were made up to 10 mL with ultrapure water (> 18.2 114 

MΩ.cm at 25 °C), obtained with an Arium® pro system (Sartorius, Göttingen, Germany), 115 

in decontaminated plastic volumetric flasks and stored in closed propylene tubes at 4.0 116 

°C until analysis. Sample blanks were prepared in the same way. All samples were 117 

prepared in triplicate. The determination of selected trace elements was performed by 118 

inductively coupled plasma-mass spectrometry (ICP-MS) using an iCAP™ Q (Thermo 119 

Fisher Scientific, Bremen, Germany) instrument equipped with a MEINHARD™ TQ+ 120 

Quartz Nebulizer (Golden, CO, USA), a Peltier-cooled baffled cyclonic spray chamber, 121 

a standard quartz torch, and a two-cone (sample and skimmer Ni cones) interface design. 122 

High-purity (99.9997%) argon (Gasin II, Leça da Palmeira, Portugal) was used as 123 

nebulizer and plasma gas. The following elemental isotopes (m/z ratios) were monitored 124 

for analytical determinations: 7Li, 55Mn, 59Co, 65Cu, 66Zn, 75As, 82Se, 85Rb, 88Sr, 98Mo, 125 

111Cd, 137Ba, 202Hg, 205Tl, and 208Pb. The elemental isotopes 45Sc, 89Y, 115In, and 159 Tb 126 

were monitored as internal standard (Fernández-Cruz 2019). 127 

Analytical quality control 128 

Since human placenta is not available as certified reference material (CRM) for trace 129 

elements determination, fish protein (DORM-3), dogfish liver (DOLT-4), and fish muscle 130 

(ERM-BB422) were used for analytical quality control purposes. Procedural (sample) 131 

blanks were used to assess potential contamination. The recoveries obtained in the 132 

analysis of the CRMs are presented in Table S2 (supplementary material).  133 
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Calibration curves were obtained with eleven standard solutions with concentrations 134 

ranging from 0.010 to 100 µg/L (0.010 to 5.0 µg/L for Hg). The calibration standard 135 

solutions were prepared by adequate dilution of a 10 mg/L multi-element commercial 136 

standard solution (PlasmaCAL SCP-33-MS, SCP Science, Baie-d’Urfé, Quebec, Canada) 137 

and a 1000 mg/L standard solution of Hg (TraceCERT®, Sigma-Aldrich, St. Louis, MO, 138 

USA) in 2% HNO3, 0.5% HCl, and 400 ppb of Au. Ten sample blanks were analyzed to 139 

calculate the limit of detection (LOD; calculated as the concentration corresponding to 140 

three times the standard deviation of these sample blanks) and the limit of quantification 141 

(LOQ; corresponding to ten times the standard deviation) of the analytical procedure. 142 

Results are shown in the Table S3, expressed as the correspondent content (µg/g) in the 143 

placenta samples. 144 

Statistical analyses 145 

A descriptive analysis of all the variables included in the study was performed. 146 

Quantitative variables were expressed as mean and standard deviation. Qualitative 147 

variables were reported with absolute and relative frequency (percentage). For statistical 148 

calculations, results below the LOD were imputed as the LOD divided by the square root 149 

of 2, a commonly used procedure for data imputation. 150 

Multivariate linear regressions were used using generalized linear models (GLM) that 151 

adapt to the variables with arbitrary distributions, to check the effect of the metals studied 152 

on the weight of the newborns (NB). For the analysis, the linearity relationship between 153 

the predictor variable (trace elements) and the weight mean was previously verified. 154 

For cases in which the linearity assumption is not met, generalized additive models 155 

(GAM) were implemented, using smoothing splines, because, unlike GLMs, in GAM 156 

models, it is not necessary to assume a parametric relationship between the variables. 157 

GAMs have the potential to increase statistical (Hastie and Tibshirani 1995) power and 158 

allow better elucidation of the more nuanced and nonlinear associations between 159 

placental metal concentration and birth weight. In these, the weight of the neonates is 160 

estimated assuming that the effect of trace elements is unknown, thus obtaining a flexible 161 

estimate. 162 

Models were adjusted for maternal age at the beginning of pregnancy (continuous), parity 163 

(ordinal), BMI at the beginning of pregnancy (continuous), amenorrhea at the time of 164 

delivery, and maternal exposure to smoking (ordinal). 165 
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For the statistical calculations, the IBM SPSS Statistics software for Windows, Version 167 

