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Abstract: Human activity recognition (HAR) has garnered significant scientific interest in recent
years. The widespread use of smartphones enabled convenient and cost-effective data collection,
eliminating the need for additional wearables. Given that, this paper introduces a novel HAR
dataset in which participants had freedom in choosing smartphone orientation and placement
during activities, ensuring data variability. It also includes contributions from diverse individ-
uals, reflecting unique smartphone usage habits. Moreover, it comprises measurements from
accelerometer, gyroscope, magnetometer, and GPS, corresponding to one of four activities: in-
active, active, walking, or driving. Unlike other datasets, the collected data in this study were
obtained from smartphones used in real-life scenarios.

Introduction
Emerging as a distinct field of study, human activity recognition (HAR) has gained substan-
tial attention due to its precise classification of diverse human actions. This field focuses on
classifying the activities executed by different individuals by analysing data obtained from an
array of sensors (Aggarwal and Xia, 2014). These sensors capture information while subjects
carry out predeterminedmovements like nodding, raising a hand,walking, running, or driving.
Wearable devices like activity wristbands and smartphones have proven immensely valuable in
generating such data. More specifically, smartphones, with their abundant sensors and conve-
nient dimensions, offer a user-friendly means of gathering high-quality data. Additionally, the
insights derived from people’s behavioural patterns, as tracked by these sensors, provide for
various domains such as healthcare, fitness, and home automation, thus enhancing the capa-
bilities of these sectors (Zahin et al., 2019; Zhu et al., 2015). This fusion of widespread sensing
facilitated by smartphones and the consequent model development has given rise to a flourish-
ing research domain that has garnered escalating interest in recent years (Demrozi et al., 2020;
Lara and Labrador, 2012).

However, there are two main challenges encountered in this field. Firstly, efficiently man-
aging the vast amount of data produced by those devices, alongside their temporal interde-
pendence, is a significant hurdle. Secondly, establishing the correlation between this data and
predefined movements remains an ongoing enigma. Some methodologies have demonstrated
impressive outcomes in extracting insights from sensor data (Attal et al., 2015; Hassan et al.,
2018). Nonetheless, it is noteworthy that these studies often involve adapting devices for spe-
cific placement, like attaching them to various body parts such as the wrist or waist. As a result,

1 This document is heavily based on the contents of Garcia-Gonzalez et al. (2020).
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the effectiveness of these models might be skewed, given the controlled setting in which data
is gathered, encompassing limited activities and particular device orientations.

Moreover, the controlled environment established for those purposes significantly deviates
from real-world scenarios. Users, especially those who employ smartphones, exhibit diverse
manners of carrying those devices. In addition, individuals may vary their clothing choices,
resulting in discrepancies in the orientation and placement of the devices. This variability in
user behaviours and situations clearly contrasts with the hypothetical ideal. Notably, the arti-
ficial intelligence (AI) models introduced so far are markedly influenced by factors like place-
ment and orientation. This reliance restricts their widespread applicability and obstructs their
seamless integration into practical situations. In this way, the lack of a smooth transition to
real-life circumstances constitutes a significant disparity. Nowadays, the AI models developed
for HAR are intricately linked to specific orientations and positions. As a result, these models
lack the flexibility to adapt universally, thereby limiting their extension to diverse user types.
Consequently, the effort to personalise AI models for human activity recognition across a large
spectrum of individuals remains an ongoing avenue of investigation. In fact, this exploration
has persisted for nearly ten years (Solis Castilla et al., 2020; Weiss and Lockhart, 2012).

For the previously mentioned reasons, a new dataset was gathered, looking to close the gap
with the real-life application. Specifically, it was collected using the sensors of 19 individuals’
smartphones, with almost complete freedom. In this way, the differences in the orientation
and placement of the used devices are various, as well as the physical characteristics of each
participant.

Data collection
The data collection process was made through a custom Android application developed by the
authors, which streamlined the process of recording, categorising, and storing data. In this
way, an initial data collection phase was undertaken, spanning approximately one month. The
objective here was double: comprehending the nature of the acquired data and performing
preliminary assessments. Then, a more intensive data gathering effort was conducted over a
period of about one week. That served to rectify the imbalances and weaknesses identified
in the preceding phase. The 19 participants in the study were instructed to specify the activ-
ity they were about to engage in using the previously mentioned Android application before
commencing data collection. In such a manner, upon activity selection, data acquisition began
automatically and stopped when the user indicated the conclusion of the activity. As a result,
each recorded session corresponded to a distinct activity undertaken by a specific individual.
The activities performed were classified into four categories:

• Inactive: not having the smartphone in motion. This consisted of any activity that in-
volved not carrying the smartphone.

