
Computers & Operations Research 159 (2023) 106351

A
0

i
o
o
w
c

h
R

Contents lists available at ScienceDirect

Computers andOperations Research

journal homepage: www.elsevier.com/locate/cor

An Adaptive Large Neighbourhood Search algorithm for a real-world Home
Care Scheduling Problemwith timewindows and dynamic breaks
Isabel Méndez-Fernández a,∗, Silvia Lorenzo-Freire a,b, Ángel Manuel González-Rueda a
aMODES Research Group, Department of Mathematics and Centre for Information and Communications Technology Research (CITIC), Faculty of Computer
Science, University of A Coruña, Campus de Elviña, A Coruña, Spain
b CITMAga, 15782 Santiago de Compostela, Spain

A R T I C L E I N F O

Keywords:
Home care
Scheduling
Adaptive large neighbourhood search
Mixed integer linear programming

A B S T R A C T

This paper presents a Home Care Scheduling Problem (from now on HCSP) based on a real case of a care
company for elderly and dependent people located in the North of Spain. The problem incorporates many of
the common features addressed in the HCSP literature, such as soft and hard time windows for the services,
available working time of the caregivers or affinity levels between users and caregivers. However, it also
includes other novel characteristics that increase the difficulty of the problem significantly, since the breaks
between services will play a key role in the quality of the solutions. To evaluate the solutions, the users welfare
will be prioritized over the cost associated with the schedule.

The problem has been formulated as a Mixed Integer Linear Programming (MILP) one but, due to the
complexity of the model, it is not possible to solve it for real size instances. Therefore, we have designed
a method that combines the Adaptive Large Neighbourhood Search (ALNS) methodology with a heuristic
approach necessary to evaluate the objective functions. To analyse the behaviour of the algorithm, a set of
computational experiments are carried out under different configurations. First, the MILP formulation and the
algorithm have been compared over some standard instances from the literature. Finally, the performance of
the algorithm is evaluated over a real case study based on the timetables of the company during some weeks
from 2016 to 2017.
1. Introduction

A Home Care Scheduling Problem (HCSP) deals with real life sit-
uations where some users require home assistance services and they
should be attended by a set of caregivers throughout the week. Thus,
the goal of an HCSP is to design the routes and schedules for caregivers,
indicating the services to carry out, in which order and at what time.
Schedules should also satisfy all the requirements imposed by the users
and the caregivers’ collective labour agreement, while pursuing a set of
objectives.

Due to the increase in demand for home care services in re-
cent years, the literature on this type of problems has grown sig-
nificantly. Cissé et al. (2017) and Fikar and Hirsch (2017) are two
nteresting surveys that analyse the problem in depth, as well as some
f its variants. Table 1 shows an overview of the main characteristics
f some HCSP studied in the literature: time windows, the location at
hich the route starts, fixed or not fixed duration of the services, the
ompatibilities caregiver–user and the continuity of care. The existence

∗ Correspondence to: Postal code: 15071, A Coruña, Spain.
E-mail addresses: isabel.mendez.fernandez@udc.es (I. Méndez-Fernández), silvia.lorenzo@udc.es (S. Lorenzo-Freire), angel.manuel.rueda@udc.es

(Á.M. González-Rueda).

of time windows, the starting point of the routes and the duration
of the services are quite common concepts in the context of routing
problems. The continuity of care is a concept that appears in some
contributions related to the HCSP, although the interpretation of the
term depends on the context of the problem to be addressed. So, for
instance, Bachouch et al. (2011) consider that all services demanded
by a user during the week must be carried out by the same employee.
In turn, Cappanera and Scutellà (2015) argue that a certain number
of caregivers should not be exceeded while attending a given user
during each time period. A similar procedure is followed in Nickel
et al. (2012), where the continuity of care is now taken into account in
the objective function by means of the nurse–patient loyalty, which is
just the number of nurses who have attended the patient over a time
horizon minus one. Carello and Lanzarone (2014) introduce different
continuity of care requirements, depending on the user and on his/her
requests, partitioning the set of users into five subsets. In other HCSP,
the compatibility caregiver–user is a crucial aspect in determining the
vailable online 19 July 2023
305-0548/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

ttps://doi.org/10.1016/j.cor.2023.106351
eceived 12 April 2022; Received in revised form 7 July 2023; Accepted 7 July 20
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

23

https://www.elsevier.com/locate/cor
http://www.elsevier.com/locate/cor
mailto:isabel.mendez.fernandez@udc.es
mailto:silvia.lorenzo@udc.es
mailto:angel.manuel.rueda@udc.es
https://doi.org/10.1016/j.cor.2023.106351
https://doi.org/10.1016/j.cor.2023.106351
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2023.106351&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

c
s
p

i
i
s
o
A
p
e
t
c
(
o

o
H
t
,

2
2
c
2
c
G

l
f
i
t

Table 1
Brief summary of the HCSP characteristics in the literature.
Reference Services hard Services soft Caregivers time Routes start Fixed services Compatibility Continuity Solution

time windows time windows windows location durations of care method

Akjiratikarl et al. (2007) X – – Home X – – PSO
Bachouch et al. (2011) X – X Office X X X LP
Bard et al. (2014) X – X Various X – – GRASP
Bertels and Fahle (2006) X X X First visit X X X LP+CP+SA/TS
Braekers et al. (2016) X X X Various X X – MDLS+LNS
Cappanera and Scutellà (2015) – – X Various X X X Heuristic, LP
Carello and Lanzarone (2014) – – – First visit – X X LP
Chaieb et al. (2020) X – X Various X X – k-means+Hungarian+TS
Decerle et al. (2019) – X X Office X X – MA, ACO, MA+ACO
Erdem and Bulkan (2017) X X X Home X X – VND
Garaix et al. (2018) X – X Various X X – LP
Grenouilleau et al. (2019) X – X Home X X X LNS+SPP
Kergosien et al. (2009) X – X Various X X – LP
Liu et al. (2017) X – X Various X X X B&P+TS
Mankowska et al. (2014) X (Start) X (End) X Office X – – LS, AVNS
Maya Duque et al. (2015) – X X First visit X X – Heuristic
Méndez-Fernández et al. (2020) X – – First visit X X X SA
Mosquera et al. (2019) X – X Various – X – LS
Nickel et al. (2012) X – X Office X X X ALNS, TS, CP
Rest and Hirsch (2016) X – X First visit X X – TS
Riazi et al. (2019) X – X Various X X – CG, Gossip+CG
Trautsamwieser and Hirsch (2011) X X X Various X X – VNS

Our approach X X X First visit X X X ALNS

PSO = Particle Swarm Optimization, GRASP = Greedy Randomized Adaptive Search Procedure, MA = Memetic Algorithm, ACO = Ant Colony Optimization, MDLS = Multi-Directional
Local Search, LNS = Large Neighbourhood Search, SPP = Set Partitioning Problem, CG = Column Generation, LS = Local Search, VND = Variable Neighbourhood Descent, VNS =
Variable Neighbourhood Search, TS = Tabu Search, B&P = Branch and Price, LP = Linear Programming, CP = Constraint Programming, AVNS = Adaptive Variable Neighbourhood
Search, SA = Simulated Annealing, ALNS = Adaptive Large Neighbourhood Search.
e
c
o
a
b
b

o
(
b
I
o
i
a
t
a
f
d
i
s
t
r
M
o
T

s
a
r
o
c
s
o
c

schedules. This is the case of Maya Duque et al. (2015), where the
ompatibility is established by means of several factors, such as the
kills of the caregiver, the user’s medical status and disabilities, the
roficiency of the caregiver in speaking different languages, etc.
Much of the work on HCSP is inspired by real applications. Thus,

n Akjiratikarl et al. (2007) a real situation arising in the UK is stud-
ed, in collaboration with The Welsh Systems Consortium, a partner-
hip between seven local government authorities in Wales. The work
f Grenouilleau et al. (2019) is the result of a joint project with
layacare, a Canadian start-up developing an operations management
latform for home health care agencies. Maya Duque et al. (2015)
xplores the home care services in Belgium, taking into consideration
he case of Landelijke Thuiszorg, an organization that provides home
are services in four Belgian regions. The research in Rest and Hirsch
2016) is based on a collaborative project with the Austrian Red Cross,
ne of the leading home care service providers in Austria.
Since the HCSP are a kind of routing and scheduling problems, one

f the aspects that is usually assessed in the objective functions of the
CSP is the travelling cost. However, although the minimization of
he travelling cost is the only objective in Akjiratikarl et al. (2007)
Bachouch et al. (2011), Kergosien et al. (2009) and Riazi et al. (2019),
in many other frameworks this objective is usually accompanied by
other targets specific to this type of problems: the minimization of the
penalization of services soft time windows (as in Bertels and Fahle,
2006; Braekers et al., 2016; Decerle et al., 2019; Maya Duque et al.,
2015), the minimization of overtime costs (considered in Braekers
et al., 2016; Cappanera and Scutellà, 2015; Carello and Lanzarone,
014; Erdem and Bulkan, 2017; Grenouilleau et al., 2019; Nickel et al.,
012; Rest and Hirsch, 2016), the maximization of the continuity of
are (studied in Carello and Lanzarone, 2014; Grenouilleau et al.,
019; Nickel et al., 2012), or the maximization of the compatibilities
aregiver–user (as in Bertels and Fahle, 2006; Chaieb et al., 2020;
araix et al., 2018; Maya Duque et al., 2015), among others.
This framework is based on a real case study related to a company

ocated in the Northwest of Spain, which provides home care services
or elderly and people with disabilities. The problem under study
ncludes all the characteristics mentioned in Table 1. According to
2

he indications of the staff of the company, based on their previous
xperiences and requirements, the compatibility caregiver–user and the
ontinuity of care are combined, measuring their importance by means
f several levels, which indicate the grade of affinity between caregivers
nd users. Moreover, a special feature is added to the model: the largest
reak of a caregiver in a workday, if it reaches a certain duration, will
e discounted from the worked time.
In some HCSP, there is a fixed break which is just a specific amount

f time set aside for the caregiver’s meal. This is the case of Bard et al.
2014), that considers an uncompensated lunch break of half an hour
etween 11:00 a.m. and 1:00 p.m., in case the shift is 6 or more hours.
n Bachouch et al. (2011), the break is modelled as a preassigned care
f one hour within a time window. A different approach is followed
n Trautsamwieser and Hirsch (2011), where the duration of the break
nd its time window are specified by the caregiver. In all these works,
he break can be interpreted as a service with a known duration and
time window. The meaning of break is drastically different in this
ramework, since the duration of the break is not previously fixed and
epends on the final schedule of the caregiver. Note that, as mentioned
n the example in the Appendix, there may be caregivers with morning
hifts, afternoon shifts, or split shifts, which greatly affects the break
hat may occur. This dynamic break may not even exist if there is no
est between consecutive services for more than a specified duration.
oreover, the dynamic break will have a significant impact on the cost
f caregivers, since it will be deducted from their daily working times.
his particular feature complicates the study of the model considerably.
With all the characteristics described above, the problem under

tudy has been modelled as a bi-objective HCSP, where the objectives
re the schedules cost and the users welfare. The schedules cost is
elated to the overtime and total working time of caregivers. On the
ther hand, the welfare function collects the affinity between users and
aregivers and the soft time windows penalization. According to the
pecifications of the company, the welfare of the users is prioritized
ver the cost. In fact, two possible situations can arise when the
ompany starts the planning:

• Let us suppose that there are no historical data about the services
schedule. In this case, the welfare of the users will be determined
by the soft time windows, that will indicate the periods in which
the users would like to be attended.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Fig. 1. Types of breaks.
L

L

L

L

L

s
b
e
g

t
s
t
h

• In most of cases, the welfare will be obtained from the recent
information about the services of the users. Now, the affinity
will depend on the users–caregivers assignments, whereas the soft
time windows will coincide with the previous schedules as far as
possible.

Notice that, although Méndez-Fernández et al. (2020) also deal
with the problem of obtaining schedules for the same company, this
new framework differs substantially from that one. The only goal of
the problem studied in Méndez-Fernández et al. (2020) consisted in
intelligently adapting the current schedules to small changes that arose
during the week, regardless of the optimality of the solutions. To carry
out this process, a simulated annealing algorithm was developed, which
led to small delays or advances in the prearranged services.

The present work is the result of a much more ambitious plan
for the company. After discussions with the company’s managers, it
was necessary to consider time windows indicating the caregivers
availability and soft time windows for the services. Now, the soft time
windows could coincide with the previous schedule of the service or not
and their duration could be bigger than the service duration, allowing
more flexibility. In this way, schedules are optimized from scratch,
considering the hard time windows of the services but also a soft
time window that indicates the interval where the users would like
to be attended (this information was also provided by the company
and, in most of the cases, the soft time windows were different from
the previous schedule obtained by the company). Since the preferred
time windows for the users could be very different from the previous
schedules of the company, there is more room to look for schedules in
which overall satisfaction will increase, while improving the global cost
of the company.

