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SUMMARY

Analysis and design of substation earthing involves computing the equiva-
lent resistance of grounding systems, but also distribution of potentials on the
earth surface due to fault currents [1]. While very crude approximations were
available in the sixties, several methods have been proposed in the last two
decades, must of them on the basis of intuitive ideas such as superposition of
punctual current sources and error averaging [2,3]. Although these techniques
represented a signi�cant improvement in the area of earthing analysis, a number
of problems have been reported. Namely: large computational requirements, un-
realistic results when segmentation of conductors is increased, and uncertainty
in the margin of error [3].

In this paper, a 1D Boundary Element formulation is presented. Several
widespread intuitive methods (such as APM) are identi�ed as particular cases
of this general approach. Thus, former intuitive ideas can now be explained
as suitable assumptions introduced in the BEM formulation to reduce compu-
tational cost. The anomalous asymptotic behaviour of this kind of methods is
mathematically explained, and sources of error are pointed out. While linear
and parabolic leakage current elements allow to increase accuracy, computing
time is drastically reduced by means of new analytical integration techniques.
Finally, an application example to a real problem is presented.

1. INTRODUCTION

Physical phenomena underlying to fault currents dissipation into the earth
can be modelled by means of Maxwell's Electromagnetic Theory [4]. Constrain-
ing the analysis to the obtention of the electrokinetic steady-state response,
and neglecting the resistivity of the earthing electrode (system of interconnected
buried conductors), the 3D problem associated to an electrical current derivation
to earth can be written as

�������������� = �













 gradV; div (��������������) = 0 in E;

��������������tnnnnnnnnnnnnnnE = 0 in �E; V = V� in �; V �! 0 if jxxxxxxxxxxxxxxj ! 1;

(1)

where E is the earth and 













 its conductivity tensor, �E is the earth surface and
nnnnnnnnnnnnnnE its normal exterior unit �eld, and � is the earthing electrode surface [5,6].
The solution to this problem gives the potential V and the current density ��������������



at an arbitrary point xxxxxxxxxxxxxx when the earthing electrode is energized to potential V�
(Ground Potential Rise or GPR) with respect to remote earth. Since V and ��������������
are proportional to the GPR, the assumption V� = 1 is not restrictive at all.

In this terms, being nnnnnnnnnnnnnn the normal exterior unit �eld to �, the leakage current
density � at an arbitrary point of the earthing electrode surface, the ground
current I� (total surge current being leaked into the earth) and the equivalent
resistance of the earthing system Req (apparent resistance of the electrode-earth
circuit) can be written as

� = ��������������tnnnnnnnnnnnnnn; I� =

Z Z
�

� d�; Req =
V�

I�
: (2)

For most practical purposes, the assumption of homogeneous and isotropic
soil can be considered acceptable [7], and the tensor 













 can be substituted by
a meassured apparent scalar conductivity 
. Otherwise, a multi-layer model
can be accepted without risking a serious calculation error [7]. Since the kind of
techniques described in this paper can be extended to multi-layer soil models [8],
further discussion and examples are restricted to uniform soils. Hence, problem
(1) reduces to the Laplace equation with mixed boundary conditions [4]. If one
further assumes that the earth surface is horizontal, symmetry allows to rewrite
(1) in terms of a Dirichlet Exterior Problem [6].

Although this classical problem has been rigorously studied [9], and its so-
lution can be e�ciently obtained in many other technical applications by stan-
dard numerical techniques, additional di�culties appear in our case due to the
complexity of the boundary �. In most practical cases, the earthing electrode
(grounding grid) consist of a number of interconnected bare cylindrical conduc-
tors, horizontally buried and supplemented by a number of vertical rods, which
ratio diameter/lenght uses to be relatively small (� 10�3). Therefore, discretiza-
tion of domain E is extremely di�cult, and the obtention of su�ciently accurate
results should imply unapproachable computing requirements.

