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Abstract: In this work we present one valuation method for Renewable Energy Certificates
(RECs). Starting from a system of FBSDEs and using Ito lemma, we propose a mathematical
model based on a semilinear PDE with two stochastic factors. The main novelty comes from the
use of the Bermúdez-Moreno algorithm to deal the non-linear convective term in the PDE. This
duality algorithm is based on the Yosida regularization of non-linear maximal monotone opera-
tors. The resulting linear problem is discretized by using a characteristicsmethod combinedwith
a second order implicit finite differences scheme. We show illustrative results of the performance
of the proposed model and the numerical method.

1 Introduction
In recent years, several governments have developed environmental policies for promoting re-
newable energy sources. Many countries have already adopted Renewable Portfolio Standards
(RPSs) and trading of renewable energy certificates (RECs). Markets for tradable RECs can be
used to encourage the growth of a particular type of renewable energy, as in the case of Solar
Renewable Energy Certificates (SRECs) (see M. Coulon, J. Khazaei, W. B. Powell (2015) and A.
Shrivats, S. Jaimungal (2020)). In the presentwork, assuming that the price of the certificate de-
pends on two stochastic factors which are the accumulated green certificates and the renewable
energy production rate, we present the PDE model that governs the valuation of such financial
instruments and we propose an appropriate numerical method for its solution.

For the numerical solution of the nonlinear PDE problem, we first apply the Bermúdez-
Moreno algorithm proposed in A. Bermúdez, C. Moreno (1981) to deal with the nonlinear
convective term. This duality method is based on the approximation of a nonlinear maximal
monotone operator by means of its Yosida regularization. In order to solve the obtained lin-
earized problem, we use numerical methods based on semi-Lagrangian schemes in the direc-
tion without diffusion while an implicit second order finite differences scheme is applied in the
direction with diffusion term. Finally, several numerical examples are presented to illustrate
the good performance of the method and model.

2 Mathematical modelling
In what follows, for a fixed time horizon representing the end of the compliance period T ą 0,
we assume that the source of randomness in themodel is given by one-dimensionalWiener pro-
cess W “ pWtq0ďtďT . We assume that this Wiener process is defined on a complete probability
space pΩ,F , Pq, and it is adapted to the filtration F “ tFt, t ě 0u.
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Assuming that the price of a green certificate depends on two stochastic factors, which are
the renewable generation rate, Gt, and the number of accumulated green certificates, Bt, we
aim to address the model for pricing a REC.

First, let us denote by G̃t “ lnpGtq the Ornstein-Uhlenbeck (OU) process, which satisfies the
following stochastic differential equation (SDE):

dG̃t “ αg

ˆ

f ptq `
βg

αg
Pt ´ G̃t

˙

dt ` σgdWt, (32.1)

assuming that Gt0 “ g0, and where αg is the mean reversion speed of the process, Pt is the
certificate price, βg is the parameter which controls the level of immediate feedback from the
price of the certificate, σg is the volatility and Wt is the Wiener process governing the stochastic
part of the equation. Moreover, taking into account that weather conditions strongly affect the
production of energy in the renewable power generation, we introduce a deterministic function
f ptq representing the seasonality effect. A common choice is to use a combination of trigono-
metric functions as it is proposed in M. Coulon, J. Khazaei, W. B. Powell (2015). Furthermore,
in the OU process (32.1), the mean reversion level is linear in Pt plus seasonality. Now, the
production of renewable energy Gt can be written as

Gt “ exp
`

G̃t
˘

.

Secondly, we introduce the dynamics of the number of accumulated renewable energy cer-
tificates, Bt,

dBt “ Gtdt.

Note that Bt is non-negative and non-decreasing, and we assume that Bt0 “ 0, where t0 is the
beginning of the compliance period.

