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Abstract: Joint blind source separation (JBSS) has wide applications in modeling latent structures
across multiple related datasets. However, JBSS is computationally prohibitive with high-dimensional
data, limiting the number of datasets that can be included in a tractable analysis. Furthermore, JBSS
may not be effective if the data’s true latent dimensionality is not adequately modeled, where severe
overparameterization may lead to poor separation and time performance. In this paper, we propose
a scalable JBSS method by modeling and separating the “shared” subspace from the data. The shared
subspace is defined as the subset of latent sources that exists across all datasets, represented by
groups of sources that collectively form a low-rank structure. Our method first provides the efficient
initialization of the independent vector analysis (IVA) with a multivariate Gaussian source prior
(IVA-G) specifically designed to estimate the shared sources. Estimated sources are then evaluated
regarding whether they are shared, upon which further JBSS is applied separately to the shared and
non-shared sources. This provides an effective means to reduce the dimensionality of the problem,
improving analyses with larger numbers of datasets. We apply our method to resting-state fMRI
datasets, demonstrating that our method can achieve an excellent estimation performance with
significantly reduced computational costs.

Keywords: independent vector analysis; MCCA; JBSS; subspace analysis; multi-subject medical
imaging data; functional magnetic resonance imaging

1. Introduction

Data-driven methods that can produce informative features from the data while re-
quiring very few assumptions are of great importance to the study of large datasets. Blind
source separation (BSS) is a particular class of data-driven methods that separates latent
sources from observed signals, and as such, BSS has demonstrated its usefulness across a
wide range of applications [1–3]. Many applications involve multiple inherently related
datasets, where it is reasonable to assume that latent sources within one dataset are related
to some corresponding latent sources in one or more other datasets. This is especially preva-
lent in datasets acquired by functional magnetic resonance imaging (fMRI) [4,5], a standard
neuroimaging tool for measuring brain function and activity due to its non-invasive na-
ture and high resolution. In the study of multi-subject fMRI data, similar and consistent
responses across multiple different subjects are indicative of shared functional network
activities across those subjects. To fully leverage the joint information existing across the
subjects’ datasets, data-driven methods need to model the latent dependencies across the
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datasets through a joint analysis. Joint blind source separation (JBSS) generalizes BSS to
more than one dataset and is designed to model and exploit the dependence across datasets
through a superior joint analysis [3,6–9]. JBSS methods operate by grouping sources that
are dependent across the datasets, upon which JBSS methods typically maximize the de-
pendence within each group (thus maximizing the dependence across the datasets). These
groups are sometimes given the name “source component vector” (SCV) [3,6,7], and for the
remainder of the paper, we refer to these groups as SCVs. Exploiting the dependence across
datasets leads JBSS methods to achieve significantly more powerful estimators, capable
of a superior source estimation performance and allowing them to better reveal the latent
dependencies across the datasets [3,6,7,10].

One of the original methods for JBSS is the canonical correlation analysis (CCA), which
transforms two datasets into two corresponding sets of variables known as “canonical
variates” (CVs) that are maximally correlated across the two datasets [8,9,11]. A group
of two variables that are maximally correlated with each other (one from each dataset)
is functionally equivalent to an SCV; however, the CCA is only designed to analyze two
datasets at a time. The multi-set canonical correlation analysis (MCCA) thus generalizes the
CCA to two or more datasets [9,11,12] and similarly operates by transforming the data into
variables that are maximally correlated across the datasets. Different MCCA algorithms
maximize different empirical measures of “correlatedness” recorded from the covariance
matrices of the SCVs. Of these algorithms, the most direct generalization of the CCA is
the MCCA, which maximizes the sum of the correlations within an SCV covariance matrix
(SUMCORR). The SUMCORR is notable in that it has been shown to effectively model
each SCV by a rank 1 covariance [12]. This model is useful when SCVs can be regarded
as repeats of a single “shared” source (i.e., a source that exists across all datasets), and
thus, the MCCA SUMCORR is well-suited for estimating these corresponding “shared
SCVs”. Another commonly used JBSS method is group-ICA [13–16], which, like the MCCA
SUMCORR, assumes that all datasets in the joint analysis share the same sources at the
group level. The MCCA SUMCORR and group-ICA both have simple implementations
that are computationally well-suited to analyzing a large number of datasets; however,
the assumption that all SCVs are “shared” effectively limits the performance when greater
variability exists across the datasets (among sources within each SCV) [17].

When the assumption that sources are shared across subjects is not true, JBSS methods
that are well-suited for modeling variability, such as the independent vector analysis (IVA),
have greater success in data analysis [17]. The IVA operates by maximizing independence
among SCVs, analogous to how the ICA maximizes independence among sources within a
single dataset. By maximizing independence among SCVs, the IVA simultaneously maxi-
mizes independence among sources within each dataset and maximizes dependence within
each SCV. Unlike other JBSS methods, such as the MCCA SUMCORR and group-ICA,
the IVA does not operate under the assumption that all SCVs are shared SCVs; thus, the
IVA provides a superior performance compared to other methods when greater variability
exists across the datasets [17,18]. However, the performance of the IVA may be worse in
the presence of all shared SCVs compared with methods such as the MCCA SUMCORR
and group-ICA. This is, in part, due to most IVA algorithms parameterizing each SCV by a
K dimensional multivariate distribution (with K being the number of datasets), whereas
shared SCVs lie on a low-dimensional subspace and, thus, are at high risk for overpa-
rameterization. As a result, the performance of the IVA can be significantly degraded by
the presence of shared SCVs, in terms of both separation performance and running time.
Furthermore, IVA algorithms are burdened by higher computational complexity compared
with methods such as the MCCA and group-ICA. As the IVA can be considered one of the
most powerful and flexible methods for BSS [3,6,7,10,15,18,19], there exists a need for more
efficient variants of IVA that can also perform well with shared SCVs.

