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in this study follows the ideas of the generalized Godunov scheme, using Roe’s ap-
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of the field variables. The diffusive fluxes are computed using MLS as a global re-
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1 Introduction

An important challenge concerning upwind schemes and unstructured grids is
the desire to develop robust and accurate high order methods with a strong
multidimensional character. A popular and efficient approach to achieve such
objetives is to follow the ideas of the generalized Godunov method [1–3], per-
forming piecewise polynomial reconstructions of the field variables inside each
cell, and subsequently using those reconstructed variables as input data for a
numerical flux function [3–6].

In practice, the construction of very high order schemes of this kind has been
severely limited by the absence of robust approximation techniques, capable
of providing accurate estimates of the succesive derivatives of the field vari-
ables on unstructured grids. Thus, the concept of high-order scheme is most
frequently used in the literature in reference to formally second order schemes
(piecewise linear reconstruction). Very few attempts to develop higher order
reconstructions have been published. One of the most successful of them is
the quadratic reconstruction proposed by Barth [7,8], where first order gradi-
ents and hessians are computed separatedly by means of classical least-squares
procedures.

None of the existing approaches provide a general approximation framework,
such as that underlying in the concept of shape functions in finite element
methods. The shape functions represent a very powerful computational feature
of finite elements, since the accuracy of the interpolation can be controlled,
and they also provide a clear approach to readily extract information about
the flow variables within the domain.

This paper proposes the combination of moving least-squares (MLS) approxi-
mations and finite volume upwind schemes for Euler and Navier-Stokes compu-
tations on unstructured grids. Originally devised for data processing and sur-
face generation [9], the MLS approximation has become very popular among
those researchers working in the class of so-called meshless or meshfree meth-
ods, being widely used both in eulerian and lagrangian formulations. The
approximation power of moving least-squares and reproducing kernel meth-
ods has been extensively analyzed both from theoretical and purely numerical
approaches [10–14]. This class of approximation methods is particularly well
suited for the reconstruction of a given function and its successive derivatives
from scattered, pointwise data. This fact suggests the incorporation of MLS
approximants into finite volume methods for unstructured grids, whose lack of
an underlying interpolation framework is the origin of various shortcomings.
We believe this approach somewhat provides a kind of “shape functions” for
unstructured-grid finite volume solvers and represents an interesting alterna-
tive to the existing approaches.
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The Navier-Stokes solver presented in this paper follows the ideas of the gen-
eralized Godunov scheme, using Roe’s approximate Riemann solver [15] for
the inviscid fluxes. Linear, quadratic and cubic polynomial reconstructions
are developed using MLS to compute high order derivatives of the field vari-
ables. The diffusive fluxes are computed using MLS as a (centered) global
reconstruction procedure.

Although the moving least-squares approximants represent, in essence, a fam-
ily of global reconstruction operators by themselves, the underlying reconstruc-
tion scheme has, in principle, a centered character and, therefore, should not
be directly used for the evaluation of the inviscid fluxes at the cell interfaces.
However, they are perfectly suitable for the evaluation of the diffusive fluxes
in Navier-Stokes computations. Given their centered character and accuracy,
MLS approximants also possess nice properties to be used in the development
of centered schemes with added dissipation [16]. A current research line pur-
sued by the authors relates to the posibility of using MLS approximants for
the direct reconstruction of the convective fluxes, employing adaptive stencils
or adaptive kernel functions to provide the necessary upwinding.

The outline of the paper is as follows. Section 2 presents a brief introduction
to Moving Least Squares Reproducing Kernel approximation methods. The
model equations, numerical formulation and other practical implementation
issues are discussed in section 3. Section 4 is devoted to various numerical
examples and, finally, section 5 presents the main conclusions of this work.

2 Moving Least Squares Reproducing Kernel approximations

2.1 General formulation.

Let us consider a function u(xxxxxxxxxxxxxx) defined in a domain Ω. The basic idea of the
Moving Least-Squares (MLS) approach is to approximate u(xxxxxxxxxxxxxx), at a given
point xxxxxxxxxxxxxx, through a weighted least-squares fitting of u(xxxxxxxxxxxxxx) in a neighbourhood
of xxxxxxxxxxxxxx, as

u(xxxxxxxxxxxxxx) ≈ û(xxxxxxxxxxxxxx) =
m∑

i=1

pi(xxxxxxxxxxxxxx)αi(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= ppppppppppppppT (xxxxxxxxxxxxxx)αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

(1)

where ppppppppppppppT (xxxxxxxxxxxxxx) is an m-dimensional basis of functions (usually polynomials) and

αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

is a set of parameters to be determined, and such that they minimize
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the following error functional

J(αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

) =
∫

yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx

W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

[
u(yyyyyyyyyyyyyy)− ppppppppppppppT (yyyyyyyyyyyyyy)αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

]2
dΩxxxxxxxxxxxxxx (2)

being W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

a kernel (also smoothing or window function) with

compact support (denoted by Ωxxxxxxxxxxxxxx) centered at zzzzzzzzzzzzzz = xxxxxxxxxxxxxx. The parameter h, usually
called smoothing length or dilatation parameter in the meshfree literature, is
a certain characteristic measure of the size of the support Ωxxxxxxxxxxxxxx (e.g. kernels
with circular supports of radius 2h). Exponential and spline funtions are most
frequent kernels.