To solve the problem, an MILP, that adequately describes all the
particular features of the problem, is described. However, due to its
complexity, a state of the art MILP solver can only be employed to solve
small-scale instances.

Thus, to solve real data files, it was necessary to develop a new
algorithm, which involves two procedures. The first one is related to
generate routes and involves an ALNS methodology based on four
insertion and five removal operators to improve the routes iteratively.
The second part is the more innovative and is the key element of the
algorithm, since it is necessary to compare the routes in terms of the
objective functions. This part is devoted to obtain the schedules for
the routes. The difficulty of this task lies on the fact it is necessary to
combine the hard time windows with the soft time windows to establish
the dynamic breaks. Notice that, in the literature related to classical
HCSP, the beginning time of the services only depends on the time
windows and the starting time of the route. However, this is not the
case in this framework, since the break between services causes that
there may be multiple different starting times of each service to be
combined in order to find the best schedule.
3

The paper is structured in three sections. Section 2 presents a
detailed description of the HSCP, as well as its MILP formulation.
Section 3 presents the tailored heuristic algorithm based on the ALNS
approach developed to solve the problem. Finally, Section 4 covers the
computational experiments used to study the algorithm behaviour.

2. Problem description

Although this problem shares the common features of an HCSP,
there are some specific ones that must be taken into account.

The company allows users to indicate two types of time windows:
a hard and a soft one. On one hand, the hard time window of a service
is the period in which is mandatory to perform the service. On the
other hand, the soft time window specifies the time interval where it
would be preferable for the service to be performed. Notice that it is
not necessary to fulfil the soft time windows to obtain a feasible plan.

According to the contract of each caregiver, a limited number of
working hours per day and week are provided. Even so, the total
number of hours per week could be increased, as long as they were
economically compensated and the limit of daily hours was respected.

In order to take care of users satisfaction, six affinity levels are
considered in terms of two features, the skills of the caregiver and the
degree of compatibility between users and caregivers. These levels are:

Level 0 The user should not be attended by this caregiver under any
circumstances.

evel 1 The caregiver could attend the user only if there is no other
option.

evel 2 The caregiver could attend the user although the degree of
compatibility between user and caregiver has not been estab-
lished yet.

evel 3 The caregiver has not attended the user yet but, due to the
characteristics of the caregiver, the supervisor thinks that she
could be a very good candidate to perform these services.

evel 4 The user was successfully attended by the caregiver in the
past.

evel 5 The caregiver is already attending the user adequately.

Each caregiver working day starts at the beginning of the first
ervice and ends when the last service is finished. All the breaks
etween services will be considered as paid working time with just one
xception: in case the largest break of the working day has a duration
reater than or equal to 𝜋𝑚𝑖𝑛 it will not be paid.
The company currently considers that the minimum duration for

he break to not be considered as worked time is 2 h. Thus, in the
chedule of Fig. 1(a), where the services duration is 100 min and the
ravel time between each pair of services is 30 min (represented with
atched blocks), only the largest break (with a duration of 5 h and



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

l
w
5
t

t
d
w
w
f
t
p
o
b
s

h
m

i

𝑓

Table 2
Sets, parameters and variables involved in the problem.
Sets

𝐷 = {1,… , 7} Set of days.
𝑁 = {1,… , 𝑛} Set of caregivers.
𝑆 = {1,… , 𝑠 − 1} Set of services.
𝑆0 = 𝑆 ∪ {0} Set of services and the initial dummy.
𝑆1 = 𝑆 ∪ {𝑠} Set of services and the ending dummy.
𝑆01 = 𝑆 ∪ {0, 𝑠} Set of services and the initial and ending dummies.
𝑆−𝑘 = 𝑆 ⧵ {𝑘} Set of services except 𝑘 ∈ 𝑆. Analogously, 𝑆0

−𝑘 = 𝑆0 ⧵ {𝑘} and 𝑆1
−𝑘 = 𝑆1 ⧵ {𝑘}.

Data

𝜌𝑖𝑗 It indicates if caregiver 𝑖 ∈ 𝑁 can perform service 𝑗 ∈ 𝑆.
𝜆𝑖𝑗 Affinity level between caregiver 𝑖 ∈ 𝑁 and service 𝑗 ∈ 𝑆.
𝜂𝑗 Duration of service 𝑗 ∈ 𝑆.
[𝛼
¯
𝑑
𝑗 , �̄�

𝑑
𝑗 ] Hard time window of service 𝑗 ∈ 𝑆 in day 𝑑 ∈ 𝐷.

Note that, if service 𝑗 ∈ 𝑆 does not belong to day 𝑑 ∈ 𝐷, we set 𝛼
¯
𝑑
𝑗 = �̄�𝑑

𝑗 .
[𝛽
¯
𝑑
𝑗 , 𝛽

𝑑
𝑗 ] Soft time window of service 𝑗 ∈ 𝑆 in day 𝑑 ∈ 𝐷.

[𝛾
¯
𝑖𝑑 , �̄� 𝑖𝑑 ] Availability time period of caregiver 𝑖 ∈ 𝑁 at day 𝑑 ∈ 𝐷.

𝜃𝑗𝑘 Travel time between services 𝑗 ∈ 𝑆 and 𝑘 ∈ 𝑆1.
Note that, if 𝑘 = 𝑠, then 𝜃𝑗𝑠 = 0.

𝜈𝑖 Agreed weekly working time of caregiver 𝑖 ∈ 𝑁 .
𝜈𝑖𝑑 Maximum time caregiver 𝑖 ∈ 𝑁 is allowed to work at day 𝑑 ∈ 𝐷.
𝜋𝑚𝑖𝑛 Minimum length of time required for the largest break to be unpaid.

Variables

𝑥𝑖𝑑𝑗𝑘 ∈ {0, 1} It indicates if caregiver 𝑖 ∈ 𝑁 goes from service 𝑗 ∈ 𝑆0

to service 𝑘 ∈ 𝑆1 at day 𝑑 ∈ 𝐷.
𝑡𝑖𝑑𝑗 ∈ R+

0 For caregiver 𝑖 ∈ 𝑁 , it represents the starting time of service 𝑗 ∈ 𝑆01

at day 𝑑 ∈ 𝐷.
𝑦𝑖𝑑𝑗𝑘 ∈ {0, 1} For caregiver 𝑖 ∈ 𝑁 , it indicates if the break between services 𝑗 ∈ 𝑆 and 𝑘 ∈ 𝑆

has been selected to be discounted from the working day 𝑑 ∈ 𝐷 .
�̄�𝑖𝑑 ∈ {0, 1} It states if there is no break for caregiver 𝑖 ∈ 𝑁 at day 𝑑 ∈ 𝐷.
𝑟𝑖𝑑 ∈ R+

0 Greatest break of caregiver 𝑖 ∈ 𝑁 at day 𝑑 ∈ 𝐷.
𝑢𝑖𝑑 ∈ {0, 1} It indicates if the largest break of caregiver 𝑖 ∈ 𝑁 at day 𝑑 ∈ 𝐷

is greater than or equal to 𝜋𝑚𝑖𝑛.
�̂�𝑖𝑑 ∈ R+

0 Greatest break of caregiver 𝑖 ∈ 𝑁 at day 𝑑 ∈ 𝐷 if it is greater than
or equal to 𝜋𝑚𝑖𝑛. Otherwise, it will be 0.

𝑧𝑖 ∈ R+
0 Amount of overtime of caregiver 𝑖 ∈ 𝑁 .

𝑣𝑠𝑡𝑎𝑟𝑡𝑗 ∈ R+
0 Penalization for carrying out service 𝑗 ∈ 𝑆 before its soft time window.

𝑣𝑒𝑛𝑑𝑗 ∈ R+
0 Penalization for carrying out service 𝑗 ∈ 𝑆 after its soft time window.
20 min) will be discounted. Then, the total worked time will be 7 h
and 20 min. In the schedule of Fig. 1(b), even though it has two breaks
onger than 2 h, only the second one (with a duration of 3 h and 50 min)
ill not be paid. This means that the working time will be 8 h and
0 min. Therefore, Fig. 1 reveals the importance of correctly scheduling
he largest break of a route.
According to the information provided by the company, there are

wo clearly differentiated objectives to be taken into account when
esigning the schedules: the cost associated with the schedules and the
elfare. The cost of the schedule represents the expenses associated
ith the caregivers carrying out their routes. These expenses account
or the working time and the non-contractual overtime. The welfare of
he users represents the degree of well being and satisfaction that users
resent according to the schedules, and it combines two elements. On
ne hand, the affinity of the users with the assigned caregivers should
e maximized and, on the other one, the penalization of violating the
oft time windows should be minimized.
Since the company prefers to sacrifice cost savings for the sake of

aving a stable schedule that remains fairly unchanged over time, the
ost important objective will be the welfare.
A detailed example to illustrate the problem tackled by the company

s presented in Appendix.

2.1. The MILP model

Next, the model that describes the HCSP under study is presented
(see Table 2).

The formulation of the problem is:

1 = min 𝜔1
∑ ∑ ∑ ∑

𝜆𝑖𝑗𝑥
𝑖𝑑
𝑗𝑘 + 𝜔2

∑

(𝑣𝑠𝑡𝑎𝑟𝑡𝑗 + 𝑣𝑒𝑛𝑑𝑗 ) (1)
4

𝑖∈𝑁 𝑑∈𝐷 𝑗∈𝑆 𝑘∈𝑆1 𝑗∈𝑆
𝑓2 = min 𝜔3
∑

𝑖∈𝑁
𝑧𝑖 + 𝜔4

∑

𝑖∈𝑁

∑

𝑑∈𝐷
(𝑡𝑖𝑑𝑠 − 𝑡𝑖𝑑0 − �̂�𝑖𝑑 ) (2)

Subject to
∑

𝑖∈𝑁

∑

𝑑∈𝐷

∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘 = 1

∀𝑗 ∈ 𝑆 (3)
∑

𝑖∈𝑁

∑

𝑑∈𝐷

∑

𝑗∈𝑆0
−𝑘

𝑥𝑖𝑑𝑗𝑘 = 1

∀𝑘 ∈ 𝑆 (4)
∑

𝑑∈𝐷

∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘 ≤ 𝜌𝑖𝑗

∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑆 (5)
∑

𝑘∈𝑆1

𝑥𝑖𝑑0𝑘 = 1

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (6)
∑

𝑗∈𝑆0

𝑥𝑖𝑑𝑗𝑠 = 1

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (7)
∑

𝑗∈𝑆0
−ℎ

𝑥𝑖𝑑𝑗ℎ −
∑

𝑘∈𝑆1
−ℎ

𝑥𝑖𝑑ℎ𝑘 = 0

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷,∀ℎ ∈ 𝑆 (8)
𝛼
¯
𝑑
𝑗

∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘 ≤ 𝑡𝑖𝑑𝑗 ≤ (�̄�𝑑𝑗 − 𝜂𝑗 )
∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷,∀𝑗 ∈ 𝑆 (9)



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

𝑡

𝑡

𝑡

𝑡

𝑡

𝑟

𝑟

𝑟

𝑥
𝑡𝑖𝑑𝑗 + (𝜂𝑗 + 𝜃𝑗𝑘)𝑥𝑖𝑑𝑗𝑘 ≤ 𝑡𝑖𝑑𝑘 + �̄�𝑑𝑗 (1 − 𝑥𝑖𝑑𝑗𝑘)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (10)
∀𝑗 ∈ 𝑆,∀𝑘 ∈ 𝑆1, 𝑗 ≠ 𝑘

𝑖𝑑
0 ≥ 𝛾

¯
𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (11)
𝑖𝑑
𝑠 ≤ �̄� 𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (12)
𝑖𝑑
0 ≤ 𝑡𝑖𝑑𝑘 + �̄� 𝑖𝑑 (1 − 𝑥𝑖𝑑0𝑘)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷,∀𝑘 ∈ 𝑆1 (13)
𝑖𝑑
0 ≥ 𝑡𝑖𝑑𝑘 − �̄� 𝑖𝑑 (1 − 𝑥𝑖𝑑0𝑘)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷,∀𝑘 ∈ 𝑆1 (14)
𝑖𝑑
𝑠 ≤ (𝑡𝑖𝑑𝑗 + 𝜂𝑗 ) + �̄� 𝑖𝑑 (1 − 𝑥𝑖𝑑𝑗𝑠)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷,∀𝑗 ∈ 𝑆 (15)
𝑡𝑖𝑑𝑠 − 𝑡𝑖𝑑0 − �̂�𝑖𝑑 ≤ 𝜈𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (16)
𝑧𝑖 ≥