For several types of related datasets encountered in JBSS, especially in the case of
fMRI data, we may expect that many of the SCVs can be modeled reasonably as shared
SCVs, while the remaining SCVs demonstrate significant variability across the datasets. For
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the remainder of the paper, we refer to the collection of latent SCVs that are shared as the
“shared subspace” of the data and the remaining SCVs as the “non-shared subspace”. Tools
for identifying the shared and non-shared subspaces have demonstrated their usefulness
in fMRI analysis [4,5,20], allowing for the identification of shared functional network
activations, in addition to those that may exhibit more variability across the datasets. The
former can be useful for identifying activations that are consistently present across all
subjects, whereas the latter can be useful for its discriminatory ability in further analysis
(e.g., for diagnosing or classifying subjects). While MCCA and group-ICA methods typically
perform better on data with shared SCVs, and the IVA typically performs better on data
with non-shared SCVs, there exists a need for JBSS methods that are well-suited to the
general case where data have both shared and non-shared SCVs and can explicitly exploit
this information in the analysis.

To resolve the aforementioned issues, in this paper, we propose a method known as the
independent vector analysis by shared subspace separation (IVA-S3). The proposed algo-
rithm, IVA-S3, is designed to overcome some of the key issues with the IVA regarding both
the computational complexity and performance in shared subspaces. The IVA-S3 models
the shared subspaces within the data by utilizing the MCCA SUMCORR as a preprocessing
step, thus allowing shared SCVs to be estimated prior to the IVA step at a level beyond the
capabilities of conventional IVA methods. Once shared SCVs have been identified by a
measure of “correlatedness” within the covariance matrices of the SCVs, the shared SCVs
are separated from the remaining non-shared SCVs, and the IVA is performed on the shared
and non-shared subspaces separately. This provides further refinement of these subspaces’
estimations while also considerably reducing the dimensionality of the data within the IVA
step, leading to a significantly lower computational complexity. We compare the results
of our proposed method with the group-ICA results, demonstrating the reliability of the
estimation of SCVs with a sizeable dataset in addition to the outperformance of group-ICA
in terms of multiple key performance metrics evaluated, including mutual information
across sources, power ratios, and t-maps.

The remainder of this paper is organized as follows: Section 2 formulates the JBSS
problem. Section 3 introduces the MCCA and IVA methods for performing JBSS. Section 4
presents the steps of the IVA-S3 method, including the MCCA SUMCORR preprocessing
step, the identification of the shared subspace from the MCCA SUMCORR solution, and
how IVA is performed separately on the shared and non-shared subspaces. Section 5
demonstrates the performance of the IVA-S3 in the context of simulated results as well as
results obtained from real fMRI data. Section 6 concludes the paper with takeaways about
the proposed method in addition to potential future directions.

2. JBSS Problem Formulation

We first mathematically formulate the general JBSS problem. We observe K datasets
x[k](t) ∈ RN over T samples (t = 1, . . . , T), and each dataset x[k](t) = [x[k]1 (t), . . . , x[k]N (t)]> ∈
RN is modeled as a linear mixture of N latent source signals s[k](t) = [s[k]1 (t), . . . , s[k]N (t)]>

∈ RN , 1 ≤ k ≤ K. The generative model is

x[k](t) = A[k] s[k](t), (1)

where A[k] ∈ RN×N is an invertible mixing matrix. To estimate the latent sources within the
K datasets, JBSS estimates K demixing matrices W[k] ∈ RN×N that demix each dataset into
its corresponding estimated sources y[k](t) = [y[k]1 (t), . . . , y[k]N (t)]> ∈ RN where y[k](t) =

W[k] x[k](t). The mixing matrices A[k] (or the demixing matrices W[k]) can be distinct for
different datasets, and they are not assumed to be related.

As the datasets are observed over T samples of data (t = 1, . . . , T), the datasets are,
in practice, represented by the matrices X[k] = [x[k]1 , . . . , x[k]N ]> ∈ RN×T , and the generative
model shown in Equation (1) is given as X[k] = A[k] S[k], with latent sources given by S[k]
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= [s[k]1 , . . . , s[k]N ]> ∈ RN×T and estimated sources given by Y[k] = W[k] X[k] = [y[k]
1 , . . . , y[k]

N ]>

∈ RN×T .
JBSS formulations assume a model where sources of the same index n are dependent

across the K datasets, forming N sets of K sources. In IVA terminology, each of these
groups of sources is known as a “source component vector” (SCV), and all JBSS methods
fundamentally operate by either maximizing dependence within SCVs and/or minimizing
dependence among the different SCVs. Each of the N latent SCVs is denoted by the vector
sn = [s[1]n , . . . , s[K]n ]> ∈ RK, which is estimated by the corresponding JBSS-estimated SCVs
yn = [y[1]n , . . . , y[K]n ]> ∈ RK. Over T samples of data, the latent SCVs are denoted by the
matrices Sn = [s[1]n , . . . , s[K]n ]> ∈ RK×T , which are estimated by Yn = [y[1]

n , . . . , y[K]
n ]> ∈ RK×T .