22.0 was used, Armonk, NY: IBM Corp and software R version 4.0.4 (2021–02-15). The 168 

significance level was set at p < 0.050. 169 

Results 170 

Characterization of the study participants 171 

The concentration of metals was analyzed in a total of 79 placentas; those corresponding 172 

to gestations with premature deliveries (amenorrhea less than 37 weeks) were discarded 173 

in order to homogenize and avoid a confounding factor in relation to the weight of the 174 

newborn. 175 

The clinical characteristics of the cohort are summarized in Table 1. The study enrolled 176 

healthy Caucasian women; all pregnant women with medical pathology prior to 177 

pregnancy, such as high blood pressure, diabetes mellitus, and rheumatoid diseases, were 178 

discarded. Maternal age ranged from 19 to 42 years (mean: 32.87 ± 4.98), with a body 179 

mass index (BMI) between 17.6 and 38.95 kg/m2 at the onset of gestation with a mean of 180 

24.7 ± 4.53 kg/m2 and 36.71% (n = 29) reported to be steady smokers. Amenorrhea at 181 

delivery averaged 39.72 ± 1.58 weeks (38.38–41.61). Birth weight ranged from 1700 to 182 

4340 g (media 3051.7 ± 599 g). 183 

Trace element concentrations 184 

Mean, standard deviation, and maximum and minimum levels (µg/g) of the determined 185 

trace elements in placenta samples (n = 79) are summarized in Table 2. 186 

Most of the trace elements were detected in the biological samples with the following 187 

decreasing order of content: Zn (50.25 ± 8.470) > Cu (4.66 ± 0.890) > Se 188 

(0.969 ± 0.109) > Mn (0.3831 ± 0.1148) > Mo (0.0259 ± 0.0244) > Co (0.0205 ± 0.0077) 189 

for essential trace elements and Rb (14.85 ± 3.380) > Sr (0.9501 ± 0.1230) > Hg 190 

(0.0355 ± 0.0240) > Cd (0.0276 ± 0.0152) > Pb (0.036 ± 0.035) > Li (0.0189 ± 0.0240) for 191 

non-essential trace elements. 192 

Using GLM or GAM models, no significant association was established between the 193 

weight of the newborn and the concentrations in the placenta of the following elements: 194 

Cd (p = 0.604; Fig S2), Cu (p = 0.914, Fig S3), Hg (p = 0.500, Fig S4), Mn (p = 0.530, Fig 195 

S5), Pb (p = 0.505; Fig S6), Rb (p = 0.746, Fig S7), and Zn (p = 0.165, Fig S8). 196 

Nevertheless, linear models using GAM showed an increase in mercury levels in placenta 197 

determined lower birth weight, but did not reach statistical significance. 198 
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An association between increased concentrations of metals in the placenta and lower 200 

newborn weight with statistical significance was demonstrated in the following elements: 201 

Li (p = 0.027) (Fig. 1); Mo (p = 0.049) (Fig. 2); and Se (p = 0.020) (Fig. 3). 202 

We found a positive relationship between placental concentrations and neonatal weight 203 

(i.e., higher concentration, higher birth weight) in the following elements: Co (p = 0.030) 204 

(Fig. 4) and Sr (p = 0.048) (Fig. 5). 205 

The result of the study of placental concentrations in relation to newborn weight can be 206 

observed in Table 3. 207 

Discussion 208 

The levels found were generally in close agreement with those reported in previous 209 

studies (Freire et al; 2019; Gómez-Roig et al. 2021; Punshon et al. 2019; Al-Saleh et al. 210 

2014). As commented before, some authors have evaluated the concentration of metals 211 

in placenta samples. Most of them have detected limited trace elements, and just a few 212 

small studies have been focused in its effects on perinatal outcomes. Table 4 summarizes 213 

the published manuscripts about the determination of essential and non-essential trace 214 

elements detected in placenta samples with the related health effects (Freire et al; 2019; 215 

Gómez-Roig et al. 2021; Punshon et al. 2019; Al-Saleh et al. 2014; Jin et al. 2013; 216 

Kozikowska et al. 2013; Laine et al. 2015; Roverso et al. 2015; Xu et al. 2015; Bedir 217 

Findik et al. 2016; Ricketts et al. 2017; Freire et al. 2018; Kosik-Bogacka et al. 2018; Pi 218 

et al. 2018; Omeljaniuk et al. 2018; Wang et al. 2018; Irwinda et al. 2019; Mikelson et al. 219 

