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Resumen

El cambio de tarea en robótica evolutiva es un problema en cual los robots deben aprender a resolver múltiples tareas indepen-
dientes y a cambiar entre ellas en el momento adecuado. Cuando los robots son controlados por redes neuronales artificiales, el
cambio de tarea aumenta notablemente en complejidad debido a que el mismo modelo neuronal debe codificar multiples compor-
tamientos. En este artı́culo se propone un experimento en el que robots controlados por redes neuronales recurrentes en tiempo
continuo deben resolver un problema de cambio de tarea. Los parámetros y topologı́a del controlador neuronal son evolucionados
mediante una combinación del algoritmo evolutivo NeuroEvolution of Augmenting Topologies (NEAT) y aprendizaje Hebbiano.
En el experimento propuesto, el grupo de robots debe resolver secuencialmente las tareas de (i) seguir lo más cerca posible una
fuente de luz móvil y (ii) transportar pequeños objetos y depositarlos en una zona de almacenamiento común. El orden de ejecución
de las tareas es aleatorio. Los resultados muestran que los robots son capaces de resolver correctamente las tareas propuestas y de
cambiar entre ellas en el instante de tiempo adecuado.

Palabras clave: Algoritmos evolutivos, Robótica inteligente, Redes neuronales, Cambio de tarea, Sistemas multi-agente,
Aprendizaje Hebbiano

Evolution of robot controllers for solving multiple tasks sequentially

Abstract

Task switching in evolutionary robotics is a problem in which robots have to learn to solve multiple independent tasks and
switch among them at the correct timing. When the robots are controlled by means of an evolved Artificial Neural Network
(ANN), the task switching is utterly complexified as the same neural model must encode multiple behaviors. In this paper, we
addressed a task switching experiment using a group of homogeneous robots that are controlled by Continuous-Time Recurrent
Neural Networks (CTRNN). The CTRNN parameters and topology are evolved using a combination of the NeuroEvolution of
Augmenting Topologies (NEAT) algorithm and Hebbian learning rules. In the proposed experiment, the group of robots is evolved
with the aim of solving sequentially the tasks of (i) following as closely as possible a mobile light source and (ii) transporting small
objects to a common nest area. The order of the tasks is determined randomly. The results showed that the robots can successfully
solve the proposed tasks and switch between them at the correct timing.

Keywords: Evolutionary algorithms, Intelligent robotics, Neural networks, Task switching, Multi-agent systems, Hebbian learning

1. Introduction

In Evolutionary Robotics (ER) (Nolfi and Floreano, 2000),
the behavior of robots, typically controlled by an Artificial Neu-
ral Network (ANN), is determined by an evolutionary algo-
rithm. The artificial evolution optimizes the parameters of the

neural controller of the robot with the aim of solving a given
problem or task. A highly complex and interesting problem
to be addressed using ER is the solving of multiple indepen-
dent tasks sequentially. This problem, usually referred as task
switching or switch of labor, is specially challenging when neu-
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ral controllers are fine-tuned using an evolutionary algorithm.
In these cases, the evolved ANN must encode in its parameters
not only multiple independent behaviors corresponding to the
different tasks, but also the ability to switch its neural regimes
to address the requested task.

Several authors have addressed the problem of task switch-
ing from the perspective of evolutionary computation and
ANNs. In (Capi, 2007), the author evolves a multilayer per-
ceptron to learn to correctly switch among three different tasks.
The proposed tasks are to (i) closely follow a target robot, (ii)
to collect objects and (iii) to explore the environment. The evo-
lution is accomplished using multiobjective evolutionary com-
putation, so that the sought outcomes of the evolution are no
longer point solutions but a curve of optimal solutions. This
curve is called Pareto front and its elements provide the opti-
mum balance in maximizing the fitness of all the tasks simulta-
neously. A similar approach is considered in (Capi et al., 2008),
where the tasks to be commuted by the robot are approaching
to a sound source and reaching several lights distributed along
the environment. The authors of (D’Ambrosio et al., 2011)
study the task switching problem in a multi-agent patrol and
return task. The agents are evolved using an extension of multi-
agent HyperNEAT, so that they can learn multiple behaviors
and switch among them depending on the experiment require-
ments. Tuci et al. address in (Tuci et al., 2013) a task switching
problem in a foraging experimental setup. The members of a
team of 5 robots have to learn to distribute roles of patrolling
the nest area and exploring and seeking food outside the nest,
and perform the task switching at the precise timing. They show
that CTRNN controllers evolved using an EA can successfully
accomplish the experiment. In (Garattoni and Birattari, 2018),
a new task sequencing strategy called TS-Swarm is proposed
in the field of swarm robotics. TS-Swarm is devoted to the on-
line discovery and execution of tasks in the correct order, which
is initially unknown. The swarm system combines both purely
reactive and deliberative behaviors.

