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Abstract

Hospital bed demand forecast is a first-order concern for public health action to avoid health-

care systems to be overwhelmed. Predictions are usually performed by estimating patients

flow, that is, lengths of stay and branching probabilities. In most approaches in the literature,

estimations rely on not updated published information or historical data. This may lead to

unreliable estimates and biased forecasts during new or non-stationary situations. In this

paper, we introduce a flexible adaptive procedure using only near-real-time information.

Such method requires handling censored information from patients still in hospital. This

approach allows the efficient estimation of the distributions of lengths of stay and probabili-

ties used to represent the patient pathways. This is very relevant at the first stages of a pan-

demic, when there is much uncertainty and too few patients have completely observed

pathways. Furthermore, the performance of the proposed method is assessed in an exten-

sive simulation study in which the patient flow in a hospital during a pandemic wave is mod-

elled. We further discuss the advantages and limitations of the method, as well as potential

extensions.

1. Introduction

A key aspect in hospital management is planning strategies to avoid healthcare systems to be

overwhelmed, which could involve an increment of the number of preventable deaths. During

the COVID-19 pandemic, the explosive growth of the number of infected cases in a short

period of time has caused massive strain on medical systems. Although a considerable number

of restrictions has been adopted in most countries, hospitals worldwide have been overbur-

dened. Most of the deaths were caused by the virulence of severe acute respiratory syndrome-

coronavirus-2 (SARS-CoV-2), but some may have been due to pandemic-associated overloads

in hospital capacity [1–4].

The estimation of the hospital ward and Intensive Care Units (ICU) beds’ demand is critical

for making wise decisions about clinical operations and resource allocations. Menon et al. [5]

expose the importance of estimating the critical care bed capacity, as well as developing an

appropriate contingency planning. Specifically, they modelled the demand for critical care
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beds in England using a range of attack rates and pandemic durations. More recently, Gitto

et al. [6] highlight the importance of having a straightforward and data-driven approach which

provides accurate predictions of hospital bed demand. In the face of the COVID19 pandemic,

a wide variety of recent studies is related to estimating the capacity of hospital and ICU beds

around the world. Litton et al. [7] assessed the capacity of ICU beds in Australia, and they

report that intensive care bed capacity could be near tripled in response to the expected

increase in demand caused by COVID19. Besides, Barasa et al. [8] evaluate the capacity of the

Kenyan health system in terms of general hospital and ICU beds. In Europe, Peña and Espi-

nosa [9], Deschepper et al. [10], López-Cheda et al. [11], and Garcia-Vicuña et al. [12], among

others, provide different tools for making predictions of the required number of beds in hospi-

tal wards and ICUs. This is essential to avoid important ethical dilemmas related to patient tri-

age [13, 14].

Considering all this, it is vital to register not only the updated number of available beds, but

also to forecast hospital bed demand. To develop these forecasts, Susceptible, Infected, Recov-

ered (SIR) models [15, 16] or agent-based models (ABMs) [17, 18] have become common

tools for estimating demand for hospital beds during the COVID-19 pandemic. The estima-

tion of the number of hospitalized patients is the first step to forecast hospital bed demand in

SIR and ABM models. Nonetheless, it is equally important to estimate how the trend of inpa-

tients will be in the near future. This estimation is based on the distribution of the lengths of

stay (LoS) of inpatients in hospital ward or ICU, as well as the probabilities of being transferred

to the hospital ward or ICU. Discrete Event Simulation (DES) models are being used increas-

ingly in health-care services for the dynamics of the inpatients [19–21]. They assume predeter-

mined parametric models for the distribution of LoS in hospital ward and ICU. DES methods

provide reliable and robust estimates, enabling to manage hospital resources in the most effi-

cient way, only if the assumed models conform to the real trajectory of the inpatients in the

hospital facilities. Consequently, it is crucial to obtain accurate estimations used in the simula-

tion models to obtain solid forecasts which would support healthcare managers in optimal

resource planning, especially in times of pandemics when healthcare resources are scarce.

In the literature, model parameters for the estimation of the lengths of stay are usually

derived from published data [15] and using the health system’s historical data [22]. This results

in a non-dynamic static model. Nonetheless, the course of a pandemic is a non-stationary situ-

ation, in which hospitalization parameters may vary between different waves and places, and

evolve over time. Integration of near-real-time hospital occupancy data into the model can

have a large impact on improving forecast accuracy [23].

Hospital electronic health record systems provide patient-level information that allows

knowing both the pathway of each released patient, and their current location (ward or ICU) if

they have not been discharged. Each patient arriving at the hospital can be admitted to the hos-

pital ward or directly to the ICU. Besides, those patients admitted to the wards may worsen

their health status and require the transfer to the ICU. From both facilities, patients can die, so

they abandon the system, or they can be discharged after improving their health status. In the

last situation, patients in the ICU would be transferred to the hospital ward (we use the symbol
� to represent that those patients have been in the ICU before) until they get over the disease

(see Fig 1).

In this paper, we consider the problem of estimating the distribution of variables associated

with the pathway and LoS of patients in hospital ward and ICU dynamically. In contrast to

standard analysis where data are analyzed after the end-of-study, in this application, the end-

of-study is a moving target. We propose to estimate them along the time by using all available

data collected during a moving time window, from the beginning of the pandemic the first

infected patient was admitted to hospital to day t after the pandemic started.
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The major challenge of the proposed methodology is how to handle the information from

patients still hospitalized, since only the pathway of the discharged patients is fully known.

This lack of complete information of the inpatients is due to not only censorship in the

observed LoS but also to the fact that it is unknown which event will be observed in the future.

The main contribution of this paper is the introduction of some new approaches which deal

with this challenge.

The objectives in this work are twofold: (a) to propose two competitive methods to estimate

the probability distributions included in the patient pathway, which take advantage of the

incomplete information from patients still in hospital at the time of the estimation; (b) to com-

pare these methods with alternatives that dismiss the valuable information of these inpatients.

The performance of the proposed and alternative estimators is assessed in a simulation study.

Furthermore, using the ICU bed prediction method in [12], the efficiency of these predictions

on the accuracy of the statistical estimators is evaluated.

The rest of the paper is organized as follows. Section 2 introduces the new methodology

and describes the notation. Section 3 presents the design of experiments for the simulations.

The results obtained in the two simulation studies are included in Section 4. Finally, Section 5

ends the paper with the conclusions of this work.