∑

𝑑∈𝐷

(

𝑡𝑖𝑑𝑠 − 𝑡𝑖𝑑0 − �̂�𝑖𝑑
)

− 𝜈𝑖

∀𝑖 ∈ 𝑁 (17)
𝑟𝑖𝑑 ≥ 𝑡𝑖𝑑𝑘 − (𝑡𝑖𝑑𝑗 + 𝜂𝑗 + 𝜃𝑗𝑘) − �̄� 𝑖𝑑 (1 − 𝑥𝑖𝑑𝑗𝑘)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (18)
∀𝑗 ∈ 𝑆,∀𝑘 ∈ 𝑆, 𝑗 ≠ 𝑘

𝑟𝑖𝑑 ≤ 𝑡𝑖𝑑𝑘 − (𝑡𝑖𝑑𝑗 + 𝜂𝑗 + 𝜃𝑗𝑘) + �̄� 𝑖𝑑 (1 − 𝑥𝑖𝑑𝑗𝑘) + �̄� 𝑖𝑑 (1 − 𝑦𝑖𝑑𝑗𝑘)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (19)
∀𝑗 ∈ 𝑆,∀𝑘 ∈ 𝑆, 𝑗 ≠ 𝑘

𝑟𝑖𝑑 ≤ �̄� 𝑖𝑑 (1 − �̄�𝑖𝑑 )

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (20)
∑

𝑗∈𝑆

∑

𝑘∈𝑆−𝑗

𝑦𝑖𝑑𝑗𝑘 + �̄�𝑖𝑑 = 1

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (21)
𝑦𝑖𝑑𝑗𝑘 ≤ 𝑥𝑖𝑑𝑗𝑘

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (22)
∀𝑗 ∈ 𝑆,∀𝑘 ∈ 𝑆, 𝑗 ≠ 𝑘

𝑟𝑖𝑑 − 𝜋𝑚𝑖𝑛 ≥ 𝜋𝑚𝑖𝑛(𝑢𝑖𝑑 − 1)

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (23)
𝑟𝑖𝑑 − 𝜋𝑚𝑖𝑛 + 𝜀 ≤ (�̄� 𝑖𝑑 − 𝛾

¯
𝑖𝑑 )𝑢𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (24)
̂𝑖𝑑 ≤ (�̄� 𝑖𝑑 − 𝛾

¯
𝑖𝑑 )𝑢𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (25)
̂𝑖𝑑 ≤ 𝑟𝑖𝑑

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (26)
̂𝑖𝑑 ≥ 𝑟𝑖𝑑 − (�̄� 𝑖𝑑 − 𝛾

¯
𝑖𝑑 )(1 − 𝑢𝑖𝑑 )

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (27)

𝑣𝑠𝑡𝑎𝑟𝑡𝑗 ≥
∑

𝑑∈𝐷

⎛

⎜

⎜

⎜

⎝

𝛽
¯
𝑑
𝑗

∑

𝑖∈𝑁

∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘 −
∑

𝑖∈𝑁
𝑡𝑖𝑑𝑗

⎞

⎟

⎟

⎟

⎠

∀𝑗 ∈ 𝑆 (28)

𝑣𝑒𝑛𝑑𝑗 ≥
∑

𝑑∈𝐷

⎛

⎜

⎜

⎜

⎝

∑

𝑖∈𝑁
𝑡𝑖𝑑𝑗 + (𝜂𝑗 − 𝛽𝑑𝑗 )

∑

𝑖∈𝑁

∑

𝑘∈𝑆1
−𝑗

𝑥𝑖𝑑𝑗𝑘

⎞

⎟

⎟

⎟

⎠

5

∀𝑗 ∈ 𝑆 (29) l
𝑖𝑑
𝑗𝑘 ∈ {0, 1}

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (30)
∀𝑗 ∈ 𝑆0,∀𝑘 ∈ 𝑆1, 𝑗 ≠ 𝑘

𝑡𝑖𝑑𝑗 ≥ 0

∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑆01,∀𝑑 ∈ 𝐷 (31)
𝑦𝑖𝑑𝑗𝑘 ∈ {0, 1}

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷, (32)
∀𝑗 ∈ 𝑆,∀𝑘 ∈ 𝑆, 𝑗 ≠ 𝑘

�̄�𝑖𝑑 , 𝑢𝑖𝑑 ∈ {0, 1}; 𝑟𝑖𝑑 , �̂�𝑖𝑑 ≥ 0

∀𝑖 ∈ 𝑁,∀𝑑 ∈ 𝐷 (33)
𝑧𝑖 ≥ 0

∀𝑖 ∈ 𝑁 (34)
𝑣𝑠𝑡𝑎𝑟𝑡𝑗 , 𝑣𝑒𝑛𝑑𝑗 ≥ 0

∀𝑗 ∈ 𝑆 (35)

The objective function considers four different elements, which can be
divided into two groups:

• Objective (1) accounts for the welfare of users, i.e., the total
affinity between services and caregivers and the penalization of
performing services outside their soft time windows. In order to
set the weights 𝜔1 and 𝜔2, we take into account the fact that
𝑣𝑠𝑡𝑎𝑟𝑡𝑗 ≤ max𝑑∈𝐷{𝛽

¯
𝑑
𝑗 −𝛼

¯
𝑑
𝑗 } and 𝑣𝑒𝑛𝑑𝑗 ≤ max𝑑∈𝐷{�̄�𝑑𝑗 −𝛽𝑑𝑗 } for all 𝑗 ∈ 𝑆,

which means that setting 𝜔1 = −max{1,
∑

𝑗∈𝑆 [max𝑑∈𝐷{𝛽
¯
𝑑
𝑗 − 𝛼

¯
𝑑
𝑗 } +

max𝑑∈𝐷{�̄�𝑑𝑗 −𝛽𝑑𝑗 }]} and 𝜔2 = 1 guarantees that the affinity will be
prioritized over the soft time windows.1

• Objective (2) refers to schedule cost, which is composed by the
amount of overtime of the caregivers and their total worked time.
Since the units coincide, we set 𝜔3 = 𝜔4 = 1.

Concerning the constraints, (3)–(5) ensure that all services must be
carried out. Constraints (6)–(8) determine the routes of the caregivers
and (9)–(15) how the services must be scheduled according to the
hard time windows. The working time of the caregivers is obtained
in Constraints (16)–(17). Constraints (18)–(27) assess the largest daily
break of the caregivers. The deviation from the soft time windows
is calculated in Constraints (28)–(29). Lastly, Constraints (30)–(35)
establish the domain of the variables.

3. Heuristic algorithm

The MILP formulation can only be solved in small instances with
a state of the art optimization solver because of the complexity of the
problem. For this reason, we designed a tailored algorithm, based on
the Adaptive Large Neighbourhood Search (ALNS) method proposed
by Ropke and Pisinger (2006). This methodology has been proved to be
more successful at solving different types of vehicle routing problems
than other traditional methods (for more information, see Pisinger and
Ropke (2007)).

Following the general scheme of an ALNS method, the developed
algorithm first generates a feasible initial solution and then introduces
movements to modify the routes, that is, it changes the order of the
services and/or the caregivers assigned to the route. Once the routes
are established, to correctly evaluate the objective function, we need
to obtain the starting times of each service. To this aim, we developed
a heuristic method, which is the most innovative part of our framework
and plays a key role in the good performance of the algorithm.

1 Note that we consider 𝜔1 < 0 because we want to maximize the affinity
evels in a minimization problem.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

t

𝑇

g
t
t
o

d
t
T

Table 3
Removal operators.
Operator Description

Random removal The services to remove from the route are selected at random.

Related removal This operator iteratively removes from the route the service that is most related
to one of the already removed services, which is chosen at random. The first
service to remove is randomly selected and the level of relation between
two services is measured by the likeness of their time windows and the day they
belong to.

Cost removal The services that contribute the most to the objective function value are
iteratively removed from the routes.

1-Route removal It removes complete routes, selected at random, from the solution
until the required number of services have been deleted.

2-Route removal It removes two complete routes, selected at random, from the solution.
Table 4
Insertion operators.
Operator Description

Basic Greedy (BG) It adds to the schedule the service that, when inserted at its best
position, results in the least objective function increase.

Random Greedy (RG) The services are iteratively chosen at random and, then, are scheduled at the
best position according to the objective function valuea.

Different Caregiver BG Similar to the basic greedy but, in this case, the services have to
be assigned to a different caregiver than the one who was attending them
before the destruction phase.

Different Caregiver RG As the random greedy but, in this case, the services have to
be assigned to a different caregiver than the one who was attending them
before the destruction phase.

aThis operator is also used to generate the initial feasible solution.
Algorithm 1 describes the pseudocode of the ALNS method, which
is based on a destroy and repair methodology that considers multiple
operators to remove (insert) services from (to) the solutions.

The method starts with a feasible solution. Then, the operators are
randomly chosen according to probabilities that are updated after each
iteration, to use more frequently the ones providing better solutions.
After obtaining the new solution, the current one is updated using the
simulated annealing acceptance criterion. This criteria accepts the new
solution with probability 𝑒𝑥𝑝(−(𝑐𝑜𝑠𝑡(𝑥∗) − 𝑐𝑜𝑠𝑡(𝑥))∕𝑇𝑖), where 𝑇𝑖 is the
emperature that decreases after each iteration 𝑖 according to a cooling
parameter 0 < 𝛽 < 1, the initial temperature 𝑇0 > 0 and the formula
𝑖 = 𝛽𝑖𝑇0.
Algorithm 1: Adaptive Large Neighbourhood Search

Data: Initial solution 𝑥, Removal operators 𝛺𝑟𝑒𝑚, Insertion
operators 𝛺𝑖𝑛𝑠

1 𝑥′ ← 𝑥, 𝜔𝑟𝑒𝑚 ← (1, ..., 1), 𝜔𝑖𝑛𝑠 ← (1, ..., 1)
2 while stopping criteria not met do
3 removalOperator ← chooseRandom(𝜔𝑟𝑒𝑚, 𝛺𝑟𝑒𝑚)
4 insertionOperator ← chooseRandom(𝜔𝑖𝑛𝑠, 𝛺𝑖𝑛𝑠)
5 �̂� ← removalOperator(𝑥)
6 𝑥∗ ← insertionOperator(�̂�) ⇒ Call Algorithm 2
7 if f (𝑥∗) < f (𝑥′) then
8 𝑥′ ← 𝑥∗

9 𝑥 ← acceptanceCriteria(𝑥∗, 𝑥′)
10 𝜔𝑟𝑒𝑚 ← updateWeights(𝜔𝑟𝑒𝑚), 𝜔𝑖𝑛𝑠 ← updateWeights(𝜔𝑖𝑛𝑠)
11 return 𝑥′

Although we have outlined the general structure of the ALNS al-
orithm, it is still necessary to describe the specific features relevant
o our problem: the methodology used to obtain the initial solution,
he insertion and removal operators and, finally, how to evaluate the
bjective function.
The removal operators are used to destroy part of the solution,

epending on a parameter that determines the proportion of services
hat we allow to be removed from the schedule during each iteration.
6

he five removal operators are described in Table 3. a
The insertion operators are used to obtain the initial schedule and to
reconstruct the solution destroyed by the removal operators. The four
insertion operators are described in Table 4.

Since we deal with a routing and scheduling problem, to obtain the
schedule for the evaluation of the insertion operators it is not only
necessary to know the routes of each caregiver, but also the starting
times of every service. Therefore, to obtain the services schedules,
we developed one approach (Algorithm 2) to evaluate the objective
function in a lexicographical order.

3.1. Approach to evaluate the objective function

Fig. 2 describes Algorithm 2 designed to obtain the schedule of a
route that first optimizes the welfare of the users and, after that, the
cost of the schedule.

The implementation scheme of the approach can be divided into
three parts, explained in the following sections.

3.1.1. Starting times
This first part of the approach, described in Algorithm 2.1, obtains

the earliest and latest starting times for hard (lines 1–10) and soft (lines
11–14) time windows. After that, the route is divided into blocks, where
two services (and the ones between them) belong to the same block if
their soft time windows overlap (line 15).

Example 3.1. In Fig. 3, an example2 of a route with six services is
presented. For simplicity, all the services have equal duration and there
is no travel time between each pair of services.