2019; Yin et al. 2020; McKeating et al. 2021; Lee et al. 2021). 220 

In our study, placenta samples from women of a geographical area of low environmental 221 

pollution were analyzed and related with birth weight. Therefore, the birth weight 222 

estimation was the main objective of using GAM models, assuming that the effect of 223 

metals on placenta is unknown. A flexible birth weight estimate was obtained. Other 224 

authors used these statistical study models to demonstrate the association between 225 

placenta metal concentrations and birth weight (Punshon et al. 2019) and between 226 

placenta metal concentrations and placental weight and efficiency. 227 

Higher placental metal levels associated with higher birth weight (Co and Sr) 228 

To the best of our knowledge, few studies linked placental Co and Sr levels with birth 229 

weight. Mikelson et al. [40] obtained similar results showing that 1.0% increase in 230 

placental Co concentration determined an increase of 0.84 g at birth (p = 0.0060). 231 

Recently, Gómez-Roig et al. (2021) also described similar placenta Co concentrations in 232 

a cohort study from Barcelona Center (Spain). They found no relationship between 233 

https://link.springer.com/article/10.1007/s11356-023-26560-x#Fig1
https://link.springer.com/article/10.1007/s11356-023-26560-x#Fig2
https://link.springer.com/article/10.1007/s11356-023-26560-x#Fig3
https://link.springer.com/article/10.1007/s11356-023-26560-x#Fig4
https://link.springer.com/article/10.1007/s11356-023-26560-x#Fig5
https://link.springer.com/article/10.1007/s11356-023-26560-x#Tab3
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR17
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR21
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR63
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR3
https://link.springer.com/article/10.1007/s11356-023-26560-x#Tab4
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR17
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR21
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR63
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR3
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR32
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR37
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR39
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR67
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR82
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR6
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR65
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR18
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR35
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR61
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR57
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR77
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR28
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR52
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR83
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR50
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR40
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR63
https://link.springer.com/article/10.1007/s11356-023-26560-x#ref-CR21


placental concentration and small fetuses (SGA) as compared with normally grown 234 

fetuses (AGA). 235 

At trace levels, Co is ubiquitous in the environment. Drinking water and diet (cereals, 236 

dairy products, fish, leafy greens, or meat) are the main source of Co. Moreover, Co is a 237 

relatively rare metal in the Earth’s crust although it is an essential element in several 238 

species, including humans, since it forms the nucleus of vitamin B12 (cobalamin) (Liang 239 

et al. 2018). Co is also required for the production of red blood cell, in the formation of 240 

DNA, the synthesis of fatty acids, and in energy metabolism (O'Leary and Samman 2010). 241 

In addition, Co is key in erythropoiesis since it detects oxygen deficit in cells by 242 

stimulating the production of erythropoietin (Saxena et al. 2012). 243 

Co appears to have a transplacental transfer. A cross-sectional study involving 62 pairs 244 

of women and their newborns found that Co concentrations in maternal blood are 245 

positively correlated with those in placenta and umbilical cord blood. These data suggest 246 

that placental Co concentration may reflect the level of exposure of the fetus (Rudge et 247 

al. 2009). 248 

With regard to Sr, only Herrera Giménez (2015) detected Sr levels in maternal blood and 249 

found positive correlation (rs = 0.226, p < 0.05) with birth weight. Osada et al. (2002) 250 

showed similar Sr levels in umbilical cord venous, arterial blood, and also in maternal 251 

venous. Nevertheless, higher Sr levels were detected in placental than in maternal serum. 252 

Kot et al. (2021) also detected similar Sr levels in maternal blood and umbilical cord, but 253 

no correlations with neonatal weight was found. 254 

Strontium is a mineral found in rocks, soil, and water. Animal foods, wheat bran, and root 255 

vegetables are the main source of Sr. 256 

Higher placental metal levels associated with lower fetal weight (Mo, Se, and Li) 257 

In the present study, placental Mo, Se, and Li concentrations presented an inverse 258 

correlation with newborn weight. 259 

Mo is a necessary component of sulfite oxidase, xanthine oxidase, aldehyde oxidase, and 260 

the mitochondrial amidoxime-reducing component in the human body (Yin et al. 2020). 261 

The main route of Mo exposure is diet, especially the intake of cereals and dairy products 262 