2. Methodology

2.1. The estimation problem

We consider the problem of forecasting hospital bed demand by estimating the distribution of

the LoS and probabilities associated with the pathway of patients hospitalized during a pan-

demic wave. Because LoS probability distributions and branching probabilities may vary

between different waves and between different places, we propose a method to estimate them

that uses all data collected from the time the first infected patient was admitted, until the pres-

ent time. Patients who have already abandoned the hospital due to discharge or death provide

complete information for the estimation of LoS probability distributions and branching proba-

bilities, while patients who are still hospitalized provide censored information that may not

even be known to which variables are referred to, as we explain below. At the beginning of a

pandemic wave, there are few patients and most of them are still hospitalized, but their valu-

able information should not be disregarded by the statistical estimators. Fig 2 shows the same

patient flow as Fig 1, including the LoS probability distributions and the branching probabili-

ties that compose the patient pathway through the hospital.

For a patient who has been hospitalized in hospital ward, it is unknown whether he or she

will be finally admitted to the ICU or not, so it is unknown whether the observed value of the

Fig 1. Representation of patient flow in the health system. The symbol � represents that those patients have been in

the ICU before.

https://doi.org/10.1371/journal.pone.0282331.g001
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LoS in hospital ward is a censored observation for the variable Z, “time in hospital ward until

admission to the ICU”, or for the variable X, “time in hospital ward until discharge or death

without ICU admission”. In this section, we propose an estimation method for the probability

distributions of these variables Z and X, as well as the probability of admission to the ICU

from the ward, pWI, that uses the information of all patients admitted to the hospital at the

present time (Fig 3, top).

Observe that the same estimation methodology can be applied to the estimation of the

probability distributions of Y, “time in the ICU before being transferred to hospital ward”, and

D, “time in the ICU until death”, and pIW, the probability of discharge to hospital ward (Fig 3,

center). In this case, it is unknown whether a patient who is admitted to the ICU will evolve

favourably until being transferred to the hospital ward or whether he or she will die in the

ICU. Therefore, the observed LoS of these patients still in the ICU is censored, and it is

unknown if it is a censored observation of Y or D. Finally, patients discharged from the ICU

and still admitted to the hospital ward provide censored data for the variable Q “time in the

hospital ward after being discharged from the ICU” (Fig 3, bottom). The estimation of the vari-

able Q can be obtained with traditional methods that deal with censoring.

From this point onwards, the introduced notation and methods correspond to the estima-

tion of the distribution of variables Z and X and probability pWI (Fig 3, top) and refer to

patients admitted to hospital ward, so patients admitted directly to ICU are not considered.

Same methods with similar notation must be used with patients admitted to ICU for the esti-

mation of the distribution of variables Y and D and probability pIW (Fig 3, center). The estima-

tion of the distribution of variables Q (Fig 3, bottom) can be performed with classical methods

in survival analysis.

Time t = 0 is set as the time the first patient is admitted to the hospital. At a fixed time t,
each of the n(t) patients can be in one of the following sets: (a) ICU set: patients who have

required ICU at some point, regardless if they are still in ICU, returned to hospital ward (Hos-

pital Ward� in Fig 2) or discharged (Discharge�/Death� in Fig 2); (b) HW set: patients without

ICU admission who still are in the hospital ward (Hospital Ward in Fig 2); and (c) DIS set:

patients without ICU admission already discharged (Discharge/Death in Fig 2).

For each patient i, with i = 1,. . .,n(t), admitted to the hospital before time t, we define a vec-

tor uiðtÞ ¼ ½tHAi; tHDi; tIAi; tIDi� that contains four times: tHAi the time of admission to hospital

Fig 2. Representation of patient flow in the health system showing the LoS variables and branching probabilities.

Z: time in hospital ward until admission to the ICU, X: time in hospital ward until discharge or death, Y: time in the

ICU before being transferred to hospital ward, D: time in the ICU until death, and Q: time in the hospital ward after

discharge from the ICU and the branching probabilities pI: probability of direct admission to the ICU, pWI: probability

of admission to the ICU from the ward, and pIW: probability of going to hospital ward from ICU. The symbol �

represents that those patients have been in the ICU before.

https://doi.org/10.1371/journal.pone.0282331.g002
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ward, tHDi the time of discharge from hospital ward, tIAi the time of admission to ICU, and tIDi

the time of discharge from ICU. At a fixed time t, the patient i can be still in the hospital ward

or in the ICU, so in these cases tHDi ¼ t and tIDi ¼ t respectively. Besides this, some of the

times in ui(t) might remain unknown. For example, if the patient i was not admitted to ICU at

time t, then tIAi and tIDi are unknown and they will be denoted as ;.

The times in vector ui(t) enable the patients to be classified into the aforementioned sets:

(a) ICU set: patients with ICU admission divided into three subsets, those back to the hospital

Fig 3. Flow diagram of patients in three situations. Patients admitted to the hospital (top), patients admitted to the

ICU (center), and patients discharged from the ICU (bottom).

https://doi.org/10.1371/journal.pone.0282331.g003
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ward from ICU with uiðtÞ ¼ ½tHAi; t; tIAi; tIDi�, those still in ICU with uiðtÞ ¼ ½tHAi; t; tIAi; t�, and

with uiðtÞ ¼ ½tHAi; tHDi; tIAi; tIDi� those who have died in the ICU (tHDi ¼ tIDi) and those who

have already been discharge from hospital ward (tHDi > tIDi); (b) HW set: patients in hospital

ward without ICU admission with admission dates uiðtÞ ¼ ½tHAi; t; ;; ;�; and (c) DIS set: dis-

charged patients who did not required ICU with uiðtÞ ¼ ½tHAi; tHDi; ;; ;�.

Let us define the indicator of the event ‘admission to ICU´, given by δi(t) = 1 if tIAi is known

at time t (ICU set) and δi(t) = 0 otherwise (HW and DIS sets). Similarly, let us denote νi(t) the

indicator which reveals if the patient has been discharged directly from hospital ward or died

at a time before t, so ICU admission will never be required. In other words, νi(t) = 1 if the

patient belongs to DIS set (ðtIAi; tIDiÞ ¼ ð;; ;Þ and tHDi is known), and νi(t) = 0 otherwise (HW

and ICU sets). We consider the trivariate variable O = (T,δ,ν), where T, a variable related to the

observed length of stay in hospital ward, may take the following values:

ti ¼ tHDi
� tHAi

when diðtÞ ¼ 0 and viðtÞ ¼ 1 ðDIS setÞ

ti ¼ tIAi
� tHAi

when diðtÞ ¼ 1 and viðtÞ ¼ 0 ðICU setÞ

ti ¼ t � tHAi
whendiðtÞ ¼ 0 andviðtÞ ¼ 0 ðHW setÞ

ð1Þ

Observe that, at a time t, value ti of patients in DIS set provides an observation of variable

X, value ti of patients in ICU set provides an observation of variable Z, and value ti of patients

in HW set provides a censored observation for either variable X or variable Z.

