
Self-adaptive Cooperation Scheme in a Parallel
ACO Algorithm for Binary Combinatorial

Problems
Roberto Prado-Rodrı́guez, Patricia González, Julio R. Banga, and
Ramón Doallo
Computer Arquitecture Group, Faculty of Computer Science, Universidade da

Coru~na, 15071 A Coru~na, Spain

Computer Arquitecture Group, Faculty of Computer Science, Universidade da

Coru~na, 15071 A Coru~na, Spain

Computational Biology Lab, MBG-CSIC, Spanish National Research Council,

Pontevedra, Spain

Computer Arquitecture Group, Faculty of Computer Science, Universidade da

Coru~na, 15071 A Coru~na, Spain

Correspondence: roberto.prado@udc.es

DOI: https://doi.org/10.17979/spudc.000024.12

Abstract: The ant colony optimization (ACO) is widely used for combinatorial optimization
problems, although it can suffer from fast convergence to local minima. In order to provide a
versatile implementation of ACO, we present a parallel multicolony strategy with an improved
cooperation scheme for binary combinatorial problems. Our proposal is based on a self-adaptive
method, which assigns appropriate run-time cooperation levels to each problem based on its size
and available computational resources. We evaluate this proposal with problems with different
levels of cooperation and number of processes. All these configurations combined show its flex-
ibility as a versatile solver for this type of problems.

1 Introduction
One of the most popular metaheuristic used for general combinatorial optimization problem
is Ant Colony Optimization (ACO) (Dorigo and Stützle, 2019). It is inspired by the social be-
havior of ant colonies, specifically in the deposition of pheromones along the explored paths
during the search for food sources. ACO has been found to be robust and easily tailored to a
wide range of optimization problems, and it has been applied to a number of binary combina-
torial instances (Jang et al., 2011; Kashef and Nezamabadi-pour, 2015; Kong and Tian, 2005).

The basic ACO is a general-purpose algorithm, easy to understand and implement. ACO
achieves good results in unimodal problems, that is, those defined by the fact that all solutions
are guided towards the same optimal result without local minima. However, when tackling
problems in which local minima abound, its convergence quickly suffers, easily stagnating in
one of the local solutions.

In thisworkwe explore an extension of a parallelmulticolonyACO implementation to handle
challenging binary combinatorial problems, that incorporates a self-adaptive mechanism for
colony cooperation.

The structure of the paper is as follows. Section 2 describes the ACO algorithm adapted
to handle binary combinatorial problems and its cooperative parallel scheme proposed is ex-

75

https://doi.org/10.17979/spudc.000024.12


76 Proceedings XoveTIC 2023

plained. In section 3, we present the experiments carried out and discuss the results. Finally,
in Section 4 we summarize the conclusions of this work.

2 Parallel ACO for binary optimization problems
ACO is often used for problems that can be reduced to finding routes in graphs, such as the
Traveling Salesman Problem (TSP) (Stützle et al., 1999). This problem is based on discovering
the best route for a travellerwhohas to visitmany cities. In a classical TSPproblem, the objective
is to visit all the cities and return to the origin covering the shortest possible distance. When it
comes to binary combinatorial problems, this can be reduced to finding the optimal path that
goes from one node to another by choosing between two possible paths: 0 or 1. Pheromones
will be deposited on paths 0 or 1 in each of the N steps. Ants in the subsequent iterations will
be influenced by the previously deposited pheromones.

As mentioned before, ACO offers good results for solving unimodal problems. However,
when it comes to solving problems with many local minima, ACO tends to get stuck easily.
To avoid premature convergence to local minima and, thus, the stagnation of metaheuristics,
previous studies indicate the need of increasing the diversity in the search. A good way to
achieve this is the use of parallel strategies. The following subsections describe the solution
used in this work and the enhancement introduced in the cooperation strategy.

Different parallel strategies can be applied to metaheuristics in general (Alba, 2005), and
ACO in particular (González et al., 2022). Most of them can be classified into fine-grained and
coarse-grained strategies. A fined-grained parallelization attempts to find parallelism in the
sequential algorithm.

A different solution is a coarse-grained approach, which involves looking for a parallel vari-
ant of the sequential algorithm. The most popular coarse-grained solution consists of imple-
menting an island-based model. In these models, different distributed colonies exist where the
original algorithm is executed in isolation and, from time to time, these colonies exchange infor-
mation that allow them update their results with the information received from the rest. This
parallel implementation is usually known as multicolony model.