In numerical computations the global domain Ω is represented by a set of
nodes or particles . The integral in (2) is thus evaluated using those nodes
inside Ωxxxxxxxxxxxxxx as quadrature points. In discrete form, the set of parameters αααααααααααααα that
minimize the functional J are given by

αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW V (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx (3)

where the vector uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx contains the pointwise values of the function to be
reproduced, u (xxxxxxxxxxxxxx), at the nxxxxxxxxxxxxxx nodes inside Ωxxxxxxxxxxxxxx (figure 1)

uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx =
(
u(xxxxxxxxxxxxxx1) u(xxxxxxxxxxxxxx2) · · · u(xxxxxxxxxxxxxxnxxxxxxxxxxxxxx)

)T
(4)

The moment matrix M, which is an (m × m) matrix, is given by M(xxxxxxxxxxxxxx) =
PΩxxxxxxxxxxxxxxWV(xxxxxxxxxxxxxx)PT

Ωxxxxxxxxxxxxxx , and the matrices PΩxxxxxxxxxxxxxx and WV(xxxxxxxxxxxxxx), whose dimensions are,

respectively, (m× nxxxxxxxxxxxxxx) and (nxxxxxxxxxxxxxx × nxxxxxxxxxxxxxx), can be obtained as

PPPPPPPPPPPPPPΩxxxxxxxxxxxxxx = (pppppppppppppp(xxxxxxxxxxxxxx1) pppppppppppppp(xxxxxxxxxxxxxx2) · · · pppppppppppppp(xxxxxxxxxxxxxxnxxxxxxxxxxxxxx) ) (5)

WV(xxxxxxxxxxxxxx) = diag {Wi(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxi)Vi} , i = 1, . . . , nxxxxxxxxxxxxxx (6)

Complete details can be found in [10,11]. In the above equations, Vi and xxxxxxxxxxxxxxi

denote, respectively, the tributary volume (used as quadrature weight) and
coordinates associated to node i. Note that the tributary volumes of the neigh-
bouring nodes are included in matrix WV, obtaining an MLS version of the
Reproducing Kernel Particle Method [10]. Otherwise, we can use W instead
of WV

W(xxxxxxxxxxxxxx) = diag {Wi(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxi)} , i = 1, . . . , nxxxxxxxxxxxxxx (7)

which corresponds to the classical MLS approximation (in the nodal integra-
tion of the functional (2), the same quadrature weight is associated to all
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nodes). Introducing (3) in (1), the interpolation structure can be identified as

û(xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx = NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx)uuuuuuuuuuuuuuΩxxxxxxxxxxxxxx =
nxxxxxxxxxxxxxx∑

j=1

Nj(xxxxxxxxxxxxxx)uj (8)

In analogy to finite elements, the approximation was written in terms of the
MLS “shape functions”

NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx) (9)

The functional basis pppppppppppppp(xxxxxxxxxxxxxx) is strongly related to the accuracy of the MLS fit.
Numerical tests [13] have shown that, for a rth order MLS fit (rth order com-
plete polynomial basis) and general, irregularly spaced points, the nominal
order of accuracy for the approximation of a sth order gradient is roughly
(r− s+1). In general, any linear combination of the functions included in the
basis is exactly reproduced by the MLS approximation.

Fig. 1. Meshfree approximation: general scheme. Support for reconstruction at P.

In this study, the following cubic polynomial basis was used

pppppppppppppp(xxxxxxxxxxxxxx) =
(
1 x1 x2 x1x2 x2

1 x2
2 x2

1x2 x1x
2
2 x3

1 x3
2

)T
(10)

which provides cubic completeness. In the above expression, (x1, x2) denotes
the cartesian coordinates of xxxxxxxxxxxxxx. To improve the conditioning of the moment
matrix, it is most frequent to use scaled and locally defined monomials in the
basis. Thus, if the shape functions were to be evaluated at a certain point xxxxxxxxxxxxxxI ,
the basis would be of the form pppppppppppppp(xxxxxxxxxxxxxx−xxxxxxxxxxxxxxI

h
), instead of pppppppppppppp(xxxxxxxxxxxxxx). With this transfor-

mation, the MLS shape functions read

NNNNNNNNNNNNNNT (xxxxxxxxxxxxxxI) = ppppppppppppppT (00000000000000)CCCCCCCCCCCCCC(xxxxxxxxxxxxxxI) = ppppppppppppppT (00000000000000)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxxI)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxI
WWWWWWWWWWWWWW (xxxxxxxxxxxxxxI) (11)
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where CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) was defined as

CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) = MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx) (12)

The approximate derivatives of u (xxxxxxxxxxxxxx) can be expressed in terms of the deriva-
tives of the MLS shape functions, which are obtained in terms of the deriva-
tives of the polynomial basis pppppppppppppp(xxxxxxxxxxxxxx−xxxxxxxxxxxxxxI

h
) and the derivatives of CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) [17,16,18]. A

wide variety of kernel functions appear in the literature, most of them being
spline or exponential functions. In this study we use a cubic spline with radial
weighting.

The first order derivatives of the shape functions are computed in this study as
full MLS derivatives, whereas second and third order derivatives are approxi-
mated by the diffuse ones. In the diffuse approach, the succesive derivatives of
CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) are neglected. Note that the diffuse derivatives of the shape functions are
readily obtained once the matrix CCCCCCCCCCCCCC(xxxxxxxxxxxxxx) is computed. It has been shown (see
[19] and references therein) that the diffuse derivatives converge at optimal
rate to the exact derivatives.

Complete details of the MLS procedure used in this paper can be found in
[17,16].

2.2 Computational aspects.

The evaluation of the shape functions at a given point involves a series of
matrix operations, the most expensive of them being the inversion of the
moment matrix MMMMMMMMMMMMMM . The size of this matrix is m×m, where m is the dimension
of the basis pppppppppppppp(xxxxxxxxxxxxxx). For the cubic basis (10), for instance, m = 4, m = 10 and
m = 20 in one, two and three dimensions, respectively. Note that the size of
MMMMMMMMMMMMMM does not depend on the number of neighbours included in the computation
of the shape functions.

In order to prevent the matrix MMMMMMMMMMMMMM from being singular or ill-conditioned, the
cloud of neighbours should fulfill certain “good neighbourhood” requirements.
Thus, if the number of neighbours is less than m (the number of functions in
the basis), MMMMMMMMMMMMMM becomes singular, which implies that more than 10 neighbours
are needed in 2D computations with the cubic basis. Nevertheless, the approx-
imation could be poor if MMMMMMMMMMMMMM is severely ill-conditioned, so it is convenient to use
a number of neighbours greater than the minimum, and with the information
coming from as many directions as possible.
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2.3 Moving least-squares, finite volume solvers, unstructured grids.