In addition, it is conventional to standardize and whiten the data prior to JBSS, since the
math involved in performing these methods becomes considerably simplified [1]. For
the remainder of the paper, we assume that the sources and datasets are standardized,
‖w[k]

n ‖2 = 1 and the datasets are prewhitened, where (w[k]
n )> is the nth row of demixing

matrix W[k], and it is used to estimate the nth source within the kth dataset, given by
y[k]n (t) = (w[k]

n )> x[k](t).

3. Methods for JBSS
3.1. MCCA

The MCCA is a multivariate statistical method that is used to find relationships be-
tween multiple sets of variables. The goal of the MCCA is to estimate demixing vectors
w[k]

n corresponding to the SCV yn in order to maximize the correlatedness within that SCV
(measured by the SCV’s covariance Σ̂yn = 1

T−1 Yn Y>n ∈ RK×K). There are five different
versions of the MCCA, each employing a different cost function over a different empirical
measure of correlatedness in Σ̂yn . One of the most commonly used variants of the MCCA
is the MCCA SUMCORR, whose objective function is to maximize the sum of correlations
within an SCV’s covariance. It has been previously shown [12] that the SUMCORR proce-
dure inherently assumes a rank 1 model for each SCV, i.e., a single source that is “shared”
across the K datasets.

Sn = 1nv>n + Zn, 1 ≤ n ≤ N, (2)
where vn ∈ RT is the shared source existing across all datasets, 1n ∈ RK is a vector of 1s
scaled by some scalar value, and Zn ∈ RK×T is some additive noise with a diagonal covari-
ance matrix. The SUMCORR has previously demonstrated many useful decompositions
over fMRI datasets [21], implying that many latent fMRI SCVs may be well-suited to this
“shared source” model.

The implicit nature of the SUMCORR model makes it well-suited to the estimation of
shared SCVs; however, the model and performance of the SUMCORR may be inadequate
when SCVs are not shared (i.e., they demonstrate significant variability within themselves).
While the rank 1 model assumed by the SUMCORR is expected to poorly estimate non-
shared SCVs, the SUMCORR retains the ability to estimate shared SCVs in the presence of
non-shared SCVs (e.g., when the data are a mixture of some shared and some non-shared).
One approach to improving the performance of JBSS over that of SUMCORR [21] operates
by applying a joint diagonalization procedure to refine the SUMCORR-estimated sources.
Nevertheless this approach still fundamentally assumes the effective rank 1 SCV model for
all SCVs, and thus is limited when more variability exists within the data.

One of the primary benefits that SUMCORR has over other JBSS algorithms is its
simplicity and low computational complexity. The SUMCORR solution is solved by simply
concatenating the datasets into a single tall matrix X = [(X[1])>, . . . , (X[K])>]> ∈ RNK×T ,
computing its sample covariance Ĉx = 1

T−1 X X> ∈ RNK×NK, and computing the N principal
eigenvectors of Ĉx. It is straightforward to show that the nth principal eigenvector of
Ĉx, denoted by v̂xn ∈ RNK, is the concatenation of scaled SUMCORR demixing vectors
of the nth SCV: v̂xn = [(w[1]

n )>, . . . , (w[K]
n )>]>. This puts the SUMCORR among the
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most computationally efficient of all JBSS algorithms, with an asymptotic computational
complexity of O( N3K3 ).

3.2. IVA

Assuming that the latent SCVs are independent, the mutual information between
the SCVs is a natural cost of performing JBSS. Analogous to the ICA, which maximizes
the independence among the source components, the IVA operates by maximizing the
independence among the N SCVs, thus minimizing the mutual information between the
estimated SCVs yn. The IVA models each SCV with a multivariate PDF, allowing the
IVA to fully exploit the statistical dependence across datasets via the SCVs. The mutual
information cost is given by

IIVA(W) ,
N

∑
n=1
H(yn)−

K

∑
k=1

log |det(W[k])|, (3)

where yn is the nth SCV, and H(yn) denotes the entropy of the source yn defined on the
PDF p(yn). NotingH(yn) = ∑K

k=1H(y[k]n )− I(yn), Equation (3) can be written as

IIVA(W) ,
N

∑
n=1

(
K

∑
k=1
H(y[k]n )− I(yn))−

K

∑
n=k

log |det(W[k])|. (4)

This reveals that minimizing the mutual information across SCVs has the effect of
simultaneously minimizing the entropy of all components (which can be shown from ICA
formulations as minimizing the dependence across SCVs) and maximizing the mutual in-
formation within SCVs (maximizing dependence within SCVs). As a result, it is convenient
to view the minimizing Equation (4) as both minimizing the dependence among SCVs and
maximizing the dependence within each SCV.

