
Facultade de Informática

TRABALLO FIN DE GRAO
GRAO EN ENXEÑARÍA INFORMÁTICA

MENCIÓN EN COMPUTACIÓN

Automated metadata tags management tool
for MP3 files

Estudante: Juan Ignacio Muñiz Gómez

Dirección: David Cabrero Souto

A Coruña, September de 2023.

Abstract

Managing a collection of files can become a tiresome process when said collection grows large
enough. This problem becomes quite apparent with music collections, since it’s fairly com-
mon to find issues of consistency in the nomeclature and formatting of products provided by
different services. Thus, the aim of this project was to create an open source desktop graph-
ical application that could automate the process of maintenance, given a user’s input. The
project was developed in python, using the wxpython library for the graphical elements, and
music_tag for the metadata editing.

Resumo

Xestionar unha colección de ficheiros pode volverse tedioso cando a colección crece o sufi-
ciente. Este problema faise moi aparente coas coleccións musicais, xa que é bastante común
atopar problemas de consistencia na nomeclatura e no formato dos produtos que ofrecen dis-
tintos servizos. Polo tanto, o obxectivo deste proxecto era crear unha aplicación de escritorio
gráfica de código aberto que puidese automatizar o proceso de mantemento, dada unha entra-
da do usuario. O proxecto desenvolveuse en python, utilizando a biblioteca wxpython para
elementos gráficos e música_tag para a edición de metadatos.

Keywords:

File management

Task automation

Audio files

Open source

Palabras chave:

Xestión de arquivos

Automatización de tareas

Arquivos de audio

Código aberto

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 1

2 Discussing the technology of the project 3
2.1 Already existing tools . 3
2.2 Technology employed . 4

3 Details of development 5
3.1 Development methodology . 5
3.2 Planning and tracking . 5

4 Analysis 7
4.1 Program functionality . 7

4.1.1 Extent of the considered cases of use 7
4.1.2 Requirements . 8

4.2 User interface . 8
4.2.1 Programmable instructions . 8
4.2.2 Loaded files . 9
4.2.3 The window . 9

5 Design 12

6 Implementation and testing 15
6.1 Prototype 1: Graphical interface . 15
6.2 Prototype 2: File I/O . 18
6.3 Prototype 3: Metadata I/O . 19
6.4 Prototype 4: Automated instructions . 19

i

CONTENTS Contents

7 Closing statement and future works 22

Bibliography 23

ii

List of Figures

4.1 A screenshot of a programmable instruction inside the program 10
4.2 A screenshot of how the program presents all information pertaining to any

single loaded file. 10
4.3 A screenshot of the graphical user interface. 10

5.1 Sequence diagram to illustrate the relation between the command class and
the receiver class. 12

5.2 UML diagram for the architecture of the app 14

6.1 Regular screen capture of an instruction object 17
6.2 Shrinking the window so the widgets inside the instruction overlap each other 17
6.3 Aftermath of the interactionwhen re-expanding thewindow to an appropriate

size . 17

iii

List of Tables

3.1 Breakdown of time spent on the project . 6

iv

Chapter 1

Introduction

1.1 Motivation

Managing a collection of files can become a tiresome process when said collection grows
large enough. This problem becomes quite apparent with music collections, since it’s fairly
common to find issues of consistency in the nomeclature and formatting of products provided
by different platforms, but there is no easy solution for the average user to work with large
batches of files.

These inconsistencies are simple enough to fix when they only affect the name of the file,
but more often than not, the real problem stems from the metadata tags. Metadata tags are
additional fields of information encoded within an audio file that hold information about said
file. This information can be technical, such as the audio refresh rate, but more importantly
to our ends, it can contain information about the production of the song such as the name of
the artist, name of the song, name of the album, and even an image to depict the cover art of
the album. These fields are more relevant to the end user because they’re commonly used by
music players instead of the filename when they’re available, so if your music collection has
a mix of properly tagged songs, songs from different sources with different formatting for the
tags, and song without any tags at all, it can create an environment that is needlessly difficult
to navigate.

The aim of this TFG was to develop a desktop application with a straight forward and
legible interface that would assist users in editing the metadata tags of their audio files.

1.2 Objectives

There are certain requirements the end result must meet for the project to be considered
successful:

• Metadata management: The application must be able to read batches of audio files and

1

CHAPTER 1. INTRODUCTION 1.2. Objectives

allow the user to modify their metadata.