Multicolony approaches aim to take advantage of distributed resources to extend the search
for solutions. Themost trivialmulticolony solution consists of a parallel search onmultiple non-
cooperating colonies. Although this solution was found to yield good results, results usually
stand out for approaches that include colony cooperation.

In the cooperative scheme proposed in (González et al., 2022), when a promising new solu-
tion arrives at a colony and improves the best-solution-so-far, the latter is always replaced by the
former. Therefore, a colony that receives a better solution is diverted from its own search. All
colonies converge to the same local solution, reinforcing the same path, and eventually getting
stuck at the same local minimum.

In this work an efficient selective cooperative scheme is explored. When a colony obtains a
promising solution, this solution is spread to the rest and all processes receive the promising
solutions. However, to avoid the problem mentioned, only a few processes introduce these
solutions into their colony, modifying the pheromone matrix. To determine if a solution that
has just arrived in a process should be included in the colony, two aspects are taken into account.

First, although all the colonies cooperate by spreading their promising solutions, some
colonies keep their execution outside the influence of the rest, for which they never use the
solutions received from outside the colony. This ensures the desired diversity in the ACO pro-
gression. The number of colonies that remain independent depends on an integer parameter
called c f req.

Second, to further avoid the danger of premature convergence due to early cooperation, the
processes will only use the solutions received from other colonies once they have been stalled
for a certain number of iterations. This number of iterations are defined by the cstall parameter.

As a general rule, it is very complicated to know the optimal level of cooperation for a prob-



Prado-Rodrı́guez et al. Self-adaptive Cooperation Scheme in Parallel ACO 77

lem before dealing with it. To address this situation, a self-adaptive approach to automatically
determine the tier of cooperation is also proposed in this paper. To do this, the problem size
and the number of resources to be used are taken as a basis, and the parameters are tuned at
runtime. Note that the hardness of the problem, which also influences the level of cooperation,
is impossible to determine beforehand. The cooperation-index is the ratio between the size of
the problem and the number of processes to be used. The higher this index is, the more inten-
sive the cooperation between the colonies should be. Ranges of this index are established to set
an upper limit to the cstall parameter. The minimum cstall is always 0 (full cooperation). At
the start of the execution, cstall takes its maximum value. The cooperation at the beginning of
the execution is scarce. However, each time the algorithm gets stuck and a restart is triggered,
cstall is reduced by 10% of restart-iterations size, so the algorithm increases their rely on incom-
ing solutions after being reinitialized. If reboots continue to occur, the cstall will continue to
drop and, thus, the algorithm increases the cooperation between colonies. When the minimum
cstall is reached (0 iterations), the algorithm returns to the maximum value. In this way, even
in multimodal problems, different cooperation degrees are explored in a round-robin fashion.

3 Experimental results
In this section, a series of experiments are shown to assess the value of the strategies proposed
in this work.

All the benchmarks used to carry out the experiments reported in this paper are obtained
from the W-Model (Weise et al., 2020). The W-Model is a tunable black-box discrete optimiza-
tion benchmarking problem (BB-DOB) that uses a bit-string representation of the data. The
W-Model framework creates different benchmarks by means of different input parameters that
modulate different features for the problems. Six challenging benchmarks labeled as B1 to B6
have been defined here. The W-model parameters used to define these challenging problems
can be seen in Table 1.

Table 1: W-Model parameters for benchmarks B1 to B6.
Benchmark Problem size Neutrality Epistasis Ruggedness/Deceptiveness

B1 640 High 130 (81%) 10000 (78%)
B2 720 High 150 (83%) 12000 (75%)
B3 1000 High 200 (80%) 25000 (80%)
B4 640 High 130 (81%) 0
B5 720 High 150 (83%) 0
B6 1000 High 200 (80%) 0

All the experiments were performed at the Galicia Supercomputing Center (CESGA) using
the FinisTerrae-III supercomputer. Each FinisTerrae-III node is composed of two Intel Xeon Ice
Lake 8352Y CPUs running at 2.2 GHz, with 32 cores per processor (64 cores per node), and 256
GBof RAM. The nodes are connected using anMellanox InfiniBandHDR100Gbps interconnect
using a fat-tree topology.

Table 2 lists the different cooperation configurations that have been compared in this work,
being n the problem size. Note thatM1 configuration corresponds to a non-cooperative parallel
solution, while M6 corresponds to the cooperation scheme proposed in (González et al., 2022),
that is, a full cooperation between colonies. Besides, M7 configuration corresponds to the self-
adaptive solution proposed in this paper.