This paper proposes the use of MLS approximations to construct high or-
der upwind schemes, through piecewise polynomial reconstructions of the
flow variables. The MLS technique was designed to reproduce arbitrary func-
tions and their derivatives from scattered, pointwise data and, therefore, the
methodology proposed is suitable for general unstructured-grid FV dicretiza-
tions, where cell-average variables are associated to the cell centroids.

The proposed scheme follows the ideas of the generalized Godunov method
[1,2,7], and requires interpolation capabilities at various stages:

• Reconstruction: for the evaluation of the numerical inviscid fluxes, the
field variables are first extrapolated to the interfaces using piecewise poly-
nomial expansions. The construction of such polynomials requires esti-
mating the succesive derivatives of the flow variables at the cell centroids.

• Diffusive fluxes: unlike inviscid fluxes, they are computed directly at inter-
faces. Therefore velocity, temperature, and their corresponding gradients
must be evaluated at each edge quadrature point.

All the above interpolation tasks were addressed in this study by means of
moving least-squares approximants. Our nodes (in the MLS terminology) will
be the cell-centroids and the evaluation points the edge quadrature points and
the centroids themselves.

2.4 Practical computation of the MLS shape functions on unstructured FV
discretizations.

The computation of the MLS shape functions and their derivatives involves
two major steps:

• Determination of the “neighbourhood” (cloud of nodes) of the evaluation
point; i.e. the set of nodes (centroids) that contribute to the fit.

• Evaluation of the MLS shape functions and their required full/diffuse
derivatives, as exposed above.

Once the shape functions and their derivatives have been evaluated at a cer-
tain location xxxxxxxxxxxxxx, the flow variables and their succesive derivatives are readily
computed [17,16]. Note that, using fixed clouds, the MLS shape functions do
not change in time and, therefore, they need to be computed only once at the
preprocessing phase.
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Fig. 2. Typical MLS stencil: centroids.

Fig. 3. Typical MLS stencil: quadrature points on edges.

As mentioned before, a key issue concernign MLS approximations in the con-
text of finite volume schemes on unstructured grids is the definition of the
cloud of nodes (somewhat the MLS stencil) for each evaluation point. The se-
lection process must be suitable for general unstructured grids, and the stencil
should be as compact as possible for the sake of computational efficiency and
physical meaning. Given that we use a cubic polynomial basis, the stencil’s
width must cover at least 10 neighbours. In practice a slightly higher number
of neighbours would actually be preferred. The stencils chosen here are fixed
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and defined a priori , but ENO-like adaptive clouds are perfectly feasible.

Figures 2 and 3 present the stencils used in this study to compute the MLS
shape funtions at the centroids and edge quadrature points, respectively. A
stronger enforcement of the boundary conditions was achieved through the
introduction of a set of “zero area” cells attached to the boundary (an approach
analogous to the use of so-called ghost cells [6]). Note that the centroids of
these boundary cells, i.e. the midpoints of those edges lying on the boundary,
have been included in the above stencils.

Once the cloud of neighbour centroids has been determined, the smoothing
length h is set to be proportional to the maximum distance between the eval-
uation point xxxxxxxxxxxxxxI and its neighours, as

h = k max (‖xxxxxxxxxxxxxxj − xxxxxxxxxxxxxxI‖) (13)

Values of k around 0.6–0.7 seem to be adequate (recall that, using radial
weighting, the support of the kernel expands over a circle of radius 2h). Note
that a cell centered approach with quadrilateral volumes has been adopted in
this study. However, the exposed methodology could be extended to any other
type of control volumes, provided that suitable stencils are defined.

3 Mathematical model and numerical scheme

3.1 Governing equations.

The compressible Navier-Stokes equations for two-dimensional flow, written
in cartesian coordinates and in the absence of source terms, can be cast in
conservative form as

∂UUUUUUUUUUUUUU

∂t
+

∂(FFFFFFFFFFFFFF x − FFFFFFFFFFFFFF V
x )

∂x
+

∂(FFFFFFFFFFFFFF y − FFFFFFFFFFFFFF V
y )

∂y
= 00000000000000 (14)

being

UUUUUUUUUUUUUU =




ρ
ρu
ρv
ρE


 , FFFFFFFFFFFFFF x =




ρu
ρu2 + p

ρuv
ρuH


 , FFFFFFFFFFFFFF y =




ρv
ρuv

ρv2 + p
ρvH


 (15)

9



the conserved variables and inviscid fluxes, respectively, and

FFFFFFFFFFFFFF V
x =




0
τxx

τxy

uτxx + vτxy − qx


 , FFFFFFFFFFFFFF V

y =




0
τxy

τyy

uτxy + vτyy − qy


 (16)

the diffusive fluxes. In the above expressions, ρ denotes density, p pressure and
vvvvvvvvvvvvvv = (u, v) is the velocity vector. The total energy and enthalpy are given by

ρE = ρe +
1

2
ρ vvvvvvvvvvvvvv · vvvvvvvvvvvvvv, H = E +

p

ρ
(17)

where e is the specific internal energy. The viscous stresses are modelled as

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+

∂v

∂y

)

τyy = 2µ
∂v

∂y
− 2

3
µ

(
∂u

∂x
+

∂v

∂y

)

τxy = µ

(
∂u

∂y
+

∂v

∂x

)
(18)

where µ is the viscosity. The heat fluxes are assumed to be represented by
Fourier’s law

qx = −λ
∂T

∂x
, qy = −λ

∂T

∂y
(19)

where T denotes temperature, λ = cpµ/Pr is the thermal conductivity, cp

the specific heat at constant temperature (cp = 1003.5 for air) and Pr is the
Prandtl number (Pr = 0.72 for air). The equation of state and temperature
for an ideal gas can be written as

p = (γ − 1)(ρE − 1

2
ρvvvvvvvvvvvvvv · vvvvvvvvvvvvvv), T =

1

cv

p

ρ(γ − 1)
(20)

where cv is the specific heat at constant volume (cv = 716.5 for air) and γ =
cp

cv
is the ratio of specific heats (γ = 1.4 for air). The speed of sound is given by

c =
√

γp/ρ (21)
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and the dynamic viscosity µ is assumed to be related to the temperature
according to Sutherland’s law

µ = µ∞
T + S0

T∞ + S0

(
T

T∞

)1.5

(22)

where µ∞ and T∞ denote freestream viscosity and temperature, respectively,
and S0 = 110.4 K is an experimental constant [20].