• User readability: The application must provide an interface capable of automating user
actions without the need for prior coding knowledge or any extensive training to use
the application.

• Expandability: Rather than trying to adapt the project to every possible edge case that
could arise, it is more prudent to make it future proof by creating an open source plat-
form, so that any user can adapt it to their specific needs or embed it with new tech-
nologies.

2

Chapter 2

Discussing the technology of the
project

2.1 Already existing tools

This project began not because of a lack of tools to deal with the issue of audio file metadata
editing, but because all tools available online suffered from one of two major drawbacks.
These can be easily illustrated by explaining the features of two popular programs that are
used for metadata editing:

• tagmp3.online[1] is a handy browser-based solution that allows you to upload any
audio file to edit the filename, relevant metadata tags, and even add album art. It is
extremely convenient and straight-forward, but it offers no extra functionality: all in-
formation must be provided manually, and only one file can be edited at a time.

We arrive then at the first issue: lack of automation. As useful as this website might
be, it’s of no use when trying to deal with a collection, unless the user is willing to
invest a sizeable amount of time.

• mp3tag[2] is a desktop application chock-full of features. It can distribute information
from one tag or filename to another, it has a plethora of conditional functions to cover all
sort of user-defined situations, it has regex support, it can deal with large batches of files
while still having a simplified interface for manual file editing… However it, along with
many other desktop solutions, works on a code-based pattern matching basis, leaving
it in an awkward spot where basic users will have a difficult time understanding the
program, while still requiring advanced users to learn the complexities of its grammar
to perform any action separated from the base uses. And speaking of base uses, the
complex infraestructure often means that open source developers will more than likely

3

CHAPTER 2. DISCUSSING THE TECHNOLOGY OF THE PROJECT 2.2. Technology employed

have a hard time embedding any new features they may like, as new technologies and
needs arise for the user.

We can refer to this second issue as a problem of complexity, both in user readability
and openness to further development.

From this short analysis, it’s clear to see that the objectives set forth in section 1.2 were a
direct effort to overcome these two liabilities. We want an application with powerful features,
but takes little to no training to use, and that can be expanded upon to allow embedding with
other technologies.

2.2 Technology employed

This project is a continuation of a command linfe utility that was originally developed in
python, and because of python’s popularity, it seemed like an appropriate tool to continue
the project, both because of the variety of libraries its popularity abides, and because it meant
that any developer who wants to work with the source code of the tool has a good chance of
being familiar with the language already.

Two libraries were used in the development of the project:

• Wxpython[3], for building the graphical elements of the application. Wxpython was
an attractive choice for the GUI framework because it uses native widgets from the
current operating system, which helps with the readability of the program, but will
also assist with portability.

• Music_tag[4], for interacting with audio file metadata. There are plenty of metadata
editing libraries, but many of them require the use of separate modules to interact with
different file extension. Music_tag does offer this layer of abstraction, which simplifies
development.

With that said, the original draft for the project only took MP3 files into consideration
because of their popularity among end users. However, to test the flexibility of the
library, extensive testing was also done with WAV and FLAC files. These two file ex-
tensions were chosen on the basis that they are lossless and thus more commonly used
in production environments, which we wanted to support as well.

4

Chapter 3

Details of development

3.1 Development methodology

Because this was the author’s first workwith graphical interfaces, an agile iterative methodol-
ogy based on prototypes seemed prudent in order to ensure steady and measurable progress.
The final product was divided into four stages of usability, which would each have a stage of
analysis, design, implementation, and testing. The defined stages are as follows:

• 1) Acquiring an understanding of wxpython and building a graphical framework.

• 2) Loading different songs and their metadata into the program.

• 3) Allowing the user to manually edit the metadata.

• 4) Creating an interface that will edit the metadata of batches of songs based on instruc-
tions provided by the user.

3.2 Planning and tracking

The alloted time span for development was two weeks per prototype phase plus an initial
three weeks for the initial proposition and design of the project, preliminary interface designs,
research of the topic and technologies involved, and research and discussion of user behaviour
to design the usability tests. At the end of the project an additional week was alloted to
review and clean up the documentation. Each week the author would spend up to 30 hours
in development, and the director would spend between one and four hours reviewing the
progress done, depending on the nature of the work.