On the other hand, two basic goals must be achieved in a grounding system
design: human safety must be preserved (by limiting step and touch voltages),
and integrity of equipment and continuity of service must be granted (by ensuring
fault currents dissipation into the earth) when a fault condition occurs [1,5,6].
Since computation of potential is only required on the earth surface �E, and the
equivalent resistance can be easily obtained in terms of the leakage current (2),
a Boundary Element approach seems to be the right choice.

2. VARIATIONAL STATEMENT OF THE PROBLEM

Applying Green's Identity [10] to (1), one gets the following expression for
the potential V in E, in terms of the unknown leakage current �:

V (xxxxxxxxxxxxxx) =
1

4�


Z Z
��������������2�

k(xxxxxxxxxxxxxx; ��������������)�(��������������) d�; (3)

with the weakly singular kernel

k(xxxxxxxxxxxxxx; ��������������) =
� 1

r(xxxxxxxxxxxxxx; ��������������)
+

1

r(xxxxxxxxxxxxxx; ��������������0)

�
; r(xxxxxxxxxxxxxx; ��������������) = jxxxxxxxxxxxxxx� ��������������j; (4)



where ��������������0 is the symmetric of �������������� with respect to the earth surface [5,6].

Since (3) holds on the earthing electrode surface [5,6], the boundary condi-
tion V� = 1 leads to the Fredholm integral equation of the �rst kind on �

1 =
1

4�


Z Z
��������������2�

k(��������������; ��������������)�(��������������) d� 8�������������� 2 �; (5)

which solution is the unknown leakage current density �.

Equation (5) can now be written in a weaker variational form as:Z Z
��������������2�

w(��������������)

"
1�

1

4�


Z Z
��������������2�

k(��������������; ��������������)�(��������������) d�

#
d� = 0; (6)

for all members w(��������������) of a suitable class of test functions on �.

2.1. Boundary Element Formulation

For a given set of N trial functions fNi(��������������)g de�ned on �, and for a given
set of M 2D boundary elements f��g, the unknown leakage current density �
and the earthing electrode surface � can be discretized in the form

�(��������������) =

NX
i=1

�iNi(��������������); � =

M[
�=1

��; (7)

and a discretized form of (3) can be written as

V (xxxxxxxxxxxxxx) =

NX
i=1

�i Vi(xxxxxxxxxxxxxx); Vi(xxxxxxxxxxxxxx) =

MX
�=1

V �
i (xxxxxxxxxxxxxx); (8)

V �
i (xxxxxxxxxxxxxx) =

1
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Z Z
��������������2��

k(xxxxxxxxxxxxxx; ��������������)Ni(��������������) d�: (9)

Finally, for a given set of N test functions fwj(��������������)g de�ned on �, the varia-
tional statement (6) is reduced to the system of linear equations

NX
i=1

Rji�i = �j; j = 1; : : : ;N ; (10)

Rji =

MX
�=1

MX
�=1

R
��
ji

; �j =

MX
�=1

�
�
j
; i = 1; : : : ;N ; j = 1; : : : ;N ; (11)

R
��
ji =

1
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Z Z
��������������2��

wj(��������������)

"Z Z
��������������2��

k(��������������; ��������������)Ni(��������������) d�

#
d�; (12)

�
�
j =

Z Z
��������������2��

wj(��������������) d�: (13)

It can be easily understood that 2D discretizations required to solve the
above stated equations in real cases (grounding grids) imply an extremely large
number of degrees of freedom. Taking into account that the coe�cients ma-
trix in (10) is not sparse, and that 2D integration in (12) must be performed
twice over the electrode surface, some reasonable additional assumptions must
be introduced to overcome the problem complexity.



3. APPROXIMATED 1D VARIATIONAL STATEMENT OF THE
PROBLEM

For a given generic point �������������� at the boundary of a cylindrical bar, let b�������������� be its

orthogonal projection over the bar axis, and let �(b��������������) be the diameter (assumed

much smaller than the bar length) and C(b��������������) be the circumferential perimeter of
the cross section at this point. Let L be the whole set of axial lines of the buried
conductors.

