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Abstract: The objective of the work is to develop a system that allows predicting, from a global
perspective, the behavior of the process in a wastewater treatment plant. To do this, the chem-
ical oxygen demand, a variable present in water, is estimated indirectly, avoiding difficult and
complex measurements. This estimation is carried out in real time through the relationship be-
tween easily measured variables. This modeling will be done through the use of machine learn-
ing techniques. Different regression techniques are applied and compared. The dataset contains
variables such as pH, conductivity, suspended solids and etc. In this way, a non-physical indirect
sensor is implemented. Thresholds are established for the detection of deviations in the sensor
parameters.

1 Introduction

Water is a scarce and irreplaceable good, with great importance in the field of health and
production in our country and the world. The constant advance of climate change and the
unstoppable growth of the world’s population are affecting its availability, making it an
increasingly scarce resource. In view of this situation, and as a possible measure in this
situation, the possibility of reusing wastewater (Salgot and Folch, 2018) appears. This reuse
is subject to eliminating harmful agents that may be present. With the aim of reducing
wastewater pollution to values valid for reuse, wastewater treatment plants (WWTP) appear,
capable of reducing the polluting load (EDAR, n.d.).

To ensure and make sure of the correct operation of these facilities, it is essential to know
the state of the water, by means of certain markers that make it possible to establish the type
and degree of contamination of the water, both in the inflow and outflow of the WWTP. These
markers include physicochemical variables that are costly and/or technically complicated to
measure. Instead of using physical sensors to measure these markers, it is possible to try to
estimate, based on other variables with a simpler measurement, their value. An indicator of
the degree of water contamination is the chemical oxygen demand, which provides an idea of
the presence of both organic and inorganic agents (Clesceri et al., 1999).
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This estimation is carried out in real-time based on the existing relationship with these third
variables. In this way, a non-physical indirect sensor is implemented, which makes use of ma-
chine learning techniques to model this relationship with the rest of the variables and predict
their value. For this reason, regression techniques will be used. With the indirect sensor already
implemented, it is possible to establish thresholds for the detection of deviations in the param-
eters and create an alarm system. These thresholds may be established by different methods.

2 Materials and methods

This section describes the machine learning techniques and algorithms, the metrics and proce-
dures used for the evaluation of the models, the graphs where the results will be plotted and
the data set used in the analysis.

2.1 Machine learning techniques and algorithms

To try to carry out a study that is as heterogeneous and varied as possible, different supervised
learning techniques and algorithms were evaluated to analyze and compare their performance
in the sought estimates. The following techniques were used:

e Recursive Least Squares (RLS).
o K-Nearest Neighbors (KNN).
Decision Tree (DT).

Support Vector Regression (SVR).

MultiLayer Perceptron (MLP).

2.2 Model evaluation

For the evaluation and subsequent selection of the models, different metrics were used to de-
termine their performance. The metrics used were:

e Mean Absolute Error (MeanAE).

e Mean Squared Error (MSE).

e Root Mean Squared Error (RMSE).

e Symmetric Mean Absolute Percentage Error (SMAPE).

e Coefficient of determination (R?).

2.3 Dataset

The data set used is a real set, taken from measurements from 3 wastewater treatment plants.
These measurements were carried out over 3 months: June, July and August, with one mea-
surement per day. In addition to the physicochemical variables related to water, there is also
a variable that indicates the daily volume of water processed by the WWTP, two that establish
the day and month of the measurement and a last one indicating the WWTP from which the
data were obtained. These last four variables were not used in the development of the work.

The data set used for the development of the work is composed of 8 physical-chemical vari-
ables of water. These variables are pH, conductivity (Cond), biochemical oxygen demand
(DBO), chemical oxygen demand (DQO), nitrates (N), phosphates (F), suspended solids and
settleable solids (V60). Figure 1 shows the correlation matrix between the different variables.
The case of DQO stands out.
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Figure 1: Correlation matrix

The measurements do not follow a specific periodicity; it is possible that no measurements
were taken on a specific day, or that some of the physical-chemical variables were not mea-
sured. For the development of the work, since it is not known which variables will be used for
a prediction, only those records in which all the variables are present will be used.

This implies that, of the 276 expected records, the data set will be smaller.

