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Abstract: In this work, we investigate pilot attacks for 5G single-cell multi-user massivemultiple-
input multiple-output (MaMIMO) systems with a single-antenna active eavesdropper and a
single-antenna jammer operating in time-division duplex (TDD) schemes. Firstly, we describe
the attacks when the base station (BS) estimates the channel state information (CSI) based on
the uplink pilot transmissions. Finally, we propose a reinforcement learning (RL)-based frame-
work for maximizing the system sum rate that proved robust to the eavesdropping and jamming
attacks.

1 Introduction
5G is the name given to the next generation of wireless connectivity, which cellular phone com-
panies are deploying worldwide due to the large demand for high data rates and low latency
in mobile service. It is slated to succeed the existing 4G networks, which currently serve as the
backbone for most contemporary mobile devices Zhang et al. (2020). All 5G wireless devices
are connected to the Internet network by radio waves via an antenna in the cell. Some of the key
technologies to be deployed in 5G technology areMaMIMO, device-to-device (D2D) communi-
cations, intelligent reflecting surfaces (IRS), and millimeter-wave (mmWave) Perez-Adan et al.
(2021). massive multiple-input multiple-output (MaMIMO) is a key 5G technology, which
refers to deploying a vast number of antennas at the base stations (BSs) to support multiple
users at the same time-frequency resources. MaMIMO has the potential to concentrate the ra-
diation energy in the expected direction by using precoding algorithms, and thus the inter-cell
interference can be reducedWang et al. (2021). Due to the large number of antennas at the BSs
and the relatively short channel coherence time, the channel state information (CSI) between
the BS and individual users must be frequently estimated by using uplink pilot transmissions
Wang et al. (2021). However, the security aspects of MaMIMO systems remain relatively unex-
plored. Among the critical concerns within MaMIMO systems is the pilot contamination (PC)
attack, often referred to simply as a pilot attack Akgun et al. (2018). As a preliminary attempt,
the work in Akgun et al. (2018) approaches an important attack scenario, in which a malicious
user may send false CSI feedback to a target BS to jam or eavesdrop on messages received by
other benign users. Thus leading to corruption in the signal transmitted between the commu-
nication ends. In this work, we briefly overview the eavesdropping and jamming attacks in 5G
MaMIMO systems and approach reinforcement learning (RL)-based solutions to detect/miti-
gate communication intrusions.
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1.1 Organization
The remainder of this work is structured as follows. We describe the system model and the
attacks in Section 2 and Section 3, respectively. In Section 4, we briefly overview RL solutions
to detect intrusions and propose an RL-based solution for the precoding design. Simulation re-
sults and comparisons are presented in Section 5. Finally, Section 6 is devoted to the conclusions
of the paper.

2 System model

BS

User K

User 1

Attacker

Figure 1: Pilot attack model in a multi-user (K users) uplink MaMIMO system.

Let us consider a MaMIMO system as shown in Figure 1, where a BS is equipped with M an-
tennas to communicate with K single-antenna users, such that M " K. On the other hand,
an attacker (the red devil) is trying to eavesdrop or jam the transmissions between the users
and BS. We assume a time division duplex time-division duplex (TDD) system and channel
reciprocity holds for coherence time. In MaMIMO systems, the BS needs the channel response
of the user terminal to get the estimate of the channel. The TDD protocol establishes that the
user sends an uplink pilot sequence which is used by the BS to estimate the CSI for that user in
that cell. The BS employs this CSI to estimate the uplink data and for the beamforming design
in downlink transmissions.

3 Attack description
The MaMIMO CSI estimation phase is vulnerable to malicious attacks, which can be classified
into two forms: Pilot active eavesdropping attack and pilot jamming attack. In the following,
we describe both forms of attack and state the corresponding signal model.

3.1 Pilot active eavesdropping attack
Pilot active eavesdropping attacks occur during the uplink. A user transmits a pilot symbol
to the BS for channel estimation, and the BS transmits a precoded signal toward the users. At
the same time as the uplink pilot transmission, the eavesdropper starts an attack by sending
another pilot symbol with the basic assumption that it has the perfect knowledge of the user’s
pilot symbol and the exact time to transmit. It means that the attacker is synchronized with the
legitimate transmission, and this is possible by overhearing the signaling exchange between the
BS and the users.