In this paper, we evolved the neural controllers of a group
of robots aiming at solving two different and independent tasks
sequentially. The robots not only have to learn to solve both
tasks but also to switch between them at the correct timing
(task switching). In order to address this problem, we used
Continuous-Time Recurrent Neural Networks (CTRNN) as the
robot controller. A combination of evolution and learning is
used in order to find the best performing CTRNN parame-
ters for the task switching problem. Artificial evolution is
accomplished by means of the NeuroEvolution of Augment-
ing Topologies (NEAT) algorithm (Stanley and Miikkulainen,
2002). NEAT not only evolves the parameters of the ANN but
also searches the most suitable network topology. This fea-
ture is specially important in task switching and multi-tasking
because the same neural architecture must simultaneously en-
code multiple behaviors for the requested tasks. Additionally,
Hebbian learning is also used to allow the lifetime learning of
agents, specifically their adaptation to the task switching re-
quirements. In order to provide statistically significant results,
we collected a sample of 50 independent simulations of the best
performing individual of the NEAT population. In the light of
the results, we verified that it is possible to evolve neural con-
trollers to learn to solve two utterly different tasks simultane-

ously and switch between them at the correct timing.
The document is structured as follows. Sec. 2 details the

task switching experiment and its constituent tasks. It also de-
fines the fitness function to guide artificial evolution towards a
suitable solution and specifies the neural controller and the opti-
mization setup. Sec. 3 exposes the results of the task switching
problem. Finally, Sec. 4 concludes the paper.

2. Methodology

2.1. The Robots and the Tasks
A group of robots is placed within a simulated 2 m × 2 m

squared arena environment. The robots are simulated as min-
imal two-wheeled mobile robots with a set of simple sensors
and actuators. The robots have cylindrical shape with about
55mm of height and a base radius of 70mm (similar to the e-
puck robot (Mondada et al., 2009)). Hereafter, we denote the
set of robots or agents as R, so that each robot r ∈ R has a po-
sition xr and a orientation θr within the arena. The arena also
contains light sources ℓ ∈ L of different colors and position xℓ,
that will be used to formulate the experiment. The robots can
sense the intensity of the light sources and the color through a
light sensor (LS ) unit. Additionally, they are equipped with a
distance sensor (DS ) that allows the detection of near obstacles
(robots, cubes or arena walls) through a set of IR emitters and
detectors positioned along the robot perimeter. The range of the
light sensor is large enough to perceive the light sources from
any coordinates in the arena, while the range of the distance
sensor is about 80 cm. Both DS and LS are sectorized sensors,
meaning that the robot can know the intensity of the sensed sig-
nal from different orientations. In this paper, we use sensors
with 4 sectors positioned at θr, θr + π/2, θr + π and θr + 3π/2.

In this paper, we propose a task switching experiment in
which the robots of the group will have to solve two different
and independent tasks sequentially. The simulations are split
into two time windows of the same length, so that all the agents
in the group have to address the same task requested in the cur-
rent time window. Tasks are solved sequentially and, desirably,
all agents have to solve only the corresponding task at each time
instant. Furthermore, the order of the tasks is randomly selected
in each simulation, so that the robots do not have a priori knowl-
edge about the correct task to be faced.

The specific tasks that compose the task switching experi-
ment are Task A and Task B:

- Task A: the robots have to follow as closely as possible a
mobile red light source. The light source emits red light
omnidirectionally so that it can be sensed by the robots’
red light sensor. The trajectory of the light source is com-
posed of two phases. Firstly, the initial position of the red
light source at the beginning of the simulation is always
the center of the arena. Thereafter, the light source de-
scribes a spiral trajectory so that its distance to the origin
of coordinates is exponentially increased. Once a dis-
tance of 1.5m from the center of the arena is reached,
the red light movement is settled to a simple circle orbit
around the central coordinates (0, 0).

- Task B: is a transportation task in which robots have to
collect small blue cubes and transport them to a common
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nest area. The nest area is a circular grey ground area
with a yellow light source above. The light source has a
coverage range large enough so that robots can sense it
from any point in the arena. This light acts as a beacon,
notifying the agents the location of the nest. Both the nest
ground area and the yellow light source are static. Three
different grey ground areas are placed in the arena at fixed
positions, albeit there is only one yellow light source ran-
domly situated above one of them. Consequently, at each
simulation trial, the correct nest area where cubes have
to be transported, is the ground area underneath the yel-
low light source. The blue cubes can be perceived by the
robots by means of a binary reading from a color sensor
that detects whether the amount of blue color exceeds a
fixed threshold.