Table 3 shows the preliminary results of the average execution time for each experiment.
Some conclusions can be extracted based on the results. A medium-term cooperation like the
M4 configuration overcomes the other configurations for 4 colonies in benchmark B1. In a
harder problem like B2, there is a need for increasing the cooperation, and results obtained



78 Proceedings XoveTIC 2023

Table 2: Configurations with different cooperation degrees.
Configuration c f req cstall Comments

M1 8 - No cooperation at all.
M2 2 n{25 1 of 2 receive after stagnation ě problem size/25.
M3 1 n{10 All receive after stagnation ě problem size/10.
M4 1 n{25 All receive after stagnation ě problem size/25.
M5 1 n{50 All receive after stagnation ě problem size/50.
M6 1 0 Full cooperation, all receive all the time.
M7 1 sel f ´ adapted Self-adapted at runtime.

for M5 configuration are better than the others when 4 colonies are used. This behavior is re-
stated in B3 problem, bigger and even more harder than B2. The degree of cooperation that
achieves the best performance with the same processes is M6. In brief, the larger and harder
to solve the problem, the larger the need for cooperation between the colonies. However, these
three problems need less cooperation when you increase the processes to 12. In this case, the
optimal level decreases from M4 to M2, from M5 to M4 and from M5 to M4, respectively. In
other words, the more processes, the lower the level of cooperation required.

Table 3: Comparison of different cooperative configurations in BiPCACO. Average time (in seconds)
achieved on experiments. Highlighted in green and red the best and worst times by configura-
tion, respectively.

These results also prove that an intense cooperation like M6 configuration is effective when
using few colonies to solve very complicated problems. In those benchmarks, the possibilities
of finding a great solution are low, so the need to share potentially successful solutions as soon
as possible is high in order to speed up the progress of the search. However, when the number
of processes increases, the chances for one of them to find a good solution on its own increases,
and cooperation can interfere with this search and damage diversity. If a process frequently
accepts foreign solutions, the colony deviates from their own search and ends converging to
the same local minima as the rest of the colonies.

These custom-defined benchmarks are not only big in size, but also three of them (B1 to B3)
show characteristics that make them very hard to solve. They are multimodal and are defined
by owing many local minima. In those cases, the colonies cooperation benefits the convergence
ratio of the algorithm. Problems B4 to B6 are unimodal, i.e. the search is oriented smoothly to



Prado-Rodrı́guez et al. Self-adaptive Cooperation Scheme in Parallel ACO 79

the global minimum. Since the algorithm does not get stuck due to the absence of local minima,
it does not need cooperation, and therefore in problems B4 and B5 there is almost no significant
difference in times among all methods. In practice, all behave in a non-cooperative fashion.
Problem B6, even unimodal, is too big in size and cooperation becomes highly necessary with
few processes.

Based on previous experiments, it can be concluded that there are essentially three features
of the problem at hand that will determine the degree of cooperation that benefits BiPCACO
execution: (1) amount of processes: the smaller the number of processes, the higher the cooper-
ation between coloniesmust be; (2)multimodality: The higher the bias towards themultimodal
landscape, the larger the probability that the algorithmwill get stuck; and (3) problem size: the
larger the problem, the greater the need for cooperation.

The problem of the previous conclusions is the difficulty for the user to know the features of
the problem in advance, and therefore the difficulty of adjusting the configuration parameters
before the execution. It is at this point where the self-tuned approach is especially appealing.
Moreover, results of Table 3 evidence that it is also competitive when compared with the solu-
tion obtained with the best configuration in each problem.

To better illustrate the behavior of the proposedM7 self-tuned cooperationmethod, logarith-
mic scale plots for benchmarks B1 and B3 are shown in Figure 1. Those subfigures show the
cumulative probability of reaching the optimum related to the execution time, for the 100 runs
of each experiment. We choose benchmarks B1 and B3 to show how, despite being both large
and difficult problems, in one case cooperation is more beneficial than in the other, however,
this is somewhat difficult to know beforehand.

(a) (b)

(c) (d)

Figure 1: Cumulative probability of reaching the optimum for (a) benchmark B1 using 4 processes, (b)
benchmark B1 using 64 processes, (c) benchmark B3 using 4 processes and (d) benchmark B3
using 64 processes, where M1-7 indicates different cooperation schemes.