If all N SCVs are modeled as multivariate Gaussian-distributed, i.e., yn ∼ N (0,Σyn),
then the IVA exclusively exploits second-order statistics (i.e., correlations), and thus effec-
tively minimizes the correlations among SCVs while maximizing the correlations within
each SCV. This version of the IVA is known as the independent vector analysis with a mul-
tivariate Gaussian source prior (IVA-G) [3,6,7]. The cost function of the IVA-G is derived
by assuming the multivariate Gaussian PDF as being the distribution of each SCV, given
by pn(yn|Σyn) = 1

(2π)
K
2 det(Σyn )

1
2

exp(− 1
2 yT

nΣ
−1
yn yn), where Σyn ∈ RK×K, where Σyn is the

covariance of the nth estimated SCV, and in practice, this covariance is estimated over T
samples by the unbiased estimator Σ̂yn = 1

T−1 YnYT
n . The IVA-G cost is given by

CIVA−G(W) =
NK log(2πe)

2
+

1
2

N

∑
n=1

log |det(Σ̂yn)| −
K

∑
k=1

log |det(W[k])|

=
NK log(2πe)

2
+

1
2

log(
N

∏
n=1

K

∏
k=1

λ
[k]
n )−

K

∑
k=1

log |det(W[k])|,
(5)

where λ
[k]
n is the kth largest eigenvalue of the covariance Σ̂yn . Regarding the 2nd term of

Equation (5), it is important to note that determinant-based costs are disproportionately
affected by the smallest eigenvalues present. In practice, the smallest eigenvalues are most
likely to describe the “noise” space in the data, in contrast to the largest eigenvalues, which
describe the “signal” space in the data. Because of this inherent sensitivity to smaller
eigenvalues, the IVA-G is especially prone to overfitting if the dimension of the “signal”
space is small, i.e., if the SCV lies on a subspace with a much lower dimensionality than
its dimension K. However, for the case with shared SCVs, we expect a single dominant
“signal” eigenvalue and K− 1 “noise” eigenvalues. As a result, the IVA-G is well-suited
to the estimation of SCVs with significant levels of variability, that is, high numbers of
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“signal” eigenvalues, but it may significantly overparameterize, and thus poorly estimate,
shared SCVs.

In addition, as the IVA-G only exploits the linear dependence between the sources, the
IVA-G only needs to calculate a single covariance matrix over the data (the same matrix Ĉx
calculated in SUMCORR), and thus, the asymptotic computational complexity is essentially
independent of the number of samples T (instead, it is dominated by the number of SCVs N
and the number of datasets K). This leads the IVA-G to be among the most computationally
efficient IVA algorithms. However, unlike the SUMCORR, the IVA-G requires an iterative
optimization procedure with significant computational complexity at each iteration. If
the IVA-G algorithm requires q iterations to converge, it is straightforward to show that
the IVA-G has a total complexity of O( q(N4K + N3K2 + NK4) ). While this complexity
is prohibitive for very large numbers of SCVs N or datasets K, the complexity can be
significantly reduced if either N or K can be reduced within the JBSS procedure.

As the IVA-G models SCVs as multivariate Gaussian, the IVA-G only exploits second-
order statistical relationships without exploiting any higher-order statistics (HOS). How-
ever, the multivariate Laplacian distribution appears to be a better model match for fMRI
data [22,23]; thus, it is generally desirable to exploit HOS when analyzing these fMRI
datasets. In this context, a relevant IVA algorithm known as IVA-L-SOS [19,22] is able to
exploit second-order statistics within the data, while also modeling the SCVs by a multi-
variate Laplacian distribution. Because of this additional ability to exploit the Laplacian
nature of the latent fMRI sources, the IVA-L-SOS has been proven to be very powerful for
extracting interpretable source components for fMRI analysis [19,22]. However, despite
the possibly improved estimation performance with the IVA-L-SOS, the computational
complexity of the IVA-L-SOS is much higher than that of the IVA-G due to the need to
apply non-linear functions on each sample at each iteration. This leads to a high per-sample
complexity, effectively limiting the practical use of the IVA-L-SOS when applied to a very
large number of fMRI datasets.

Considering the advantages and limitations of these various JBSS algorithms, in the
next section, we explain our proposed method (IVA-S3) in relation to these previous methods.

4. IVA by Shared Subspace Separation
4.1. IVA with SUMCORR Initialization

Given that JBSS methods such as the IVA are frequently applied to fMRI datasets, it
is prudent to use methods that specifically exploit the inherent properties of fMRI data to
improve the overall decomposition. Due to the inherent similarity in functional network
activity across different subjects, it is reasonable to assume that many components are
shared among the subjects; thus, many SCVs can be well-modeled as shared SCVs. It is
also reasonable to assume that some components may also not be shared, and thus, the best
JBSS approaches are those that can estimate both shared and non-shared SCVs.

Despite the fact that the IVA-G can encounter estimation issues with shared SCVs,
the IVA-G may actually estimate the shared SCVs well if the IVA-G is given a good
initialization process, specifically one that also provides good initialization to shared SCVs.
As the SUMCORR is well-suited to the estimation of shared SCVs, and as the SUMCORR
is among the most efficient methods for JBSS, the SUMCORR is an ideal candidate for
providing a guiding initialization to the IVA-G. In this sense, not only does initializing with
the SUMCORR help to adequately estimate the shared SCVs, it also helps to significantly
reduce the wall time of the JBSS by providing a fast initialization process that is reasonably
close to the IVA-G solution. Aside from these benefits, the SUMCORR is superior to
other random initialization-based approaches, such as IVA-G with a random initialization,
that aim to find the “most representative run” out of multiple runs of the IVA-G [24,25],
as the SUMCORR will consistently give the same results every time, since it is an analytic
solution. This not only facilitates the interpretability of the result but makes JBSS feasible
for many applications with high-dimensional data.
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4.2. Shared Subspace Identification and Separation