3 Experiments

This section details the experiments performed to design the best indirect sensor. For this
purpose, and looking for the best model to implement, the performance of different regression
techniques will be evaluated. They will be configured through their hyperparameters until the
best prediction is reached.

The three variables with the highest correlation with COD were used. According to Figure
1, they are DBO, nitrates and phosphates.

The comparison between experiments will be performed based on the metrics obtained in
3-kfold cross-validation, selected due to the small size of the dataset. To know the performance
of a model and to be able to compare it with that of the others, first of all, the metrics observed
are the coefficient of determination and the SMAPE. Since the SMAPE does not handle over-
and under-forecasting in the same way, as soon as these metrics do not allow us to select a
clear winner, we will proceed to focus on the other metrics.

The following are the hyperparameters modified in each of the techniques, and the values
tested.

3.1 Recursive Least Squares

The models generated were tested by forcing the coefficients to be positive (positive with
possible values of True or False) and to calculate or not the independent term (intercept with
possible values of True or False).

The configurations of this technique will receive their name following the following construc-
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tion: RLS + intercept value + positive value. In this way, the configuration with positive set to
True and intercept set to False will be named RLSFalseTrue.

3.2 K-Nearest Neighbors

It was obtained, experimentally, that the best results are obtained when using an odd number
of neighbors between 3 and 9. Two functions were evaluated for assigning weights to each
neighbor: uniform y distance.

The configurations of this technique will receive their name following the following construc-
tion: KNN + neighbor + weight function. In this way, the configuration with 5 neighbors and
uniform weight distribution will be named KNN5uniform.

3.3 Decision Tree

Two methods for determining the best split at each node (criterion) were tested: absolute_error
y squared_error. The maximum depth of the diagram was also modified, from 1 to 7. This range
was obtained experimentally.

The configurations of this technique will receive their name following the following construc-
tion: DT + depth + criterion. In this way, the configuration with a maximum depth of 3 and
squared_error as criterion will be named DT3squared_error.

3.4 Support Vector Regression

Experimentally, it was proven that the best results appeared for values of the regularization
coefficient of 10 and 0.1. Also experimentally, it was found that the best epsilon values were 1.
Finally, three kernels were tested: linear, sigmoidal and tansig.

The configurations of this technique will receive their name following the following construc-
tion: SVR + regularization coefficient + kernel. In this way, the configuration with a regular-
ization coefficient of 10 and a linear kernel will be named SVR10linear.

3.5 MultiLayer Perceptron

Experimentally, it was proven that the best results were obtained when working with an inter-
mediate layer of 8 to 9 neurons, so these were the tested values. Also, three activation functions
were analyzed for the input and intermediate layers: linear, sigmoidal and tangent-sigmoidal.

The configurations of this technique will receive their name following the following con-
struction: MLP + hidden neurons + activation function. In this way, the configuration with 10
hidden neurons and a linear function activation will be named MLP10linear.

4 Results

This section collects the results of the different experiments. A table is included with each ML
method, with the configurations tested. The best result of each technique is highlighted in bold.

Table 1 shows the mean value of metrics obtained by the configurations in the Recursive Least
Squares method.

Table 2 shows the mean value of metrics obtained by the configurations in the K-Nearest
Neighbors.
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Table 1: Mean value of metrics by the RLS
Configuration MeanAE SMAPE MSE RMSE MaxError R2
RLSTrueTrue 69,554 5,584 8020,624 89,009 245,365 0,781
RLSTrueFalse 69,554 5,584 8020,624 89,009 245,365 0,781
RLSFalseTrue 74,006 6,096 8888,193 93,335 257,115 0,761
RLSFalseFalse 74,006 6,096 8888,193 93,335 257,115 0,761
Table 2: Mean value of metrics by the KNN
Configuration ~MeanAE SMAPE MSE RMSE MaxError R2
KNN3distance 63,754 5,013 9627,722 95,873 385,558 0,742
KNN3uniform 64,074 5,039 9605,909 96,251 387,222 0,742
KNNb5distance 63,515 4,929 9114,417 93,655 379,033 0,756
KNNb5uniform 64,063 4,986 8885,404 92,860 376,933 0,762
KNN7distance 63,089 4918 8857,006 92,510 367,355 0,763
KNN7uniform 63,406 4,951 8663,092 91,774 367,048 0,768
KNNO9distance 62,373 4,846 8872,268 92,466 369,004 0,762
KNNO9uniform 63,954 4,965 8809,346 92,514 368,889 0,764

