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Abstract: The notion of distance correlation was introduced to measure the dependence between
two random vectors, not necessarily of equal dimensions, in a multivariate setting. In their work,
Székely et al. (2007) proposed an estimator for the squared distance covariance, and they also
proved that this estimator is a V-statistic. On the other hand, Székely and Rizzo (2014) intro-
duced an unbiased version of the squared sample distance covariance, which was subsequently
identified as a U-statistic in Huo and Székely (2016). In this study, a simulation is conducted to
compare both distance correlation estimators: the U-estimator and the V-estimator. The analy-
sis assesses their efficiency (mean squared error) and contrasts the computational times of both
approaches across various dependence structures.

1 Introduction
Distance correlation is a novel measure of dependence between random vectors. The concept
of distance correlation was introduced by Székely et al. (2007). They emphasize that distance
covariance and distance correlation draw a parallel to product-moment covariance and corre-
lation. Nevertheless, unlike the classical definition of correlation, distance correlation is zero
only when the random vectors are independent. Essentially, for all distributions with finite
first moments, distance correlation (R) extends the concept of correlation in two fundamental
ways:

(i) RpX, Yq is defined for X and Y in arbitrary dimensions;
(ii) RpX, Yq “ 0 characterizes independence of X and Y.

Distance correlation satisfies 0 ď R ď 1, and R “ 0 if and only if X and Y are independent.

Székely et al. (2007) introduced a sample distance covariance estimator, demonstrating that
this estimator functions as a V-statistic. Furthermore, in the work of Székely and Rizzo (2014),
intermediate findings are outlined, culminating in an unbiased estimator for squared distance
covariance. The unbiased estimator is established as a U-statistic in Huo and Székely (2016),
along with the introduction of a novel algorithm. This algorithm shows a computational com-
plexity ofOpn log nq, a noteworthy enhancement compared to theO

`

n2˘

complexity associated
with the direct implementation of the V-estimator put forward by Székely et al. (2007).

It is important to highlight that, to the best of our knowledge, the merits and drawbacks
linked to each distance correlation estimator (U-estimator and V-estimator) have not been thor-
oughly investigated in the current body of literature. In this study, both estimators are compre-
hensively examined and compared.
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2 Preliminaries
Consider two random vectors, X P Rp and Y P Rq, where both p and q are positive integers.
Let ϕX and ϕY represent the characteristic functions of X and Y respectively, and denote the
joint characteristic function of X and Y as ϕX,Y . In this context, the distance covariance between
these random vectors X and Y, assuming they possess finite first moments, is defined as a
nonnegative scalar denoted as VpX, Yq, given by the square root of:

V2pX, Yq “ ||ϕX,Ypt, sq ´ ϕXptqϕYpsq||2

“
1

cpcq

ż

Rp`q

||ϕX,Ypt, sq ´ ϕXptqϕYpsq||2

|t|1`p
p |s|

1`q
q

dt ds,

where cd “ πp1`dq{2

Γpp1`dq{2q
. Similarly, distance variance (VpXq) is defined as the square root of

V2pXq “ V2pX, Xq “ ||ϕX,Xpt, sq ´ ϕXptqϕXpsq||2.

And the distance correlation (R) between random vectors X and Y, assuming they possess
finite first moments, is the positive square root of a nonnegative quantity denoted asR2pX, Yq.
This quantity is defined as follows:

R2pX, Yq “

$

&

%

V2pX,Yq?
V2pXqV2pYq

, V2pXqV2pYq ą 0

0, V2pXqV2pYq “ 0.
(29.1)

Alternatively, Székely et al. (2007) proposed an equivalent method for computing distance co-
variance through expectations. This is, if E|X|2p ă 8 and E|Y|2q ă 8, then Er|X|p|Y|qs ă 8,
and

V2pX, Yq “ Er|X1 ´ X2|p|Y1 ´ Y2|qs ` Er|X1 ´ X2|psEr|Y1 ´ Y2|qs

´2Er|X1 ´ X2|p|Y1 ´ Y3|qs, (29.2)

where pX1, Y1q, pX2, Y2q and pX3, Y3q are independent and identically distributed as pX, Yq.

When dealing with an observed random sample pX, Yq “ tpXk, Ykq : k “ 1, . . . , nu drawn
from the joint distribution of random vectors X P Rp and Y P Rq, Székely et al. (2007) intro-
duced the empirical distance covariance (VnpX, Yq) as follows. The empirical distance covari-
ance VnpX, Yq is a nonnegative value defined by the square root of:

V2
npX, Yq “

1
n2

n
ÿ

k,l“1

Akl Bkl , (29.3)

where Akl and Bkl denote the corresponding double-centered distance matrices defined as:

Akl “

#

akl ´ 1
n

řn
j“1 akj ´ 1

n
řn

i“1 ail ` 1
n2

řn
i,j“1 aij, k ‰ l

0, k “ l,

where akl “ |Xk ´ Xl | the pairwise distances of the X observations, similarly for bkl “ |Yk ´ Yl |.
In the same way

V2
npXq “ V2

npX, Xq “
1

n2

n
ÿ

k,l“1

A2
kl . (29.4)

Theorem 1 in Székely et al. (2007) establishes the nonnegativity of V2
npX, Yq. Furthermore,

it demonstrates that under independence, V2
n behaves as a degenerate kernel V-statistic. The
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computational complexity of this estimator is Opn2q. Now, the empirical distance correlation
RnpX, Yq is defined as the square root of:

dCorV2
pX, Yq “ R2

npX, Yq “

$

&

%

V2
n pX,Yq?