Fig. 4 shows the earliest, 𝑡𝑒𝑗 , and latest, 𝑡
𝑙
𝑗 , starting times according

to hard time windows (lines 1–10); and to soft time windows (lines
11–14), 𝑏

¯𝑗
and �̄�𝑗 . The route can be divided into three blocks with

overlapping soft time windows: 𝛥 = {{1}, {2}, {3, 4, 5, 6}} (line 15).

2 The example will be used to illustrate how the whole approach to schedule
route works.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Fig. 2. Scheme to obtain the schedule of a route (𝑅 = [1,… , 𝑟]).
Algorithm 2.1: Obtain earliest and latest starting times, divide the route into blocks

1 for 𝑗 ∈ 𝑅 do // Get earliest start for the services, according to hard time windows

2 if j = 1 then
3 𝑡𝑒𝑗 ← max{𝛼

¯
𝑑
𝑗 , 𝛾¯

𝑖𝑑}
4 else
5 𝑡𝑒𝑗 ← max{𝛼

¯
𝑑
𝑗 , 𝑡

𝑒
𝑗−1 + 𝜂𝑗 + 𝜃𝑗−1,𝑗}

6 for 𝑗 ∈ 𝑅 do // Get latest start for the service, according to hard time windows

7 if j = r then
8 𝑡𝑙𝑗 ← min{�̄�𝑑𝑗 − 𝜂𝑗 , �̄� 𝑖𝑑 − 𝜂𝑗}
9 else
10 𝑡𝑙𝑗 ← min{�̄�𝑑𝑗 − 𝜂𝑗 , 𝑡𝑙𝑗+1 − 𝜃𝑗,𝑗+1 − 𝜂𝑗}

11 for 𝑗 ∈ 𝑅 do // Get earliest start for the services, according to soft time windows

12 𝑏
¯𝑗

← min{max{𝛽
¯
𝑑
𝑗 , 𝑡

𝑒
𝑗}, 𝑡

𝑙
𝑗}

13 for 𝑗 ∈ 𝑅 do // Get latest start for the services, according to soft time windows

14 �̄�𝑗 ← max{min{𝛽𝑑𝑗 − 𝜂𝑗 , 𝑡𝑙𝑗}, 𝑡
𝑒
𝑗}

15 𝛥 ← getBlocksSTW (𝑅) // Get blocks of services with overlapping soft time windows
Fig. 3. Route to schedule.
7

3.1.2. First objective
The goal of this part of the approach is to get the schedule with

the best welfare, and it is described in Algorithm 2.2. When setting the
position of the services, it is essential to know if there is an overlap
between consecutive services (line 4). Thus, we can distinguish two
cases:

• If there is no overlap, the starting time of the first service is
updated. This could modify the earliest starting time of the soft
time window for the second service (lines 32 and 35).

• Otherwise, the blocks with consecutive services are joined form-
ing a single block (line 6), which is scheduled at its earliest
possible time (lines 7–12). To obtain the best starting time of the



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Algorithm 2.2: Obtain the schedule with best welfare value

1 �̄� ← ∅ // Schedule services to get the best welfare value

2 for 𝑗 ∈ 𝑅 do
3 if 𝑗 ≠ 𝑟 and 𝑗 ∉ �̄� then
4 𝜛 ← 𝑏

¯𝑗
+ 𝜂𝑗 + 𝜃𝑗,𝑗+1 − �̄�𝑗+1 // Get overlap with follower

5 if 𝜛 > 0 then
6 𝛿 ← getBlockOfServices(𝛥, 𝑗, 𝑗 + 1) // Join the blocks that contain the services

7 if 𝛿1 = 1 then // Schedule the block 𝛿 = [𝛿1 , ..., 𝛿𝑏] at its earliest time

8 𝑡𝛿𝑟 ← 𝑡𝑒
𝛿𝑟

9 𝑡𝑘 ← min{�̄�𝑑𝑘 − 𝜂𝑘, 𝑡𝑘+1 − 𝜃𝑘,𝑘+1 − 𝜂𝑘} ∀𝑘 ∈ [𝛿𝑏−1, ..., 𝛿1]
10 else
11 𝑡𝑘 ← max{𝛼

¯
𝑑
𝑘 , 𝑡

𝑖𝑑
𝑘−1 + 𝜂𝑘−1 + 𝜃𝑘−1,𝑘} ∀𝑘 ∈ [𝛿1, ..., 𝛿𝑏]

12 𝑡𝑘 ← min{�̄�𝑑𝑘 − 𝜂𝑘, 𝑡𝑘+1 − 𝜃𝑘,𝑘+1 − 𝜂𝑘} ∀𝑘 ∈ [𝛿𝑏−1, ..., 𝛿1]
13 𝑑𝑒𝑙𝑎𝑦 ← 𝑇 𝑟𝑢𝑒 // Delay the block to improve welfare

14 while 𝑑𝑒𝑙𝑎𝑦 = 𝑇 𝑟𝑢𝑒 do
15 𝐸, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 ← getPossibleDelays(𝛿, 𝑡𝛿 , 𝑡𝑙) // Get possible delay times

16 if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 is 𝐹𝑎𝑙𝑠𝑒 and 𝛿1 ≠ 1 then // Check if the welfare improves

17 𝛿 ← 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑏𝑙𝑜𝑐𝑘 + 𝛿 // Add the previous block

18 {𝑡𝑘}𝑘∈𝛿 ← getBlockSchedule(𝛿) // Schedule the block at its earliest time

19 else if 𝑖𝑚𝑝𝑟𝑜𝑣𝑒 is 𝑇 𝑟𝑢𝑒 then
20 𝜖𝑚𝑎𝑥 ← 𝛽

¯
𝑑
𝛿1

− (𝑡𝛿𝑏 + 𝜂𝛿𝑏 + 𝜃𝛿𝑏 ,𝛿1 ) // Get delay time needed to reach the follower block 𝛿 = [𝛿1 , ..., 𝛿𝑏]

21 if 𝛿 is not the last block and 𝜖𝑚𝑎𝑥 < max{𝐸} then
22 𝐸 ← {𝜖𝑖 ∈ 𝐸 ∶ 𝜖𝑖 < 𝜖𝑚𝑎𝑥} ∪ {𝜖𝑚𝑎𝑥}
23 𝑡𝛿 ← delayBlock(𝛿) // Delay the block the maximum amount of time that reduces welfare

24 if 𝛿 is not the last block and 𝜖𝑓𝑖𝑛𝑎𝑙 = 𝜖𝑚𝑎𝑥 then
25 𝛿 ← 𝛿 + 𝛿 // Add following block if necessary

26 𝑡𝑙 ← max{𝛼
¯
𝑑
𝑙 , 𝑡𝑙−1 + 𝜂𝑙−1 + 𝜃𝑙−1,𝑙} ∀𝑙 ∈ [𝛿1, ..., 𝛿𝑏] // Set times for the block

27 else
28 𝑑𝑒𝑙𝑎𝑦 ← 𝐹𝑎𝑙𝑠𝑒
29 else
30 𝑑𝑒𝑙𝑎𝑦 ← 𝐹𝑎𝑙𝑠𝑒
31 �̄� ← �̄� + 𝛿
32 else
33 𝑡𝑗 ← 𝑏

¯𝑗
, �̄� ← �̄� + 𝑗, 𝑏

¯𝑗+1
← max{𝑡𝑗 + 𝜂𝑗 + 𝜃𝑗,𝑗+1, 𝑏¯𝑗+1

} // Update elements

34 else if 𝑗 = 𝑟 and 𝑗 ∉ �̄� then
35 𝑡𝑗 ← 𝑏

¯𝑗
i
6
t

(

Fig. 4. Earliest and latest starting times, according to hard and soft time windows.

new block, we will take into account that each service in the block
could be positioned at the beginning or at the end of its soft time
window (line 15). This procedure of joining blocks continues until
there is no overlap between consecutive blocks (lines 16–28).

Example 3.2. Considering Example 3.1, a feasible schedule can be
obtained by setting the following starting times: service 1 at 𝑏

¯1
, service

2 at 𝑏
¯2
, service 3 at 𝑏

¯3
and service 4 at 𝑏

¯3
+ 𝜂3 (lines 3 and 33). As it

can be seen in Fig. 5, there is no soft time windows penalization with
8

this schedule.
Fig. 5. Schedule for services 1, 2, 3 and 4.

Now, let us assume that service 5 is added. Fig. 6 shows that if this
service is scheduled at its latest time, according to its soft time window,
then there is an overlap with service 4 (line 4).

In Fig. 7, the block composed of services 3, 4, 5 and 6 is handled as
f it were a single service and it is scheduled at its earliest time (lines
–12). The dotted line indicates the amount of time outside the soft
ime windows of the services.
Fig. 8 presents three ways of obtaining delay times for the block

lines 15, 19–28). For this example the best move is to delay the block
until service 5 reaches the end of its soft time window (Fig. 8(b)),
because a bigger delay would not provide better solutions (Fig. 8(c)).



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

3

Algorithm 2.3: Obtain the schedule with best cost value

1 𝛥 ← getBlocksConsecutiveServices(𝑅, 𝑡) // Get block of consecutive services

2 for 𝛿 ∈ 𝛥 do // Get time window for each block so the welfare is maintained

3 if 𝛿 only has one service, 𝑗 then
4 𝑎

¯𝑗
← 𝛽
¯
𝑑
𝑗 , �̄�𝑗 ← 𝛽𝑑𝑗 − 𝜂𝑗

5 else
6 𝜆𝑎 ← min𝑘∈𝛿{𝑡𝑖𝑑𝑘 − 𝑡𝑒𝑘}, 𝜆𝑑 ← min𝑘∈𝛿{𝑡𝑙𝑘 − 𝑡𝑖𝑑𝑘 } // Get maximum advance and delay

7 𝐸𝑑 , 𝐸𝑎 ← getDelayAdvanceTimes(𝛿, 𝑡𝛿 , 𝜆𝑎, 𝜆𝑑) // Get possible delay and advance times

8 𝜖𝑑 ← getDelayTime(𝐸𝑑 , 𝑡𝛿) // Get maximum delay time that improves or maintains the welfare

9 𝜖𝑎 ← getAdvanceTime(𝐸𝑎, 𝑡𝛿) // Get maximum advance time that improves or maintains the welfare

10 for 𝑗 ∈ 𝛿 do // Get the time window for the services

11 𝑎
¯𝑗

← 𝑡𝑗 − 𝜖𝑎, �̄�𝑗 ← 𝑡𝑗 + 𝜖𝑑
12 𝑎

¯
, �̄� ← updateTimeWindow(𝛥, 𝑎

¯
, �̄�) // Update the time window so the block can be scheduled at 𝑎

¯
and �̄�

13 if there is only one block then
14 𝑡 ← 𝑡
15 else
16 𝑗 ← first service of second block
17 𝑡𝑙 ← �̄�𝑙 ∀𝑙 ∈ 𝑓𝑖𝑟𝑠𝑡 𝑏𝑙𝑜𝑐𝑘 // Make all breaks between blocks as small as possible

18 𝑡𝑗𝑙 ← max{𝑎
¯ 𝑙
, 𝑡𝑙−1 + 𝜂𝑙−1 + 𝜃𝑙−1,𝑙} ∀𝑙 ∈ [𝑗, .., 𝑟]

19 while 𝛿 ∈ 𝛥 is not the last one do // Make break after 𝛿 as big as possible

20 𝑗 ← first service of 𝛿, 𝑘 ← last service of 𝛿 + 1 = 𝛿
21 𝑡𝑙 ← 𝑎

¯ 𝑙
∀𝑙 ∈ [𝛿1, ..., 𝛿𝑏], 𝑡𝑙 ← �̄�𝑙 ∀𝑙 ∈ [𝛿1, ..., 𝛿𝑏]

22 𝑡𝑙 ← min{�̄�𝑙 − 𝜂𝑙 , 𝑡𝑙+1 − 𝜃𝑙,𝑙+1 − 𝜂𝑙} ∀𝑙 ∈ [𝑗 − 1, ..., 1]
23 𝑡𝑙 ← max{𝑎

¯ 𝑙
, 𝑡𝑙−1 + 𝜂𝑙−1 + 𝜃𝑙−1,𝑙} ∀𝑙 ∈ [𝑘 + 1, ..., 𝑟]

24 𝑡 ← chooseBestCostSchedules(𝑡, 𝑡)
25 𝑡 ← chooseBestCostSchedules(𝑡,𝑡) // Choose the schedule with best cost value

26 return 𝑡
a
p

c
1
a

Fig. 6. Schedule adding service 5.

Fig. 7. Schedule with a block of services.