As it can be seen, for benchmark B1, a configuration with no cooperation (M1) is better than



80 Proceedings XoveTIC 2023

an intensive cooperation (M6). However, a self-tuned cooperation (M7) adapts during runtime
and offers a competitive result versus the non-cooperation solution.

On the other hand, for benchmark B3, the best solution turns out to be a configurationwith an
intensive cooperation (M6) compared to lack of cooperation (M1) for 4 processes. And, on the
contrary, the absence of cooperation (M1) is better compared to an intense cooperation (M6)
for 64 processes. Besides, the self-tuned solution (M7) is always competitive when compared
with the best solution in each situation.

These previous results show that the self-tuned solution, although it may not improve the
superior configuration, allows the user to get rid of the responsibility of choosing the most
appropriate parameters, making the algorithm reconfigure itself, at execution time, depending
on the progress of the search. Results of the self-tuned solution stands out as a competitive
alternative.

4 Conclusions
An improved multicolony ACO for binary combinatorial problems is explored in this paper.
The goal is to compensate for the main drawback of the algorithm: its trend to get stuck in local
minima. Here, a parallel cooperative ACO strategy is evaluated, in which all colonies share
promising routes with each other, but only use them for their own search if certain conditions
are met. That is, they collaborate only when necessary. This manages to maintain diversity
while avoiding rapid convergence to the same local minimum of all colonies. An implementa-
tion that adjust the parameters of the cooperative algorithm at runtime has been also evaluated.
This improvement allows us to find a good solution for each problemwithout the need to know
in advance the characteristics of the problem in consideration.

This new self-adapted cooperative approach prevents the user from knowing in advance
which configuration is the most appropriate for the problem in consideration and saves them
the time needed to set the parameters of the new algorithm.

As future work, we consider to improve and refine the cooperative self-adaptation, as well
as to explore the hybridization with other metaheuristics.

Acknowledgments
RPR, PGG and RDB acknowledges funding from Grants PID2019-104184RB-I00 and PID2022-
136435NB-I00, funded byMCIN/AEI/ 10.13039/501100011033, PID2022 also funded by ”ERDF
A way of making Europe”, EU; Xunta de Galicia and FEDER funds of the EU (Centro de In-
vestigación de Galicia accreditation 2019–2022, ref. ED431G 2019/01; Consolidation Program
of Competitive Reference Groups, ref. ED431C 2021/30).

JRB acknowledges funding from the Ministry of Science and Innovation of Spain MCIN /
AEI / 10.13039/501100011033 through grant PID2020-117271RB- C22 (BIODYNAMICS).

Authors also acknowledge the Galician Supercomputing Center (CESGA) for the access to
its facilities.

Bibliography
E. Alba. Parallel metaheuristics: a new class of algorithms, chapter 5–14, pages 105–346. JohnWiley

& Sons, 2005.

M. Dorigo and T. Stützle. Ant colony optimization: overview and recent advances. Handbook of
metaheuristics, pages 311–351, 2019.

P. González, R. R. Osorio, X. C. Pardo, J. R. Banga, and R. Doallo. An efficient ant colony opti-
mization framework for HPC environments. Applied Soft Computing, 114:108058, 2022.



Prado-Rodrı́guez et al. Self-adaptive Cooperation Scheme in Parallel ACO 81

S.-H. Jang, J.-H. Roh, W. Kim, T. Sherpa, J.-H. Kim, and J.-B. Park. A novel binary ant colony
optimization: Application to the unit commitment problem of power systems. Journal of
Electrical Engineering and Technology, 6(2):174–181, 2011.

S. Kashef and H. Nezamabadi-pour. An advanced aco algorithm for feature subset selection.
Neurocomputing, 147:271–279, 2015.

M. Kong and P. Tian. A binary ant colony optimization for the unconstrained function opti-
mization problem. In International Conference on Computational and Information Science, pages
682–687. Springer, 2005.

T. Stützle, M. Dorigo, et al. Aco algorithms for the traveling salesman problem. Evolutionary
algorithms in engineering and computer science, 4:163–183, 1999.

T.Weise, Y. Chen, X. Li, andZ.Wu. Selecting a diverse set of benchmark instances froma tunable
model problem for black-box discrete optimization algorithms. Applied Soft Computing, 92:
106269, 04 2020.


	pbs@ARFix@82: 
	pbs@ARFix@83: 
	pbs@ARFix@84: 
	pbs@ARFix@85: 
	pbs@ARFix@86: 
	pbs@ARFix@87: 
	pbs@ARFix@88: 