Fig. 4. Cell-centered finite volume discretization.

3.2 Basic finite volume formulation.

The basic finite volume discretization stems from the integral form of the
model equations (14) over a control volume ΩI (figure 4)

∫

ΩI

∂UUUUUUUUUUUUUU

∂t
dΩ +

∫

ΩI

(
∂(FFFFFFFFFFFFFF x − FFFFFFFFFFFFFF V

x )

∂x
+

∂(FFFFFFFFFFFFFF y − FFFFFFFFFFFFFF V
y )

∂y

)
dΩ = 00000000000000 (23)

Using the divergence theorem, the above expression reads

∫

ΩI

∂UUUUUUUUUUUUUU

∂t
dΩ =

∫

ΓI

(
FFFFFFFFFFFFFFV −FFFFFFFFFFFFFF

)
· nnnnnnnnnnnnnn dΓ (24)

where nnnnnnnnnnnnnn = (nx, ny) is the outward pointing unit normal to the control volume
boundary ΓI , and the definitions

FFFFFFFFFFFFFF = (FFFFFFFFFFFFFF x, FFFFFFFFFFFFFF y) , FFFFFFFFFFFFFFV =
(
FFFFFFFFFFFFFF V

x , FFFFFFFFFFFFFF V
y

)
(25)
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are used for the sake of a more compact presentation. A practical use of (24)
involves the development of suitable temporal and spatial discretizations. The
former can be addressed by the implementation of standard ODE solvers,
whereas the latter gives rise to the particular features of each FV scheme.
The idea behind the finite volume method is to discretize the computational
domain into a set of non-overlapping control volumes (cells) in which the con-
servation equations are enforced. In this study a cell-centered approach with
quadrilateral control volumes was adopted (figure 4), although the use of MLS
approximations can be directly extended to more general FV discretizations.
From a spatial point of view, the algorithm involves studying the evolution
of cell-averaged values of the field variables, and the solution is assumed to
be constant within each control volume. Therefore, the underlying spatial
representation is that of a piecewise constant flow field. High order schemes
are constructed by substituting this piecewise constant representation by a
piecewise continuous (usually polynomial) reconstruction of the flow variables
inside each cell.

Focusing on control volume I, the discrete version of (24) reads

AI
∂UUUUUUUUUUUUUU I

∂t
=

nedgeI∑

iedge=1

ngauI∑

igau=1

[(
FFFFFFFFFFFFFFV −FFFFFFFFFFFFFF

)
· nnnnnnnnnnnnnn

]
igau

Wigau (26)

where AI is the area of cell I, nedgeI the number of cell edges, ngauI the
number of Gauss quadrature points on each edge, Wigau denotes a quadrature
weight and UUUUUUUUUUUUUU I represents the average value of UUUUUUUUUUUUUU over the cell I.

Given that the field variables are discontinuous across interfaces, the fluxes
required to evaluate the expression (26) are not single valued. To overcome
this duplicity, a certain numerical flux function is introduced. This function
returns a single flux value using as input variables the states on each side
of the interface. The inviscid numerical flux is frequently designed to include
some kind of upwinding, necessary to obtain non-oscillatory and physically
meaningful schemes for flow problems. First order schemes use the cell-average
values of the variables on each side of the interface as left and right states
for the numerical flux, whereas higher order schemes use reconstructed ones,
obtained from a certain extrapolation procedure. These ideas are in the basis
of the generalized Godunov scheme [1–3], whose implementation involves three
major steps:

• Development of piecewise continuous (usually polynomial) reconstruc-
tions of the flow variables inside each control volume, using cell-average
information from neighbour centroids. The resulting spatial representa-
tion is still discontinuous across interfaces. The presence of discontinuities
or steep gradients in the solution may require the use of some limiting
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strategy.
• Evaluation of fluxes at cell edges. In the case of the inviscid fluxes, the

extrapolated left (+) and right (−) states at each edge integration point
are used as input data for a numerical flux function (figure 5). In this
study, the diffusive fluxes are directly evaluated at the quadrature points
using MLS approximation.

• Solution advancement, using appropriate time stepping algorithms.

The following sections elaborate on the particular treatment of the above
issues.

Fig. 5. Extrapolated variables used to evaluate the inviscid fluxes across the inter-
faces of control volumes ΩI and {ΩJk

, k = 1, 4}.

3.3 Reconstruction and limiting.

This is probably the most complex issue concerning the development of accu-
rate and robust high-order upwind schemes for unstructured grids. Reconstruc-
tion is usually addressed by substituting the piecewise constant representation
of the basic first order scheme by a piecewise polynomial reconstruction of the
field variables inside each control volume, obtained from cell-averaged data.
The development of very high order schemes of this kind has been severely
limited by the absence of robust approximation techniques, capable of com-
puting accurate estimates of the successive derivatives of the field variables
in the context of unstructured grids. Thus, the concept high-order scheme is
most frequently used in the literature in reference to formally second-order
schemes (piecewise linear reconstruction).
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Very few attempts to develop higher order reconstructions have been pub-
lished. One of the most successful of them is the quadratic reconstruction pro-
posed by Barth [7,8], where first-order gradients and hessians are computed
separatedly by means of classical least-squares procedures. The most impor-
tant drawback of this approach is that the least-squares problem posed by the
scheme, particularly in the case of the second-order derivatives, is frequently
very ill-conditioned.