For the rest of the paper, we consider the following notation:

• p̂WIðtÞ the estimation of the probability pWI at time t.

• FX(x), FZ(z) the cumulative distribution function of variables X and Z, respectively.

2.2. Nonparametric methods using survival analysis

Survival analysis refers to the statistical methods used to analyze time-to-event data in the pres-

ence of censored observations. Note that the information related to patients in states ICU and

DIS is complete for the estimation of the distributions of Z and X, respectively. However, for

patients still in HW set at time t, we have right censored data since it is unknown whether they

will require ICU or not, nor the final duration of the stay in hospital ward. It should be noted

that, in the first weeks of the pandemic, HW set is expected to include most patients. All

patients in hospital ward at time t provide valuable information for the estimation of pWI and

the distribution of X and Z. It is therefore essential to carry out a methodology which incorpo-

rates all the information contained in these censored observations.

NP method. Nonparametric (NP) methods for estimation have specific advantages such

as flexibility and ease of computation, and are a popular choice for analysing survival data,

such as the Kaplan-Meier estimator to estimate the survival function or the Nelson-Aalen esti-

mator for the cumulative hazard function.

In classical survival analysis, it is assumed that all the individuals will experience the event

of interest. That is the case when estimating the distribution of the variable Q (Fig 3, bottom)

as the event of interest is ‘Discharge�/Death�´, and this model assumes that all patients in hos-

pital ward coming from ICU will never require ICU again and leave hospital eventually. There-

fore, classical nonparametric methods in survival analysis, such as Kaplan-Meier estimator,

can be used to estimate the distribution of Q. However, that assumption does not hold for the

estimation of the distribution of Z, “time in hospital ward until admission to the ICU”, since

the event of interest is ‘ICU admission´ and not all the inpatients will require entering ICU.

The same situation holds when estimating the distribution of X, “time in hospital ward until
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discharge without ICU admission”, as not all the patients in hospital ward will be discharged

without ICU admission. The individuals who are free of experiencing the event are called long-
term survivors, or simply cured subjects. Note that here a cured individual refers to a subject

who will not experience the event of interest, and this is not necessarily related to be cured in

medical terms.

Mixture cure models (MCM) account for this situation since they consider that the popu-

lation is a mixture of two groups of patients, the susceptible ones to the event of interest and

the cured individuals (see [24–28] among others). The observed time of all cured individuals

is censored, as the event will not occur and therefore it is never observed. Traditional MCM

assume that cured individuals are unidentifiable, as censoring prevents from distinguishing

which censored subjects are cured and which ones will experience the event in the end.

Nonetheless, that is not the case in our context. MCM when the cured subjects are randomly

identified addresses this situation, and it has received much attention in recent years (see

[29–32]).

When estimating the distribution of Z, “time in hospital ward until admission to the ICU”,

all patients admitted to ICU (δi(t) = 1) are uncensored while those who have already been dis-

charged from hospital at a time before t without ICU admission (νi(t) = 1) are cured from the

event ‘ICU admission´ as they will never be admitted to ICU in the future. For a fixed time t,
the NP method estimates the distribution function of Z, FZ(z) = p(Z�z), nonparametrically

using the estimator in Safari et al. [33] and the observations fðti; diðtÞ; niðtÞÞ; i ¼ 1; . . . ; nðtÞg

F̂NP
Z;t zð Þ ¼ 1 �

~FZ;tðtnðtÞÞ � ~FZ;tðzÞ
~FZ;tðtnðtÞÞ

;

where ~FZ;t zð Þ ¼ 1 �
YnðtÞ

i¼1

1 �
diðtÞ1ðti � zÞ

nðtÞ � iþ 1þ
Pi� 1

j¼1
njðtÞ

( )

where t1�� � ��tn(t) are the sorted observed times in Eq (1).

Similarly, when estimating the distribution of X, “time in hospital ward until discharge

without ICU admission”, all patients discharged or dead without ICU admission (νi(t) = 1) are

uncensored, and those admitted to ICU (δi(t) = 1) are cured from the event because they will

never experience ‘discharge without ICU admission´. The distribution function of the time in

hospital ward until discharge without ICU admission, FX(x) = P(X�x) is estimated nonpara-

metrically for a fixed time t, as follows;

F̂NP
X;t xð Þ ¼ 1 �

~FX;tðtnðtÞÞ � ~FX;tðxÞ
~FX;tðtnðtÞÞ

;

where ~FX;t xð Þ ¼ 1 �
YnðtÞ

i¼1

1 �
niðtÞ1ðti � xÞ

nðtÞ � iþ 1þ
Pi� 1

j¼1
djðtÞ

( )

Finally, the probability of requiring ICU from ward is estimated for a fixed time t using the

nonparametric estimator in Safari [32]:

p̂NP
WI tð Þ ¼ 1 �

YnðtÞ

i¼1

1 �
diðtÞ

nðtÞ � iþ 1þ
Pi� 1

j¼1
njðtÞ

( )

: ð2Þ

See [32, 33] for the consistency and order of convergence of estimators (1) and (2).
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There are some nonparametric alternatives to estimate the probability pWI, such as imputa-

tion methods [34] or a competing risks model [29]. Note that the first method is biased under

the common assumption of independent censoring. Besides, the main disadvantage of the sec-

ond approach is that, if the patient with the largest observed time is still in hospital ward and

did not require ICU (HW set), then the estimator of pWI is not unique, and only upper and

lower bounds are provided [32].

Standard and routinely-implemented cure model methodologies, such as the mixture cure

model based on the proportional hazards assumption [35–39] or the accelerated failure time

model [40–44] are not discussed here since covariates are not considered in the model.

2.3. Parametric methods based on the EM algorithm

We denote as o(t) = (o1(t),. . . oi(t),. . . on(t)(t)) the realization of variable O in the n(t) patients

admitted to the hospital since the beginning of the pandemic wave. We have developed an iter-

ative procedure, based on the Expectation-Maximization (EM) algorithm, to estimate the dis-

tribution functions of the variables X and Z and the probability pWI. First, an initial estimation

of the parameters is carried out by using only the fully-known data, those observations with

δi(t)+νi(t) = 1, that is, in DIS (νi(t) = 1) or ICU (δi(t) = 1) sets. In the main iteration, the esti-

mated parameters are used to update the probability of being admitted to ICU for each patient

in HW set. These updated probabilities allow the calculation of a new likelihood function for

the parameters, which is maximized to obtain a new estimation of the probability distribution

parameters. These two steps (updating ICU admission probabilities and getting and maximiz-

ing the new likelihood function) are repeated until the stopping criteria are satisfied.

We consider the following additional notation:

• θV the vector of parameters of the distribution function of a general variable V.

• ŷVðtÞ the estimation of the vector of parameters θV at time t.