.1.3. Second objective

To improve the cost of the schedule, the approach (Algorithm 2.3)
divides the route into blocks of services without breaks (line 1). Then,
for each block, we compute a new time window guaranteeing that the
value of the second objective remains unchanged (lines 2–12). Within
this time window, it may be possible to reduce the cost. To this aim,
two different strategies are proposed:
9

• We can make all the breaks between blocks as small as possible
(lines 16–18).

• We can make one of the breaks as big as possible and reduce the
other ones (lines 19–24).

The option resulting in the minimum cost is selected (line 25).

Example 3.3. Once a solution with the best penalization is ob-
tained in Example 3.2, it is time to explore the second objective.
To this aim, the route is divided in blocks of consecutive services:
𝛥 = {{1}, {2}, {3, 4, 5, 6}} (line 1). As shown in Fig. 9, the earliest (𝑎

¯𝑗
)

nd latest (�̄�𝑗) starting times for the services, guaranteeing that the
enalization of the blocks will not change, are computed (lines 2–12).
To get the schedule with the minimum cost, two options might be

onsidered: reduce the breaks between services (see Fig. 10(a), lines
6–18) or make one of the breaks as big as possible (see Figs. 10(b)
nd 10(c), lines 19–24). In this particular case, Fig. 10(b) presents the
optimal solution, since increasing the break between services 1 and 2
results in the best cost (line 25).

4. Computational experiments

In this section we present the computational study carried out in
order to check the behaviour of the heuristic algorithm previously
described.

The algorithm has been implemented in Python 3.7 (Van Rossum
and Drake, 2009), and the MILP problem has been solved with Gurobi
9.1.1 (Gurobi Optimization, 2021) via its Python interface. All the
experiments were run in a machine Intel(R) Xeon(R) Gold 6146 CPU
3.20 GHz, with 16 GB of RAM, 2 cores and 100 GB of hard drive,
located in Centre for Information and Communications Technology
Research (CITIC).



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

4

M
p
T
w
i
i
w
a
g
t

i
(

Fig. 8. Analysing delays of the block {3, 4, 5, 6}.
Table 5
Data instances.
S N Duration Length of htw Length of stw Travel time Size

min max min max min max min max

10 2 10 90 65 3380 64 3367 1 75 496 × 950
15 2 10 90 83 1343 75 1258 1 89 1036 × 2010
25 4 10 90 53 896 12 93 1 84 5382 × 10560
50 6 10 90 49 1226 11 93 1 96 31048 × 61490
100 14 10 90 20 1225 12 93 1 101 284512 × 566210
s
a
w
s
c
5

T
a
o

e
5
f
v
a
d
𝑎
5

a
t
i
b
e
s

o

Fig. 9. Earliest and latest starting times of the services.

.1. Study of the parameters of the algorithm

The goal of this analysis is not specifically devoted to compare the
ILP model with our method, but mainly to allow us to adjust the
arameters of the algorithm using data that captures diverse scenarios.
hus, the experiments are based on the data from Solomon (1987),
hich provide a great diversity in the location of the services. These
nstances represent 100-customer euclidean problems, with the follow-
ng characteristics: services to carry out, locations, duration, hard time
indows, caregivers availability and total working times. Further, some
dditional data required by our particular problem were randomly
enerated: services–caregivers affinity levels and soft time windows of
he services.
Table 5 contains a basic description of 5 types of Solomon instances,

n terms of the number of services (S) and the number of caregivers
N). For each type, 10 different instances were randomly generated,
10
pecifying: minimum and maximum duration of the services, minimum
nd maximum length of the hard time windows (htw) and soft time
indows (stw), minimum and maximum travel times between the
ervices and size of the problems (number of variables × number of
onstraints). In addition, the affinity levels were randomly set to 3 or
.
The MILP has been solved by using Gurobi with a time limit of 12 h.

he results are presented in Table 6. Note that although Gurobi finds
feasible solution for 80% of the instances, it only ensures the global
ptimality in 45% of them.
Regarding the configuration of the heuristic algorithm, the param-

ters considered are the number of iterations (50, 100, 150, 200, 250,
00, 750 and 1000) and the proportion of solution to be destroyed,
rom now on 𝑝, (25%, 50%, 75% and 100%). Further, an automatic
ersion that dynamically updates this parameter is employed, denoted
s 𝑎𝑢𝑡𝑜_𝑝, which is a method that starts with a proportion of 𝑝 and
ecreases after each iteration of the algorithm (𝑎𝑢𝑡𝑜_25%, 𝑎𝑢𝑡𝑜_50%,
𝑢𝑡𝑜_75% and 𝑎𝑢𝑡𝑜_100%). Each combination of parameters has been run
times with a time limit of 1 h.
A detailed comparison of the solutions given by the algorithm

nd the ones found using Gurobi, as well as an in-depth study of
he parameter 𝑝, are presented in Appendix B. In summary, for small
nstances (10 and 15 services), it can be seen that the algorithm behaves
etter than Gurobi for the biggest values of 𝑝. Furthermore, the results
vidence that as far as the size of the instances increases, the better
olutions are reached if the value of 𝑝 is slightly reduced.
Figs. 11–13 present the evolution of the success rate (the proportion

f times where the best solution is found) and the computational time



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Table 6
Gurobi computational results.
instance feasible opt gap secs instance feasible opt gap secs

10_01 ✓ ✓ – 411.58 10_06 ✓ ✓ – 651.36
10_02 ✓ ✓ – 543.34 10_07 ✓ ✓ – 2346.73
10_03 ✓ ✓ – 1447.64 10_08 ✓ ✓ – 389.92
10_04 ✓ ? 1103.70 limit 10_09 ✓ ? 1160.16 limit
10_05 ✓ ✓ – 1681.82 10_10 ✓ ✓ – 558.92

15_01 ✓ ✓ – 4246.17 15_06 ✓ ? 1159.70 limit
15_02 ✓ ? 224.91 limit 15_07 ✓ ? 587.11 limit
15_03 ✓ ✓ – 5297.21 15_08 ✓ ? 1045.77 limit
15_04 ✓ ? 118.34 limit 15_09 ✓ ? 862.76 limit
15_05 ✓ ? 735.44 limit 15_10 ✓ ✓ – 41021.30

25_01 ✓ ✓ – 41.37 25_06 ✓ ✓ – 29.84
25_02 ✓ ✓ – 2009.30 25_07 ✓ ? 1.76 limit
25_03 ✓ ✓ – 37.02 25_08 – – – –
25_04 ✓ ? 2.915 limit 25_09 ✓ ✓ – 28.26
25_05 – – – – 25_10 ✓ ✓ – 158.94

50_01 – – – – 50_06 ✓ ? 2.80 limit
50_02 ✓ ? 49.05 limit 50_07 – – – –
50_03 ✓ ✓ – 410.92 50_08 ✓ ? 0.008 limit
50_04 ✓ ? 0.01 limit 50_09 ✓ ? 0.005 limit
50_05 ✓ ? 0.01 limit 50_10 ✓ ? 0.01 limit

100_01 ✓ ? 0.008 limit 100_06 – – – –
100_02 – – – – 100_07 – – – –
100_03 ✓ ? 346.04 limit 100_08 – – – –
100_04 – – – – 100_09 – – – –
100_05 ✓ ? 269.05 limit 100_10 ✓ ? 0.003 limit
Table 7
Real data instances.
week S N Duration Length of htw Length of stw Travel time Size (vars ×constr)

min max min max min max min max

1 865 39 30 168 90 630 60 450 0 22 409242965 × 817811191
2 880 38 30 168 90 630 60 450 0 22 412686700 × 824704562
3 895 35 30 168 90 630 60 450 0 22 393163615 × 785700695
4 863 37 30 168 90 630 60 450 0 22 386464469 × 772290281
5 633 38 30 160 90 630 60 450 0 22 213674848 × 426868578
6 822 37 30 160 90 630 60 450 0 22 350646500 × 700684683
7 894 36 30 160 90 630 60 450 0 22 403494396 × 806345076
8 760 39 30 168 90 630 60 450 0 22 315995510 × 631398181
9 808 36 30 168 90 630 60 450 0 22 329657720 × 658733644
10 911 37 30 160 90 630 60 450 0 22 430610597 × 860547017
11 870 39 30 160 90 630 60 450 0 22 413983620 × 827288601
12 840 39 30 180 90 630 60 450 0 22 385949190 × 771243141
13 950 38 30 180 90 630 60 480 0 22 480891900 × 961061762
14 925 38 30 180 90 630 60 480 0 22 455934400 × 911165762
15 939 38 30 180 90 630 60 480 0 22 469828672 × 938943666
11
Fig. 10. Procedure to improve the second objective.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

r
t

Fig. 11. Computational results for instances with 10 services.
Fig. 12. Computational results for instances with 15 services.
},

f
l
i

u
F
F

b
b
o
c
w

s
i

p
I
c

(in seconds) along the iterations. Fig. 11 is related to instances with
10 services. Configurations 𝑝 ∈ {𝑎𝑢𝑡𝑜_75%, 𝑎𝑢𝑡𝑜_100%} present really
good behaviour according to the success rate and the computational
time. It is clear that, for these instances, the worst configurations
are 𝑝 ∈ {25%, 𝑎𝑢𝑡𝑜_25%}. With regard to instances with 15 services,
Fig. 12 shows that 𝑝 ∈ {75%, 𝑎𝑢𝑡𝑜_100%} are good choices, although
𝑝 = 𝑎𝑢𝑡𝑜_100% is faster. Fig. 13 indicates that, for instances with 25
services, 𝑝 = 𝑎𝑢𝑡𝑜_75% outperforms the other configurations of 𝑝 in
terms of success rate and computational time.

Figs. 14 and 15 evaluate mean RPD and computational time along
the iterations for instances with 50 and 100 services. Notice that the
Relative Percentage Deviation (RPD), of solution 𝑥 with respect to
solution 𝑥′, is defined as 𝑅𝑃𝐷(𝑥) = 𝑓 (𝑥)−𝑓 (𝑥′)

𝑓 (𝑥′) × 100.
As far as instances with 50 services, 𝑝 = 𝑎𝑢𝑡𝑜_25% is the best con-

figuration in terms of mean RPD and computational time. For instances
with 100 services only three configurations, 𝑝 ∈ {25%, 𝑎𝑢𝑡𝑜_25%, 𝑎𝑢𝑡𝑜_50%
are able to solve the instances for 750 and 1000 iterations in the given
time limit. From these configurations, the best one (according to the
mean RPD and computational time) is 𝑝 = 𝑎𝑢𝑡𝑜_25%.

To conclude, as the number of services increases, it is desirable to
educe the initial value of the proportion in the automatic configura-
ions. In this way, the lowest initial values for 𝑎𝑢𝑡𝑜 behave better in the
largest instances, obtaining fast computational times.

4.2. Real data

Table 7 shows the data of 15 real instances, taken by the schedule of
12

the company during consecutive weeks between years 2016 and 2017.
For these instances, the number of services vary from 633 to 950 and
their duration is between 30 and 180 min. The available caregivers for
each week vary from 35 to 39 and the affinity levels between users and
caregivers are 3, 4 or 5.

According to the results in the previous section, several experiments
were run with small values of the automatic configuration of 𝑝, with 𝑝
rom 1 to 10. Further, it was considered as stopping criterion a time
imit of 90 min. This analysis showed that 𝑝 = 1 was a good choice, so
t was selected to compare the algorithm with the company solution.
Fig. 16 shows the results obtained by the algorithm and the sched-

les used by the company during the considered weeks. Besides,
igs. 16(a), 16(c) and 16(e) are devoted to study the welfare, whereas
igs. 16(b), 16(d) and 16(f) are related to the cost.
It can be seen in Fig. 16(a) and 16(b) that the algorithm always finds

etter results than those employed by the company. In addition, if we
reak down the welfare into the affinity and the penalization, we also
bserve that the algorithm improves the results in both cases. Similar
onclusions are obtained if we disaggregate the cost in overtime and
orked time.
To explore the results in more detail, we will deeply analyse the

olution with respect to the following characteristics: affinity, penal-
zation, overtime, travel time, dynamic break and idle time.
Thus, Table 8 shows the results with respect to the affinity and the

enalization on a weekly basis, both globally and on average per user.
n all the weeks, the algorithm clearly outperforms the results of the
ompany.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

i
b
c
t
o
c
b

Fig. 13. Computational results for instances with 25 services.
Fig. 14. Computational results for instances with 50 services.
Fig. 15. Computational results for instances with 100 services.
a
r

a
T
t

On the other hand, the quality of the solutions can be measured
n terms of affinity obtaining the percentage of services where the
est possible level of affinity is reached, which means that the best
aregivers (according to the level of affinity) have been assigned to
hese services. Thus, Table 9 shows a comparison between the results
f the company and the ones of the algorithm per week. In all the
ases, the algorithm solution is clearly better than the solution proposed
y the company. The percentages of services that have the highest
13

o

ffinity for the company and the algorithm are 81.04% and 88.87%,
espectively, when considering all the services across all the weeks.
The soft time window penalization for the users and the services in

ll the weeks is represented in the boxplots of Figs. 17(a) and 17(b).
he graphical results confirm a remarkable improvement with respect
o the solutions of the company.
Table 10 shows the results per week with respect to the global

vertime and worked time, as well as the average per caregiver with



Computers and Operations Research 159 (2023) 106351

14

I. Méndez-Fernández et al.

Fig. 16. Computational results for real instances.