If the leakage current is assumed uniform around the perimeter of every

cross section, that is �(��������������) = b�(b��������������) 8�������������� 2 C(b��������������), (3) can be written in the form

bV (xxxxxxxxxxxxxx) =
1

4�


Z
b��������������2L

"Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC

# b�(b��������������) dL: (14)

The assumption of circumferential uniformity seems to be quite adecquate
and not too restrictive, if we take into account the real geometry of grounding
grids. Nevertheless, boundary condition V = 1 can not be exactly satis�ed now
at every point on the electrode surface, and (6) does not hold (except in par-
ticular cases, where the leakage current is really uniform around the perimeter).
However, (6) can hold if we restrict the class of trial functions to those with
circumferential uniformity, that is w(��������������) = bw(b��������������) 8�������������� 2 C(b��������������), resulting in:Z

b��������������2L
bw(b��������������)"��(b��������������)� 1

4�


Z
b��������������2L

K(b��������������;b��������������) b�(b��������������) dL# dL = 0 (15)

for all members bw(b��������������) of a suitable class of test functions on L, where

K(b��������������;b��������������) = Z
��������������2C(b��������������)

"Z
��������������2C(b��������������)

k(��������������; ��������������) dC

#
dC: (16)

In this way, boundary condition V = 1 is forced to be satis�ed on the average
at every cross section. In fact, (15) can be considered as a weaker variational
statement of the Fredholm integral equation of the �rst kind on L

��(b��������������) = 1

4�


Z
b��������������2L

K(b��������������;b��������������) b�(b��������������) dL 8b�������������� 2 L: (17)

Since ends and junctions of conductors are not taken into account in this
formulation, slightly anomalous local e�ects are expected at these points, but
global results should not be noticeably a�ected.

3.1. Boundary Element Formulation

For a given set of n trial functions f bNi(b��������������)g de�ned on L, and for a given
set of m 1D boundary elements fL�g, the unknown leakage current b�, and the
whole set of axial lines of the buried conductors L, can be discretized in the form

b�(b��������������) = nX
i=1

b�i bNi(b��������������); L =

m[
�=1

L�; (18)



and a discretized version of (14) can be written as

bV (xxxxxxxxxxxxxx) =

nX
i=1

b�i bVi(xxxxxxxxxxxxxx); bVi(xxxxxxxxxxxxxx) = mX
�=1

bV �
i (xxxxxxxxxxxxxx); (19)

bV �
i (xxxxxxxxxxxxxx) =

1

4�


Z
b��������������2L�

"Z
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC

# bNi(b��������������) dL: (20)

Finally, for a given set of n test functions f bwj(b��������������)g de�ned on L, (15) is
reduced to the system of linear equations

nX
i=1

bRjib�i = b�j; j = 1; : : : ; n; (21)

bRji = mX
�=1

mX
�=1

bR��
ji
; b�j = mX

�=1

b�j� ; i = 1; : : : ; n; j = 1; : : : ; n; (22)

bR��ji =
1

4�


Z
b��������������2L�

bwj(b��������������)
"Z

b��������������2L�
K(b��������������;b��������������) bNi(b��������������) dL

#
dL; (23)

b��
j
=

Z
b��������������2L�

� �(b��������������) bwj(b��������������) dL: (24)

The computational work required to solve a real problem is drastically re-
duced by means of this 1D formulation with respect to the one given in 2.1.
However, extensive computing is still required, mainly because of circumferen-
tial integration in (20) and (23), and further simpli�cations are necessary to
reduce computing time under acceptable levels.

3.2. Simpli�ed 1D Boundary Element Formulation

The inner integral in (20) can be approximated asZ
��������������2C(b��������������)

k(xxxxxxxxxxxxxx; ��������������) dC � � �(b��������������)bk(xxxxxxxxxxxxxx;b��������������); (25)

where

bk(xxxxxxxxxxxxxx;b��������������) =  1br(xxxxxxxxxxxxxx;b��������������) + 1br(xxxxxxxxxxxxxx; b��������������0)
!
; br(xxxxxxxxxxxxxx;b��������������) =

s
jxxxxxxxxxxxxxx� b��������������j2 + �2(b��������������)