3 Statement of the pricing PDE
If we denote by P “ Ppt, G̃, Bq the price of the renewable energy certificate at time t, by using
a dynamic hedging technique and applying Itô’s Lemma (see K. Itô (1951)), we can derive the
following nonlinear PDE whose solution is the price of the REC:

LrPs “
BP
Bt

`
1
2

σ2
g

B2P
BG̃2 ` αg

`

f ptq ´ G̃
˘ BP

BG̃
` βgP

BP
BG̃

` exppG̃q
BP
BB

´ rP “ 0, (32.2)

where r is the constant risk free interest rate.
Assuming that the number of life years of the certificate is denoted by γ and the maturity

of the certificate is T, the PDE problem associated to (32.2) is initially formulated in the un-
bounded domain pT ´ γ, Tq ˆ p´8, 8q ˆ p0, 8q.

For the particular case of one single period (i.e. one year, γ “ 1), the payoff at the expiry
date of the certificate, T, is a decreasing function in the number of accumulated green certifi-
cates at maturity, B, and depends on the requirement on the percentage of energy obtained
from renewables at maturity, RT . Thus, in order to state the PDE problem, Equation (32.2) is
completed with the final condition

PpT, G̃, Bq “ πT1tBăRTu, (32.3)

where πT is the penalty amount π at time T.
Moreover, there exists the possibility of extending the problem to multiple periods.

In that case, at each compliance date, Ti, for i “ 1, ..., γ ´ 1, a jump condition must be
applied. Thus, when the obligation is set the value of the certificate is given by

PpTi, G̃, Bq “ max
´

πTi1tBăRiu
, P

´

Ti
`, G̃, maxp0, B ´ Riq

¯¯

. (32.4)
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Note that Ti corresponds to the end of the i-th life year of the certificate and Ri is
the requirement at that time.
The study of the existence and uniqueness of solution for the nonlinear PDE prob-

lems defined by (32.2)-(32.3) or by (32.2)-(32.4) remains as an open problem as it is
mentioned in M. A. Baamonde-Seoane, M. C. Calvo-Garrido, M. Coulon, C. Vázquez
(2021) and M.A. Baamonde-Seoane, M.C. Calvo-Garrido, C. Vázquez (2023).

4 Numerical techniques
4.1 The duality algorithm
As previously pointed out, the PDE problem (32.2) presents a non-linear convec-
tive term. One possibility to deal with this non-linearity is based on the Bermúdez-
Moreno algorithm involving the Yosida regularization of non-linear maximal mono-
tone operators (see A. Bermúdez, C. Moreno (1981)).

For this purpose, let us introduce the maximal monotone operator m, defined by

mpPq “

"

0, if P ă 0
P2, if P ě 0,

so that
P

BP
BG̃

«
1
2

BmpPq

BG̃
.

Therefore, the equation (32.2) can be written in the form:

BP
Bt

`
σ2

g

2
B2P
BG̃2

` αg
`

f ptq ´ G̃
˘ BP

BG̃
`

βg

2
BmpPq

BG̃
` exppG̃q

BP
BB

´ rP “ 0. (32.5)

Following the duality technique introduced in A. Bermúdez, C. Moreno (1981), in
terms of the constant parameter ω ą 0, we introduce the new additional unknown θ,
defined by

θ “ pm ´ IωqpPq

where I denotes the identity operator.
Next, by using the Bermúdez-Moreno lemma, we have the equivalence

θ “ mpPq ´ ωP ô θ “ mω
λ pP ` λθq, (32.6)

where mω
λ denotes the Yosida approximation of m ´ Iω with parameter λ. For con-

vergence purposes, we impose the relation 2λω “ 1 in the choice of the parameters λ
and ω. Under this constraint, the Yosida approximation can be analytically computed
and is given by

mω
λ

ˆ

P `
θ

2ω

˙

“

$

&

%

´θ ´ 2ωP, if P ` θ
2ω ď 0,

θ ` 2ωP ` ω2 ´ ω
a

4θ ` 8ωP ` ω2, if P ` θ
2ω ě 0.

