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Abstract: Sleep medicine deals with the diagnosis and treatment of sleep-related disorders. The
diagnosis is carried out through the manual analysis and labeling of polysomnographic studies,
which record various electrophysiological and pneumological signals of the patient throughout
the night. This process involves the analysis of long duration signals, is complex, and demands
considerable resources and time on the part of the clinical expert. The purpose of this proyect
is the construction of automatic analysis algorithms that considerably reduce the analysis dura-
tion, reducing the manual workload, and minimizing possible human errors, providing repeata-
bility and robustness. In particular, the objective is to use machine learning algorithms, based
on Deep Learning techniques, for the identification and location of physiological events in these
polysomnographic records. Specifically, the goal is to locate physiological events associated with
involuntary motor movements that occur in the limbs, known as Limb Movements.

1 Introduction
Polysomnography is a study utilized to evaluate and diagnose sleep-related disorders. The
polysomnographic recording (PSG) obtained, records multiple physiological signals during
the night. The patient sleeps in a controlled environment, usually in a sleep laboratory, where
electrodes and sensors are placed on various parts of the body to record these signals.

PSG is considered the gold standard for diagnosing sleep-related breathing disorders. Each
recording lasts at least 8 hours, so manually analyzing each signal is a slow, time-consuming
process, that generates high costs in human resources. This causes delays in diagnosis and
increases the waiting lists, and therefore, motivates the research and development of automatic
analysis tools for PSGs.

In the context of automatic detection of involuntary motor events, the reference signal is
the Electromyogram (EMG) of the tibialis anterior muscles. EMG records electrical signals
generated bymuscle activity. Involuntarymovements, known as LimbMovements (LM), often
occur during sleep, especially during deep sleep phases, and can be identified by observing the
muscle activity through an EMG signal.

Brief and repetitive episodes of LM during sleep are known as Periodic Limb Movements
(PLM), which are found between the 85% and 95% of patients with Restless Legs Syndrome
(Rye and Trotti, 2012), a neurological disorder characterized by an uncomfortable sensation in
the legs and the urgent need to move them to relieve the sensation. These movements can dis-
rupt sleep and cause insomnia problems. They have also been observed in other sleep-related
neurological disorders, such as narcolepsy (Baker et al., 1986), sleep-related breathing disor-
ders (Ancoli-israel et al., 1985), Parkinson’s disease (Wetter et al., 2000), multiple system atro-
phy (Vetrugno et al., 2004) and REM sleep behavior disorder (Fantini et al., 2002). Therefore
the importance of the detection and analysis of LM.
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2 Material
For the development of this project, we have used PSGs annotated by clinical experts. Only the
EMG signals from the PSG records were used. This signal is stored in two channels, with the
signal originated from the right tibialis anterior muscle (EMG RAT) and from the left tibialis
anterior (EMG LAT), which will be used as independent signals. Three different data sets have
been used:

HMCP: comes from the Álvarez Estévez and Rijsman (2022) study. The study consists
of 20 PSGs individually selected for 4 tasks. In this project, we have used the 5 PSGs
selected in this study for the LM annotation task, which are individually annotated by
12 clinical experts. The EMG signals are stored in two separate channels for each leg,
and are sampled at a frequency of 128 or 256 Hz.
MrOS: comes from theOsteoporotic Fractures inMen Study (MrOS) (Blank et al., 2005).
3,135 of the participants were recruited to take the MrOS sleep study, and underwent
the recording of a complete PSG. A subset of 10 randomly selected PSGs has been used
in this project. Each PSG includes annotations made by one clinical expert. All EMG
signals are stored in two separate channels for each leg, and are sampled at a frequency
of 64 Hz.
WSC: comes from a follow-up of mortality in the population of the Wisconsin Sleep
Cohort (WSC) (Young et al., 2008). Within the large sample, only a subset of patients
had all PSG awakenings and LMs scored including the duration of the events. In this
project, 16 PSG records were randomly selected from that subset. The EMG signals from
these recordings are sampled at a frequency of 200 Hz, and only the right leg channel is
recorded.

3 Methods
The task of detecting LM in EMG signals is approached as a supervised sequence-to-sequence
classification problem, where the classifier is a deep learning model. The objective is to locate
the start and the end point of each LM in the EMG signals, and to determine the specific channel
in which the event takes place (EMG RAT/LAT).

3.1 Signal preprocessing
EMG signals can be contaminated by several types of noise, interferences and artifacts. To avoid
possible misinterpretation of the data, a suitable filtering system is implemented to prepare the
EMG signals. The filtering pipeline consists of a high-pass filter with a 15 Hz cut-off frequency,
to remove low-frequency components not related to the muscle activity of interest; and a Notch
filter centered on 50Hz (Europe) or 60Hz (North America) (according to each data set origin),
to eliminate power line interference.