While there were some fluctuations with the planned phases of the project, the overall
duration wasn’t too far off from the initial estimation. Most of the irregularities came from

5

CHAPTER 3. DETAILS OF DEVELOPMENT 3.2. Planning and tracking

prototype three taking significantly less time than other phases (only one week) and proto-
types one and four taking longer than initially estimated to complete due to complications
with the graphical library employed.

Here’s a breakdown of the hours spent on each phase:

Phase of the project Developer hours Director hours

Initial planning 86 25

Prototype 1 77 5

Prototype 2 59 4

Prototype 3 36 2

Prototype 4 72 7

Wrap up 32 20

Total 362 63

Table 3.1: Breakdown of time spent on the project

If we were to assume that the main developer, who also did analyst and testing work, had
an average pay of 15€/hour; and the director, who acted as a step-in project leader, would
have a pay of 24€/hour, this would drive the total costs of the project to 6942€.

6

Chapter 4

Analysis

In this chapter, we will review all the requirements identified during the planning phase.
Along with each individual analysis step for each of the prototype phases, a preliminary study
had to be done to determine the scope of the project. It’s particularily important to set realistic
and viable goals when designing programmable interfaces, since it’s easy to overengineer
factors that won’t be relevant to the average user and will simply bloat the syntax and flow
of information, creating a confusing environment for the user.

4.1 Program functionality

First, we need to boil down the abstract definition of the program into concise and realistic
cases of use to define the system requirements. We do so by trying to emulate any user be-
haviour that could fall within the scope of the project, and discussing whether it fits the initial
description of the project or not, and how that affects the extent and reach of the program.

4.1.1 Extent of the considered cases of use

When thinking about what the end result of the project will be able to do we need to keep
two factors in mind: how easy would it be for a new user to reach a desired result, and
how complex would the framework be for any would-be open source developer to add new
functionality to the program. While it would be a commendable exercise to stay open to any
future possibility or need for the developer and the user, we must stay within reason while
considering just to what extent can this program be used, and to what ends some other tools
could be better suited instead.

In that regard, two features were axed during this first planning phase: collection-wide
conditional checks, and complex conditional statements and logic loops. The reasoning is
that, while potentially useful, they would only be used to create very complicated ”one style

7

CHAPTER 4. ANALYSIS 4.2. User interface

fits all” solutions, which is not the original intent for the program, which is to save the user
the hassle of repeatedly typing already existing information.

Another feature that was discarded from the original draft of the project was the abil-
ity to download images for the cover art based on existing information about a file. It was
originally included because this application was a continuation of a personal project that was
a command line-based metadata tag manager that also had a crawler used to automatically
download images based on the name of the artist of a song. The crawler is no longer func-
tional, since it was hard-coded to work with the current web layout of a search engine that has
since updated said layout, and at this point of the project downloading images was no longer
a core objective for the project. Still, a big part of the project was allowing any developer to
create their own instructions, which could involve downloading images using either an API
or a crawler, and in that regard the program is still perfectly capable.

4.1.2 Requirements

• The user can load a collection of sound files of any supported format.

• The user must be presented with a number of relevant data tags for every loaded file.

• The user can modify the filename or metadata of any of the loaded files. They can also
mark the file for deletion.

• The user can create instructions that can recreate any behaviour the user could make
using the program.

• Said instructionswill only take into consideration themselves, and each file individually.

4.2 User interface

The project will be a single window application that needs to present the user with informa-
tion about loaded audio files, and instructions to be executed.

4.2.1 Programmable instructions

To make the programmable instructions readable to users without coding experience, we
opted for a visual programming interface. Instead of text based instructions with complex
syntax, the user will select one of the available functionalities from a drop down menu, and
within a self-contained graphical object, will input all data relevant to the execution of said
instruction.

Each instruction object is comprised of two parts: the toolbar, which is generic for all
instructions, and the body, which will change depending on the instruction the object will

8

CHAPTER 4. ANALYSIS 4.2. User interface

perform. As can be seen in the provided screenshot 4.1, the toolbar can perform the following
actions: change the behaviour of the instruction, change the condition which the file must
meet for the instruction to take effect, a complimentary text entry to define the conditional
statement, and buttons to run the instruction individually or discard the instruction entirely.

As mentioned earlier, the body of the object will change depending on the instruction
selected. Most forms of input will be done via text entries, or by selecting target and source
metadata tags.

4.2.2 Loaded files

With every loaded file we want to both show the metadata tags that will be affected by the
program, and we want it to act as an interface for the user to manually edit values. This raises
the question of just how much information we want to cram into each graphical element.