This section presents linear, quadratic and cubic reconstructions, with first,
second and third order derivatives of the field variables computed by means of
MLS approximants. These piecewise polynomial reconstructions are obtained
using Taylor series expansions; thus, the linear component-wise reconstruction
of the variables inside each cell I reads

U(xxxxxxxxxxxxxx) = UI +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) (27)

where UI stands for the cell-averaged (centroid) value, xxxxxxxxxxxxxxI denotes spatial co-
ordinates of the centroid of the cell and ∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI is a cell-centered gradient. This
gradient is assumed to be constant on each cell and, therefore, the recon-
structed variables are discontinuous across interfaces.

Analogously, the quadratic reconstruction reads

U(xxxxxxxxxxxxxx) = UI +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

THHHHHHHHHHHHHHI(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)−
1

2

[
Ixx

∂2U

∂x2
+ 2Ixy

∂2U

∂x∂y
+ Iyy

∂2U

∂y2

]
(28)

where HHHHHHHHHHHHHHI is the centroid hessian matrix and

Ixx =
∫

Ω

r2
xdΩ, Ixy =

∫

Ω

rxrydΩ, Iyy =
∫

Ω

r2
ydΩ (29)

where rx = x− xI and ry = y− yI . The last term in (28) has been introduced
to enforce conservation of the mean, i.e.

1

AI

∫

xxxxxxxxxxxxxx∈ΩI

U (xxxxxxxxxxxxxx) dΩ = UI (30)

Note that the incorporation of this term does not reduce the order of the
reconstruction given by (28). For steady-state computations we can simply
use

U(xxxxxxxxxxxxxx) = UI +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

THHHHHHHHHHHHHHI(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) (31)
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Finally, the cubic reconstruction (for steady-state computations) can be writ-
ten as

U(xxxxxxxxxxxxxx) = UI +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) +
1

2
(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

THHHHHHHHHHHHHHI(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

+
1

6
∆∆∆∆∆∆∆∆∆∆∆∆∆∆2xxxxxxxxxxxxxxT

I TTTTTTTTTTTTTT I(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) (32)

where

∆∆∆∆∆∆∆∆∆∆∆∆∆∆2xxxxxxxxxxxxxxT
I =

(
(x− xI)

2 (y − yI)
2
)
, TTTTTTTTTTTTTT I =




∂3UI

∂x3
3

∂3UI

∂x2∂y

3
∂3UI

∂x∂y2

∂3UI

∂y3


 (33)

In the case of unlimited reconstructions, the derivatives of the field variables
are directly computed at centroids using moving least-squares. Thus, the ap-
proximate gradients read

∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI =

nxxxxxxxxxxxxxxI∑

j=1

Uj∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj(xxxxxxxxxxxxxxI) (34)

where the Uj’s stand for variables at the nxxxxxxxxxxxxxxI
“neighbour” (in the sense of the

MLS stencil) centroids. The second order derivatives read

∂2UI

∂x2
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂2Nj(xxxxxxxxxxxxxxI)

∂x2

∂2UI

∂x∂y
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂2Nj(xxxxxxxxxxxxxxI)

∂x∂y

∂2UI

∂y2
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂2Nj(xxxxxxxxxxxxxxI)

∂y2
(35)

Finally, the third order derivatives are written as

∂3UI

∂x3
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂3Nj(xxxxxxxxxxxxxxI)

∂x3
,

∂3UI

∂x2∂y
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂3Nj(xxxxxxxxxxxxxxI)

∂x2∂y

∂3UI

∂x∂y2
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂3Nj(xxxxxxxxxxxxxxI)

∂x∂y2
,

∂3UI

∂y3
=

nxxxxxxxxxxxxxxI∑

j=1

Uj
∂3Nj(xxxxxxxxxxxxxxI)

∂y3
(36)

In this study, the first order derivatives were computed as full MLS derivatives,
whereas the second and third order derivatives are approximated by the diffuse
ones.
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In the presence of shocks, some limiting procedure is applied to the above
derivatives. The choice of adequate multidimensional limiters is critical in
order to achieve accurate and non-oscillatory shock-capturing algorithms.

3.3.1 Monotonicity enforcement.

Barth and Jespersen [3] have proposed an extension of Van Leer’s scheme [21]
which is suitable for unstructured grids. The basic idea is to enforce “mono-
tonicity” in the reconstructed solution. In this context, monotonicity implies
that no new extrema are created by the reconstruction process [3]. The en-
forcement is local, in the sense that only certain neighbour cells are considered
for the “no new extrema” criterion.

Recall the piecewise linear reconstruction U(xxxxxxxxxxxxxx)I of a variable U inside a certain
cell I

U(xxxxxxxxxxxxxx)I = UI +∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) (37)

and consider a limited version of this reconstruction, as

U(xxxxxxxxxxxxxx)I = UI + ΦI∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) (38)

where ΦI is a slope limiter (0 ≤ ΦI ≤ 1) such that the reconstruction (38)
satisfies

Umin ≤ U(xxxxxxxxxxxxxx)I ≤ Umax (39)

being

Umin = min
j∈AI

(Uj), Umax = max
j∈AI

(Uj) (40)

where AI is the set of “neighbour” cells. In practice, the restriction (39) is
only enforced at the quadrature points on the edges of cell I; thus, for each
quadrature point q, its associated slope limiter Φq

I is computed in terms of the
unlimited extrapolated value U q

I , as

Φq
I =





min

(
1,

Umax − UI

U q
I − UI

)
U q

I − UI > 0

min

(
1,

Umin − UI

U q
I − UI

)
U q

I − UI < 0

1 U q
I − UI = 0

(41)
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and, finally,

ΦI = min
q

(Φq
I) (42)

In the case of the quadratic reconstruction (31), a similar limiting strategy
can be written as

U(xxxxxxxxxxxxxx) = UI + ΦI

(
∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI · (xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI) +

1

2
(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)

THHHHHHHHHHHHHHI(xxxxxxxxxxxxxx− xxxxxxxxxxxxxxI)
)

(43)

where the limiter ΦI is obtained following the same procedure exposed above
for the linear case.