Let hk P CMˆ1 and hE P CMˆ1 be the column vectors representing the uplink channels
from the legitimate user (k-th) and eavesdropper to BS, respectively. The elements in hk and
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hE follow a Rayleigh fading model. To estimate the channel response, each user sends a pilot
symbol xk,i which is exactly known by the BS. The received pilot at the i-th time instant with
i “ 1, . . . , L and without eavesdropping can be expressed as

yi “

K
ÿ

k“1

a

Pkhkxk,i ` ni, (2.1)

where yi and ni are the M ×1 vectors of received signal and noise, respectively, Pk is the power
transmission available in the K users. The vector ni contains the additive white Gaussian noise
(AWGN) modeled as n „ NCp0, σ2nIMq. The received signal after L pilot transmissions can be
stated as

Y “

K
ÿ

k“1

a

Pkhkxk ` N, (2.2)

where xk P C1ˆL is the block of L symbols corresponding to pilot transmission from the k-th
user and N is the M ˆ L AWGNmatrix. Under a prior knowledge of xk, the estimated channel
(without eavesdropping) would be

ĥk “
Yx˚

k
a

Pk L
“

K
ÿ

i“1

?
Pihixix˚

k
a

Pk L
`

Nx˚
k

a

Pk L
“ hk ` ñk, (2.3)

with ñk
∆
“

Nx˚
k?

Pk L „ CN
´

0, 1
Pk L IM

¯

If the eavesdropper is active (i.e., it synchronously sends the same pilot sequence as the target
users), the pilot-based channel estimation will also contain the component of the eavesdropper
to the BS, hence the received signal at the BS is written as

Y “

K
ÿ

k“1

a

Pkhkxk `
a

PEhExj ` N, (2.4)

where xj is the signal sent from the attacker and PE is the attacker power. Y is the M ˆ L matrix
containing the pilots received by M antennas at BS. We use the model of xj by considering that
xj “

?
PE

řK
k“1 xk, as in the reference Akgun et al. (2017). In this case, the estimated channel

for the k-th user will be given by Akgun et al. (2017)

ĥk “ hk ` ñk `
?

αkhE, (2.5)

where αk “ PE{Pk is the ratio between the average power at the attacker and the power allocated
by the k-th user to the pilot.

The active eavesdroppers aim to disturb the functioning of the network. Specifically, the
eavesdropper’s aims are the following

• Exploit the weaknesses in the user capacity-optimized pilot sequence design to increase
the pilot attacks within the uplink channel estimation.

• Degrade the user signal-to-interference-plus-noise ratio (SINR) to a point where it can-
not meet its requirements, even with a large number of antennas at the BS.

3.2 Pilot jamming attack
By considering the uplink of a single-cell MaMIMO system, depicted in Figure 1, let us consider
now a single-antenna jammer (the red devil). During the uplink, the users send to the BS a pilot
sequence, and an attacker, in this case, sends a jamming signal to interfere with the channel
estimation, and it can adopt a strategy according to its knowledge of the system:
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• If the jammer does not have prior knowledge of the pilot sequences used by the user,
then it will send a random sequence to attack the system Do et al. (2016). It means that
during the uplink, the user sends a pilot sequence, while the jammer sends a random
jamming sequence. where nj is a pseudorandomnoise pilot transmitted by the jamming.

• The jammer has prior knowledge of the pilot sequences used by the users, and it can
know the transmission protocol and the pilot set. The jammer can obtain this informa-
tion by listening to the channel for some consecutive blocks.

In any case, this attacker transmits a random jamming sequence. Therefore, the signal received
by the BS in (2.4) would be written as

Y “

K
ÿ

k“1

a

Pkhkxk `
a

PEhEnj ` N, (2.6)

and the estimated channel in (2.5) for the k-th user will be a highly distorted version of hk due
to the noise transmitted by the attacker.