• FyV ðvÞ; fyV ðvÞ the distribution and density function of a general variable V with parameters

θV respectively.

• LV(θV|o(t)) the likelihood function of sample o(t) used to estimate θV.

• ŷ
ðkÞ
X ðtÞ and ŷ

ðkÞ
Z ðtÞ: the estimation of vectors θX and θZ in the k-th iteration of the algorithm at

time t.

• p̂ðkÞWIðtÞ: the estimation of the probability pWI in the k-th iteration of the algorithm at time t.

The steps of the algorithm are detailed below in the EM method.

EM method. 1. Initialization. We set k = 0 and estimate the parameters θX, θZ and the

probability pWI by using the data in vector o(t):

p̂ð0ÞWI tð Þ ¼
PnðtÞ

i¼1
diðtÞ

PnðtÞ
i¼1
ðdiðtÞ þ niðtÞÞ

; ð3Þ

ŷ
ð0Þ

X ðtÞ ¼ arg max
yX

Lð0ÞX ðyXjoðtÞÞ; where Lð0ÞX ðyXjoðtÞÞ ¼
YnðtÞ

i¼1

fyX ðtiÞ
niðtÞ; ð4Þ
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ŷ
ð0Þ

Z ðtÞ ¼ arg max
yZ

Lð0ÞZ ðyZjoðtÞÞ; where Lð0ÞZ ðyZjoðtÞÞ ¼
YnðtÞ

i¼1

fyZðtiÞ
diðtÞ: ð5Þ

2. Repeat until stop criteria are met. Iteration k+1. From the k-th iteration, k�0, the estima-

tions ŷ
ðkÞ
X ðtÞ, ŷ

ðkÞ
Z ðtÞ and p̂ðkÞWIðtÞ are known. The iteration is divided in two steps: in the first one,

the calculation of the expected value of the probability of admission to the ICU of each patient

in HW set is carried out, which allows estimating the probability of admission to ICU, pWI,

and the expectation of the likelihood function. The second step computes the estimations of θX

and θZ by maximizing the likelihood functions in the previous step.

2.1. Expectation. For each patient i in HW set, the probability p̂ðkþ1Þ

WI;i ðtÞ of being admitted to

ICU is updated as the posterior probability given the time ti already spent at the hospital ward:

p̂ðkþ1Þ

WI;i ðtÞ � PðdiðsÞ ¼ 1; s > tjp̂ðkÞWIðtÞ; ŷ
ðkÞ
X ðtÞ; ŷ

ðkÞ
Z ðtÞÞ

¼
ð1 � F

ŷ
ðkÞ
Z ðtÞ
ðtiÞÞp̂

ðkÞ
WIðtÞ

ð1 � F
ŷ
ðkÞ
Z ðtÞ
ðtiÞÞp̂

ðkÞ
WIðtÞ þ ð1 � F

ŷ
ðkÞ
X ðtÞ
ðtiÞÞð1 � p̂ðkÞWIðtÞÞ

.

Considering the updated probabilities of being admitted to ICU for each patient in HW set,

we estimate the unconditional probability of admission to ICU:

p̂ðkþ1Þ

WI tð Þ ¼
1

nðtÞ

XnðtÞ

i¼1

½diðtÞ þ ð1 � diðtÞÞð1 � niðtÞÞp̂
ðkþ1Þ

WI;i ðtÞ�

and the likelihood functions of the sample as expected functions:

Lðkþ1Þ

X ðyXjoðtÞÞ ¼ E½LXðyXjoðtÞÞ� ¼
YnðtÞ

i¼1

fyXðtiÞ
niðtÞ
YnðtÞ

i¼1

½ð1 � FyXðtiÞÞ
ð1� diðtÞÞð1� niðtÞÞð1 � p̂ðkþ1Þ

WI;i ðtÞÞ�;

Lðkþ1Þ

Z ðyZjoðtÞÞ ¼ E½LZðyZjoðtÞÞ� ¼
YnðtÞ

i¼1

fyZðtiÞ
diðtÞ
YnðtÞ

i¼1

½ð1 � FyZðtiÞÞ
ð1� diðtÞÞð1� niðtÞÞp̂ðkþ1Þ

WI;i ðtÞ�:

2.2. Maximization. The likelihood functions are maximized to find the parameter estima-

tion:

ŷ
ðkþ1Þ

X ðtÞ ¼ arg max
yX
ðLðkþ1Þ

X ðyXjoðtÞÞÞ;

ŷ
ðkþ1Þ

Z ðtÞ ¼ arg max
yZ
ðLðkþ1Þ

Z ðyZjoðtÞÞÞ:

3. Stop criteria. Let εX, εZ, and εpWI
be some fixed values that control the accuracy of the iter-

ative calculations. Repeat Step 2 until the sequence of values of the estimated parameters
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converges:

jŷ
ðkþ1Þ

X ðtÞ � ŷðkÞX ðtÞj � εX;

jŷ
ðkþ1Þ

Z ðtÞ � ŷðkÞZ ðtÞj � εZ;

jp̂ðkþ1Þ

WI ðtÞ � p̂ðkÞWIðtÞj � εpWI
:

The final estimates are p̂EM
WI ðtÞ ¼ p̂ðkþ1Þ

WI ðtÞ; ŷEM
X ðtÞ ¼ ŷ

ðkþ1Þ

X ðtÞ, and ŷEM
Z ðtÞ ¼ ŷ

ðkþ1Þ

Z ðtÞ, and

then F̂EM
X;t ðxÞ ¼ FŷEM

X ðtÞ
ðxÞ and F̂EM

Z;t ðzÞ ¼ FŷEM
Z ðtÞ
ðzÞ.

EMNP method. Different estimators considered for the initialization step (k = 0) result in

a different method for the final estimators of the parameters θX and θZ and the probability of

admission to ICU from ward, pWI. The EMNP method combines both the EM algorithm and

the nonparametric approach. This integrated approach is intended to consider the flexibility of

the NP method and the efficiency of the EM algorithm. Specifically, the probability pWI is ini-

tially estimated using the NP estimator in Eq (2), that is, p̂ð0ÞWIðtÞ ¼ p̂NP
WIðtÞ. The initial values for

the parameters θX and θZ are those in Eqs (4)–(5). The other steps in the EM method remain

unchanged. Finally, the EMNP estimators are p̂EMNP
WI ðtÞ; ŷ

EMNP
X ðtÞ, and ŷEMNP

Z ðtÞ, given by the

EM algorithm, and then F̂EMNP
X;t ðxÞ ¼ FŷEMNP

X ðtÞðxÞ and F̂EMNP
Z;t ðzÞ ¼ FŷEMNP

Z ðtÞðzÞ.