Table 3 shows the mean value of metrics obtained by the configurations in the Decision Tree

method.
Table 3: Mean value of metrics by the DT
Configuration MeanAE SMAPE MSE RMSE  MaxError  R2

DTabsolute_error2 85,552 16,183  14478,422 120,312 444,000 0,586
DTabsolute_error5 84,142 17,261  14283,554 119,385 414,833 0,584
DTabsolute_error6 88,583 17,201 15310,806 123,573 399,000 0,553
DTabsolute_error7 86,358 17,266  15681,057 124,625 420,833 0,537
DTsquared_error2 84,031 15,663  13666,092 116,779 433,070 0,614
DTsquared_error5 72,930 17,033  10608,092 102,972 401,584 0,697
DTsquared_error6 72,035 16,922 11176,430 105,543 416,976 0,679
DTsquared_error7 77,131 17,102 12385,229 111,223 423,194 0,648

Table 4 shows the mean value of metrics obtained by the configurations in the Support Vector

Regression method.

Table 5 shows the mean value of metrics obtained by the configurations in the MultiLayer

Perceptron method.
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Table 4: Mean value of metrics by the SVR
Configuration ~MeanAE SMAPE MSE RMSE MaxError  R2

SVR10linear 67,894 16,182  7891,394 88,251 265,448 0,766
SVR10rbf 124,656 13,063  25681,210 159,469 441,298 0,267
SVR10sigmoid 162,113 12,829  44650,823 209,667 498,596  -0,264
SVRO.1linear 67,588 16,127  7796,304 87,756 260,655 0,768
SVRO.1rbf 154,143 12,707 40419934 199,541 483,021  -0,145
SVRO0.1sigmoid 154,680 12,711  40700,431 200,229 483,797  -0,153

Table 5: Mean value of metrics by the MLP
Configuration ~MeanAE SMAPE MSE RMSE  MaxError R2

MLPlinear8 86,098 6,979 12166,413 108,842 281,640 0,628
MLPlinear9 74,370 6,138 9073,254 94,628 282,360 0,734
MLPlinear10 78,792 6,586 9683,534 97,898 276,400 0,721
MLPtansig8 559,587 75912 349629,048 590,234 1017,871  -9,447
MLPtansig9 550,588 73,704 339717,577 581,715 1008,872  -9,148
MLPtansig10 537,830 70,625  325936,970 569,668 996,115 -8,734
MLPsigmoid8 604,963 88,111  402400,503 633,426 1063,248 -11,039
MLPsigmoid9 584,359 82,296  377848,954 613,769 1042,644 -10,300
MLPsigmoid10 597,566 86,008  393466,340 626,357 1055,850 -10,769

5 Conclusions and future works

The objective of the work was to develop an indirect, non-physical sensor that would allow es-
timating the COD value through third variables, thus facilitating the measurement of this pol-
lution marker. The sensor developed presents acceptable R? values. This is due to the strong
correlation that is present between the variables used with respect to chemical oxygen demand.
The highest value obtained is 0.781, achieved by using the RLS technique when the indepen-
dent term is calculated, since forcing the coefficients does not affect performance. The value of
the error metrics is also good, since it makes a relative error of 5,584%.The rest of the sensors
present similar results, but because they use more complex techniques, it was decided to use
the one mentioned above. In Figure 2 we check the performance of the indirect sensor.

The sensor obtained is relatively reliable, with a prediction that is closer to the ideal and does
not make large errors. Once the sensor has been designed, but not yet implemented, the intro-
duction of thresholds for detecting parameter deviations and generating early warnings can
be established based on statistical methods, such as standard deviation or percentage margins;
through expert knowledge indicating security thresholds and other methods, such as machine
learning techniques for anomaly detection.

With the aim of improving indirect sensors, and increasing the accuracy of the prediction,
these sensors could be developed specifically for a certain WWTP, instead of trying to general-
ize. For this, it would be necessary to increase the size of the dataset with new measurements.
The method could be modified when selecting the variables to be used, opting for other require-
ments than the correlation between them. It would also be interesting to study the possibility
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Figure 2: Predicted vs. actual values

that the physical-chemical variables could be part of a time series, for which it would be appro-
priate to apply other regression techniques such as Long-Short Term Memory (LSTM).
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