V2
n pXqV2

n pYq
, V2

npXqV2
npYq ą 0

0, V2
npXqV2

npYq “ 0,
(29.5)

which is always non-negative.

Similarly, in Székely and Rizzo (2014), the U -centered matrix is introduced as follows. Con-
sider a symmetric, real-valued n ˆ n matrix A “ paklq with a zero diagonal, where n ą 2. The
entry in the pk, lqth position of the U -centered matrix Ã is defined as:

Ãkl “

#

akl ´ 1
n´2

řn
j“1 akj ´ 1

n´2
řn

i“1 ail ` 1
pn´1qpn´2q

řn
i,j“1 aij, k ‰ l;

0, k “ l.

Here ”U´centered” is so named because the inner product,

U2
npX, Yq “

`

Ã ¨ B̃
˘

“
1

n ´ 3

ÿ

i‰j

Ãkl B̃kl , (29.6)

defines anunbiased estimator of the squareddistance covariance. Thework byHuo and Székely
(2016) established that the estimator in Equation (29.6) is a U-statistic. This reevaluation paved
the way for the creation of an efficient algorithm, which can be executed with a computational
complexity of Opn log nq.
Thus, it is possible to define the empirical distance correlation through U-statistics (dCorU)
which is the square root of

dCorU2pX, Yq “

$

&

%

U 2
n pX,Yq?

U 2
n pXqU 2

n pYq
, U2

npXqU2
npYq ą 0

0, U2
npXqU2

npYq “ 0,
(29.7)

where U2
npXq represents the distance variance of X, similarly U2

npYq for Y.

These results have spurred the development and advancement of numerous software pack-
ages, accessible for use in both the R software environment (R Core Team, 2022) and Python
(VanRossum andDrake Jr, 1995). In the realm of Python, libraries such as statsmodels (Seabold
and Perktold, 2010), hyppo (Panda et al., 2021), dcor (Ramos-Carreño, 2022), and pingouin (Val-
lat, 2018) are available. In the R environment, notable packages include energy (Rizzo and
Székely, 2022), dcortools (Edelmann and Fiedler, 2022), and theRfast package (Papadakis et al.,
2022).

3 Simulation study
A Monte Carlo simulation study was conducted in order to compare the efficiency of the
dCorU and dCorV estimators across diverse dependence structures. For the simulation study,
the dcortools package was utilized, specifically employing the distcor function. To calculate the
distance correlation through dCorU, the code used is distcor(X, Y, bias.corr = TRUE). While,
to compute dCorV, the code is distcor(X, Y, bias.corr = FALSE) or simply distcor(X, Y).

To facilitate a comprehensive comparison of each estimator’s efficiency (MSE) and computa-
tional time, two different models are utilized. The first one, the bivariate normal model, which
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is used because Székely et al. (2007) proved that the distance correlation, in terms of Pearson’s
correlation coefficient, is given by the square root of:

R2pX, Yq “
ρ arcsin ρ `

a

1 ´ ρ2 ´ ρ arcsin ρ{2 ´
a

4 ´ ρ2 ` 1
1 ` π{3 ´

?
3

.

The second model corresponds to a nonlinear model defined as:

fX,Ypx, yq “ c

»

–1 ´

˜

y ´ 4
ˆ

x ´
1
2

˙2
¸2

fi

fl

k

Ir0,1spxqIr0,1spyq,

where k P N and c is a constant that depends on the value of k.

These models encompass varying levels of dependence and are evaluated across two
sample sizes, 100 and 10000. Each simulation is performed with 1000 Monte Carlo repetitions.
The precise computation of the distance covariance for the second model is achieved using
Equation (29.2). Similarly, the calculations for VpXq and VpYq were performed. Finally, the
value of R is obtained from Equation (29.1).

Five samples drawn from different values of the parameters of each model are depicted in
Figure 1, accompanied by the respective parameter value and the corresponding distance cor-
relation. The lines represent the conditional mean ErY|X “ xs in each case.
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Note that there are no substantial differences in the computation times among each of the esti-
mators. However, it is worth noting that these times were acquired using the dcortools package.
If a different package, such as energy package, were employed, the timings would likely vary,
potentially resulting in an increase.

Table 1: Computational time in secs for 1000 samples.
n “ 100 n “ 1000 n “ 10000

dCorU dCorV dCorU dCorV dCorU dCorV
Time 0.36 0.33 0.63 0.58 2.22 2.51

4 Conclusions
This study focused on examining the performance of the dCorU and dCorV estimators for dis-
tance correlation through Monte Carlo simulations. The results presented here underscore the
significance of the specific scenario. In cases of independence, dCorU demonstrates superi-
ority over dCorV across all considered scenarios. However, when dependence is present, the
outcomes diverge. The dCorV estimator aligns with superior results in terms of Mean Squared
Error (MSE) for linearmodel (bivariate normal), aswell as for the nonlinearmodel underweak
dependence. Moreover, in the realm of computational efficiency, both estimators, dCorU and
dCorV, stand on competitive ground.
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