2.4. Naïve alternative methods

We present three naïve alternative methods for estimating the distribution parameters θX and

θZ and the probability pWI. They do not consider censored observations, that is, patients in

HW set by time t. Although it results, at the beginning of the pandemic wave, in possibly

biased estimates, this negative effect tends to fade away at advanced stages of the pandemic, as

the number of censored observations decreases. The first method only uses complete informa-

tion (CI method), that is, it only includes those patients admitted to the hospital whose values

of the vector ui(t) are completely known. In an attempt to increase the sample size, we define

two estimation procedures that somehow include the censored observations given by patients

still in hospital ward who have not required ICU yet (HW set). On the one hand, by assuming

that all these patients in HW set will not require ICU in the future (I method). This method is

expected to be biased as long as the assumption is not true. The last estimation procedure (IP

method) reduces estimation bias by considering all the patients with complete information and

some of the patients currently admitted in the hospital ward with unknown entrance to the

ICU.

CI method. Only patients who entered ICU or have been discharged are included in the

estimations, so patients in HW set by time t are dismissed. This results in

p̂CI
WIðtÞ ¼ p̂ð0ÞWIðtÞ; ŷCI

X ðtÞ ¼ ŷ
ð0Þ

X ðtÞ, and ŷCI
Z ðtÞ ¼ ŷ

ð0Þ

Z ðtÞ; the initial estimations for the EM

method in Eqs (3)–(5). So F̂CI
X;tðxÞ ¼ FŷCI

X ðtÞ
ðxÞ and F̂CI

Z;tðzÞ ¼ FŷCI
Z ðtÞ
ðzÞ.

This approach of omitting the observations in HW set raises several issues. First, it leads to

the loss of valuable information. Second, the result of ignoring these censored observations is

an underestimation of the distributions of Z and X, since only the patients who have been

quickly discharged or transferred to ICU will be considered in the procedure. This underesti-

mation, of considerable magnitude at early stages of the pandemic given the large number of

censored observations in the data, will ease over time as the proportion of censored observa-

tions decreases.
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I method. The estimation of parameter θZ for the distribution of Z, the length of stay in

hospital ward until ICU admission, is the same as in the CI method, ŷI
ZðtÞ ¼ ŷ

ð0Þ

Z ðtÞ in Eq (5)

(F̂ I
Z;tðzÞ ¼ FŷI

ZðtÞ
ðzÞ). As for the estimation of θX and the probability pWI, this method seeks to

include the censored information of the patients in HW set. The final event of these inpatients

remains unknown by time t, but most patients still in HW set are expected not to require ICU

in the future. This method oversimplifies the model by assuming that none of these patients in

HW set will be admitted to the ICU. Therefore, the probability pWI is estimated empirically at

time t as follows:

p̂I
WI tð Þ ¼

PnðtÞ
i¼1
diðtÞ

nðtÞ
ð6Þ

Regarding the estimation of parameter θX for the distribution of the length of stay in hospi-

tal ward until discharge, X, all the observed LoS of the patients in HW set ((δi(t), νi(t)) = (0,0))

by time t, ti ¼ t � tHAi; are considered as censored observations of variable X:

ŷI
XðtÞ ¼ arg max

yX
LI

XðyXjoðtÞÞ; where LI
XðyXjoðtÞÞ

¼
YnðtÞ

i¼1

fyX ðtiÞ
niðtÞ
YnðtÞ

i¼1

ð1 � FyX ðtiÞÞ
ð1� diðtÞÞð1� niðtÞÞ ð7Þ

Therefore, F̂ I
X;tðxÞ ¼ Fŷ I

XðtÞ
ðxÞ. Note that these I estimators are biased. In fact, both the prob-

ability of being transferred to the ICU from ward (pWI) and the time until transfer to the ICU

(Z) are underestimated. Observe that some patients in HW set will require admission to the

ICU so their observed LoS ti, used in Eq (7) as censored observations of X, are actually cen-

sored values for variable Z. This yields biased estimates of the parameters θX and θZ. In turn,

p̂I
WIðtÞ underestimates the probability of admission to ICU from ward as only patients in ICU

set are included in the numerator of Eq (6), while some patients in the HW set will be admitted

to ICU as well. Nonetheless, the estimations will improve as pandemic advances, and ICU and

DIS sets grow in size with respect to HW set.

IP method. In order to reduce the bias in the I method resulting from dismissing the

patients in HW set, a subset of the hospitalized inpatients is included in the estimation proce-

dure, those who are more likely to have complete information in their pathways in the short

term. This approach does not consider the patients admitted to HW, ICU and DIS sets in the

last d days, where d is calculated as the percentile P of the probability distribution of Z, esti-

mated at time t considering all patients in ICU set:

dðtÞ ¼ F� 1
ŷCI
Z ðtÞ
ðPÞ: ð8Þ

The estimation procedure resembles the I method where the datasets HW, ICU and DIS are

now replaced with HWd ¼ HW fijt � tHAi < dðtÞg; ICUd ¼ ICU fijt � tHAi < dðtÞg, and

DISd ¼ DIS fijt � tHAi < dðtÞg. The bias is reduced, because the HWd set now includes

patients with a small probability of being transferred to ICU, at the expense of estimating with

fewer observations in ICUd and DISd sets.

3. Simulation studies

Two simulation studies have been carried out to compare the estimation methods presented in

Section 2, and to determine their impact on the predictions of bed occupancy obtained using

those estimated distributions and probabilities as simulation inputs. In particular, the goal is to
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test the performance of the proposed estimation methods in Subsection 2.2 (NP method) and

Subsection 2.3 (EM method and EMNP method), and their comparison with the methods in

Subsection 2.4 (CI method, I method and IP method) that dismiss incomplete information. In

this section, we describe the simulation model and the experimental design that have been car-

ried out to assess the accuracy of both the estimation of pWI and FZ(z) and the prediction of

hospital resources needed to care for all patients, specifically the number of ICU beds required.

The results related to the estimation accuracy are shown in Subsection 4.1 and the impact on

the precision of the predictions, in Subsection 4.2. All methods and simulations have been pro-

grammed using Python 3.7.

This section is organised as follows. We first present the mathematical modelling of hospital

dynamics using a DES model in Subsection 3.1. Subsection 3.2 describes how the DES model

simulates the patient arrival process in order to generate different pandemic waves. In Subsec-

tion 3.3, we explain how to simulate the pathway and LoS for each patient at the hospital.

Moreover, in Subsection 3.4, we present how to generate the remaining pathway and LoS of

patients that are admitted in the hospital at specific time t and for those who will arrive in the

future. The latter allows different scenarios to be projected into the future based on the hospi-

tal’s situation at a specific point in time during the pandemic.