We propose a simple method for determining whether an SCV Yn is shared by ana-
lyzing the eigenvalues of the SCV’s covariance matrix, Σ̂yn . The eigenspectra of a shared
SCV’s covariance Σ̂yn is characterized by a single dominant eigenvalue λn1 corresponding
to the shared source, with λn1 ≈ K (since Σ̂yn is also a correlation matrix, and thus, the
K eigenvalues sum to K), while the remaining K − 1 eigenvalues are close to zero and
correspond to noise. This can also be understood from the perspective of the principal com-
ponent analysis (PCA): with shared SCVs, one single principal component (PC) effectively
represents all sources within the SCV (this PC effectively is the shared source), and thus,
the corresponding largest eigenvalue of the covariance matrix explains the overwhelming
majority of the variance. In contrast, the variability in non-shared SCVs is insufficiently de-
scribed by a single PC, in which case the covariance’s largest eigenvalue λn1 is much closer
to the second-largest eigenvalue λn2. We define this difference λn1 − λn2 as the “spectral
gap” of the nth SCVs covariance, effectively one measure of how well an SCV is represented
by a shared source. We note the way that we define the spectral gap here is distinct from the
“spectral gap” in physics or graph theory. This measure of the spectral gap can be a useful
measure for gauging the potential performance of both the MCCA SUMCORR and IVA-G:
larger spectral gaps indicate a better match to the rank 1 assumption of the SUMCORR, in
which case, the SUMCORR is expected to yield a better estimation performance for these
SCVs, whereas smaller spectral gaps indicate SCVs that are better estimated by the IVA-G.

As the spectral gap can vary depending on the number of datasets K, we can improve
this measure by normalizing it with respect to the largest eigenvalue and thus provide a
more standardized measure that is not affected by K. We call the resulting measure the
“spectral gap ratio”, which is defined as

σn =
λn1 − λn2

λn1
. (6)

Larger values of this spectral gap ratio σn are indicative of SCVs that are better modeled
by a shared source. In our experience with handling fMRI datasets, 0.86 is a useful threshold
for the spectral gap: SCVs with σn > 0.86 are well-described by the shared SCV model,
whereas SCVs with σn ≤ 0.86 exhibit enough variability to be sufficiently estimated by the
IVA-G alone. Thus, for the remainder of this work, we define all SCVs with σn > 0.86 as
shared SCVs but note that this threshold may be modified on a per-application basis (we
use ∆ to notate this threshold).

4.3. IVA-S3 Framework

The proposed method, IVA-S3, is summarized by the procedure outlined in Figure 1.
First, the MCCA SUMCORR is performed on the data X[k] to provide an initialization
procedure for the IVA-G that assists in estimating the shared SCVs beyond the capabilities
of the IVA-G alone. Then, given the SUMCORR-initialized IVA-G solution (W[k])IVA−G
and (Y[k])IVA−G = (W[k])IVA−GX[k], the performance of the decomposition is improved by
separately analyzing the shared and non-shared subspaces. SCVs are labeled as shared or
non-shared based on their corresponding spectral gap ratios σn, and the estimated sources
for each dataset Y[k] ∈ RN×T are separated into that dataset’s corresponding shared sources
(Y[k]

s )IVA−G ∈ RNs×T and non-shared sources (Y[k]
ns )IVA−G ∈ RNns×T , where Ns is the num-

ber of shared SCVs, Nns is the number of non-shared SCVs, and Ns + Nns = N. Then, with
the shared and non-shared SCVs separated into two different groups, the IVA is applied
separately to the shared and the non-shared SCVs, with (Y[k]

s )IVA−G and (Y[k]
ns )IVA−G sup-

plied as the datasets within the resulting decompositions, and both separate procedures
initializing the demixing matrices with identity matrices (thus initializing with the sources
estimated by the previous stage). Namely, we have (Y[k]

s )S3 = (W[k]
s )S3(Y

[k]
s )IVA−G and

(Y[k]
ns )S3 = (W[k]

ns )S3(Y
[k]
ns )IVA−G for the final stage of the IVA-S3, and (Y[k]

ns )S3 and (Y[k]
ns )S3 are

our final estimations. These separate estimation procedures are not necessarily limited to
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the performance of the IVA-G on the separate subspaces, and other IVA algorithms that
exploit more statistical properties of the data can be used instead (e.g., IVA algorithms such
as the IVA-L-SOS that exploit the Laplacian nature of fMRI sources). This subspace separa-
tion procedure leads to reduced dimensions Ns and Nns in the resulting decompositions,
ultimately resulting in a lower complexity and improvement of the wall time performance.
Below, we also provide a pseudocode (Algorithm 1) that summarizes the IVA-S3 method:

Algorithm 1 IVA-S3

Require: datasets X = [(X[1])>, . . . , (X[K])>]> ∈ RNK×T

W init ←MCCA SUMCORR (X)
W IVA−G ← IVA-G (X,W init)
(Y[k])IVA−G ← (W[k])IVA−GX[k]

yn ← (Y[k])IVA−G
for n = 1 : N do

σn = λn1−λn2
λn1

if σn > ∆ then
Shared subspace← yn

else
Non-shared subspace← yn

end if
end for

(Y[k]
s )IVA−G ← shared subspace, (Y[k]

ns )IVA−G ← non-shared subspace
W s ← IVA ((Y[k]

s )IVA−G,I), Wns ← IVA ((Y[k]
ns )IVA−G,I)

(Y[k]
s )S3 ← (W[k]

s )S3(Y
[k]
s )IVA−G, (Y[k]

ns )S3 ← (W[k]
ns )S3(Y

[k]
ns )IVA−G

=

=
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Analyze the 
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Figure 1. General framework of the IVA-S3: In the first stage, IVA-G with SUMCORR initialization is
applied to the entire dataset; in the second stage, the shared subspaces are identified and separated
from the non-shared subspaces; in the third stage, IVA is applied separately to the shared and
non-shared subspaces.