• Active: moving with the smartphone, without a specific destination. Activities such as
preparing dinner, attending concerts, shopping for groceries, or doing household chores
fell under the “active” category.

• Walking: any movement towards a defined location. Activities like running or jogging
were categorised as “walking”.

• Driving: every movement via motorised transportation, without the need to be the per-
son driving. This included vehicles like cars, buses, motorbikes, trucks, and similar
modes of conveyance.

Given that, data gathering originated from four distinct sensors: accelerometer, gyroscope,
magnetometer, and GPS. The selection of accelerometer and gyroscope was predicated on their
prevalence in the existing literature and their demonstrated efficacy. Furthermore, the mag-
netometer and GPS were also incorporated, proposing their utility in addressing this chal-
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lenge. Specifically, GPS could play a crucial role in distinguishing those activities by detect-
ing the user’s movement velocity while carrying the smartphone. Anyhow, the data from the
accelerometer, gyroscope, andmagnetometerwere storedwith their tri-axial values. In the con-
text of GPS data, the device’s latitude, longitude, and altitude incrementswere stored alongside
the measurement’s bearing, velocity, and accuracy. In addition, the accelerometer data were re-
fined by using the gravity sensor. That involved subtracting the last reading of the latter sensor
from the observations of the former one, yielding refined accelerometer values (referred to as
linear accelerometer values). These values remained unaltered by the smartphone’s orienta-
tion, resulting in a dataset independent of the user’s location and the device’s orientation, as
initially intended.

On the other hand, before local data storage, a series of filters were applied. Concerning the
accelerometer and magnetometer, a low-pass filter was employed to mitigate excessive noise
within the measurements from these sensors. In contrast, for the gyroscope, which confronts
the well-recognised gyro drift issue, a high-pass filter was adopted as a workaround. Never-
theless, there was a challenge posed by Android, as each sensor could not be uniformly set to
the same frequency. This situation proved particularly intricate in this context, with the need
to merge data from sensors with highly disparate frequencies, such as the high-frequency ac-
celerometer and the low-frequency GPS. While the accelerometer can yield as many as ten or
even fifty measurements per second, the GPS provides new measurements approximately ev-
ery ten seconds. Regrettably, Android’s inherent constraints require the acceptance of receiving
values as provided by the system, leading to potential data gaps. These gaps are particularly
pronounced in the GPS data, wherein instances might arise when no new measurements are
captured for over a minute (albeit this could be attributed to challenges related to enclosed en-
vironments). Similar gaps also emerge in accelerometer, gyroscope, and magnetometer data,
notwithstanding their respective frequencies of around 10, 5, and 8 measurements per second
under stable conditions. These gaps typically span 1 to 5 seconds, predominantly at the out-
set of each data collection session, although they occur less frequently than in GPS readings.
Nevertheless, the average count of recordings per second for each sensor and activity is show-
cased in Table 1, along with the resulting mean frequency. A smaller font size beneath each
average value outlines the corresponding standard deviation for each category. Notably, ac-
tivities entailing movement, such as “active” or “walking”, experience an elevation in these
measurements, particularly noticeable with the accelerometer. The smartphone’s sensors auto-
matically heighten their frequency to derive maximum information from movements detected
during these activities. This augmentation extends to the “driving” activity as well, possibly
attributed to vehicular vibrations that the smartphone sensors might also detect. Furthermore,
in instances of “walking” and “active” activities, intermittent periods of inactivity, such as wait-
ing at traffic lights or moments of standing engagement, contributed to a moderation in these
average frequencies.

Table 1: Mean recordings per second for each sensor and every measured activity.
Activity Accelerometer Hz. Gyroscope Hz. Magnetometer Hz. GPS Hz.

Inactive 11.00
˘16.38

4.66
˘0.74

7.91
˘11.72

0.13
˘0.35

Active 32.55
˘24.80

4.46
˘1.44

9.13
˘13.64

0.06
˘0.23

Walking 31.24
˘27.47

6.24
˘11.86

8.16
˘12.05

0.06
˘0.23

Driving 51.16
˘31.59

4.66
˘2.42

17.00
˘20.01

0.04
˘0.20
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Table 2: Data distribution for each measured activity in the dataset.
Activity Recorded Time (s) Number of Recordings Number of Observations Percentage of Data
Inactive 292,213 147 7,064,757 24.25%
Active 178,806 99 8,918,021 30.62%
Walking 98,071 200 4,541,130 15.59%
Driving 112,226 128 8,602,902 29.54%
Overall 681,316 574 29,126,810 100%