In this study the neighbourhood to determine the extremum values Umin and
Umax is comprised of the reconstruction cell I and its first order neighbours
(figure 6–A). In the following, the above limiter will be referred to as “BJ
limiter”.

Fig. 6. Neighbourhoods for the limiting of the reconstruction inside cell I.

3.3.2 Averaged derivatives.

This section presents a general strategy to obtain limited gradients and hessian
matrices. Thus, the limited gradient associated to a certain cell I, ∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI is
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obtained as a weighted average of a series of representative gradients, as

∇∇∇∇∇∇∇∇∇∇∇∇∇∇UI =
N∑

k=1

ωk∇∇∇∇∇∇∇∇∇∇∇∇∇∇Uk (44)

where {∇∇∇∇∇∇∇∇∇∇∇∇∇∇Uk, k = 1, . . . , N} is a set of unlimited gradients, used as a basis
to construct the limited one. In an approach similar to that exposed in [6],
the weights {ωk, k = 1, . . . , N} are given by

ωk (g1, g2, · · · , gN) =

N∏
i6=k

gi + εN−1

N∑
j=1

(
N∏

i 6=j
gi

)
+ NεN−1

k = 1, . . . , N (45)

where {gi, i = 1, . . . , N} are functions of the unlimited gradients (in this
study, gi = ‖∇∇∇∇∇∇∇∇∇∇∇∇∇∇Ui‖2) and ε is a small number, introduced to avoid division
by zero. The hessian matrices will also be limited following these ideas but, in
this case, the functions gi read

gi =

(
∂2Ui

∂x2

)2

+ 2

(
∂2Ui

∂x∂y

)2

+

(
∂2Ui

∂y2

)2

i = 1, . . . , N (46)

Some existing limiters could be considered to be included in this family. Van
Rosendale [22] has proposed an extension to three gradients of Van Albada’s
limiter [23]. This limiter was used on unstructured triangular grids and its
general structure is that of (44) with N = 3. The representative gradients are
evaluated at the three vertices of the cell. Jawahar and Kamath [6] proposed
a limiter with N = 3, with averaged gradients computed from the unlimited
gradients evaluated at the centroids of the adyacent cells on triangular meshes.
Furthermore, the denominators in (45) are slightly different in this case.

For quadrilateral cells we propose a limiter based on (44)–(45) with N = 5;
i.e. the limited derivatives are obtained as a weighted average of five unlimited
derivatives. Figure 6 presents four suitable configurations to determine such
representative derivatives . In this study only the configuration given by 6–A
will be considered. In the following, the above limiter will be referred to as
“PC5 limiter”.

3.4 Numerical convective fluxes.

The numerical inviscid fluxes in (26) are obtained using Roe’s flux difference
splitting [15]. For this purpose, left (UUUUUUUUUUUUUU+) and right (UUUUUUUUUUUUUU−) states are defined on
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each face. The numerical flux is then computed as

(FFFFFFFFFFFFFF x, FFFFFFFFFFFFFF y) · nnnnnnnnnnnnnn =
1

2

[(
FFFFFFFFFFFFFF x

(
UUUUUUUUUUUUUU+

)
, FFFFFFFFFFFFFF y

(
UUUUUUUUUUUUUU+

))
+

(
FFFFFFFFFFFFFF x

(
UUUUUUUUUUUUUU−)

, FFFFFFFFFFFFFF y

(
UUUUUUUUUUUUUU−))]

· nnnnnnnnnnnnnn−
1

2

3∑

k=1

α̃k|λ̃k|r̃rrrrrrrrrrrrrk (47)

where {λ̃k, k = 1, 4} and {r̃rrrrrrrrrrrrrk, k = 1, 4} are, respectively, the eigenvalues and

eigenvectors of the approximate jacobian J̃JJJJJJJJJJJJJ
(
UUUUUUUUUUUUUU+,UUUUUUUUUUUUUU−)

λ̃1 = ṽvvvvvvvvvvvvv · nnnnnnnnnnnnnn− c̃, λ̃2 = λ̃3 = ṽvvvvvvvvvvvvv · nnnnnnnnnnnnnn, λ̃4 = ṽvvvvvvvvvvvvv · nnnnnnnnnnnnnn + c̃ (48)

(r̃rrrrrrrrrrrrr1 r̃rrrrrrrrrrrrr2 r̃rrrrrrrrrrrrr3 r̃rrrrrrrrrrrrr4) =




1 0 1 0
ũ− c̃nx −c̃ny ũ ũ + c̃nx

ṽ − c̃ny c̃nx ṽ ṽ + c̃ny

H̃ − c̃ ṽvvvvvvvvvvvvv · nnnnnnnnnnnnnn c̃(ṽnx − ũny)
1
2
(ũ2 + ṽ2) H̃ + c̃ ṽvvvvvvvvvvvvv · nnnnnnnnnnnnnn


(49)

and the corresponding wave strengths {α̃k, k = 1, 4}

α̃1 =
1

2c̃2
[∆ (p)− ρ̃c̃ (∆ (u) nx + ∆ (v) ny)]

α̃2 =
ρ̃

c̃
[∆ (v) nx −∆ (u) ny]

α̃3 = − 1

c̃2

[
∆ (p)− c̃2∆ (ρ)

]