5. Results
5.1. Performance with Simulated Data

To evaluate the performance of our method and compare it with existing methods, we
conducted a series of simulations. Our application focus was on fMRI data analysis, where
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many of the source components are likely to be shared among subjects. We simulated
shared SCVs by defining their covariance matrices with an “effective rank” of 1, where
the principal eigenvalue corresponds to the signal and the remaining K− 1 eigenvalues
correspond to the noise. The generative model of each SCV covariance is thus given by

Σsn = µn1n1>n + ηIk (7)

where µn ∈ [0 1] defines the value taken by all off-diagonal entries in the covariance, 1n is a
vector of 1s, and Ik is the identity matrix. To ensure that the covariance matrix was also a
correlation matrix, we also set η within [0 1] such that µn + η = 1. In our simulations, we
used equally spaced values of µ ranging from 0.80 to 0.50. In contrast to shared SCVs with
“simple” covariances, we generated non-shared SCVs with more “complex” covariances,
such that the non-shared covariances had an effective rank equal to K (“effective full rank”).
To generate these more “complex” covariances, we generated covariances of the form QQ>,
where the matrix Q ∈ RK×K is a random matrix with each row drawn from the standard
Gaussian distribution and then row-normalized to the unit norm. As a result, the matrix
QQ> became a random correlation matrix (with the values on the diagonal equal to 1 and
the values on the diagonal being random values between −1 and 1).

Latent sources within fMRI data are generally described by the multivariate Laplacian
distribution; thus, to include this within our simulations, we generated our SCVs using a
multivariate generalized Gaussian distributed PDF model (MGGD) [? ] with the distribu-
tion shape parameter β = 0.5. Once the SCVs Sn had been generated, sources therein were
distributed to their corresponding datasets S[k] and then mixed by mixing matrices A[k],
with values in A[k] drawn from the standard Gaussian distribution. We generated a total of
N = 50 sources, with K = 100 datasets and a sample size of T = 20NK. All MGGD sources
were normalized to a zero mean and unit variance; hence, the covariance and correlation
coefficients coincided. We simulated three scenarios:

• All 50 SCVs are shared;
• All 50 SCVs are non-shared;
• Half (25) are shared, and half (25) are non-shared.

We compared four algorithms: group-ICA, SUMCORR, IVA-G, and IVA-S3 (with the
IVA-S3 using the IVA-G in the final stage). As we knew the ground truth for the simulated
data, we qualified the performance by joint-intersymbol interference (joint-ISI), which is
defined as

ISIJ(G[1], G[2], ..., G[K]) , ISI(
1
K

K

∑
k=1
|G[K]|) (8)

where

ISI(G) =
1

2N(N − 1)
(

N

∑
n=1

(
∑N

m=1|gnm|
maxp|gnp|

− 1)

+
N

∑
m=1

(
∑N

n=1|gnm|
maxp|gpm|

− 1))

(9)

where G[k] = W[k]A[k], with elements denoted as gmn [24,25]. The joint-ISI is a normal-
ized performance measure with values between 0 and 1 that captures how close each
G[k] = W[k]A[k] is to a scaled and permuted diagonal matrix, with an ISI of 0 representing a
perfect source estimation, subject to scale and permutation ambiguities. The joint-ISI also
penalizes when each G[k] has a different permutation structure, and thus, also accounts for
the alignment of sources to SCVs within the JBSS estimation. We also measured the compu-
tational efficiency by measuring the wall time of the algorithms using the computational
resources provided by the UMBC High Performance Computing Facility (HPCF); thus, our
recorded wall times are reflective of the HPCF’s capabilities.
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The joint-ISI performance is summarized in Figure 2. From the three scenarios, we
observed that

• When all SCVs are shared, group-ICA and SUMCORR perform well, as their as-
sumption that all SCVs are shared is a perfect model match with the simulated
data. However, the IVA-G performs poorly because it heavily overparameterizes
the SCVs (representing each effectively one-dimensional SCV by a K = 100 dimen-
sional multivariate Gaussian). In contrast, the IVA-S3 provides a better estimation, as
the SUMCORR initialization compensates for the shared SCVs.

• When all SCVs are non-shared, group-ICA and SUMCORR fail due to a complete
model mismatch, whereas both the IVA-G and the IVA-S3 perform well because they
are better suited to the estimation of more complex SCVs where greater variability
exists across the datasets.

• When half of the SCVs are shared and half are non-shared, group-ICA and SUMCORR
perform poorly, strictly because of the non-shared SCVs, whereas the IVA-G performs
poorly, strictly because of the shared SCVs. In contrast, the IVA-S3 is able to estimate
both shared and non-shared SCVs well. This is because the IVA-S3 leverages the
strengths of both the SUMCORR and IVA by initializing the IVA with the SUMCORR
estimation.