Since one of the main advantages of MaMIMO is achieving high spectral efficiency, the jam-
mer, by launching a pilot attack, will degrade the asymptotic spectral efficiency of the legitimate
system Do et al. (2016). In Vinogradova et al. (2016) is shown that if the jammer smartly ad-
justs its transmission power to match the desired signals, the spectral efficiency is significantly
affected.

4 Technical solution
In this section, we discuss a possible technical solution for mitigating pilot attacks in 5G
MaMIMO systems. We proposed amethod to deal with pilot attacks using RL-based solutions.
In particular, we aim tomaximize the system sum rate in the downlink systemby considering an
active eavesdropper or a jamming signal. RL is one of the three primarymachine learning (ML)
paradigms, alongside supervised and unsupervised learning. In this area of ML, the agent is
given a reward for taking actions that lead to desired outcomes. Over time, the agent learns to
take actions that maximize the notion of cumulative reward. Some works are approached in
the literature to detect communication intrusions. The work in Tu et al. (2021) proposes an RL-
based technique to detect impersonation attacks in device-to-device (D2D) communications.
They formulate this task as a Markov decision process and learn the optimal policy for detect-
ing impersonation attacks. The authors in Sedjelmaci (2020) propose an RL-based approach to
detect attacks in 5G wireless networks. The approach uses a hierarchical RL algorithm to learn
the optimal policy to detect attacks.

4.1 RL-based solution
In this subsection, we develop a solution for active eavesdropping and jamming mitigation
based on RL. We model a sum-rate maximization problem and design the downlink precoders
by considering RL-based optimization.

4.2 Downlink transmission under active eavesdropping
Let sk be the information signal sent to the k-th user from the BS, which is previously precoded
with vk P CMˆ1.

yk “

K
ÿ

i“1

b

Pi
pdqh˚

k visi ` npdq

k , (2.7)
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where Ppdq

k “ v˚
k vk and npdq

k are the allocated power to sk at BS and the downlink AWGN signal.
The achievable rate for the k-th user can be defined as follows by assuming σ2n “ 1

Rk “ log

˜

1 `
Pk

pdq | ĥ˚
k vk |2

ř

lPK{k Pl
pdq | ĥ˚

l vl |2 `1

¸

. (2.8)

Note that the following sum-rate maximization problem can be addressed to determine the
downlink precoders and the power allocation

“

v˚
1 ¨ ¨ ¨ v˚

K
‰

“ arg max
vk ,@kPK

K
ÿ

k“1

Rk (2.9)

s.t.
K

ÿ

k“1

v˚
k vk ď PA,

being PA ě
řk

k“1 Ppdq

k the total power available at the BS with SNR (dB) “ 10 log10pPAq. How-
ever, note that the channel estimation is corrupted by the active eavesdropper or the jamming
attacker (cf. (2.5)).

Due to the cost function and the design constraints for the precoders, the formulation in (2.9)
becomes a non-trivial optimization problem. Besides, handling the eavesdropping/jamming
scenario without knowing the statistics of the CSI errors is a cumbersome task. We propose an
RL-based solution to solve (2.9) by leveraging the learning capabilities of neural networks.

State, action, and reward function
The state, action, and reward elements that we consider to solve 2.9 are the following. The state
vector tℓ is constructed as tℓ “ rĥ˚

1 , ..., ĥ˚
Ks. Notice that the states stack the information related

to the channel realizations (BS-users). The action vector is composed of the vectors that we are
optimizing (i.e., the precoders), such that aℓ “ rv˚

1 , ..., v˚
Ks. Finally, the reward function will be

defined by

rℓ “

K
ÿ

i“1

Rk

ˇ

ˇ

ˇ
ptℓ, aℓq. (2.10)