α̃4 =
1

2c̃2
[∆ (p) + ρ̃c̃ (∆ (u) nx + ∆ (v) ny)] (50)

where ∆ (·) = (·)−− (·)+, nnnnnnnnnnnnnn = (nx, ny) is the outward pointing unit normal to

the interface, and the Roe-average values ṽvvvvvvvvvvvvv = (ũ, ṽ) and H̃ (computed using
UUUUUUUUUUUUUU+ and UUUUUUUUUUUUUU−) are defined as

ũ =
u+
√

ρ+ + u−
√

ρ−√
ρ+ +

√
ρ−

ṽ =
v+
√

ρ+ + v−
√

ρ−√
ρ+ +

√
ρ−

H̃ =
H+

√
ρ+ + H−√ρ−√
ρ+ +

√
ρ−

(51)

On the other hand, the average values ρ̃ and c̃ are computed as

ρ̃ =
√

ρ+ρ− c̃2 = (γ − 1)
[
H̃ − 1

2

(
ũ2 + ṽ2

)]
(52)

A first order scheme is obtained by setting UUUUUUUUUUUUUU+ and UUUUUUUUUUUUUU− to be the cell-averaged
variables at the left and right control volumes. Although first order schemes
often provide valuable information for the engineering practice, their accuracy
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is severely undermined by an excess of numerical dissipation. The so-called
“higher order schemes” correspond to using extrapolated left and right states
(figure 5), obtained through a reconstruction process, as exposed in section
3.3.

3.5 Diffusive fluxes.

Given that no upwinding is necessary in the case of the diffusive fluxes, we
use the MLS approximants as a global (centered) reconstruction procedure to
evaluate the diffusive fluxes at the quadrature points on the edges. Recall that
the evaluation of the viscous stresses and heat fluxes requires interpolating the
velocity vector vvvvvvvvvvvvvv = (u, v), temperature T , and their corresponding gradients,
∇∇∇∇∇∇∇∇∇∇∇∇∇∇vvvvvvvvvvvvvv and ∇∇∇∇∇∇∇∇∇∇∇∇∇∇T , at each quadrature point xxxxxxxxxxxxxxiq. Using MLS approximation, these
entities are readily computed as

vvvvvvvvvvvvvviq =
niq∑

j=1

vvvvvvvvvvvvvvjNj(xxxxxxxxxxxxxxiq), Tiq =
niq∑

j=1

TjNj(xxxxxxxxxxxxxxiq) (53)

and

∇∇∇∇∇∇∇∇∇∇∇∇∇∇vvvvvvvvvvvvvviq =
niq∑

j=1

vvvvvvvvvvvvvvj ⊗∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj(xxxxxxxxxxxxxxiq), ∇∇∇∇∇∇∇∇∇∇∇∇∇∇Tiq =
niq∑

j=1

Tj∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj(xxxxxxxxxxxxxxiq) (54)

where niq is the number of neighbour centroids (in the sense of the MLS
stencil). Once the above information has been interpolated, the diffusive fluxes
can be computed, according to (16), and introduced in (26).

3.6 Flux integration.

It is convenient to combine high order polynomial reconstructions with high
order quadratures at cell edges. In this study one integration point (the mid-
point) was used in the case of linear reconstruction, whereas two and three
Gauss points were respectively used in the case of quadratic and cubic recon-
structions.

3.7 Time integration.

We use the third order TVD-Runge-Kutta algorithm proposed by Shu and
Osher [24]. Given the field variables Un at the previous time step n, the al-
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gorithm proceeds in three stages to obtain the updated field variables Un+1,
as

U1 = Un + ∆tL(Un)

U2 =
3

4
Un +

1

4
U1 +

1

4
∆tL(U1)

Un+1 =
1

3
Un +

2

3
U2 +

2

3
∆tL(U2) (55)

where the operator L(·), which represents the time derivative given by (26),
reads

L(UUUUUUUUUUUUUU) =
1

A

nedge∑

iedge=1

ngau∑

igau=1

[(
FFFFFFFFFFFFFFV −FFFFFFFFFFFFFF

)
· nnnnnnnnnnnnnn

]
igau

Wigau (56)

4 Numerical results

This section presents various numerical examples of flow around a NACA 0012
aerofoil, aimed at a practical assessment of the performance of the proposed
methodology. The quadrilateral unstructured grids were generated using the
code GEN4U, based on the formulation proposed by Sarrate and Huerta [25].

4.1 Inviscid flow.

4.1.1 A subsonic test.

The MLS approximants provide a general and robust framework to develop
high order polynomial reconstructions for upwind FV schemes on unstruc-
tured grids, thus enhancing the accuracy of the scheme without introducing
additional degrees of freedom. This section analyzes the effect of increasing
the order of the reconstruction on a simple subsonic test case.

The problem set up corresponds to a subsonic flow around a NACA 0012
aerofoil. The freestream flow is given by M = 0.63, α = 2◦. The com-
putational grid is rather coarse (figure 7, 5322 cells). Given the poor mesh
resolution near the leading and trailing edges, the inherent dissipation associ-
ated to each reconstruction becomes clear through the inspection of the Mach
number isolines.

Figure 8 shows the Mach number isolines obtained by using linear (A), quadratic
(B) and cubic (C and D) reconstructions. The inviscid fluxes have been inte-

21



grated using one, two and either two (C) or three (D) Gauss points per edge,
for the linear, quadratic and cubic reconstructions, respectively.

The solution provided by the linear reconstruction clearly shows the anoma-
lous pseudoviscous behaviour of the Mach number contours near the surface.
The entropy layer is dramatically reduced by the increase of the order of the
reconstruction. Figure 9 presents a close-up view of the Mach number contours
near the surface of the aerofoil.

The maximum entropy production reduces from ∆Smax = 0.03336 (linear
reconstruction) to ∆Smax = 0.00772 (cubic reconstruction), where S is given
by

S = ln


h

γ
γ−1

p


 h = γ

(
E − 1

2
(u2 + v2)

)
(57)

Figure 10 plots a comparison of the computed surface pressure coefficient Cp

distribution near the leading edge of the aerofoil, which confirms the superior
performance of the higher order reconstructions.