4
; (26)

and b��������������0 is the symmetric of b�������������� with respect to the earth surface. This approxima-

tion is quite accurate, unless distance between points xxxxxxxxxxxxxx and b�������������� was in the order

of magnitude of the diameter �(b��������������). Then, (16) can be approximated as

K(b��������������;b��������������) � � �(b��������������)� �(b��������������) 1
2

�bk(b��������������;b��������������) + bk(b��������������; b��������������)� ; (27)



where the arithmetic mean avoids the lack of symmetry in the system of equa-

tions (21) when the conductor diameter is di�erent at points b�������������� and b��������������.
Now, for di�erent selections of the sets of trial and test functions, speci�c

formulations are achieved. Thus, for constant leakage current elements (one
centered node per element), Point Collocation (Dirac deltas as trial functions)
leads to the very early intuitive methods, based on the idea that each segment of
conductor is substituted by an \imaginary sphere". On the other hand, Galerkin
(test functions identical to trial functions) leads to a kind of more recent methods
(such as APM), based on the idea that each segment of conductor is substituted
by a \line of point sources over the lenght of the conductor" [3]. Coe�cients (23)
correspond to \mutual and self resistances" between \segments of conductor" [3].
For higher order elements more advanced formulations can be derived [5,6],

The problems encountered with the application of these methods [3,6,11] can
now be explained from a mathematically rigorous point of view. The fact is that
approximation (25) is not valid for short distances. Hence, when discretization
is increased, and the conductor diameter becomes comparable to the size of
the elements, approximation (27) introduces signi�cant errors in the coe�cients
of the linear system (21) corresponding to adjacent nodes (including diagonal
terms). From another point of view, since the approximation error increases as
discretization does, numerical results for dense discretizations do not trend to
the solution of the integral equation (17) with kernel (16), but to the solution
of a di�erent ill-conditioned integral equation with kernel (27). For the test
problem presented in [11] (single bar in an in�nite domain), the circumferential
uniformity hypothesis is strictly satis�ed. In this case, it can be easily veri�ed
that solving (17) with the simpli�ed kernel (27) is absolutely equivalent to solve
(5), but both free ends are disregarded and the boundary condition V = 1 is
imposed on the axis, not on the boundary of the bar.

This explains why unrealistic results are obtained when discretization in-
creases [3], and convergence is precluded [6]. However, results obtained for low
and medium levels of discretization have been proved to be su�ciently accurate
for practical purposes [11].

Further discussion and examples are restricted to Galerkin type formula-
tions, where the matrix of coe�cients in (10) is symmetric and positive def-
inite [12]. Diameter of conductors is assumed constant within each element.
Therefore, (20) and (23) can be rewritten as

bV �
i (xxxxxxxxxxxxxx) =

1

4�

� ��

Z
b��������������2L�

bk(xxxxxxxxxxxxxx;b��������������) bNi(b��������������) dL; (28)

bR��
ji =

��� ���

4�


Z
b��������������2L�

bNj(b��������������)
"Z

b��������������2L�

bk(b��������������;b��������������) + bk(b��������������; b��������������)
2

bNi(b��������������) dL
#
dL; (29)

where �� and �� represent the constant conductor diameter within elements L�

and L� . Obviously, (29) leads to a symmetric matrix, and can also be written
as

bR��
ji

=
1

2

 
� ��

Z
b��������������2L�

bNj(b��������������) bV �
i (b��������������) dL+ � ��

Z
b��������������2L�

bNi(b��������������) bV �
j
(b��������������) dL! : (30)



4. ANALYTICAL INTEGRATION AND OVERALL EFFICIENCY

Computation of remaining integrals in (28) and (30) is not obvious. Gauss
quadratures can not be used due to the undesirable behaviour of the inte-
grands. Although very costly, a compound adaptative Simpson quadrature
(with Richardson extrapolation error estimates) seems to be the best numerical
choice [5]. Therefore, we turn our attention to analytical integration techniques.