(Lozano et al. 2022). The positive relationships between Mo concentrations and rice and 263 

seafood intake have also been reported (Wang et al. 2019). 264 

Fagerstedt et al. (2015) with a cohort of Swedish women find placental Mo concentrations 265 

similar to ours and report that these concentrations increase with gestational age. In 266 
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contrast, other authors report a decrease in placental Mo concentration with advancing 267 

gestation (Pi et al. 2019). 268 

Gómez-Roig et al. (2021) fail to find relationships between Mo concentrations and small 269 

fetuses for gestational age. 270 

The few studies related with placenta Se levels and birth weight agreed that a higher 271 

placenta Se concentration is a greater risk of fetal weight alterations (Gómez-Roig et al. 272 

2021; Osada et al. 2002; Zadrozna et al. 2009). The physiological mechanisms of the 273 

placenta that mediate the association between placenta Se levels and lower birth weight 274 

remains poorly understood (Wang et al. 2021). High placenta Se levels could decrease 275 

the activity of the cytochrome C oxidase enzyme leading to hypoxia of placental cells and 276 

eventually alter fetal (Zadrozna et al. 2009; Matsubara et al. 1997). Placenta Se 277 

concentrations and fetal weight were mainly studied in maternal blood and serum, with a 278 

discrepancy between the results. While Lewandowska et al. (2019) and Mistry and 279 

Williams (2011) related positive correlation between Se levels and fetal weight, Wilson 280 

et al. (2018) founded negative correlations in a cohort of 1065 nulliparous women. 281 

Discrepancy between results could be explained by gestational age due to maternal Se 282 

blood decreases with increasing gestational age (up to 12%). Plasma volume expansion 283 

and Se transfer to fetus mediated by selenoprotein P (SEP1) could be the two main factors 284 

(Jariwala et al. 2014; Kieliszek 2000). 285 

Selenium is a cofactor of enzymes that have an important function as an antioxidant, 286 

including glutathione peroxidases, deiodinases, and oxidized lipoproteins (Rayman 287 

2000). Se also releases active thyroid hormone cells. Deiodinases, by regulating the 288 

conversion of thyroxine (T4) to triiodothyronine (T3) and reversing triiodothyronine 289 

(rT3) and thyroidonamines, control thyroid hormone turnover. Se-dependent antioxidant 290 

enzymes have also been identified in placental tissue, and they protect trophoblast cells 291 

during the trophoblastic invasion process of the spiral arteries (Lewandowska et al. 2019; 292 

Mendes et al. 2019; Li et al. 2017). 293 

Some authors have reported correlations between Li levels in maternal and fetal blood 294 

(Newport et al. 2005; Harari et al. 2015a, b). To the best of our knowledge, no studies 295 

have previously reported correlations between placental Li levels and neonatal weight 296 

without chronic Li treatment. Only Harari et al. (2015a, b) studied Li exposure through 297 

drinking water. They found negative associations between Li levels in maternal blood and 298 

urine samples and birth weight. 299 
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Li is found in rocks, soil, and water. Cereals and vegetables are their main sources. 301 

On the other hand, Li has long been used in the treatment of bipolar disease. Li therapy 302 

during pregnancy has been associated with increased fetal heart malformations (Patorno 303 

et al. 2017). This metal crosses the placenta freely and alters the thyroid system increasing 304 

thyrotropin (TSH) and decreasing free thyroxine (Broberg et al. 2011; Harari et al. 2015a, 305 

2015b). 306 

Limitations and strong points 307 

Our study is not without limits. In the first place, this work focused on determining the 308 

concentrations of the different metals in the placenta without analyzing other 309 

morphological or functional placental parameters, so we cannot establish the mechanism 310 

by which these metals lead to fetal growth. Thus, the exchange of metals can be 311 

compromised by the placental accumulation of certain elements. The results found in our 312 

study could be explained by this process. Second, it is known that the placental 313 

concentrations of these metals can be influenced by various modifiable variables, such as 314 

diet and gestational nutritional supplements, and non-modifiable, such as genetics. In our 315 

work, the impact of these factors on the levels of placental metals has not been analyzed. 316 

Lastly, this is a cohort study with a limited sample size, which could lead to unreliable 317 

effect estimates. 318 

Study strengths include the use of a non-invasive matrix to the assessment of cumulative 319 

gestational exposure of a large set of essential and non-essential trace elements. There are 320 

few studies on placental metal levels, but limited reports detected a large set of metals 321 

and examined their association with fetal weight. 322 
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Table 1 Clinical characteristics of the cohort 

 Age (years) BMI (kg/m2) Amenorrhea at birth 

(weeks) 