3.1. The discrete event simulation model

A DES model is developed to assess the accuracy of the estimators. DES models create entities

that are transformed by several processes until they exit the modelling system. In our simula-

tion model, the entities are the COVID-19 patients and the processes are the health care

received in the hospital ward and/or ICU. In this way, the DES model is able to reproduce the

hospital admission of patients during a pandemic wave and the trajectory in the hospital for

each patient. The simulation model represents patient flow through the different hospitaliza-

tion routes; that is, the area enclosed by dashed lines in Fig 2.

The system is described by a set of state variables, which provide at any time a complete

representation of the simulated system, and the set of events, which modify the value of the

state variables. We consider two global state variables, number of beds occupied by COVID-19

patients in hospital wards and the ICU, and two patient-dependent state variables, the admis-

sion place at time t (ward without a previous stay in ICU, ICU and ward after transferral from

ICU) and the time at which patient enters the current admission place.

The events that modify the state variables are the following five: a new patient admission to

the hospital, a patient transfer from ward to ICU, a patient discharge in ward, a patient dis-

charge in ward after ICU and a patient discharge in ICU. Fig 4 outlines the DES model of the

health system. A complete description of the DES model, and how each state variable is

updated as each type of event occurs is presented in [12].

3.2. Patient arrival process

Let TEnd be the simulation horizon time for the pandemic wave, and G(t) the cumulated num-

ber of hospitalized patients at time t for t = 1,. . .,TEnd. In this study, G(t) is simulated using

Population Growth (PG) models. This methodology provides methods for modelling the num-

ber of cumulative positive cases, hospitalizations, and other pandemic variables. Some exam-

ples of PG models that have been found in the literature are the Gompertz [45], the Richards

[46], the Stannard [47], and the logistic model [48]. Gompertz model shows a better fit to data

of daily COVID-19 new cases as well as better predictive capacity than other PG models [12].

Therefore, the arrival of patients at the hospital are generated using the Gompertz model, via

the equation proposed by Zwietering et al. [49] who rewrote the original one [45] to ease the
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biological interpretation of its parameter. The arrival curve, G(t), is generated with the follow-

ing Gompertz model:

GðtÞ ¼ 5000expð� expð2:0743 � 0:0678tÞÞ ð9Þ

The selected curve, G(t), in Eq (9) models a cumulative number of 5,000 patients and a

duration of 60 days, where duration is defined as the time elapsed from the admission of 5% to

95% of the total number of patients (see Fig 5).

From the Gompertz-type hospitalization curve the expected number of daily hospitaliza-

tions is calculated as λ(t) = G(t)−G(t−1). The number of daily hospitalizations at day t, H(t),
for t = 1,. . .,TEnd, is simulated from a Poisson distribution with mean λ(t):

P HðtÞ ¼ kð Þ ¼
e� lðtÞlðtÞk

k!
; t ¼ 1; . . . ;TEnd ð10Þ

Therefore, in each of the simulated scenarios, patient arrival pattern is different.

3.3. Flow of patients in the hospital

For each patient arriving at the hospital, a pathway is simulated reproducing the patient path-

way outlined in Fig 1. Each patient can be admitted to the hospital ward or directly to the ICU.

The probability of direct admission to ICU upon arrival is pI = 0.028. Besides, those patients

Fig 4. Discrete event simulation model. Flow diagram of the main components of the DES model highlighting the

five events that modify the two types of state variables.

https://doi.org/10.1371/journal.pone.0282331.g004
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admitted to the wards may worsen their health status and require the transfer to the ICU. The

probability of a patient initially admitted to a ward requiring transfer to ICU was set pWI =

0.088. From both hospital ward and ICU, patients can die, so they abandon the system, or they

can be discharged after improving their health status. In the last situation, patients in the ICU

would be transferred to the hospital ward until they get over the disease. The probability of a

patient being transferred from ICU to hospital ward is pIW = 0.816.

In the simulation experiments, probability distributions for the LoS are assumed to be Wei-

bull W(α, β), where α is the scale parameter and β is the shape parameter, and time is measured

in days: LoS in the hospital ward of a patient not needing ICU, variable X, is distributed as W
(10.2, 1.25), the time spent by a patient in the hospital ward before transfer to the ICU, variable

Z, is distributed as W(4.1, 1.15). In addition, the LoS of a patient in the ICU, both variables Y
and D, are distributed as W(17.3, 1.1). Finally, the LoS of a patient in hospital ward after being

discharged from ICU, variable Q, is distributed as W(11.85, 1.4).

All these selected values are estimations based on real patients during a COVID-19 pan-

demic wave [12].

3.4. Simulating future hospital patient-flow

At a specific day of a pandemic wave, prediction of the resources needed for patients care,

such as ICU beds, might be of interest. In this study, the simulated pandemic wave is referred

to as Reference Scenario (RS), and the specific day is called Simulation Starting Point (SSP).

For prediction of bed occupancy at time t, the future pathways for the inpatients must be

simulated by estimating all the distributions and probabilities involved in the patient’s pathway

(see Fig 2) with the information available up to that specific day t.
Accurate prediction of ICU bed occupancy relies on the efficient estimates of all the proba-

bilities and distributions in patients flow (see Fig 2). The goal of this study is limited to assess

the influence of the estimation of pWI and the distribution of variable Z in predicting ICU bed

occupancy. For this reason, and in order to avoid extra variability into the simulation study so

the differences in the estimations of bed occupancy and prediction capability are only assigned

to the differences in the estimation of pWI and the distribution of variable Z, patients pathways

are simulated using the estimated values of pWI and the distribution of variable Z using the

methods of Section 2, the other probabilities and distributions involved in patients pathways

(see Fig 2) are considered as known, and given by the models in Subsection 3.3.

Fig 5. Gompertz curve generated to model a pandemic scenario. This scenario has 5,000 cumulative hospitalizations

and 60 days of duration. The left-hand side shows cumulative hospitalizations for the selected scenario while the right-

hand side shows daily ones, that is, the derivative curve.

https://doi.org/10.1371/journal.pone.0282331.g005
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Future pathways must be simulated for the three possible types of patients: patients in hos-

pital ward at SSP day, patients currently admitted to the ICU at SSP day, and future patients

admitted in the coming days.