In the end, we opted for a conservative approach, and hand-picked tags which are more
prone to be of interest to the user.

As can be seen in the provided screenshot 4.2, we have text entries to edit the filename,
and three metadata tags. We also have a drop down menu to change the export options of the
changes done to the file, which are to either commit the changes, ignore them, or delete the
file. There’s also a text field for the cover art of the song, where the user can provide the path
to an image to be used. This is because when using the program, we considered that it will be
more important to the user whether the path to a new image to be used is correct, rather than
double-checking that the image they are using is in fact the one they prepared beforehand.
Again, it was not within the scope of the program to act as an image viewer, but to facilitate
the user the automation of adding images to files based on pre-existing information, and for
that purpose, the path is more relevant.

4.2.3 The window

Since virtually all information presented to the user is text-based, we chose to split thewindow
hortizontally in order to cut off as little text as possible, and separated information about the
instruction and about the audio files, putting the instruction of the upper half, and files in the
lower. And since we need to present several fairly large graphical items in each half of the
screen, we made each half of the screen scrollable. Each half of the screen is also fitted with
a toolbar with functions specific to the region they’re in.

As can be seen in the image 4.3, the instruction part of the interface has buttons to add
more instructions and run all present instructions, which simply tells each individual instruc-
tion to execute itself, in order. The file collection part of the interface is basically the same,
with buttons to either load files or commit the changes performed in the program to disk. Of
note is that wxpython can use the native file explorer to let the user choose what files to load

9

CHAPTER 4. ANALYSIS 4.2. User interface

Figure 4.1: A screenshot of a programmable instruction inside the program

Figure 4.2: A screenshot of how the program presents all information pertaining to any single
loaded file.

Figure 4.3: A screenshot of the graphical user interface.

10

CHAPTER 4. ANALYSIS 4.2. User interface

within the program, which is a very natural and intuitive way for the user to interact with
the program.

11

Chapter 5

Design

To create the visual programming interface, the command design pattern was used to create
the instruction objects. The command design pattern separates the call of a method and the
implementation details of said method, propagating the call from a ”command” class whose
sole purpose is to act as an interfacer with the rest of the program, and the ”receiver” class,
which encapsulates all information needed to perform its function.

This is a great for our project, since we need to present the user with objects that perform
actions, but we can’t know anything about said actions in advance. So it makes more sense
to let the graphical interface act only as a platform, and then rely on the instruction object
itself to perform the action by itself when called upon. This is also userful to simplify the
architecture for developers to create new instructions, since we can encapsulate the logic of
the instruction in a class that is separate from the main control and interface of the program

Figure 5.1: Sequence diagram to illustrate the relation between the command class and the
receiver class.

12

CHAPTER 5. DESIGN

We use wxpython’s file explorer function to let the user select the files that will be pro-
cessed by the program. This function provides a path to each file, which we then use with
the music_tag library to load all relevant metadata tags about the file. For every loaded file
we add a new graphical item to the interface that stores and presents to the user all relevant
data found in the file. Each graphical element also has a text entry for each file the program
allows to modify, so it can both present information to the user, and act as a manual editor
for minor changes. All fields are stored in a dictionary that uses the readable identifier of the
field as a key. These dictionaries can then be used by the instructions to dynamically show
the supported fields.

Every instruction the user creates has the capacity to modify the metadata tags and file-
name of all loaded files, with the aim of automating data entry. The details of what the in-
struction does depends on user input, more commonly just redistributing or fixing already
existing information. When an instruction is called to be executed, the command class of
the program passes a reference to every loaded file object, and the receiver class handles the
request and processes the data. All manual edits by the user, along with the modifications
made by user created instructions, are performed on the data these objects hold. In doing so,
we ensure that all the information needed to commit the changes to disk is encapsulated in a
single object, which we then relegate the export process to, following the same principle we
did with the instructions.

The export process relies entirely on the music_tag library. Its has its own method to load
files given a path, and creates a mutable object, on which the tag edits are performed. For
every object representing a file, we first load an instance of the file using the library method
and the path stored in the object. Then we modify all the affected tags of the instance so they
reflect the changes done to the object. Finally, all the information that is now stored in the
mutable instance of the file is commited to disk using another method from the music_tag
library.

The interface was built by creating a hierarchy of panels and sizers. This is further ex-
plained in section 6.1.