Next, if we introduce the linear differential operator

LrPs “
BP
Bt

`
σ2

g

2
B2P
BG̃2 ` αg

`

f ptq ´ G̃
˘ BP

BG̃
`

βgω

2
BP
BG̃

` exppG̃q
BP
BB

´ rP, (32.7)
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the equation (32.5) can be rewritten in the form:

LrPs “ ´
βg

2
Bθ

BG̃
. (32.8)

Moreover, from the equivalence stated in (32.6), the equation (32.8) is coupledwith
the following non-linear equation:

θ “ mω
λ pP ` λωq.

4.2 Formulation of the PDE problem in a bounded domain
In order to apply numerical discretization using finite differences, it is necessary to
define the bounded domain of the PDE problem.
Let Ω “ pT ´ γ, Tq ˆ R ˆ p0, `8q be the initial unbounded domain. Moreover, let

Ω̄ “ pT ´ γ, Tq ˆ p0, b̂q ˆ p´ḡ, ḡq be the truncated bounded domain where b̂ and ḡ
are real numbers, which are influenced by the requirement of the payoff function and
the jump conditions at compliance dates. Now, we introduce the changes B̂ “ B

b̂
and

Ĝ “ Ḡ
ĝ with ĝ “ 2g̃, so the bounded spatial domain Ω˚ “ p0, 1q ˆ p0, 1q in the new

variables pt, B̂, Ĝq, whose boundary can be decomposed as Γ “
Ť2

i“1pΓ´
i Y Γ`

i q where

Γ´
i “ tpy1, y2q P Γ| yi “ 0u, Γ`

i “ tpy1, y2q P Γ| yi “ 1u, i “ 1, 2.

Next, as in M. A. Baamonde-Seoane, M. C. Calvo-Garrido, M. Coulon, C. Vázquez
(2021), we follow the methodology introduced by O. A. Oleinik (1973) to obtain the
boundaries where it is necessary to impose boundary conditions. On those bound-
aries, we will impose homogeneous Neumann boundary conditions.

4.3 Discretization of the PDE
In order to choose an appropriate time discretization scheme for the PDE (32.8), we
note that the linear differential operator (32.7) is degenarate. Thus, we follow the
idea first proposed in Y. d’Halluin, P. A. Forsyth, G. Labahn (2005), which consists
of choosing a semi-Lagrangian method in the direction without diffusion combined
with a Crank-Nicolson finite differences scheme in the direction with diffusion.
For the time discretization, we first consider the change of time variable τ “ T ´ t,

where τ represents the time to maturity. Therefore, equation (32.8) can be equiva-
lently written in the domain as follows

DP
Dτ

´ AP “ 0, (32.9)

where
DP
Dτ

“
BP
Bτ

´ b̂ exppĜĝ ´ ḡq
BP
BB̂

,

AP “
ĝ2σ2

g

2
B2P
BĜ2

` ĝαg

ˆ

f pT ´ τq ´
`

Ĝĝ ´ ḡ
˘

`
βgω

2αg

˙

BP
BĜ

`
ĝβ

2
Bθ

BĜ
´ rP.

Next, we introduce the approximation for the material derivative:
DP
Dτ

«
P

`

τn`1, B̂, Ĝ
˘

´ P
`

τn, χn `

B̂, Ĝ
˘

, Ĝ
˘

∆τ
,
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where χn `

B̂, Ĝ
˘

“ χpτnq “ B̂ ` ∆τb̂ exppĜĝ ´ ḡq is the solution for n “ 0, 1, . . . , NT ´

1 and represents the position at time τn of the point placed at pB̂, Ĝq at time τn`1 and
moving according to the velocity field v “ ´b̂ exppĜĝ ´ ḡq.
By using aCrank-Nicolson scheme (θ̂ “ 0.5 in the so called θ̂-method)for the second

order differential term AP in equation (32.9), we obtain:

Pn`1 ´ Pn ˝ χn

∆τ
´

θ̂ ĝ2σ2
g

2
B2Pn`1

BĜ2
´

p1 ´ θ̂qĝ2σ2
g

2
B2 pPn ˝ χnq

BĜ2

´θ̂ ĝαg

ˆ

f pT ´ τq ´
`

Ĝĝ ´ ḡ
˘

`
βgω

2αg

˙

BPn`1

BĜ

´p1 ´ θ̂qĝαg

ˆ

f pT ´ τq ´
`

Ĝĝ ´ ḡ
˘

`
βgω

2αg

˙

B pPn ˝ χnq

BĜ
(32.10)

`rθ̂Pn`1 ` rp1 ´ θ̂q pPn ˝ χnq “
θ̂ ĝβg

2
Bθn`1

BĜ
`

p1 ´ θ̂qĝβg

2
Bθn

BĜ
.

At each time step, the equation (32.10) is coupled with the following non-linear rela-
tion between Pn`1 and θn`1:

θn`1 “ mω
λ pPn`1 ` λωn`1q. (32.11)

Next, we propose a fixed point algorithm to approximate the solution of the non-
linear problem (32.10)-(32.11).
At each fixed point iteration, the full discretization of problem can be written as

follows:
Pn`1,k`1

i,j ´ Pn
i,j ˝ χn

∆τ
´

θ̂ ĝ2σ2
g

2

¨

˝

Pn`1,k`1
i,j`1 ´ 2Pn`1,k`1

i,j ` Pn`1,k`1
i,j´1

`

∆Ĝ
˘2

˛

‚

´
p1 ´ θ̂qĝ2σ2

g

2

˜

Pn
χn ,j`1 ´ 2Pn

χn ,j ` Pn
χn ,j´1

`

∆Ĝ
˘2

¸

´ θ̂ ĝαg

ˆ

f pT ´ τn`1q ´

´

Ĝj ĝ ´ ḡ
¯

`
βgω

2αg

˙

¨

˝

Pn`1,k`1
i,j`1 ´ Pn`1,k`1

i,j´1

2∆Ĝ

˛

‚

´ p1 ´ θ̂qĝαg

ˆ

f pT ´ τnq ´

´

Ĝj ĝ ´ ḡ
¯

`
βgω

2αg

˙

˜

Pn
χn ,j`1 ´ Pn

χn ,j´1

2∆Ĝ

¸

´
θ̂ ĝβg

2

¨

˝

θn`1,k
i,j`1 ´ θn`1,k

i,j´1

2∆Ĝ

˛

‚´
p1 ´ θ̂qĝβg

2

˜

θn
i,j`1 ´ θn

i,j´1

2∆Ĝ

¸

` rθ̂Pn`1
i,j ` rp1 ´ θ̂qPn

χn ,j “ 0.

where θ̂ “ 0.5, Pl,m
r,s “ Pmpτl , B̂r, Ĝsq, Pl,m

χl ,s “ Pmpτl , χl , Ĝsq and θl,m
r,s “ θmpτl , B̂r, Ĝsq.

5 Numerical examples
5.1 Academic test
As a sanity check of the code and numerical methods, in the first example we show
an academic test with known analytical solution. For this purpose, we consider the
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following non homogeneous non-linear PDE:
LrPs “ h,

where the differential operator L is defined by (32.2) and h is given by

hpt, B, G̃q “

„

´BG̃ `
1
2

σ2
g t2B2 ´ tBαg

ˆ

f ptq `
βg

αg
exp

`

pT ´ tqBG̃
˘

´ G̃
˙

´ exppG̃qtG̃ ´ r
‰

Ppt, B, G̃q, (32.12)

with Ppt, B, G̃q “ exp
`

pT ´ tqBG̃
˘

is the analytical solution of the PDE (32.12).
By choosing b̂ “ 1 and g̃ “ 0.5 for the change of variables, we pose the PDE problem

in the bounded domain Ω̃ “ r0, 1s ˆ r0, 1s ˆ r0, 1s with Dirichlet boundary conditions
on Γ`

1 , Γ´
2 and Γ`

2 that are given by the evaluation of the solution at the corresponding
boundaries.

Table 1: Parameters in the PDE model for the academic test.