A hospital pathway is simulated for each patient i currently in hospital ward for ti days as

follows. The patient is admitted to the ICU with probability

p̂WI;i tð Þ ¼
ð1 � F̂Z;tðtiÞÞp̂WIðtÞ

ð1 � F̂Z;tðtiÞÞp̂WIðtÞ þ ð1 � FXðtiÞÞð1 � p̂WIðtÞÞ
;

where p̂WIðtÞ and the function F̂Z;tðzÞ are the estimations computed with the methods in Sec-

tion 2. If the patient requires ICU admission, then the simulated time in hospital ward left to

ICU admission is zi−ti, where zi is generated from the conditional distribution Z|Z>ti, that is,

ðF̂Z;tðziÞ � F̂Z;tðtiÞÞ=ð1 � F̂Z;tðtiÞÞ. If the patient i does not require ICU care, the hospital dis-

charge will occur after a time xi−ti, where xi is sampled from the conditional distribution X|

X>ti, that is, (FX(xi)−FX(ti))/(1−FX(ti)).
The pathway of patients in ICU at SSP day is generated as in Subsection 3.3. For the simula-

tion of future inpatients, the arrival curve G(t) must be previously estimated. In this study the

patient arrival process is the same as the one used for the simulated pandemic wave RS and

given by Eqs (9) and (10), to avoid introducing more variability into the simulation study.

Once the future patient arrives, the pathway is simulated as in Subsection 3.3 using the models

therein, except pWI and the probability distribution of variable Z which are estimated with the

methods in Section 2.

This simulation can be performed using different days as SSP. Subsection 4.2 shows the

results obtained with four different days. It can be observed how the predictions change as

more data is available for the estimations.

4. Results

This section presents the results obtained in the two simulation studies. First, in Subsection

4.1, we show the accuracy of the estimators as the pandemic progresses. Second, in Subsection

4.2, we include the impact of the estimates of pWI and the distribution of variable Z on the sim-

ulation output. Specifically, we study the accuracy obtained in predicting the number of occu-

pied ICU beds during a generated pandemic scenario.

In the use of the IP method, a value for the P percentile is needed in the computation of d in

Eq (8). The two following percentiles have been chosen for the estimations: 50th percentile

(IQ2 method) and 75th percentile (IQ3 method). In the use of the EM based procedures in Sub-

section 2.3 (EM method and EMNP method), we set εX ¼ εZ ¼ εpWI
¼ 0:01 as stop criteria of

the EM algorithm.

4.1. Estimation accuracy

To assess the accuracy of the estimations we generated 100 different pandemic waves, with

TEnd = 150, according to Subsection 3.2 and Subsection 3.3. In each scenario and for each day

t = 1,. . .,80, we estimated the probability of admission to ICU from hospital ward pWI, and the

distribution of variable Z, time to transfer to ICU from wards, with the information provided

by the corresponding n(t) patients during the first 80 days. In order to compare the methods

to estimate FZ(z), we computed m̂ZðtÞ the mean of the estimated distributions F̂Z;tðzÞ at time t
and compared it to the real mean, μZ = E(Z) = 3.9 days. Besides, we approximated the inte-

grated squared error (ISE) between the estimated curve F̂Z;tðzÞ and the true distribution func-

tion FZ(z).
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Fig 6 shows the evolution over time of the estimation of pWI, the estimated mean value of

variable Z and the ISE of the estimators of FZ(z). The results show the median value of the 100

scenarios for each day. All methods provide results that converge to the true value of the esti-

mated parameter (red color). Note that the sample size n(t) increases with t, so this conver-

gence shows the consistency of the methods. The top graph in Fig 7 shows the convergence of

the ISE as the sample size increases. The bottom graph in Fig 7 displays the computational

effort to calculate the EMNP estimator, which moderately increases with the sample size. The

computer used in the experiment was an Intel (R) Xeon (R) CPU E5-1630 v4 3.70GHz with

64.0 GB RAM. Even for large sample sizes, such as 5000, it takes about three minutes to get the

estimation, which is affordable because it only needs to be done once a day, in order to predict

the bed occupancy level.

Both the EMNP method and the EM method have a fast convergence in all simulated cases,

which turns out to be relevant when the simulation model is used as a prediction tool for the

resources needed in the future, as we expose in the next subsection. The NP method provides

the third best results, improving alternative naïve methods. Nonetheless, the bias of these latter

estimators, due to information from patients in hospital ward is dismissed, tends to fade away

at advanced stages of the pandemic, as the proportion of these censored observations

decreases. It should also be highlighted that the estimator IQ3 outperforms the estimator IQ2.

4.2. Impact on the simulation output. Bed occupancy prediction accuracy

Simulation is used to predict the future bed occupancy level during the course of a fixed gener-

ated pandemic wave (RS), when the pandemic is on the 15th, 20th, 25th, and 30th days (SSP).

For each SSP, we generated 500 future courses of the pandemic by simulating future hospital

patient-flows, as described in Subsection 3.4. The predictions of ICU beds demand are

obtained by the statistical analysis of the output of these 500 runs. The corresponding bed

occupancy forecasts for each method are compared with those obtained from 500 future devel-

opments of the pandemic generated by simulating patient pathways based on the true values of

the parameters and probabilities in Subsection 3.3.

Fig 8 shows twenty-eight predictions of ICU bed occupancy considering all methods from

4 different days (15th, 20th, 25th, and 30th). Note that these days are quite far away from the

peak occupancy (45th day), with expected ICU bed occupancy of 176 beds and 90% centred

prediction interval (154,198). The green line in each graph represents the evolution of the sim-

ulated pandemic up to the SSP (black dot). For each method, the 5th percentile (P5) and the

95th percentile (P95) of the predicted ICU occupancy levels are plotted using orange lines,

whereas the blue lines represent the 5th and 95th percentiles of the predictions when pandemic

is simulated using the real parameter values (denoted by the letter R). As the pandemic pro-

gresses, the predictions of ICU bed occupancy of all methods approach the real occupancy

rate. However, the EMNP method is the closest one for all the four different estimating days.

Based on the results, we can also conclude that the EM method performs almost as well as the

EMNP method. Besides, the NP method again improves the naïve methods that do not use all

available information, and the IQ3 method has a better behavior than the IQ2 method. Finally,

the IC method clearly overestimates ICU bed occupancy while I method underestimates ICU

bed occupancy for all the SSP times considered.

In addition, we have also studied the errors in the predictions of the maximum number of

occupied ICU beds and the day on which the maximum occurs. Fig 9 shows boxplots repre-

senting the estimation errors between the predictions when simulating with each estimation

method and the predictions when simulating using the actual values of the parameters, calcu-

lated for each of the 500 simulations at different times (15th, 20th, 25th, and 30th day). Positive
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differences indicate an overestimation while negative differences indicate an underestimation.