13

CHAPTER 5. DESIGN

Figure 5.2: UML diagram for the architecture of the app

14

Chapter 6

Implementation and testing

In this section we will review the progress made with each phase of the project, explaining
both the details of how each element was implemented, and the testing done trying to recreate
the behaviour of a regular user.

6.1 Prototype 1: Graphical interface

Getting familiar with the wxpython library was by far the most time-consuming part of the
project.

Starting from zero, wxpython first creates a window, which is referred to in code as a
”frame” class. From here on out, everything works on a hierarchy basis. We can now create
widgets and items within the window, but they must have this base frame as the parent.

To simplify the decisions taken in section 4.2, first we need to split the window in two
horizontal halves, and then separate each half into a toolbar of fixed size, and a scrollable
body which will hold either the user created instructions, or a list of the loaded files.

Instead of manually placing every widget in our graphical interface, wxpython has a fea-
ture called ”sizers”, which evenly splits the space of the surface they are assigned into a grid.
Instead of being created with a parent object, they are created individually, and then assigned
to any object that has a surface. We can then append items to this sizer, and they will be
placed dynamically inside the first available cell.

There’s different types of sizers with different features. These are the two most used in
the project:

• FlexGridSizer divides a space into a grid of N rows andM columns (The number of rows
and columns have to be specified at the time of creation). With FlexGridSizer, we can
specify which rows and columns we want to expand evenly, and which should only
take as much space as their contents need, which is needed to have toolbars of a fixed
size.

15

CHAPTER 6. IMPLEMENTATION AND TESTING 6.1. Prototype 1: Graphical interface

• BoxSizer lacks many features by comparison, but has the advantage of not needing to
know the number of cells it must split itself into at the moment of creation. This is
useful for dynamically hosting the list of instructions and loaded songs.

To further subdivide the space inside a sizer we use a ”panel”. A panel is a relatively simple
widget that draws a surface inside the parent, and allows one to add a simple border and
change the color of the background. Its utility comes from the fact that it can have children
of its own, much like the original frame. And just like a frame it too can be subdivided using
a sizer. So if we place a panel inside the cell of a sizer, and set it so that it occupies as much
space as possible within that cell, we can apply a different sizer to that panel, to subdivide
already subdivided space.

Repeating this hierarchy, we split each half of the screen into a toolbar and a scrollable
body, using a special kind of panel. We then place a vertical BoxSizer in each body so that we
can append any number of instructions or audio files, and we put placeholder buttons in the
toolbars.

We can make widgets react to user inputs using the ”bind” function. Wxpython creates
events in reaction to user input, such as recognising mouse clicks, text boxes being high-
lighted, buttons being pushed… With the bind button, we designate a function to be called
every time an event reaches any designated widget. Events are generated by the widgets that
the user interacted with, and the event is then propagated upwards in the hierarchy until we
reach the base frame, or one of the bound functions deals with the event and does not propa-
gate it further. Fortunately, most of the user input is done through buttons, comboboxes, and
text entries, which create very specific and manageable events, so the project didn’t require
any sort of complex event manager.

To test the scrollable lists, we added a placeholder function to one of the buttons that
created an empty panel in one of the lists, with a button to delete itself. During testing, two
problems arose because of the interface’s ability to adapt to the size of the window.

Firstly, when destroying and discarding an item from a sizer, the rest of the items don’t
rearrange themselves if there’s no call to update the layout, which normally only happens
when the window is resized. So we had to add a manual layout update call every time we
destroy an item inside one of the lists.

Secondly, if you shrink the window too much then some items will not be visible any-
more. This is a minor problem if the items just disappear from the window because there’s
not enough space. However, there’s also the possibility of items overlapping each other,
which is not an issue at first, but if you expand the window again there will be graphical
artifacts carried over in each of the affected items. An example of this issue can be seen in
the rpvodided screenshot 6.3.

This can’t be fixed using manual calls to update the layout, but it can be prevented using

16

CHAPTER 6. IMPLEMENTATION AND TESTING 6.1. Prototype 1: Graphical interface

Figure 6.1: Regular screen capture of an instruction object

Figure 6.2: Shrinking the window so the widgets inside the instruction overlap each other

Figure 6.3: Aftermath of the interaction when re-expanding the window to an appropriate
size

17

CHAPTER 6. IMPLEMENTATION AND TESTING 6.2. Prototype 2: File I/O

a property called ”minimum size”, which prevents the user from making the window smaller
then the necessary space for a widget to exist. Immediately this is not a desirable solution,
because at no point do we want to take away agency from the user. Furthermore, using a test
item that would emulate the object that would contain the instruction, we found inconsistent
and undesirable behaviourswhen deleting and creating objects containing children of variable
minimum size. Not to mention, this would add an overhead to any further development from
any third party could do with our platform, since they would have to worry about this issue
too when creating new instructions.