As a result, the ultimate distribution of activities within the dataset is presented in Table
2. This table illustrates the total recorded time, the number of recordings, the number of ob-
servations, and the corresponding data percentage (the latter being related to the number of
observations) for each designated activity. Here, a “recording” corresponds to an entire activ-
ity session, from the start of an action to its end. In contrast, an “observation” corresponds to
an individual sensor measurement. Notably, a relatively lower number of observations is ob-
served in “inactive” activities relative to the overall recorded time. This discrepancy arises from
the sensors’ increased frequency during activities involving more movement, a phenomenon
explained earlier. In thisway, the general data distribution, whenmeasured by total percentage,
might misperceive the actual scenario when sliding windows are introduced. That is because,
with sliding windows employed for feature computation, the number of observations becomes
secondary in importance, with total recorded time taking precedence. The more extensive the
recorded time, the greater the number of computed sliding windows and resultant samples
for a given class. Consequently, an imbalance becomes clearly evident in the dataset, wherein
the “inactive” activity contains thrice as many samples as the “walking” category. As for the
number of recordings made, a notable disparity exists, with the “walking” activity featuring
significantly more recordings than the others. Regardless, the dataset is deemed valuable and
feasible for developing models capable of discerning these activities. Furthermore, the study
engaged 19 individuals, contributing a diverse array of behaviours that inherently enrich the
potential models that could be crafted in the subsequent stages.

Furthermore, the data acquisition process sought to contain a spectrum of individuals with
various attributes, encompassing differences in physical traits, usage routines for their smart-
phones, and the device models utilised. As a result, the study engaged 19 participants, span-
ning an age range of roughly 25 to 50 years. This approach was adopted to ensure the inclusion
of an extensive array of behavioural patterns that could significantly contribute to developing
subsequent models. However, it is worth noting that gender diversity remains limited, with
merely two female participants. Nevertheless, the participants exhibit a wide array of physical
attributes, habits, and smartphone preferences, with their manner of use and device placement.
This scope of variation signifies that while there might be room for enhancement in terms of
variability, a noteworthy level of diversity remains inherent within the dataset, as pursued ini-
tially.

Nonetheless, an additional difficulty arises within the Android framework, as not all devices
are equippedwith both a gyroscope and amagnetometer. Although an accelerometer and GPS
are requisite, older Android versions do not mandate the inclusion of a gyroscope or magne-
tometer. Consequently, certain users stored measurements without the involvement of these
sensors. Tables 3 and 4 provide an overview of the number of observations lacking a gyroscope
or both a gyroscope and magnetometer concurrently. It is worth noting the contrast between
the relationship of number of observations to recorded time depicted in these tables compared
to the report in Table 2. Specifically, the number of observations is considerably higher com-
pared to the recorded time. This peculiarity might account for the previously noted unusual
data in Table 1, wherein the accelerometer’s frequency potentially increases more extensively
as it becomes the sole sensor detecting motion. In addition, the percentages displayed in these
tables are derived from the entire dataset quantity, as outlined in Table 2. Fortunately, these
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percentages remain pretty modest, and the dataset’s integrity is relatively unharmed by this is-
sue. Nevertheless, it is prudent to bear this in mind while preparing the data for its application
in forthcoming AI models.

Table 3: Distribution of the dataset for each measured activity excluding the gyroscope.
Activity Recorded Time (s) Number of Recordings Number of Observations Percentage of Data
Inactive 11,523 8 668,536 2.29%
Active 13,866 7 619,913 2.13%
Walking 4,169 15 584,262 2.01%
Driving 25,718 23 3,776,468 12.97%
Overall 55,276 53 5,649,179 19.40%

Table 4: Distribution of the dataset for each measured activity without the gyroscope and magnetometer.
Activity Recorded Time (s) Number of Recordings Number of Observations Percentage of Data
Inactive 5,409 2 269,710 0.93%
Active 10,286 2 90,487 0.31%
Walking 0 0 0 0%
Driving 0 0 0 0%
Overall 25,695 4 360,197 1.24%

Actual data behaviour example
In this section, an example is provided to illustrate the behaviour of the previously collected
data in a real-world scenario, wherein the data had undergone prior preprocessing, encom-
passing the removal of outliers and other observations that could be deemed corrupted.