4.1.2 Two transonic examples.

A finer grid (figure 11, 12243 cells) has been used to solve to transonic test
cases: I) M = 0.8, α = 1.25◦, and II) M = 0.85, α = 1◦. Figures 12
and 13 show the results for test cases I and II, respectively, using quadratic
reconstruction and either the BJ or the PC5 limiter: Mach number isolines,
pressure isolines and surface pressure coefficient Cp distribution. Both limiters
provide sharp shock-capturing (one interior cell) and clear slip lines, although
the PC5 limiter appears to be more dissipative.

4.2 Viscous flow.

For Navier-Stokes computations more cells have been clustered around the
aerofoil, to give a final grid of 15111 quadrilaterals. Three test cases have been
considered: III) M = 0.8, α = 10◦, Re = 500, IV) M = 2, α = 0◦, Re = 2000
and V) M = 0.3, α = 30◦, Re = 3000. Only test case IV requires the use
of limiters, in order to deal with the detached bow shock.

Figure 14 shows Mach number isolines, streamline patterns and surface pres-
sure Cp and skin friction Cf coefficients for test case III. Figure 15 shows Mach
number isolines and surface pressure and skin friction coefficients for test case
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IV. Both problems have been solved using quadratic reconstruction. For test
case IV the PC5 limiter has been used.

Under the angle of attack considered in test case V, the laminar flow be-
comes unsteady, and no steady-state solution is reached. Instead, the flow
pattern is characterized by a periodical vortex shedding process. Figure 16
plots the streamline patterns and Mach number field, corresponding to four
non-dimensional time values, computed as t∗ = V∞t/c, where V∞ is the
freestream velocity and c is the chord length. The results are in good agree-
ment with those reported in [26], obtained with a structured-grid solver.

5 Conclusions and future developments

This paper explores the approximation power of Moving Least-Squares ap-
proximations in the context of high order upwind schemes on unstructured
grids. Applications focuse on the compressible Navier-Stokes equations and
flow around aerofoils. This meshfree interpolation technique is designed to
reproduce arbitrary functions and their succesive derivatives from scattered,
pointwise data, which is precisely the case of unstructured-grid finite volume
discretizations.

The Navier-Stokes solver presented here follows the ideas of the generalized
Godunov scheme, using Roe’s approximate Riemann solver for the inviscid
fluxes. Linear, quadratic and cubic polynomial reconstructions are developed
using MLS to compute high order derivatives of the field variables. The diffu-
sive fluxes are computed using MLS as a (centered) global reconstruction pro-
cedure. Numerical examples of inviscid and viscous flow around a NACA0012
aerofoil demonstrate that the proposed methodology represents an interesting
alternative to the existing procedures.

The results obtained so far have encouraged the quest for further develop-
ments in the combination of powerful meshfree approximation techniques and
finite volume solvers: ENO-like adaptive stencils or adaptive kernels for recon-
struction and centered schemes with added dissipation. An important research
line currently pursued by the authors is concerned to the assessment of mov-
ing least-squares for highly stretched meshes. This kind of mesh structure is
typical of high-Re flows and anisotropic adaptive procedures. In these cases,
computing accurate approximations of the field variables and their succesive
derivatives represents a challenge for any technique, given the strong mesh
anisotropy.
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Fig. 7. Coarse grid for inviscid flow around a NACA 0012 aerofoil, 5322 cells.
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Fig. 8. Subsonic inviscid flow around a NACA 0012 aerofoil (M = 0.63, α = 2.◦):
Mach number contours obtained with linear (A), quadratic (B) and cubic (with 2
and 3 Gauss points, C and D respectively) reconstructions.

25



Fig. 9. Subsonic inviscid flow around a NACA 0012 aerofoil (M = 0.63, α = 2.◦):
close-up view of the Mach number contours obtained with linear (A), quadratic (B)
and cubic (with 2 and 3 Gauss points, C and D respectively) reconstructions.
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Fig. 10. Subsonic inviscid flow around a NACA 0012 aerofoil (M = 0.63, α = 2.◦):
surface pressure coeffcients Cp (detail).
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Fig. 11. Coarse grid for inviscid flow around a NACA 0012 aerofoil, 12243 cells.
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Fig. 12. Inviscid flow around a NACA 0012 aerofoil (M = 0.8, α = 1.25◦): results
obtained using quadratic reconstruction with either the BJ limiter (A-C-E) or the
PC5 limiter (B-D-F). Mach number contours (A-B), pressure contours (C-D) and
surface pressure coeffcients Cp (E-F).
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Fig. 13. Inviscid flow around a NACA 0012 aerofoil (M = 0.85, α = 1◦): results
obtained using quadratic reconstruction with either the BJ limiter (A-C-E) or the
PC5 limiter (B-D-F). Mach number contours (A-B), pressure contours (C-D) and
surface pressure coeffcients Cp (E-F).
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Fig. 14. Viscous flow around a NACA 0012 aerofoil (M = 0.8, α = 10◦, Re = 500):
Mach number contours (A), streamline patterns (B), surface pressure coefficients
Cp (C) and skin friction coefficients Cf (D). Results computed using quadratic
reconstruction.
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Fig. 15. Viscous flow around a NACA 0012 aerofoil (M = 2, α = 0◦, Re = 2000):
Mach number contours (A), close-up view of the Mach number contours near the
leading edge (B), surface pressure coefficients Cp (C) and skin friction coefficients
Cf (D). Results computed using quadratic reconstruction and the PC5 limiter.
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Fig. 16. Unsteady viscous flow around a NACA 0012 aerofoil (M = 0.3, α = 30◦,
Re = 3000): streamline patterns and Mach number field for non-dimensional times
t∗ = 79.8 (A), t∗ = 86.7 (C), t∗ = 89.7 (B) and t∗ = 94.1 (D).
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