The wall times for all four algorithms are summarized in Figure 3. We first note
that the IVA-G requires a greater wall time when sources are shared (and performance
is worse). On the other hand, the IVA-S3 exhibits faster wall times than the IVA-G, the
simplest and fastest IVA algorithm, owing, in part, to the good initialization of the IVA-G
by the SUMCORR and, in part, due to the subspace separation afterwards. This reduction
in computational time is especially valuable for applications such as fMRI data analysis,
where many SCVs are shared; thus, the IVA-S3 is expected to provide an even greater time
saving in the analysis of larger datasets.
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Figure 2. Joint-ISI performance of the four algorithms in the three different SCV simulation scenarios.
The results are summarized from 20 independent simulations.
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Figure 3. Wall times (s) of the four algorithms in the three different SCV simulation scenarios. The
results are summarized from 20 independent simulations.
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5.2. Results with Real FMRI Data

Our application primarily involves neuroimaging data, specifically, fMRI data. Our
simulated data experiments aimed to well-represent the statistics of real fMRI data. With
the functional brain network components extracted from most JBSS methods, it is typically
observed that a number of the source components are shared (are highly dependent) across
all subjects, while a number of those are not [4,27]. The simulated SCVs (described above)
correspond to such scenarios with both shared and non-shared fMRI sources. Although
we simulated a scenario where half of the SCVs were shared and the other half were
non-shared, it is crucial to recognize that real fMRI datasets are typically more complex
and diverse in nature.

The data used in this study were resting-state fMRI data from the Bipolar–Schizophrenia
Network on Intermediate Phenotypes (BSNIP) (https://nda.nih.gov/edit_collection.html?
id=2274, accessed on 27 May 2023) [28–31]. We utilized data from a random subset of
49 healthy controls and 49 schizophrenia patients from the Baltimore site for this study. All
participants were instructed to keep their eyes open, focus on a crosshair displayed on a
monitor, and remain motionless during the entire scan, aided by a custom-built head-coil
cushion that restricted head motion. Post-scan assessments were performed to confirm
alertness. The imaging data were acquired using a 3-T scanner, and a single 5-min resting-
state fMRI run was conducted, with a TR of 2.21. The following preprocessing steps were
applied to the fMRI data: (i) rigid body motion correction to correct subject head motion;
(ii) slice-timing correction to account for timing differences in slice acquisition; (iii) warping
of the fMRI data into the standard Montreal Neurological Institute (MNI) [32] space using
an echo-planar 412 imaging template and resampling to 3× 3× 3 mm3 isotropic voxels;
and (iv) smoothing 413 of the resampled fMRI images using a Gaussian kernel with a
full width at half maximum 414 (FWHM) of 6 mm. Each resting-state scan consisted of
134 volumes. To eliminate the 415 T1-related signal fluctuations (T1 effect) [33], the first
three volumes were removed, leaving 131 volumes for each dataset used in this study. We
performed masking on each volume to remove the non-brain voxels and flatten the result
to form an observation vector of T = 63,304 voxels (samples).

Neither the MCCA nor the IVA need specific parameters for the algorithm, but the
model order N, i.e., the dimension of the signal space, plays a crucial role. We estimated
the model order based on information theoretic criteria. However, for fMRI data, the
samples are not strictly independent and identically distributed samples (i.i.d samples);
thus, classical order estimation techniques may overestimate the order. Downsampling
is a common approach to combat this issue, but it can result in the loss of information.
To overcome this limitation, two entropy rate (ER)-based order estimation techniques
were used: ER with a finite memory length model and ER with an autoregressive model
(AR) [34,35]. We examined the order with both methods, and the ER-FM yielded an order
of 51± 12, while the ER-AR yielded an order of 50± 12. Using these values as guidance,
we evaluated the consistency of group-ICA runs and the performance of IVA-G runs
in multiple nearby orders to select the order that yielded the best performance, which
ultimately led us to implement an order of N = 55.

Due to the lack of ground truth sources for the real fMRI data, assessing the accuracy
of the estimation is not possible, as it is for simulated cases where the true mixing is
known. To evaluate the performance of our algorithm without a known ground truth, we
first conducted a comparative analysis with the widely used group-ICA approach. We
employed the back-reconstruction method “GICA” [16] in GIFT, which is the default in
GIFT. Our evaluation was based on the identification of well-estimated components by both
IVA-S3 and group-ICA methods in meaningful brain regions, such as the default-mode
networks (DMN) and visual networks (VN), and this indicated reasonable performances
by both algorithms. Unlike in the simulations, for these comparisons, we did not include
results of the IVA-G or IVA-L-SOS, because the high number of fMRI datasets made the
IVA algorithms computationally infeasible for this experiment.

https://nda.nih.gov/edit_collection.html?id=2274
https://nda.nih.gov/edit_collection.html?id=2274
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Since JBSS algorithms typically separate sources through the minimization of mutual
information, we also quantified the performance by measuring the mutual information
(MI) between the estimated sources. Better separation of the sources would lead to smaller
values for the mutual information between the estimated sources. We quantified the mutual
information with the following measure [36]:

Inorm(ŷi, ŷj) =
2I(ŷi, ŷj)

I(ŷi, ŷi) + I(ŷj, ŷj)
(10)

where I(ŷi, ŷj) is the mutual information between two estimated components ŷi, ŷj. For each
dataset’s estimated sources Y[k], we calculated pairwise mutual information between all N
sources within the dataset and averaged these N(N − 1) pairwise MI values. We report
the average MI value for each dataset in Figure 4 (left). In Figure 4 (right), we also include
the average values across all datasets, representing the average level of dependence that
each estimated source has to each other estimated source in its corresponding dataset.
Here, we observed that the average normalized mutual information between estimated
sources from the IVA-S3 was consistently lower than that obtained from group-ICA for all
subjects, which indicates that the IVA-S3 could better separate the sources. The mean values
of this normalized mutual information for all subjects were calculated and found to be
1.1 × 10−2 ± 2.9 × 10−3 for IVA-S3 and 1.6 × 10−2 ± 2.4 × 10−3 for group-ICA, which
further supports this conclusion.
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Figure 4. Normalized mutual information (MI) averaged across sources for each fMRI subject dataset
(left), and violin plots of MI averaged over all 98 subjects (right).