Parameter T γ αg βg σg r ω ϵ

Value 1 1 2 1.27 ˆ 10´3 0.1863 0.02 2 10´5

In this academic test we do not include the seasonality effect, so that we take f “ 0.
Parameters in the PDE are collected in Table 1 and mostly taken from M. Coulon, J.
Khazaei, W. B. Powell (2015).

Table 2: Relative errors and empirical convergence order in academic test.

Time steps Space steps Error R Order
40 32 0.0108651 - -
80 64 0.0055962 1.9415 0.9572
160 128 0.0028748 1.9466 0.9610
320 256 0.0014710 1.9543 0.9667
640 512 0.0007474 1.9681 0.9768
1280 1024 0.0003780 1.9771 0.9834
2560 2048 0.0001906 1.9832 0.9879

Table 2 shows the errors, convergence ratio and empirical order of convergencewith
different time and spatial discretizations computed as in Y. d’Halluin, P. A. Forsyth,
G. Labahn (2005). Thus, we can conclude that a first order convergence is achieved.

5.2 Real case
In this example, we have used the real New Jersey market data presented for SREC
markets, i.e., markets for solar renewable energy certificates, in M. Coulon, J. Khaz-
aei, W. B. Powell (2015). In this market, the energy year refers to the 12-month
period ending on May 31. We assume that the maturity is T “ 13, i.e., May 31,
2013. For convenience, the energy year 2013 is defined as the time interval p12, 13s.
Thus, we consider the requirement schedule 2010-2013, i.e., γ “ 3, with initial year
t “ t0 “ T ´ γ “ 10 and the first compliance date at t “ 11 (at the end of
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the year 2011) which corresponds to τ “ 2. We consider the rest of the PDE pa-
rameters as those in the Table 2. Moreover, the seasonality function is chosen as
f psq “ ´0.1209 sinp4πsq ` 0.0900 cosp4πsq ` 0.2151 sinp2πsq ` 0.3859 cosp2πsq and
represents the influence of weather conditions.
The requirement, Ri, andpenalty, πTi , values at the end of each year for i “ 1, 2, 3 are

indicated in M. A. Baamonde-Seoane, M. C. Calvo-Garrido, M. Coulon, C. Vázquez
(2021), M.A. Baamonde-Seoane, M.C. Calvo-Garrido, C. Vázquez (2023) and M. A.
Baamonde-Seoane, M. C. Calvo-Garrido, C. Vázquez (2023). For the numerical meth-
ods, we start by choosing b̂ “ 7 ˆ 105 and ḡ “ ln p7 ˆ 105q. Concerning the discretiza-
tion parameters, we consider ∆τ “ 1

1200 , and a uniform mesh with ∆B̂ “ ∆Ĝ “ 1{32.
On the one hand, in Figure 1 we can observe that when the accumulated supply

(B) and renewable energy (G) are low, the price of the certificate tends to the penalty
value. On the other hand, when the value of both state variables increases, the price
of the certificate decreases.

Figure 1: Renewable energy certificate price at time t “ T ´ 2{3 in the real test.

In Figure 2 we can observe that, for values of accumulated certificates nearer to
requirement, low values of generation rate are linked to certificate prices equal to the
penalty amount. Additionally, for lower values of banked certificates, high enough
values of generate rate are associated with prices equal to the penalty.

Figure 2: Renewable energy certificate price at time t “ T ´ 1{3 in the real test.

Finally, in Figure 3 we represent the price of the certificate versus the number of
accumulated renewable energy certificates for different times, obtaining some cross-
sectional plots. At t “ T, the REC price matches the penalty if the requirement is
not met, otherwise the price is zero. Then, as we move backwards in time, the curves
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take lower values and move to the left, due to the diffusion of the final value. This
behaviour can be also observed in M.A. Baamonde-Seoane, M.C. Calvo-Garrido, C.
Vázquez (2023) and M. Coulon, J. Khazaei, W. B. Powell (2015).

Figure 3: Price curves for different times in the real test.
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