Fig. 17. Soft time window penalization (all weeks).



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Table 8
Computational results for real instances (welfare).
Week Solution Global Per user

Welfare Affinity Penalization Affinity Penalization
(×𝐸8) (×𝐸3) (×𝐸3)

1 Algorithm 3.36 3.81 2.33 4.33 2.73
Company 3.22 3.64 11.55 4.14 13.73

2 Algorithm 3.60 4.10 2.65 4.66 2.76
Company 3.48 3.94 11.93 4.50 14.94

3 Algorithm 3.72 4.28 2.33 4.76 2.75
Company 3.66 4.19 11.89 4.66 14.66

4 Algorithm 3.44 4.06 2.29 4.66 3.18
Company 3.44 4.02 11.53 4.62 15.19

5 Algorithm 1.88 2.99 1.84 4.73 2.95
Company 1.82 2.86 9.27 4.60 16.10

6 Algorithm 3.03 3.68 2.26 4.37 2.61
Company 2.97 3.58 11.60 4.25 15.39

7 Algorithm 3.77 4.29 2.63 4.75 3.15
Company 3.68 4.17 11.96 4.62 14.60

8 Algorithm 2.62 3.59 1.96 4.73 2.50
Company 2.56 3.48 10.16 4.64 15.03

9 Algorithm 2.81 3.73 2.30 4.57 2.92
Company 2.71 3.58 10.52 4.44 15.21

10 Algorithm 3.72 4.24 2.55 4.65 2.93
Company 3.66 4.15 11.66 4.59 14.49

11 Algorithm 3.50 4.18 3.09 4.76 3.11
Company 3.45 4.09 11.29 4.64 14.50

12 Algorithm 3.26 3.99 2.45 4.73 3.25
Company 3.22 3.92 10.53 4.65 14.66

13 Algorithm 4.19 4.53 3.15 4.78 3.14
Company 4.09 4.38 13.54 4.67 15.83

14 Algorithm 3.88 4.43 2.09 4.80 2.58
Company 3.85 4.35 12.32 4.75 14.20

15 Algorithm 4.00 4.50 2.37 4.81 3.10
Company 3.97 4.44 11.77 4.71 13.70
b
t
f
p

Table 9
Percentage of services with maximum affinity (per week).
Week Company Algorithm Week Company Algorithm

1 76.30% 86.24% 9 78.46% 90.09%
2 75.90% 85.00% 10 79.58% 87.70%
3 82.79% 90.27% 11 84.82% 90.91%
4 82.96% 86.21% 12 83.09% 88.69%
5 77.40% 89.41% 13 80.52% 91.05%
6 76.64% 86.00% 14 86.59% 91.35%
7 83.89% 91.27% 15 85.83% 91.48%
8 78.42% 86.44%

respect to the overtime, the travel time, the duration of the dynamic
break and the idle time (i.e., the total duration of the paid breaks).

Since the overtime, the travel time, the duration of the dynamic
break and the idle time are associated with the cost and are in the same
time units, all their global results have been aggregated in Fig. 18. So,
Fig. 18 shows the mean weekly times per caregiver according to the
results in all the weeks.

Both Table 10 and Fig. 18 evidence the good behaviour of the
algorithm with respect to the results of the company. Then, in the figure
it can be appreciated that the mean of the overtime, the idle time and
the break time are drastically reduced if we employ the algorithm.
However, the difference is negligible in the case of travel times. The
table also shows similar results over the weeks.

A more detailed study of the overtime, the dynamic break, the idle
time and the travel time can be found in Fig. 19. As sake of illustra-
tion, the four characteristics are shown in week 6.3 Hence, Fig. 19(a)

3 A similar behaviour is observed in the other weeks.
15

e

Fig. 18. Mean weekly times per caregiver (all weeks).

presents the comparison of the evolution of the overtime with respect
to the agreed weekly working time for the different caregivers in
both solutions, showing again the good performance of the algorithm.
Figs. 19(b) to 19(d) make a comparison of both solutions on a daily
asis. It is worth mentioning that there is a drastic reduction of the idle
imes every day (see Fig. 19(c)) . This reduction can be one of the key
actors in reducing the overtimes. In terms of travel time, both solutions
erform quite reasonably, with a median time of approximately 5 min

very day and travel times that will never exceed 25 min.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Table 10

Computational results in hours for real instances (cost).
Week Solution Global Per caregiver

Cost Overtime Worked time Overtime Travel time Break Idle time

1 Algorithm 1062.49 97.66 964.82 2.55 1.23 6.48 0.10
Company 1290.31 211.38 1078.93 5.42 1.29 7.48 3.05

2 Algorithm 1110.62 131.21 979.40 3.48 1.34 6.67 0.13
Company 1330.55 242.13 242.13 6.37 1.37 7.28 2.97

3 Algorithm 1187.72 192.33 995.38 5.58 1.51 8.17 0.32
Company 1383.23 280.06 1103.16 8.24 1.54 7.70 3.41

4 Algorithm 1052.64 108.07 944.56 2.92 1.32 6.45 0.18
Company 1247.58 203.93 1043.65 5.51 1.33 7.22 2.86

5 Algorithm 729.22 20.44 708.77 0.53 0.89 4.99 0.08
Company 833.06 48.33 784.73 1.27 0.94 6.51 2.07

6 Algorithm 1028.19 129.28 898.90 3.59 1.30 4.79 0.12
Company 1207.38 218.10 989.28 5.89 1.31 6.76 2.62

7 Algorithm 1132.08 156.60 975.47 4.48 1.53 6.52 0.21
Company 1297.50 227.71 1069.78 6.51 1.53 8.22 2.90

8 Algorithm 881.07 43.12 837.94 1.05 1.08 5.30 0.16
Company 1047.96 116.53 931.43 2.99 1.11 6.15 2.53

9 Algorithm 972.19 94.20 877.99 2.55 1.28 6.65 0.20
Company 1162.40 192.08 970.31 5.49 1.33 8.53 2.75

10 Algorithm 1069.21 92.89 976.32 2.46 1.42 5.84 0.19
Company 1286.75 206.65 1080.10 5.59 1.41 6.58 2.99

11 Algorithm 1045.20 111.42 933.78 3.20 1.43 5.98 0.08
Company 1226.06 195.60 1030.46 5.29 1.38 7.12 2.71

12 Algorithm 980.80 75.60 905.19 1.94 1.31 5.68 0.13
Company 1154.76 148.68 1006.08 3.81 1.34 6.21 2.72

13 Algorithm 1184.37 152.59 1031.78 4.06 1.53 6.14 0.16
Company 1377.91 234.85 1143.06 6.18 1.47 7.13 3.18

14 Algorithm 1149.30 136.22 1013.08 3.39 1.42 6.34 0.22
Company 1358.13 240.00 1118.13 6.32 1.44 6.87 3.01

15 Algorithm 1172.04 153.46 1018.58 4.18 1.52 6.58 0.23
Company 1350.56 219.73 1130.83 5.94 1.50 7.47 3.29
Fig. 19. Overtime, dynamic break, idle time and travel time (week 6).
16



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

r
r
s
u
o
o

(

Fig. 20. Routes for a random day.

Finally, to illustrate the geographical distribution of the obtained
outes for the caregivers, the routes provided by the solution on a
andom day are shown in Fig. 20. Analysing these routes, it can be
een that they cover two different areas: a rural and an urban one. The
rban area (surrounded by the frame) is distinguished for having a lot
f clustered services while the rural area has fewer services but spread
ver a more extensive area.
We selected 5 random caregivers who work on the urban area

Fig. 21(a)) and 5 caregivers who cover the rural area (Fig. 21(b)). It
can be seen that the caregivers working in the rural area also have to
carry out some urban services. This is necessary to balance the working
time of the caregivers, because there are more services required in the
urban area.

5. Concluding remarks

In this work, a real problem of a home care company is addressed.
The problem shares many of the characteristics of other routing and
17
Table A.11
List of tasks.
Task Description Task Description

1 Get out of bed 9 Do the dishes
2 Make beds 10 Do the laundry
3 Cook breakfast 11 Cleaning
4 Bathe 12 Change diaper
5 Wash hair 13 Go for a walk
6 Dress/undress 14 Brushing teeth/dentures
7 Cook lunch 15 Cook dinner
8 Feed 16 Put to bed

scheduling problems in home care. But, although there is a huge
literature devoted to the understanding of this type of problems, com-
monly known by the acronym HCSP, there is a special feature that
substantially distinguishes it from the others and makes its study of
great interest. In accordance with this characteristic, the longest break
between two daily consecutive services of each caregiver will not be
included as part of her working day, provided that it is greater than a
fixed number of hours.

In order to gather all the requirements of the company, we formu-
lated a MILP with two clearly differentiated objectives. The first and the
most important objective is related to the welfare of the users, since
improving the living conditions of the users is a crucial issue for the
company. The second objective is to reduce the cost of the salaries of
the caregivers as much as possible.

In a first attempt, we tackled the model with an optimization solver.
However, due to the nature of the model, it only provided feasible
solutions for 80% of the instances and guaranteed optimality in 45%
of them.

With the purpose of solving the problem in a more realistic setting,
we developed an algorithm, based on the ALNS technique, that incor-
porates a new method for assessing the quality of the solutions. This
method arises from the difficulty of determining the starting time of
each service, once the services and the order of the services have been
assigned to the caregivers. Basically, the method combines the margin
of movement of the services within the hard and soft time windows
with the grouping of services into blocks, thus allowing to manage the
impact of the breaks between services. This is not an easy task, since
many different scenarios might occur. Thus, it could be seen as the most

innovative part of the framework.
Fig. 21. Routes separated into areas.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