Fortunately, the artifacts clear themselves when minimising the window, so even if the
user were to find themselves in a scenario where this could be an issue, we don’t need to take
any extra precautions to deal with the situation. For the sake of simplifying development, we
considered this a non-issue from here on out.

6.2 Prototype 2: File I/O

Development of this phase was fairly straightforward. Wxpython can use the native file ex-
plorer for the current operating system and will return the path of any files selected by the
user. The user will only be able to choose files with supported file extensions, so there will
be no compatibility issues on that front. The function then returns the path of every selected
file.

To represent all data loaded from a file we created a class called songItem. SongItem
is derived from a panel, and has the function of both storing all loaded information, and
allowing the user to edit this information, which is what the panel is used for: to host all the
widgets necessary to show the information gathered and allow for data entry. Details about
the interface can be found in 6.1.

The program doesn’t yet have the ability to read or write the metadata of the files loaded
by the program; this prototype served as a middle step to ensure file I/O worked properly,
and that complex panels were appended and represented properly in the scrollable lists. It
can, however, modify the name of the file or even delete it. It works on the same basis as the
instructions, borrowing from the command design pattern; all changes done by the user are
performed on the songItems, and when the user chooses to export the changes, each songItem
bears the responsibility of commiting these changes to disk.

A quirk about adding new items to already rendered sizers is that they are not immediately
adjusted to the size of the parent, and are instead shown to the userwith their natural size until
a layout update is called, either naturally by the infraestructure or the program, or manually
by us in order to prevent it. However, even if we do this call manually, the item is first
shown in its natural size for a single cycle, and then immediately has its size adjusted. This

18

CHAPTER 6. IMPLEMENTATION AND TESTING 6.3. Prototype 3: Metadata I/O

is uncomfortable and jarring to see. A quick work-around for this was to create the items
with a width of 0, so even if there was this single-cycle delay in the logic of the program, it is
invisible to the user.

No issue was found with the file explorer or the files provided during testing. We did
however come upon a performance issue when trying to simultaneously load a thousand files
into the program. The system froze for several minutes, and was only able to load a fraction
of the files selected. This is due to the program running out of memory, since panels are a
fairly expensive resource to keep in memory and render, and each loaded file is added to the
interface with a panel with several widgets appended to it.

Since the program was still usable with fairly large batches of files, this problem was
deemed not a priority and relegated as future work.

6.3 Prototype 3: Metadata I/O

A direct extension of the prior prototype, songItems are now initialised with values read
directly from the file’s metadata tags using the music-tag library. These values are presented
within a text entry so the user can manually edit their values.

During testing, we found that exporting changes to metadata tags added virtually no ex-
ecution time in comparison to only modifying the filename or deleting the file. Adding cover
art did add a noticeable delay to the export process, but it was fairly manageable; using several
hundred images barely added a few seconds of delay, which was still satisfactory.

6.4 Prototype 4: Automated instructions

To create the visual programming interface, each instruction was represented by a singular,
self-contained graphical element, similarly to songItems. This new class that represents an
instruction is called a logicItem.

As was previously explained in 4.2.1, each instruction has two parts: a generic toolbar,
and a body that changes depending on the instruction. This class is built following the same
principles we’ve used thus far, building a hierarchy of panels subdivided with sizers.

In order to make the body of the logicItem change, we first detach from the sizer and
destroy the panel that is currently filling the second cell of the object’s sizer, and then create
and attach the new instruction.

Each logicItem contains the information necessary to work within the program: it per-
forms the conditional check to see if its instruction should be performed or not for each file, it
keeps a reference to the list of loaded files, it acts as an interface to execute the code contained
within the body, and can detach and destroy itself from the scrollable list. Every time the item

19

CHAPTER 6. IMPLEMENTATION AND TESTING 6.4. Prototype 4: Automated instructions

is called upon to execute its instruction, all it does is check whether the conditional statement
passes, and then pass the songItem in question to the callable method contained in the body.