Newborn weight 

(g) 

     

N 79 79 79 79 

Mean 32.87 24.7 39.72 3051.71 

DS 4.98 4.53 1.58 599.87 

Median 33 23.4 39.89 3120 

Minimum 19 17.6 38.38 1700 

Maximum 42 38.95 41.61 4340 

     

 



Table 2 Statistical values for placental trace element concentrations (µg/g dw) 

Placental metal 

concentrations 

(µg/g dw) 

Cd Co Cu Hg Li Mn Mo Pb Rb Se Sr Zn 

             

Mean 0.02761 0.0205 4.66 0.0355 0.0189 0.3831 0.0259 0.0361 14.85 0.969 0.9501 50.25 

D.S 0.0152 0.0077 0.89 0.024 0.0244 0.1148 0.0054 0.035 3.38 0.109 0.123 8.47 

Median 0.0237 0.0190 4.738 0.031 0.009 0.365 0.026 0.027 14.251 0.958 0.456 49.91 

Minimum 0.007 0.009 2.879 0.006 0.002 0.205 0.015 0.009 7.834 0.744 0.149 34.11 

Maximum 0.085 0.044 7.080 0.031 0.123 0.957 0.043 0.247 23.134 1.202 7.925 76.82 

             

 

As arsenic, Cd cadmium, Co cobalt, Cu copper, Hg mercury, Li lithium, Mn manganese, Mo molybdenum, Ni nickel, Pb lead, Rb rubidium, Se selenium, Sr strontium, Zn zinc, 

LOD limits of detection, LOQ limits of quantification 



 

 

Fig. 1 GAM models for Li (p = 0.027) 



 

 

Fig. 2 GAM models for Mo (p = 0.049) 



 

 

Fig.3 GAM models for Se (p = 0.049) 



 

 

Fig.4 GLM models for Co (p = 0.03) 



 

 

Fig.5 GAM models for Sr (p = 0.048) 



Table 3 Statistical values for placental trace element concentrations (µg/g dw) 

Placental metal 

(µng/g dw) 

Placenta 

detection rate 

Relationship with 

neonatal weight 

Type p (value) 

     

Cd 79/79 No –––- 0.604 

Co 79/79 Yes  > Co →  > birth weight 0.030 

Cu 79/79 No –––- 0.914 

Hg 79/79 Yes  > Hg →  < birth weight 0.50 

Li 79/79 Yes  > Li →  < birth weight 0.027 

Mn 79/79 No –––- 0.530 

Mo 79/79 Yes  > Mo →  < birth weight 0.049 

Pb 79/79 No ––– 0.505 

Rb 79/79 No ––– 0.746 

Se 79/79 Yes  > Se →  < birth weight 0.020 

Sr 79/79 Yes  > Sr →  > birth weight 0.048 

Zn 79/79 No ––– 0.165 

     



Table 4 Summary of published manuscripts about determination of essential and non-essential trace 

elements detected in placenta samples with the related health effects 

Element Health effects Region Reference 

    

Pb Birth outcomes Birmingham Wibberley (1977) 

Pb Birth outcomes Australia Baghurst (1991) 

Cd Neonatal anthropometry New York (USA) Loiacono (1991) 

Cd Neonatal anthropometry Villejuif (France) Fréry (1993) 

Mg, Mn, Fe, Cu, Zn, Se, 

Rb, Sr, Cd, Cs 

Birth outcomes Chiba (Japan) Osada (2002) 

Pb Preterm delivery Murcia (Spain) Falcón (2003) 

Cd Birth outcomes Hubei (China) Zhang (2004) 

Cd, Cu, Zn, Pb Neonatal anthropometry Santiago (Chile) Ronco (2005) 

Pb, Se, Cd Fetal growth restriction Osijek (Croatia) Klapec (2008) 

Cd, Ar, Pb Fetal growth restriction Santiago (Chile) Llanos (2009) 

Zn, Se, Cu Birth outcomes Kraków (Poland) Zadrozna (2009) 

Pb Preterm delivery Lucknow (India) Ahamed (2009) 

Pb, Cd, Cr, Ni Birth outcomes Guiyu (China) Guo (2010) 

As, Cd, Hg, Pb Neural tube defects 

(NTDs) 

Sanxi (China) Jin (2013) 

Hg Birth outcomes Bytom, Upper Silesia 

(Poland) 

Kozikowska (2013) 