Algorithm 1 DCB-DDPG algorithm
1: Initialize:
2: set πps, ϑπq with random ϑπ

3: set rps, a, ϑrq, rps, a, ϑ̃rq with ϑr “ ϑ̃r and set the buffer R
4: for ℓ “ 0, . . . , T ´ 1 do:
5: set tℓ given ĥk, @k
6: agent takes aℓ “ πpsℓ, ϑπq ` ne
7: environment returns rℓ
8: R stores Eℓ “ psℓ, aℓ, rℓq
9: if |R| ą |B| :

10: Sample |B| random experiences Ei “ psi, ai, riq, i “ 0, . . . , |B| ´ 1
11: Compute Lc and backpropagate to update ϑr
12: Compute La and backpropagate to update ϑπ

13: ϑ̃r Ð τϑr ` p1 ´ τqϑ̃r
14: end if
15: Obtain vk, @k by evaluating πps, ϑπq

Output: rv˚
1 ¨ ¨ ¨ v˚

Ks
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In the algorithmic solution, we use a deep contextual bandit-oriented deep deterministic
policy gradient (DCB-DDPG) agent similar to the one approached in Pereira-Ruisánchez et al.
(2023). Similar structures are employed for the neural networks in the actor and critic networks
but proper adaptations have been performed for the dimensions of the state vectors.

The proposed agent is composed of the actor-network πpt, ϑπq, the critic network rpt, a, ϑrq,
the target critic network rpt, a, ϑ̃rq, and the replay buffer R. Note that ϑπ and ϑr are vectors of
weights of the actor and critic network, respectively. The actor and critic networks are trained
from stored experiences. We compute the critic and the actor losses as

Lc “
1

|B|

ÿ

i

pri ´ rpsi, ai, ϑrqq2 (2.11)

and

La “ ´
1

|B|

ÿ

i

rpsi, πpsi, ϑπq, ϑ̃rq, (2.12)

respectively. The exploration noise is defined as ne „ NCp0, σ2ne IDactionq. Algorithm 1 summa-
rizes the interactions between these elements during the training stage.

5 Simulation results
In this section, we present computer experiments to analyze the capability of the proposed
DCB-DDPG to solve the optimization problem in (2.9) while considering active eavesdropping
and jamming. We have previously approached the active eavesdropping scheme, however,
note that the jamming scenario can be easily modeled by considering (2.6) instead of (2.4). We
have considered a multi-user MaMIMO setup with K “ 10 single-antenna users and M “ 400
antennas at the BS, where a single-antenna eavesdropper or jammer has attacked during the
pilot transmission. The number of pilot symbols in the CSI estimation is set to L “ 20.

The values of the training steps (T “ 100000) and the size of the replay buffer, |R|max, were
selected to fit the intended training time. The mini-batch is defined as |B| “ 16 whereas the
exploration noise variance is set to σ2ne “ 0.05. The remaining parameters were obtained exper-
imentally to provide the highest system performance.
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(a) Active eavesdropping attack.
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(b) Jamming attack.

Figure 2: Sum rate by considering K “ 10 users, M “ 400 antennas at the BS, L “ 20 pilot symbols, and
different strategies to configure the precoders and power allocation.
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Figure 2 shows the achievable sum rates obtained with the proposed algorithm and two
baseline strategies: 1-) an upper bound strategywithout eavesdropping or jamming; 2-) a lower
bound (non-robust) strategy where the BS disregards the effects of active eavesdropping or
jamming attack. As shown, the performance of the proposed algorithm comes close to the
upper bound scheme while offering large gains over the non-robust strategy for both scenarios
active eavesdropping (Figure 2(a)) and jamming (Figure 2(b)) attacks. It is also observed that
slightly higher system performance is achieved with our proposed RL-based solution under
the jamming attacker scenario over that assessed under the active eavesdropping attack.

6 Conclusions
In this paper, we have briefly discussed the eavesdropping and jamming pilot attacks in 5G
massive MIMO. We have also proposed an RL-based system design to deal with active eaves-
dropping and jamming in the downlink of a multi-user massive MIMO system. The results
show large gains (in terms of sum rate) provided by the proposed solution over a baseline
strategy that neglects the effects of the attacker in the channel estimation process in the com-
munication system.
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