Signals can be recorded at different sampling frequencies. Among the three databases used,
we have signals sampled at 64, 128, 200 and 256 Hz. In order to have all the data in a single
homogeneous format, a resampling of the EMG LAT/RAT channels is performed at 128 Hz.

3.2 Sample processing
Once the EMG LAT and RAT signals have been preprocessed, the process of obtaining the
samples, to train the models and subsequently to make predictions, is carried out. Training
samples are pairs (X, Y), where:

X: is a vector with the amplitude values of an interval of the input EMG signal. To ob-
tain these vectors from the EMG signals, windowing is performed using a overlapping
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sliding time window. Awindow length of 30 seconds is used (clinicians usually analyze
these signals in 30 second intervals), and an overlap of the 50%.

Y: is a boolean vector that corresponds to the annotations of an expert indicating the
presence or absence of LM in the signal interval. To obtain the label vectors, a resolution
of 0.25 seconds is used, that is, every 0.25 seconds the signal has an associated label
indicating the presence or absence of LM.

Training samples are obtained from the EMG signals of the PSGs of theHMCP dataset, while
the MrOS and WSC datasets are utilized to evaluate the generalization of the models between
different databases.

3.3 Training process
For the training process, samples are divided into three partitions:

- Training partition: 70% of the pairs (X, Y), are utilized for adjusting and learning the
models.

- Validation partition: 15% of the pairs (X, Y), are utilized to monitor the learning of the
models.

- Test partition: remaining 15% of the pairs (X, Y), are utilized to evaluate the perfor-
mance of the trained models.

Different architecture models have been trained, they are presented in Section 4.

3.4 Prediction and annotation
To predict LM from the EMG LAT/RAT signals, the preprocessing and processing steps are
carried out to obtain the X input vectors. Once the predictions (Y vectors) are obtained from
the trained models, they are processed to transform predicted labels into annotations that
follow the LM annotation criteria established by the World Association of Sleep Medicine
(WASM) (Ferri et al., 2016).

3.5 Validation
Cohen kappa (Cohen, 1960) will be used as themain reference metric to measure and compare
the quality of the algorithms. It is a useful metric because it considers the correct and the
incorrect classification, and corrects the agreement due to chance. It is frequently used to test
inter-rater agreement, and is the main reference metric for annotating events in PSG signals.

4 Deep learning approaches
Different architectures have been evaluated for the LMdetection task. Table 1 shows a summary
of the trained models and the Kappa values obtained by each of them in prediction of the test
partition data.
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Table 1: Trained models summary
Model Arquitecture Parameters Training samples Cohen Kappa
Method 1 LSTM 9,217,880 only pairs (X,Y) from EMG RAT 0.6769
Method 2 LSTM 9,217,880 all pairs (X,Y) 0.7422
Method 3 LSTM 69,117,300 all pairs (X,Y) 0.7001
Method 4 BiLSTM 46,119,940 all pairs (X,Y) 0.6830
Method 5 1D CNN - BiLSTM 4,610,680 all pairs (X,Y) 0.7612
Method 6 1D CNN - BiLSTM 4,610,680 only pairs (X,Y) containing some LM 0.7219
Method 7 1D CNN - BiLSTM 4,610,680 pairs (X,Y) containing some LM and 0.7391

10% of pairs not containing any LM
Method 8 LSTM - BiLSTM 9,220,360 all pairs (X,Y) 0.7547

5 Results
We evaluated the performance of the trained models. Additionally, we evaluated the per-
formance of the automatic annotation method of Álvarez Estévez (2016) (Polyman method),
based on conventional signal processingmethods, so as to compare its performance to ourmod-
els. This method was designed with PSGs coming from the same medical center as HMCP.

5.1 HMCP
An inter-expert validation was carried out among the different HMCP clinicians, to know the
reference measure of performance between experts. We measured the Kappa agreement be-
tween each clinical expert individually and the consensus formed by the rest of the experts, in
the annotation of LM in every EMG signal. The average Kappa of agreement between experts
was 0.7867, with a deviation of ˘ 0.0920.

Equally, the evaluation between the automatic annotationmethods and the expert consensus
was carried out (see Table 2) for each EMG signal. Additionally, amultiple comparison test was
carried out to analyze the statistical significance of the differences betweenmethods (see Figure
1).