o
o
p
1
t
T
g
d
o
t

C

Table A.12
List of services.
Service Tasks User Day Hard TW Soft TW Duration

1 1, 2, 3, 4, 5, 6, 8 1 Mon 08:00–11:00 08:00–10:00 90
2 3, 8, 9, 10, 11, 12 9 Mon 09.30–12:30 09:30–11:30 120
3 13, 4, 5 10 Mon 11:30–14:00 12:00–14:00 60
4 7, 8, 9, 11 11 Mon 12:00–14:30 13:30–14:30 60
5 13, 15, 8, 9, 14, 16 1 Mon 18:00–21:00 18:00–20:00 120
6 3, 8, 11 2 Tue 08:00–09:00 08:00–09:00 60
7 1, 2, 3, 4, 5, 6, 8 1 Tue 08:00–11:00 08:00–10:00 90
8 4, 7, 10 12 Tue 10:30–14:00 10:30–11:30 60
9 13, 10 4 Tue 12:00–13:30 12:00–13:00 45
10 7, 8, 9, 11 11 Tue 12:00–14:30 13:30–14:30 60
11 13, 15, 8, 9, 14, 16 1 Tue 18:00–21:00 18:00–20:00 120
12 1, 2, 3, 4, 5, 6, 8 1 Wed 08:00–11:00 08:00–10:00 90
13 2, 11 3 Wed 09:30–10:30 09:30–10:30 30
14 3, 8, 9, 10, 11, 12 9 Wed 09.30–12:30 09:30–11:30 120
15 7, 8, 9, 11 11 Wed 12:00–14:30 13:30–14:30 60
16 13, 15, 8, 9, 14, 16 1 Wed 18:00–21:00 18:00–20:00 120
17 3, 8, 11 2 Tue 08:00–09:00 08:00–09:00 60
18 1, 2, 3, 4, 5, 6, 8 1 Thu 08:00–11:00 08:00–10:00 90
19 4, 7, 10 12 Thu 10:30–14:00 10:30–11:30 60
20 13, 10 4 Thu 12:00–13:30 12:00–13:00 45
21 7, 8, 9, 11 11 Thu 12:00–14:30 13:30–14:30 60
22 13, 15, 8, 9, 14, 16 1 Thu 18:00–21:00 18:00–20:00 120
23 1, 2, 3, 4, 5, 6, 8 1 Fri 08:00–11:00 08:00–10:00 90
24 3, 8, 9, 10, 11, 12 9 Fri 09.30–12:30 09:30–11:30 120
25 13, 4, 5 10 Fri 11:30–14:00 12:00–14:00 60
26 7, 8, 9, 11 11 Fri 12:00–14:30 13:30–14:30 60
27 13, 15, 8, 9, 14, 16 1 Fri 18:00–21:00 18:00–20:00 120
28 1, 2, 3, 8, 9 13 Mon 06:30–08:00 06:30–07:30 60
29 3, 8, 14, 9, 10, 12, 13 5 Mon 07:00–12:00 09:00–11:00 120
30 7, 8 14 Mon 12:00–14:00 12:00–13:00 30
31 13, 4, 5, 6, 12 6 Mon 16:00–20:00 16:00–20:00 120
32 10, 4, 5, 6 15 Mon 17:00–20:00 17:30–19:30 60
33 1, 2, 3, 8, 9 6 Tue 07:00–10:00 09:00–10:00 60
34 1, 2, 3, 8, 9 13 Tue 08:30–10:00 09:00–10:00 60
35 4, 5, 6, 12, 14, 11 7 Tue 10:00–13:00 10:00–12:00 90
36 5, 11 8 Tue 11:30–12:30 11:30–12:30 30
37 7, 8, 9, 14 16 Tue 11:30–14:00 11:30–13:30 60
38 7, 8, 14, 9, 12, 11 17 Tue 12:30–15:00 11:30–13:30 75
39 1, 2, 3, 8, 9 13 Wed 06:30–08:00 06:30–07:30 60
40 3, 8, 14, 9, 10, 12, 13 5 Wed 07:00–12:00 09:00–11:00 120
41 7, 8 14 Wed 12:00–14:00 12:00–13:00 30
42 13, 4, 5, 6, 12 6 Wed 16:00–20:00 16:00–20:00 120
43 10, 4, 5, 6 15 Wed 17:00–20:00 17:30–19:30 60
44 1, 2, 3, 8, 9 6 Thu 07:00–10:00 09:00–10:00 60
45 1, 2, 3, 8, 9 13 Thu 08:30–10:00 09:00–10:00 60
46 4, 5, 6, 12, 14, 11 7 Thu 10:00–13:00 10:00–12:00 90
47 5, 11 8 Thu 11:30–12:30 11:30–12:30 30
48 7, 8, 9, 14 16 Thu 11:30–14:00 11:30–13:30 60
49 7, 8, 14, 9, 12, 11 17 Tue 12:30–15:00 11:30–13:30 75
50 1, 2, 3, 8, 9 13 Fri 06:30–08:00 06:30–07:30 60
51 3, 8, 14, 9, 10, 12, 13 8 Fri 07:00–12:00 09:00–11:00 120
52 7, 8 14 Fri 12:00–14:00 12:00–13:00 30
53 13, 4, 5, 6, 12 6 Fri 16:00–20:00 16:00–20:00 120
54 10, 4, 5, 6 15 Fri 17:00–20:00 17:30–19:30 60
/

To evaluate the performance of the algorithm, we tested instances
f 10, 15, 25, 50 and 100 services, by adapting to the characteristics
f our problem the Solomon instances for routing and scheduling
roblems with time windows constraints. Finally, real data instances of
5 consecutive weeks from 2016 to 2017 were considered to compare
he schedules provided by the company with the algorithm schedules.
he results were very promising, since multiple configurations of the al-
orithm can be used to obtain good solutions for the Solomon instances,
epending on their size. In terms of the real instances, the schedules
btained using the algorithm are much better than those provided by
he company.

RediT authorship contribution statement

Isabel Méndez-Fernández: Conceptualization, Methodology, Soft-
ware, Writing – original draft, Writing – review & editing. Silvia
Lorenzo-Freire: Conceptualization, Methodology, Software, Writing –
18
original draft, Writing – review & editing. Ángel Manuel González-
Rueda: Conceptualization, Methodology, Software, Writing – original
draft, Writing – review & editing.

Data availability

Data will be made available on request.

Acknowledgements

This research was funded by MICINN/AEI/10.13039/501100011033
and ERDF/EU through R+D+I project grants MTM2017-87197-C3-1-P
and PID2021-124030NB-C31 and by Consellería de Cultura, Educación
e Universidades, Xunta de Galicia (Grupos de Referencia Competitiva
ED431C-2020/14 and Centro de Investigación del Sistema universitario
de Galicia ED431G-2019/01). Funding for open access charge: Univer-
sidade da Coruña/CISUG. Constructive comments from several referees
and the editor are also gratefully acknowledged.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Fig. A.22. Schedules of Caregiver 1.
Fig. A.23. Schedules of Caregiver 2.
Appendix A. Example

In this section an example of the problem under study is presented.
It consists of 54 services that two caregivers have to carry out over the
course of a week.

First, Table A.11 shows a description of the tasks to be performed
during the services. Then, Table A.12 describes the characteristics of
the services including: the set of tasks assigned to each service, the
user demanding the service, the day on which the service should be
performed, the time windows and the duration. Finally, the affinity
levels between users and the available caregivers are presented in
Table A.13.

The weekly schedules of the caregivers are shown in Figs. A.22 and
19

A.23. Each column represents the day schedule, the travel times and the
breaks (the light ones are considered as working time, whereas the dark
ones are unpaid breaks). Each box includes the following information:
hard time window (top left), soft time window (top right), service and
user (middle) and the scheduled start and end time (bottom).

Analysing the cost of the schedule for Caregiver 1, it can be seen
that the schedule of Monday is repeated on Friday.4 The same happens
with Tuesday and Thursday. Since every day there is only one break of
more than two hours, they will be subtracted from their corresponding
working day. In this way, the fifteen minute break in Tuesday and
Thursday belongs to the working day. In terms of Caregiver 2, the
schedule of Monday is the same as the ones on Wednesday and Friday.

4 Recurrent tasks are carried out at the same times.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Fig. A.24. Improved schedules of Caregiver 1.
Fig. A.25. Improved schedules of Caregiver 2.
Table A.13

List of affinities.
User Affinity Caregiver 1 Affinity Caregiver 2

1 5 2
2 2 2
3 5 2
4 4 1
5 4 4
6 2 5
7 2 4
8 4 2
9 4 2
10 5 4
11 4 2
12 2 4
13 4 5
14 1 5
15 2 5
16 2 5
17 2 2
20
Table A.14
Objective function values.

Affinity STW penalization Overtime Worked time

Caregiver 1 113 425 0 2330
Caregiver 2 118 405 50 2450
Total 231 830 50 4780

Table A.15
Improved objective function values.

Affinity STW penalization Overtime Worked time

Caregiver 1 117 120 175 2575
Caregiver 2 122 140 50 2440
Total 239 260 225 5015

During those days, Caregiver 2 has two breaks that last more than two
hours, which means that only the largest one of them will not be paid.
The schedule of Tuesday is repeated on Thursday and, in this case,
Caregiver 2 has no breaks.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Table B.16
Mean RPD values comparing the algorithm with Gurobi.

25% 50% 75% 100% 𝑎𝑢𝑡𝑜_25% 𝑎𝑢𝑡𝑜_50% 𝑎𝑢𝑡𝑜_75% 𝑎𝑢𝑡𝑜_100%

10_01 0.73 0 0 0 0.31 0 0 0
10_02 0.09 0 0 0 0 0 0 0
10_03 0.04 0 0 0.02 0.02 0.02 0.18 0
10_04 0 0 0 0 0 0 0 0
10_05 0.92 0 0 0.18 0.73 0.18 0 0
10_06 1.46 0.58 0 0 2.91 0 0 0
10_07 0 0 0 0 0.85 0 0 0
10_08 5.24 0 0 0 1.72 0 0 0
10_09 0.16 0 0 0 0.33 0 0 0
10_10 1.72 0 0 0 0 0 0 0

15_01 0 0 0 0 0.25 0 0 0
15_02 0 0 0 0 0.99 0 0 0
15_03 0.10 0 0 0 0.29 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 1.40 −1.26 −1.48 −1.04 0.22 −0.16 −0.93 −0.88
15_06 1.90 −1.49 −2.69 −2.33 −1.01 −1.07 −2.27 −2.67
15_07 0.62 0 −0.77 −0.62 0.10 0.26 −0.31 −0.31
15_08 1.26 −2.15 −2.31 −2.15 −0.38 −2.15 −2.31 −2.31
15_09 2.36 −3.23 −3.23 −3.23 −1.23 −3.23 −3.23 −3.23
15_10 2.48 0 0 0 5.86 0 0 0
Table B.17
RPD values comparing the algorithm with the best solution found.

25% 50% 75% 100% 𝑎𝑢𝑡𝑜_25% 𝑎𝑢𝑡𝑜_50% 𝑎𝑢𝑡𝑜_75% 𝑎𝑢𝑡𝑜_100%

10_01 0 0 0 0 0 0 0 0
10_02 0 0 0 0 0 0 0 0
10_03 0 0 0 0 0 0 0 0
10_04 0 0 0 0 0 0 0 0
10_05 0 0 0 0 0 0 0 0
10_06 0 0 0 0 0 0 0 0
10_07 0 0 0 0 0 0 0 0
10_08 0 0 0 0 0 0 0 0
10_09 0 0 0 0 0 0 0 0
10_10 0 0 0 0 0 0 0 0

15_01 0 0 0 0 0 0 0 0
15_02 0 0 0 0 0 0 0 0
15_03 0 0 0 0 0 0 0 0
15_04 0 0 0 0 0 0 0 0
15_05 0 0 0 0 0 0 0 0
15_06 0 0 0 0 0 0 0 0
15_07 0 0 0 0 0 0 0 0
15_08 0 0 0 0 0 0 0 0
15_09 0 0 0 0 0 0 0 0
15_10 0 0 0 0 0 0 0 0

(continued on next page)
m

D

According to the affinity levels, all services are being carried out
by their preferred caregivers except the ones of Users 12 and 8. These
users are currently assigned to a caregiver with whom they have an
affinity level of 2, but their affinity with the caregiver not attending
them is 4. In terms of the soft time window penalization, some services
are carried out within their soft time window (e.g. Services 6, 17, 35,
46 and 13), while others start before (e.g. Services 3, 4, 15, 25 and 26)
or end after (e.g. Services 7, 8, 18 and 19) their soft time window.

The objective function values, in minutes, are shown in Table A.14.
Both schedules are similar in terms of affinity, soft time penalization
and working time, even though Caregiver 2 has 50 min of overtime (if
the agreed weekly working time is 40 h).

The schedule can be modified in order to improve the affinity and
soft time window penalization. Figs. A.24 and A.25 present the new
schedules and Table A.15 their objective function values.

The overall affinity is improved by interchanging Services 8, 19, 36
and 47 between both caregivers (see yellow boxes). As far as the soft
time window penalization is concerned, its value is greatly reduced by
modifying the schedule of the services carried out outside their soft
time window (see green boxes). However, it will possibly imply an
increment of the duration of some breaks. For instance, the delay of
21

Services 3 and 4 on Monday, creates two new breaks of 20 and 25 min
for Caregiver 1, which are not deducted from the journey. This type of
modifications in the schedule can increase the overtime, as it happens
in this case for Caregiver 1, resulting now in 175 min of overtime.

Appendix B. Solomon instances tables

In this Appendix several tables show the performance of the algo-
rithm with the Solomon instances.

Table B.16 presents, for the instances with 10 and 15 services, the
ean RPD,5 with respect to the second objective.6 This value indicates

the mean of the deviations of the solutions found by the algorithm (with
1000 iterations, considering the different values of 𝑝) from the solution
obtained by using Gurobi solver.7

5 For each instance, let 𝑥 and 𝑥′ be two solutions. The Relative Percentage
eviation (RPD), of 𝑥 from 𝑥′, is defined as 𝑅𝑃𝐷(𝑥) = 𝑓 (𝑥)−𝑓 (𝑥′)

𝑓 (𝑥′)
× 100.

6 There are no differences with respect to the first objective (welfare) for
these instances.

7 Note that, in this case, a negative RPD value indicates that in mean the
algorithm finds a better solution than Gurobi, and a positive value indicates

the contrary.



Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.

i
𝑎
i
a
{
w

h
f
e
t
i
i
t
t

𝑝
r
s
s
n
w
r
l
t
i

R

A

B

B

B

Table B.17 (continued).
25% 50% 75% 100% 𝑎𝑢𝑡𝑜_25% 𝑎𝑢𝑡𝑜_50% 𝑎𝑢𝑡𝑜_75% 𝑎𝑢𝑡𝑜_100%

25_01 2.83𝐸−3 0 0 0 3.92𝐸−3 0 0 0
25_02 8.34𝐸−3 6.45𝐸−3 6.45𝐸−3 6.45𝐸−3 3.02𝐸−3 9.09𝐸−4 7.27𝐸−4 6.45𝐸−3
25_03 2.15 0 0 0 0 0 0 0
25_04 4.67 3.79 5.19 2.58 4.83 3.11 1.72 2.58
25_05 9.89𝐸−1 6.57𝐸−1 6.74𝐸−1 6.52𝐸−1 3.58 1.96 3.35𝐸−1 6.52𝐸−1
25_06 1.22𝐸−3 9.32𝐸−4 7.29𝐸−4 8.13𝐸−4 6.44𝐸−4 0 0 8.13𝐸−4
25_07 1.29 3.24𝐸−1 9.72𝐸−1 6.43𝐸−1 5.82 2.57 1.29 6.43𝐸−1
25_08 1.33 1.97 1.32 1.63 1.96 1.96 1.64 1.63
25_09 2.03𝐸−5 0 0 0 4.07𝐸−5 2.03𝐸−5 2.03𝐸−5 0
25_10 3.69𝐸−4 0 0 0 0 1.62𝐸−3 0 0

50_01 2.89𝐸−3 3.16𝐸−3 4.66𝐸−3 5.28𝐸−3 6.49𝐸−4 8.59𝐸−4 6.17𝐸−4 2.22𝐸−3
50_02 6.52𝐸−1 6.62𝐸−1 5.26𝐸−1 1.47 7.68𝐸−3 1.68𝐸−1 8.07𝐸−1 3.45𝐸−1
50_03 0 0 0 0 0 0 0 0
50_04 6.07𝐸−4 1.01𝐸−3 8.04𝐸−4 1.44𝐸−3 1.09𝐸−3 1.17𝐸−3 1.49𝐸−4 2.51𝐸−4
50_05 4.91𝐸−4 4.95𝐸−4 7.70𝐸−4 1.16𝐸−3 7.70𝐸−4 3.97𝐸−4 2.08𝐸−4 4.54𝐸−4
50_06 6.72𝐸−5 2.69𝐸−5 2.02𝐸−4 3.97𝐸−4 6.72𝐸−5 0 2.02𝐸−5 6.72𝐸−6
50_07 1.61𝐸−3 8.10𝐸−4 6.29𝐸−4 1.40𝐸−3 8.02𝐸−4 1.03𝐸−3 3.62𝐸−4 8.02𝐸−4
50_08 3.22𝐸−4 1.82𝐸−4 4.41𝐸−4 1.12𝐸−3 1.18𝐸−3 7.84𝐸−4 3.08𝐸−4 2.66𝐸−4
50_09 4.03𝐸−4 9.34𝐸−4 1.84𝐸−3 3.15𝐸−3 1.67𝐸−3 9.41𝐸−4 7.40𝐸−4 8.87𝐸−4
50_10 9.63𝐸−4 1.06𝐸−3 2.30𝐸−3 3.59𝐸−3 1.53𝐸−3 2.53𝐸−4 6.82𝐸−4 3.67𝐸−4

100_01 8.91𝐸−1 1.29 1.93 2.98 4.06𝐸−1 6.43𝐸−1 1.21 1.93
100_02 8.33𝐸−2 9.70𝐸−1 1.65 2.21 4.82𝐸−1 5.65𝐸−1 1.13 1.81
100_03 0 0 0 0 0 0 0 0
100_04 2.57 8.46 7.30 8.08 7.76𝐸−1 3.73 5.44 5.56
100_05 0 0 0 0 0 0 0 0
100_06 1.16𝐸−4 2.44𝐸−4 – – 8.93𝐸−5 2.30𝐸−4 2.72𝐸−4 1.65𝐸−4
100_07 3.22𝐸−4 5.41𝐸−4 – – 3.19𝐸−4 3.21𝐸−4 4.23𝐸−4 3.75𝐸−4
100_08 2.30𝐸−5 2.01𝐸−5 – – 1.04𝐸−5 0 2.76𝐸−5 3.45𝐸−5
100_09 2.62𝐸−4 – – – 1.13𝐸−4 4.28𝐸−4 4.09𝐸−4 3.40𝐸−4
100_10 6.78𝐸−6 0 2.37𝐸−5 5.08𝐸−5 0 0 0 0
According to the results, the behaviour of the algorithm in small
nstances is better for the configurations with a larger 𝑝 value (75%,
𝑢𝑡𝑜_75%, 100% and 𝑎𝑢𝑡𝑜_100%). We can therefore deduce that in small
nstances it is advisable to focus on major changes in the solution that
llow the solution space to be adequately explored. In fact, for 𝑝 ∈
75%, 𝑎𝑢𝑡𝑜_100%}, the RPD shows a better performance of the algorithm
ith respect to Gurobi solutions.
With respect to all the instances considered, it is important to

ighlight that, when Gurobi finds a solution the algorithm is able to
ind solutions of the same quality or even much better. Therefore, to
xplore the stability of the algorithm in each instance we have studied
he relative deviation of the solutions of the algorithm with respect to
ts best solution, which coincides with the best solution found for the
nstance. Table B.17 shows the mean RPD value (first objective) for all
he instances comparing the solutions obtained by the algorithm with
he best solution found.
The best RPD values are obtained using different configurations of

, depending on the size of the instance considered. In view of the
esults reported in the table, it can be seen that the algorithm is very
table for the instances considered. In the instances with 10 and 15
ervices, all the tests performed result in the best solution. As the
umber of services increases, it can be seen that the configurations
ith smaller values of 𝑝 are the most suitable. This trend is clearly
eflected in the instances with 100 services, where 𝑝 ∈ {25%, 𝑎𝑢𝑡𝑜_25%}
ead to acceptable solutions in all cases. However, for these instances,
he configurations with 𝑝 ∈ {75%, 100%} do not even provide solutions
n the set time.

eferences

kjiratikarl, C., Yenradee, P., Drake, P.R., 2007. PSO-based algorithm for home care
worker scheduling in the UK. Comput. Ind. Eng. 53 (4), 559–583.

achouch, R.B., Guinet, A., Hajri-Gabouj, S., 2011. A decision-making tool for home
health care nurses’ planning. Supply Chain Forum Int. J. 12 (1), 14–20.

ard, J.F., Shao, Y., Jarrah, A.I., 2014. A sequential GRASP for the therapist routing
and scheduling problem. J. Sched. 17 (2), 109–133.

ertels, S., Fahle, T., 2006. A hybrid setup for a hybrid scenario: combining heuristics
for the home health care problem. Comput. Oper. Res. 33 (10), 2866–2890.
22
Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F., 2016. A bi-objective home
care scheduling problem: Analyzing the trade-off between costs and client
inconvenience. European J. Oper. Res. 248 (2), 428–443.

Cappanera, P., Scutellà, M.G., 2015. Joint assignment, scheduling, and routing models
to home care optimization: A pattern-based approach. Transp. Sci. 49 (4), 830–852.

Carello, G., Lanzarone, E., 2014. A cardinality-constrained robust model for the
assignment problem in Home Care services. European J. Oper. Res. 236 (2),
748–762.

Chaieb, M., Jemai, J., Mellouli, K., 2020. A decomposition - construction approach for
solving the home health care scheduling problem. Health Care Manag. Sci. 23 (2),
264–286.

Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., Matta, A., 2017. OR
problems related to Home Health Care: A review of relevant routing and scheduling
problems. Oper. Res. Health Care 13–14, 1–22.

Decerle, J., Grunder, O., Hajjam El Hassani, A., Barakat, O., 2019. A hybrid memetic-
ant colony optimization algorithm for the home health care problem with time
window, synchronization and working time balancing. Swarm Evol. Comput. 46,
171–183.

Erdem, M., Bulkan, S., 2017. A two-stage solution approach for the large-scale home
healthcare routing and scheduling problem. South Afr. J. Ind. Eng. 28, 133–149.

Fikar, C., Hirsch, P., 2017. Home health care routing and scheduling: A review. Comput.
Oper. Res. 77, 86–95.

Garaix, T., Gondran, M., Lacomme, P., Mura, E., Tchernev, N., 2018. Workforce
scheduling linear programming formulation. IFAC-PapersOnLine 51, 264–269.

Grenouilleau, F., Legrain, A., Lahrichi, N., Rousseau, L.-M., 2019. A set partitioning
heuristic for the home health care routing and scheduling problem. European J.
Oper. Res. 275 (1), 295–303.

Gurobi Optimization, L., 2021. Gurobi Optimizer Reference Manual.
Kergosien, Y., Lenté, C., Billaut, J.-C., 2009. Home health care problem: An ex-

tended multiple traveling salesman problem. In: 4th Multidisciplinary International
Conference on Scheduling: Theory and Applications. Dublin, Ireland, pp. 85–92.

Liu, R., Yuan, B., Jiang, Z., 2017. Mathematical model and exact algorithm for the
home care worker scheduling and routing problem with lunch break requirements.
Int. J. Prod. Res. 55 (2), 558–575.

Mankowska, D.S., Meisel, F., Bierwirth, C., 2014. The home health care routing and
scheduling problem with interdependent services. Health Care Manag. Sci. 17 (1),
15–30.

Maya Duque, P.A., Castro, M., Sörensen, K., Goos, P., 2015. Home care service planning.
The case of Landelijke Thuiszorg. European J. Oper. Res. 243 (1), 292–301.

Méndez-Fernández, I., Lorenzo-Freire, S., Garcí a Jurado, I., Costa, J., Carpente, L.,
2020. A heuristic approach to the task planning problem in a home care business.
Health Care Manag. Sci. 23 (4), 556–570.

Mosquera, F., Smet, P., Vanden Berghe, G., 2019. Flexible home care scheduling. Omega
83, 80–95.

http://refhub.elsevier.com/S0305-0548(23)00215-0/sb1
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb1
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb1
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb2
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb2
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb2
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb3
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb3
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb3
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb4
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb4
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb4
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb5
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb5
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb5
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb5
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb5
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb6
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb6
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb6
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb7
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb7
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb7
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb7
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb7
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb8
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb8
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb8
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb8
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb8
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb9
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb9
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb9
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb9
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb9
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb10
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb11
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb11
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb11
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb12
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb12
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb12
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb13
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb13
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb13
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb14
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb14
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb14
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb14
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb14
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb15
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb16
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb16
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb16
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb16
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb16
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb17
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb17
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb17
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb17
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb17
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb18
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb18
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb18
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb18
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb18
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb19
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb19
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb19
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb20
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb20
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb20
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb20
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb20
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb21
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb21
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb21


Computers and Operations Research 159 (2023) 106351I. Méndez-Fernández et al.
Nickel, S., Schröder, M., Steeg, J., 2012. Mid-term and short-term planning support
for home health care services. European J. Oper. Res. 219 (3), 574–587, Feature
Clusters.

Pisinger, D., Ropke, S., 2007. A general heuristic for vehicle routing problems. Comput.
Oper. Res. 34 (8), 2403–2435.

Rest, K.-D., Hirsch, P., 2016. Daily scheduling of home health care services using
time-dependent public transport. Flex. Serv. Manuf. J. 28 (3), 495–525.

Riazi, S., Wigström, O., Bengtsson, K., Lennartson, B., 2019. A column generation-based
gossip algorithm for home healthcare routing and scheduling problems. IEEE Trans.
Autom. Sci. Eng. 16 (1), 127–137.
23
Ropke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40 (4), 455–472.

Solomon, M.M., 1987. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35 (2), 254–265.

Trautsamwieser, A., Hirsch, P., 2011. Optimization of daily scheduling for home health
care services. J. Appl. Oper. Res. 3 (3), 124–136.

Van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, Scotts
Valley, CA.

http://refhub.elsevier.com/S0305-0548(23)00215-0/sb22
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb22
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb22
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb22
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb22
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb23
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb23
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb23
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb24
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb24
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb24
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb25
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb25
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb25
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb25
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb25
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb26
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb26
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb26
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb27
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb27
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb27
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb28
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb28
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb28
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb29
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb29
http://refhub.elsevier.com/S0305-0548(23)00215-0/sb29

	An Adaptive Large Neighbourhood Search algorithm for a real-world Home Care Scheduling Problem with time windows and dynamic breaks
	Introduction
	Problem description
	The MILP model

	Heuristic algorithm
	Approach to evaluate the objective function
	Starting times
	First objective
	Second objective


	Computational experiments
	Study of the parameters of the algorithm
	Real data

	Concluding remarks
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix A. Example
	Appendix B. Solomon instances tables
	References