The body of a logicItem has the sole purpose of acting as an input interface for the function
it performs, and executing said function to any songItem it is passed. It has three parts:

• A readable name to differentiate each instruction.

• A panel-sizer hierarchy that can be inserted into the body of the logicItem.

• A function that affets the information on a songItem, typically using information gath-
ered from the graphical interface part of the logicItem it belongs to.

In order to allow this program to be used as a platform by other users who want to cre-
ate their own instruction, we abstracted the body of the logicItem into its own class, called
”logic_module”. If a user wants to create a new instruction, all they need to do is create a
new class that derives from logic_module, and fill in the three elements that make it up. The
program will then dynamically gather all available logic modules and add them as options
in the combobox of the toolbar for the logicItems. Logic_module itself is derived from the
wxpython panel class, so we call its constructor when changing the instruction of a logicItem
and append it to the sizer. Then, when the time comes for the logicItem to execute its instruc-
tion, it passes one by one all loaded files in the form of songItems to the function hosted in
the logic_module.

As a base to make the program functional, four logic modules were created along with
the program with the following functions:

• Change the export option of the songItem to either commit changes, ignore the changes,
or delete the item.

• Split a tag and distribute each half into another tag.

• Merge any combination of two tags plus a text entry into a single tag.

• Substitute any substring of text with the contents of a text entry (The lookup is done
with regular expressions).

Five conditional statements can be used alongwith those four modules: a text based query
to check if any of the supported metadata tags currently contains a given string of text. The
provided statements support lookups with regular expressions, and can invert the logical out-
put of the result. While there is not a simplified platform for developers to add new conditional
checks, as is the case with logical modules, more could be added without compromising the
integrity of the program.

20

CHAPTER 6. IMPLEMENTATION AND TESTING 6.4. Prototype 4: Automated instructions

At this point, all the technical requisites of the program are complete. Using the four
provided logic modules we were able to fulfill all cases of use that were considered in test-
ing while trying to emulate user behaviour. They were mostly comprised of regular pattern
matching to split properly formatted filenames and fill missing metadata tags, but there were
also extended tests to try to comply with more complex behaviours, such as fixes for capitali-
sation consistency, and removing naming artifacts derived from the mass-download of audio
files, such as the date of production or quality denominators.

21

Chapter 7

Closing statement and future works

The application developed during this project fulfills all objectives set forth: to have an appli-
cation that can repeat user-given instructions to a set of audio files, and to allow developers
to add new instructions. In this regard, the project was successful.

If development of the application were to continue, the first step to take would be the
abstraction of the songItem and logicItem classes so they can be used without being rendered
on the screen. Not only would this solve the performance issue when dealing with very large
batches of files, but it opens the possibility for the application to also be used as a command
line asset.

Another handy feature could be the ability to export and import sets of instructions,
though this addition could add a significant overhead to any user-created logic modules, since
every logic module would need to define how their interior data should be represented as a
standalone file and then reinterpreted back from said file.

Finally, since the music_tag library supports a wide arrange of audio file formats, it only
makes sense to continue testing of the platform to ensure all suported files work properly and
ensure the project is truly generic.

22

Bibliography

[1] Tagmp3.online, a browser-based metadata tag editor. Available in https://tagmp3.online/.

[2] Mp3tag, a desktop application for batch metadata tag editing. Home page: https://www.

mp3tag.de/.

[3] Wxpython, cross-platform GUI toolkit for the Python language. Home page: https://

wxpython.org/.

[4] Music-tag, a library for editing audio metadata with an interface that does not depend on the

underlying file format. Project available in https://github.com/KristoforMaynard/music-tag.

23

https://tagmp3.online/
https://www.mp3tag.de/
https://www.mp3tag.de/
https://wxpython.org/
https://wxpython.org/
https://github.com/KristoforMaynard/music-tag

	Introduction
	Motivation
	Objectives

	Discussing the technology of the project
	Already existing tools
	Technology employed

	Details of development
	Development methodology
	Planning and tracking

	Analysis
	Program functionality
	Extent of the considered cases of use
	Requirements

	User interface
	Programmable instructions
	Loaded files
	The window

	Design
	Implementation and testing
	Prototype 1: Graphical interface
	Prototype 2: File I/O
	Prototype 3: Metadata I/O
	Prototype 4: Automated instructions

	Closing statement and future works
	Bibliography