Cd, Pb Birth outcomes Kraków (Poland) Suprewicz (2013) 

Cd, Hg, Pb Birth outcomes Al-Kharj (Saudi 

Arabia) 

Al-Saleh (2014) 

Cd, Se, Zn Preeclampsia risk North Carolina (USA) Laine (2015) 

As, Cd, Co, Cr, Cu, Hg, 

Mn, Mo, Ni, Pb, Rb, Se, 

Sr 

Gestational diabetes 

mellitus 

Padua (Italy) Roverso (2015) 

Cd Birth outcomes Guiyu and Haojiang 

(China) 

Xu (2015) 

Hg Birth outcomes Ankara (Turkey) Bedir Findik (2016) 

As Birth outcomes New Hampshire (UAS) Gilbert-Diamond 

(2016) 

Hg Neonatal anthropometry Kingston (Jamaica) Ricketts (2017) 

Cd, Hg, Pb, As, Zn Neonatal anthropometry Barcelona (Spain) Sabra (2017) 

As, Cd, Cr, Hg, Mn, Pb Neurodevelopment 

disorders 

Asturias, Gipuzkoa, 

Granada, Sabadell, 

Valencia (Spain) 

Freire (2018) 



Table 4 Summary of published manuscripts about determination of essential and non-essential trace 

elements detected in placenta samples with the related health effects 

Element Health effects Region Reference 

    

Hg, Se Birth outcomes Central, Northwestern 

Poland 

Kosik-Bogacka 

(2018) 

Ba Congenital heart defect China Zhang (2018) 

As, Cd, Hg, Pb Neonatal orofacial clefts 

(OFCs) 

Sanxi (China) Pi (2018) 

Mg, Zn, Cu, Cd, Pb Preterm delivery Konya (Turkey) Kucukaydin (2018) 

Cd, Pb, Se Miscarry Central, Northwestern 

Poland 

Omeljaniuk (2018) 

Cd Birth outcomes and 

preeclampsia 

Zhejiang (China) Wang (2018) 

As, Cd, Cr, Hg, Mn, Pb Birth outcomes Asturias, Gipuzkoa, 

Granada, Sabadell, 

Valencia (Spain) 

Freire (2019) 

Cu, Hg, Mn, Pb, Se, Zn Birth outcomes Jakarta (Indonesia) Irwinda (2019) 

As, Cd, Co, Cu, Mn, Ni, 

Pb, Se, Tl, Zn 

Birth outcomes (birth 

length and weight, 

gestational age, placental 

weight, and head 

circumference) 

Chattanooga (USA) Mikelson (2019) 

As Birth weight New Hampshire (USA) Punshon (2019) 

Al, B, Ba, Ca, Cd, Cr, 

Cu, Fe, K, Li, Mg, Mn, 

Mo, Na, Ni, Pb, Sr, V, 

Zn 

Birth outcomes Sevilla (Spain) Cerrillos (2019) 

Co, Fe, Mn, Mo, Se, Zn Neural tube defects 

(NTDs) 

China Yin (2020) 

Co Birth weight Wroclaw (Poland) Mazurek (2020 

Cd Congenital heart defect China Zhang (2020) 

CA, P, K, Mg, Fe, Cu, 

Cd 

Birth weight Rhode Island (USA) Hussey (2020) 

Al, Be, Bi, Ca, Cd, Co, 

Cr, Cu, Mg, Mn, Mo, Ni, 

P, Pb, Rb, S, Sr, Ti, Tl, 

Sb, Se, Zn 

Birth outcomes 

Preeclampsia 

Barcelona (Spain) Gómez-Roig (2021) 



Table 4 Summary of published manuscripts about determination of essential and non-essential trace 

elements detected in placenta samples with the related health effects 

Element Health effects Region Reference 

    

Na, Mg, P, K, Ca, Ti, V, 

Cr, Mn, Fe, Co, Ni, Cu, 

Zn, As, Se, Rb, Sr, Mo, 

Ag, Sb, I, Cs, Ba, Hg, Tl, 

Pb, U 

Neurodevelopment 

disorders 

Neurodevelopment 

disorders 

Victoria (Australia) McKeating (2021) 

Se Neurodevelopment 

disorders 

Boston (USA) Lee (2021) 

Cd, Mn; Pb Neurodevelopment 

disorders 

Rhode Island (USA) Tung (2022) 

Ti Congenital heart defects Lanzhou (China) Sun (2022) 

    

 

NTDs neural tube defects 

 

 

 