Explicit formulae have been recently derived to compute (28) in the case of
constant (1 functional node), linear (2 functional nodes) and parabolic (three
functional nodes) leakage current elements. Explicit expressions have also been
derived for contributions (30) related to parallel elements, including the case
in which both elements coincide. These formulae generalize those obtained by
other authors for the most simple cases (i.e. constant leakage current elements
in APM [2]). Derivation of these formulae requires quite a lot of analytical work,
being too cumbersome to be made explicit in this paper. Numerical integration
is unexpensive in the remaining cases, since analytical expressions for (28) can be
substituted into (30) resulting in quite smooth integrands, and accurate results
can be obtained by means of a suitable adaptive quadrature. Anyhow, further
research is under development to extend completely this analytical approach.

With regard to overall computational cost, for a given discretization (m
elements of p nodes each, and a total number of n degrees of freedom) a lin-
ear system (21) of order n must be generated and solved. Since the matrix

is symmetric, but not sparse, resolution requires O(n3=3) operations. Matrix
generation requires O(m2p2=2) operations, since p2 contributions of type (30)
have to be computed for every pair of elements, and approximately half of them
are discarded because of symmetry. Hence, most of computing e�ort is devoted
to matrix generation in small/medium problems, while linear system resolution
prevails in medium/large ones. At present, the size of the largest problem that
can be solved is limited by memory storage. Thus, for a problem with 2000
degrees of freedom, at least 16Mb would be needed, while computing times for
matrix generation and system resolution would be acceptable, but noticeable,
and in the same order of magnitude (a couple of hours on a nice workstation). On
the other hand, once the leakage current has been obtained, the cost of comput-
ing the equivalent resistance (2) is negligible. The additional cost of computing
potential at any given point (normally at the earth surface) by means of (19)
and (28) requires only O(mp) operations, since analytical formulae for (28) are
available. However, if it is necessary to compute potentials at a large number of
points (i.e. to draw contours), computing time may also be important.

5. CONCLUSIONS

A Boundary Element approach for the analysis of substation earthing sys-
tems has been presented. For 3D problems, some reasonable assumptions allow
to reduce a general 2D BEM formulation to an approximated less expensive 1D
version. Further simpli�cations reduce computing requirements under accept-
able levels. Several widespread intuitive methods are identi�ed as particular
cases of this approach. Problems encountered with the application of these
methods can be �nally explained from a mathematically rigorous point of view,
while more e�cient and accurate formulations can be derived. By means of ana-
lytical integration techniques for the discretized equations, accurate results can
be obtained in practical cases with acceptable computing requirements.



This approach has been applied to a real case: the E. R. Barber�a substation
grounding (close to Barcelona, Spain, and under construction at present). The
plan and characteristics are presented in Figure 1. Results are given in Figure 2.
Each bar was discretized in one single linear element. The model (408 elements
and 238 degrees of freedom) required only 6 minutes of cpu time on a Vax-
4300/32Mb computer. At the scale of the whole grid, results are not noticeably
improved by increasing discretization. In cases like this, higher order elements
are advantageous in comparison with constant elements, since accuracy is much
higher for a remarkably smaller total number of degrees of freedom. Results
were obtained by a Computer Aided Design System based upon the suggested
approach, that has been under development during the last few years.
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1 Unit = 10 m

DATA

Earth Resistivity: 0:600 
m
Conductor Diameter: 1:285 cm
Installation Depth: 0:800 m
Ground Potential Rise: 1:000 V

1D BEM MODEL

Type of Elements: Linear
Number of Nodes: 238
Number of Elements: 408

Figure 1.|E. R. Barber�a Grid: Plan, Problem Characteristics and Numerical Model
(1 Linear Element per bar).



1 Unit = 10 m

0.50 V

RESULTS

Fault Current: 3:17703 A

Equivalent Resistance: 0:31476 

CPU Time: 368 seg

Computer: VAX{4300

Surface potential contours plotted every
0:02 V . Thick contours every 0:10 V .

Figure 2.|E. R. Barber�a Grid: Results obtained by BEM (1 linear element per bar).
Ground surface potential distribution.