For more detailed assessments and comparisons of the performance of the two algo-
rithms, we inspected all estimated components from both algorithms and selected those
that appeared in both estimations and corresponded to each other. For most of these com-
ponents, we observed that the estimates obtained by the IVA-S3 exhibited higher power
ratios relative to those obtained by group-ICA, further indicating a better estimation quality
for the IVA-S3. Among all matching components, the IVA-S3 estimations showed power
ratios of 13.44± 10.61 while those of group-ICA were 7.65± 2.47.

Furthermore, we generated one-sample t-maps for the matching components and
observed that the t-maps for the IVA-S3 estimations had more activated voxels in most
components, indicating that the IVA-S3 preserved more subject variability. Examples of
t-maps of matching components from different networks are presented in Figure 5.

We note that functional brain networks derived from fMRI data analysis play an
important role in understanding mental disorders and brain function in general; thus, they
are of great significance in medical research and neuroscience [30,37–41]. For example,
schizophrenia is a complex mental disorder characterized by disordered thinking, emo-
tional unresponsiveness, delusion, and hallucinations. The DMN is active during rest and
self-referential thinking, and altered connectivity within the DMN is commonly observed
in schizophrenia patients. Our results demonstrate that the IVA-S3 provides more precise
definitions of all areas of the DMN, which contains multiple regions, such as the ventral
anterior cingulate cortex (vACC), the posterior cingulate cortex (PCC), and the left and
right inferior parietal cortexes (IPCs). Moreover, schizophrenia patients often suffer from
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impairments in visual perception, which are linked to brain regions such as the primary
visual cortex and the lateral geniculate nucleus. Our results indicate that the IVA-S3 yields
a better estimation of VN areas than the GICA, resulting in a greater number of activated
voxels in one-sample t-maps and providing more detailed identification of visual area
biomarkers. The precise estimations of functional brain networks allow for a better analysis
of structural differences between healthy controls and schizophrenia patients, and the
IVA-S3 offers a clear advantage over group-ICA in this regard.
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Figure 5. Example (one-sample) t-maps for components estimated from the IVA-S3 and group-ICA
(Infomax), thresholded at p < 0.05, after FDR correction. The IVA-S3 typically produces components
with more activated voxels and better definitions of components, as is the case for the DMN.

6. Conclusions

In this study, we proposed and tested a scalable IVA algorithm by first identifying and
separating the “shared” subspace from the data. Our method combines the strengths of both
the SUMCORR and IVA-G by initializing the IVA-G with SUMCORR estimation, providing
an estimation procedure that is well-suited for estimating the shared sources, thus helping
us to identify and separate the shared and non-shared subspaces effectively. By reducing
the dimensionality of the problem, our approach also enables the IVA to be conducted
over larger numbers of datasets. After testing our method on both simulated datasets and
real fMRI datasets, our results demonstrate that the IVA-S3 inherits the robust estimation
performance of the IVA-G while also being able to estimate low-rank shared subspaces
in a superior manner to the use of the IVA-G alone, in addition to providing improved
scalability to higher numbers of SCVs than the IVA-G alone. Our findings indicate the
IVA-S3 offers the potential for improved subgroup identification with fMRI data, as we
demonstrated that the IVA-S3 is able to better preserve subject variability. A more detailed
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investigation of subgroup identification is beyond the scope of this work but is an emerging
new area of research [4,42–45]. Furthermore, as discussed in the previous section, the IVA
might be prone to overfitting when analyzing large numbers of datasets. In addition to the
separation of subspaces, it might be desirable to have methods of effective quantitative
analysis of the datasets themselves prior to the analysis to assess the suitability of a set
of datasets for IVA analysis and its evaluation in terms of the complexity of the models
employed. In summary, the IVA-S3 can achieve excellent estimation performances with
significantly reduced computational costs, making it a promising method for large-scale
fMRI analysis.
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The following abbreviations are used in this manuscript:

BSS Blind source separation
JBSS Joint blind source separation
fMRI Functional magnetic resonance imaging
CCA Canonical correlation analysis
CVs Canonical variate
MCCA Multi-set canonical correlation analysis
SUMCORR Maximizing the sum of correlations
ICA Independent component analysis
Group-ICA Group independent component analysis
IVA Independent vector analysis
IVA-G Independent vector analysis with a multivariate Gaussian source prior
IVA-L-SOS Independent vector analysis with a multivariate Laplacian distribution and

second-order statistics
SCV Source component vector
PCA Principal component analysis
PC Principal component
DMN Default-mode networks
VN Visual networks
MGGD Multivariate generalized Gaussian distributed
IVA-S3 Independent vector analysis
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