When predicting the maximum number of occupied ICU beds, we can observe that the predic-

tions improve as the prediction day advances, and the EM method and the EMNP method out-

perform all other approaches, with average errors of 10.184 and 11.574 beds respectively when

Fig 6. The evolution over time of the estimations using different methods. Median of the estimations of the

probability pWI (top), median of the estimated mean times in hospital ward until admission to ICU, μZ (center), and

ISE of the estimators of the distribution function of variable Z (bottom) over time t with all the methods, computed

with 100 simulated pandemics. The real values of pWI and μZ are included for reference (red line). The horizontal axes

represent the time (days) during the pandemic.

https://doi.org/10.1371/journal.pone.0282331.g006

Fig 7. Illustration of convergence in experiments. Relationship between the error and the sample size with which the

parameter estimation is done (top), and CPU time (in seconds) needed to obtain parameter estimations using the

EMNP method as a function of the sample size (bottom).

https://doi.org/10.1371/journal.pone.0282331.g007
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estimating the 15th day, and 9.204 and 8.628 beds when estimating the 30th day. However, the

results for the estimation of the day of maximum occupancy are very similar for all methods

and all the days considered.

5. Discussion

In this work, we consider a DES model to forecast ICU bed demand via simulation of inpa-

tient’s future pathways. The simulation of patients’ flow is carried out when all the distribu-

tions and branching probabilities in the patients’ pathways are estimated. We introduced

different methods to estimate efficiently these probabilities and lengths of stay, and showed

how to apply them to estimate the probability that an inpatient in hospital ward will be admit-

ted to ICU, and the distribution of the time in hospital ward until admission to ICU. The pro-

posed methods can also be applied to estimate all other distributions and probabilities that

Fig 8. Twenty-eight predictions of ICU bed occupancy considering all methods from 4 different days. Prediction

(5th and 95th percentiles) of ICU bed occupancy on the 15th, 20th, 25th, and 30th days of the pandemic with all the

methods compared to prediction (5th and 95th percentiles) with actual parameters, denoted with letter R.

https://doi.org/10.1371/journal.pone.0282331.g008
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define the pathway of a patient, such as the probability of dying in ICU or the time in ICU

until discharge. The great advantage of the proposed methods is that the estimation does not

rely on published data across heterogeneous populations or health system’s historical data, but

on the real patients admitted to the hospital during the period when prediction is of interest. If

information is updated frequently, then hospitalization and bed demand forecasts will be

more accurate. The second advantage is that partial information provided by inpatients still in

hospital at the time of estimation is included in the estimation procedures, which increases

efficiency and reliability of the results. Note that the main challenge of using up-to-date

patient-level information is that data provided by patients still in hospital ward is censored, as

the future path of these patients remains unknown. Methods that take advantage of the partial

information associated to these patients using mixture cure models (MCM) have been shown

to be more efficient that naïve methods that do not use survival analysis techniques.

The EM and EMNP estimators can be applied in other contexts, for example, to estimate

the parameters of stochastic compartmental models used to represent the spread of a pan-

demic [16, 18, 50]. Some compartmental models extend the original SIR model introducing

more compartments such as Exposed, Quarantined, Hospitalized, etc. [50, 51]. The patient

pathway through these compartments can be similar to those represented in Fig 3, and then

susceptible to applying the estimators presented in this research. For example, an Infected

patient can transit to the Recovery compartment or to the Hospital compartment [18]. Our

estimators can estimate the probability distributions of both time until recovery and time to

hospital admission, and transition probabilities, by using up-to-date data, which allows for

model calibration at the first stages of the pandemic when the uncertainty is the greatest.

Other context of possible application of both estimators is reliability, where data coming from

both laboratory tests and field observation are usually censored. Maximum-likelihood-based

Fig 9. Estimation errors between the predictions when simulating with each estimation method and with actual

values. Analysis of the maximum bed occupancy in the ICU, and the day on which the maximum occurs. For days

15th, 20th, 25th, and 30th, the estimation errors are shown for each of the 500 simulations between the values obtained

with each method and the predictions with the real parameters.

https://doi.org/10.1371/journal.pone.0282331.g009
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estimators have been proposed in the literature to deal with these data, see for example [52,

53], which assume a type-II censored scheme, which differs from ours.

The simulation results for the different scenarios show that the NP method, that does not

assume any parametric form for the distribution of the times, not only provides more flexibil-

ity to the model but it converges faster than the parametric approaches. Note that fast conver-

gence is relevant to have reliable estimates at early stages of the pandemic, so the simulation

model could be used as a prediction tool for the hospital bed occupancy in the near future. The

other methodology that gives very good results is the proposed EMNP method, which com-

bines the nonparametric approaches based on the MCM of the aforementioned NP method,

and assumes a parametric form for the distribution of the lengths of stay, with parameters esti-

mated using the EM algorithm. The behavior of this new EMNP method has been assessed in a

simulation study. As expected, the EMNP method outperforms the other approaches, as the

distribution of the simulated data fulfils the parametric assumption in the EMNP method.

It is important to note that a variety of limitations exists for the proposed methods. One

limitation concerns the simulated pathway for the patients, specifically, the number of admis-

sions to ICU. In the simulated model, a patient is assumed to require ICU once at most.

Although this is the most common case for inpatients in a hospital, it might not be realistic for

all the subjects. The model can be extended to include more than one admission to ICU. How-

ever, increasing the possible number of times in ICU would make the model to become con-

siderably complex.

A second limitation is that the proposed methods do not consider level-patient characteris-

tics like infection severity, age, comorbidity status and diagnostic testing results. All the meth-

ods can be extended to incorporate these characteristics in the estimations as covariates. If

only one covariate is to be included, the NP method and the EMNP method can be extended

following Safari et al. [30, 33]. When there are many covariates, the sparseness of data gives

rise to the well known “curse of dimensionality”, which implies that massive amounts of data

will be required for accurate estimate as the number of covariates increases. Different

approaches are available in the literature, which enable handling multiple covariates when esti-

mating nonparametrically under censoring [54–56]. Alternative approaches to extend the NP
method and the EMNP method to multiple covariates are the proportional hazards model

[35–39] or the accelerated failure time model [40–44]. However, these extensions are beyond

the scope of this study and considering these approaches is left for future work.

The efficiency of the proposed methods depends strongly on the quality of the patient-level

information provided by the hospital electronic health record systems. The information should

be uploaded frequently into the system, and the model updated accordingly. Notwithstanding,

the proposed methods are more dynamic and adaptive than any other approach based on his-

torical data. They are flexible and can be updated when new data are available.

In conclusion, the proposed NP method and EMNP method provide a useful, efficient, adap-

tive and easily applicable methodology for estimating the distribution times and branching

probabilities in inpatients’ pathways. These methods achieve good performance without rely-

ing on comparable historical data that may not be available or may not be realistic. In addition,

they are flexible and can be further extended to accommodate multiple patient-level character-

istics. The provided estimates can be used subsequently in DES for modelling the demand for

critical care beds. As a result, the proposed methods are useful tools to forecast bed occupancy,

and we hope they are helpful to improve making decisions in hospital management.
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Investigation: Daniel Garcia-Vicuña, Ana López-Cheda.
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