Table 2: HMCP validation results

Model Cohen Kappa
Method 1 0.7739 ˘ 0.0648
Method 2 0.8100 ˘ 0.0677
Method 3 0.7964 ˘ 0.0691
Method 4 0.7941 ˘ 0.0616
Method 5 0.8217 ˘ 0.0450
Method 6 0.6889 ˘ 0.3148
Method 7 0.8285 ˘ 0.0350
Method 8 0.8088 ˘ 0.0487
Polyman 0.8415 ˘ 0.0818 Figure 1: Multiple comparison test on HMCP

5.2 MrOS and WSC
Validation was carried out for the MrOS and WSC data sets, to evaluate the generalization
capacity of the automatic annotation methods on data sets independent of the training one.
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In this case, we only have the annotations of one clinical expert per EMG signal, therefore we
measure the agreement between the methods and the expert (instead of a consensus). Tables
3 and 4 contain the corresponding Kappa means and standard deviations for MrOS and WSC
respectively. Additionally, a multiple comparison test was carried out (see Figures 2 and 3).

Table 3: MrOS validation results

Model Cohen Kappa
Method 1 0.4470 ˘ 0.1866
Method 2 0.2937 ˘ 0.1589
Method 3 0.2151 ˘ 0.1606
Method 4 0.2614 ˘ 0.1692
Method 5 0.2036 ˘ 0.1576
Method 6 0.4291 ˘ 0.1894
Method 7 0.3850 ˘ 0.1652
Method 8 0.2574 ˘ 0.1542
Polyman 0.1419 ˘ 0.2337 Figure 2: Multiple comparison test on MrOS

Table 4: WSC validation results

Model Cohen Kappa
Method 1 0.7604 ˘ 0.0943
Method 2 0.7583 ˘ 0.0987
Method 3 0.7509 ˘ 0.1084
Method 4 0.7234 ˘ 0.1117
Method 5 0.7689 ˘ 0.0929
Method 6 0.7459 ˘ 0.1106
Method 7 0.7732 ˘ 0.0943
Method 8 0.7546 ˘ 0.0960
Polyman 0.4437 ˘ 0.3170 Figure 3: Multiple comparison test on WSC
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6 Discussion
Firstly, analyzing the results of the HMCP data set (see Section 5.1), clinical experts obtained
an average Kappa agreement of 0.7867 ˘ 0.0920, while six of our models (Method 2, Method
3, Method 4, Method 5, Method 7 and Method 8) and the Polyman method exceed this value
and were more stable in deviation (see Table 2).

On the other hand, the Polymanmethod obtained the highest Kappa on average over HMCP,
although our models have greater stability. However, in the multiple comparison test (see Fig-
ure 1), the Polyman method was only significantly different from the Method 1 and Method 4
models. Among our models, Method 7 obtained the highest Kappa and the lower deviation,
although the multiple comparison test indicates that it is only significantly different from the
Method 1 model, therefore, among the rest of the models, the computationally less expensive
method (with fewer training parameters), which are Methods 5, 6 or 7, are preferred.

Analyzing Table 3 we can observe that in the MrOS set, that contains signals with worse
quality than the training data (signalswere sampled only at 64Hz), all ourmodels obtain better
performance and are more stable than the Polymanmethod. The multiple comparison test (see
Figure 2) indicates that the difference in performance between the Polyman method and our
models is significant except for Method 3 and Method 5 models. Among our models, the one
that obtained the highest Kappa was Method 1, which turned out to be significantly equivalent
in performance to the Method 6 and Method 7 models, therefore, again, the computationally
less expensive models are preferred, Methods 6 or 7.

Analyzing Table 4 we can observe that in theWSC set, that contains signals with comparable
quality to the training data, all our models obtain better performance and are more stable than
the Polyman method. Furthermore, the multiple comparison test (see Figure 3) indicates that
the difference in performance between the Polyman method and each of our models is signif-
icant. Finally, the performance differences between our models are not statistically significant,
so again, the computationally less expensive models are preferred, Methods 5, 6 or 7.

7 Conclusions
We implemented a process for automatic annotation of involuntary motor movements in the
limbs, on EMG signals recorded in a PSG. The method includes the processes of preparing the
EMG signals for prediction and the subsequent annotation of the detected events.

For the automatic detection of LM, the applicability and suitability of different deep learning
architectures was investigated. Eight different deep learning models were trained: three with
an LSTM architecture, onewith a BiLSTM architecture, three 1DCNN-BiLSTM, and one LSTM-
BiLSTM.

The models obtained solid performance, better or comparable to the performance of HMCP
clinical experts, and above all, they were more stable, which is highly desirable to eliminate or
minimize subjectivity and possible human errors.

The performance of our deep learning models was compared to the automatic annotation
method of Álvarez Estévez (2016), based on conventional signal processing methods. The re-
sults indicated that methods based on deep learning are more robust and stable facing with
signals from new data sources, with different qualities, configurations, recording processes,
and in which clinical experts may have slight discrepancies in the annotation criteria.

Finally, models with more complex architectures, and therefore with higher computational
cost, did not present significant advantages in performance compared to simpler and more
efficient models.

The implemented process could be used to largely reduce the costly manual work of LM
annotation, and thus, enable the diagnosis and treatment ofmany people that are not diagnosed
due to limited human resources.
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