Accordingly, without delving deeper into such preprocessing steps, Table 5 presents each
sensor’s mean and standard deviation values for each studied activity. Given that, to accurately
comprehend the values in that table, it is worth explaining what each sensor measures. First,
the accelerometer values correspond to the acceleration force applied to the smartphone along
the three physical axes (x, y, z) in m/s2. Then, the gyroscope measures the rotation speed of
the smartphone around each of the three physical axes (x, y, z) in rad/s. Regarding the magne-
tometer, it measures the environmental geomagnetic field along the three physical axes (x, y, z)
of the smartphone in µT. Concerning the GPS, its values include increments in longitude and
latitude coordinates relative to the previous measurement, as well as increments in altitude in
meters. Moreover, the values of speed, bearing, and accuracy were also considered. In this
way, speed, measured in m/s, represents the smartphone’s velocity. As for the bearing, it indi-
cates the horizontal direction of the smartphone’s travel in degrees. Finally, the accuracy values
indicate the deviation from the actual smartphone location, expressed in meters, with smaller
values indicating highermeasurement accuracy. Back to Table 5, note that each cell contains the
mean values at the top and the corresponding standard deviation values below in smaller font
size. Each pair of values corresponds to each sensor set, where the accelerometer, gyroscope,
and magnetometer refer to their respective axes (X, Y and Z). For GPS, the set includes lati-
tude increments (Lat.), longitude increments (Long.), altitude increments (Alt.), speed (Sp.),
bearing (Bear.), and accuracy (Acc.) measurements. There, it is worth noting some rare data,
such as those associated with the GPS “inactive” activity, which exhibit unexpectedly high val-
ues. That can be attributed to the fact that such action was often performed indoors, which
may limit GPS accessibility. Nevertheless, noticeable differences exist between the activities,
indicating the potential for identification with future models.
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Table 5: Mean and standard deviation values of sensors for each recorded activity.
Activity

Inactive Active Walking Driving

X 0.11761
˘0.45934

´0.01338
˘1.30277

0.09425
˘3.33422

´0.04747
˘0.83290

Accelerometer Y 0.06136
˘0.26764

0.07598
˘1.45440

´0.37604
˘4.35808

´0.12936
˘0.93828

Z 0.84318
˘2.66926

0.13008
˘1.70294

0.07353
˘4.09859

0.18127
˘1.24042

X ´0.00004
˘0.03828

´0.00001
˘0.36806

0.00760
˘1.31125

0.00080
˘0.19224

Gyroscope Y 0.00004
˘0.04719

´0.00102
˘0.40959

´0.00020
˘0.89244

0.00277
˘0.19835

Z 0.00001
˘0.03526

0.00055
˘0.24528

´0.00560
˘0.53685

´0.00243
˘0.16678

X 25.93805
˘56.45617

6.03153
˘30.00980

´0.28182
˘27.03210

´5.96356
˘46.08005

Magnetometer Y ´19.62683
˘85.70343

´0.02890
˘28.76398

18.73800
˘29.63926

10.73609
˘40.46829

Z ´56.60425
˘33.19593

9.56310
˘39.76136

0.64541
˘25.55331

´2.93043
˘29.45994

Lat. 0.00075
˘0.00166

0.00112
˘0.00234

0.00047
˘0.00220

0.00175
˘0.00365

Long. 0.00125
˘0.00285

0.00118
˘0.00314

0.00056
˘0.00300

0.00204
˘0.00420

GPS Alt. 32.59169
˘53.06269

30.77538
˘48.65634

34.06931
˘42.51933

41.59391
˘54.74934

Sp. 0.37222
˘0.82495

0.12109
˘0.81007

0.79924
˘0.71835

10.82191
˘11.82733

Bear. 57.25005
˘105.49576

14.69719
˘56.00693

124.85103
˘119.80663

118.88108
˘118.78510

Acc. 265.44485
˘494.66499

214.57640
˘429.81169

75.54539
˘259.59907

192.90736
˘508.87285

In any case, to depict the actual distribution that may arise when processing the data to feed
the relevant AI models, an illustrative example is presented in Table 6. In this instance, the
data corresponds to the application of a 20-second window with a 19-second overlap, derived
from the dataset resulting from the simultaneous utilisation of all sensors. As discernible, a
bias towards the “inactive” activity is ultimately observed, as previously discussed, owing to
the ease of collecting such data in comparison to the rest. Nonetheless, an adequate number
of samples exists for all the studied activities. Consequently, their subsequent classification is
viable, necessitating only an awareness of this issue and its ensuing mitigation.
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Table 6: Total sample count generated using all sensors with a 20-second sliding window and 19-second
overlap.

Activity
Inactive Active Walking Driving Overall
214,130 140,060 83,376 61,710 499,276
(43%) (28%) (17%) (12%)
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