Figure 1: First frame of the Experiment 1 arena with a zenithal view.

Fig. 1 shows a zenithal view of the first time instant of the
simulation. In this snapshot it can be observed three mobile
robots in green, three blue cubes, three grey ground areas, and
the yellow and red light sources. The green and blue rectangles
respectively sketch the area where robots and blue cubes are
randomly initialized.

2.2. The Agent’s Controller

We use an Artificial Neural Network (ANN) as the math-
ematical model to control the behavior of the agents. Specifi-
cally, the ANN model is the Continuous-Time Recurrent Neural
Network (CTRNN) (Beer and Gallagher, 1992). We define the
neuron dynamics as in Eqs. 1 and 2.

τk
∂vk(t)
∂t
= −vk(t) + Ik(t)

uk(t) = σ (gk · (vk(t) + βk))

 (1)

Eq. 1 depicts the single neuron’s voltage (vk(t)) and activation
(uk(t)) dynamics. βk, gk and σ(·) are the neuron’s bias, gain and
sigmoid activation, respectively. In addition, τm is the neuron´s
time constant. Ik(t) is the total current fed to the neuron’s soma
which is calculated as in Eq. 2,

Ik(t) =
∑
i∈Nk

wkiui(t) +
∑
j∈Nϕk

wϕk jϕ j(t) (2)

where wki is the weight of the synapse connecting pre-synaptic
neuron i with post-synaptic neuron k and wϕk j denotes the weight
of the synapse between the j-th input and neuron k. ϕ j(t) is the
j-th input signal being fed to the CTRNN and Nk and Nϕk are
the sets respectively comprising the pre-synaptic neurons and
pre-synaptic inputs to neuron k.

Distance Sensor Yellow Light

Sensor

Red Light 

Sensor

Color Sensor Task Ground 

Sensor

Figure 2: Initial CTRNN architecture of the task switching experiment. The
blue circles are the input nodes, the green circles represent the hidden neurons
and the red dots are the motor neurons.

Fig. 2 shows the CTRNN architecture that determines the
robot’s behavior at the beginning of evolution. It is composed
by a single hidden layer with 5 neurons (in green), a set of in-
put layers that receive the readings from the robot sensors (in
blue) and two output layers that define the robot actions (in red).
The input layers correspond to the readings from the IR dis-
tance sensor (ϕDS ), the red light sensor (ϕRLS ), the yellow light
sensor (ϕYLS ), the color sensor to detect the blue cubes (ϕCS ),
the ground sensor to detect ground areas underneath the robot
(ϕGS ), and a binary input that encodes the task to be executed
(ϕTS ). On the contrary, the output layers are respectively de-
voted to the angular velocity control of the motors of the two
wheels of the robots (aJA), and to handle the transportation of
cubes (aGDA). The action aGDA (where GDA stands for Grab
and Drop Actuator) has three categorical actions for either grab-
bing a nearby cube, dropping an already grabbed cube or doing
nothing, each corresponding to one of the three neurons in the
output layer. The categorical action is obtained using the soft-
max activation function.

2.3. Optimization Techniques

The evolutionary algorithm used in the proposed experi-
ments to optimize the topology and parameters of the neural
controller is the NeuroEvolution of Augmenting Topologies
(NEAT) algorithm (Stanley and Miikkulainen, 2002). NEAT
not only evolves the parameters of the neurons and synapses,
but also the topology of the network itself. It starts the evo-
lution process with a CTRNN topology of minimal complex-
ity (see Fig. 2) and adds new neurons and synapses as evolu-
tion marches. In addition to the evolutionary algorithm, the
synapses of the neural networks are also subject to an online
learning process during the evaluation of the NEAT individu-
als. This learning process is accomplished through Hebbian
learning (Hebb, 1949), so that the neural models can dynami-
cally adapt their parameters and learn from experience at run-
time by interacting with the environment. We specifically ap-
ply the generalized ABCD Hebbian learning rule (see for in-
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stance (Risi et al., 2010; Najarro and Risi, 2020)). The learning
rule of a single synapse is specified in Eq. 3,

∂wi j(t)
∂t

= η
(
ai j ui(t) u j(t) + bi j ui(t) + ci j u j(t) + di j

)
(3)

where the ABCD Hebbian rule applies a polynomial transfor-
mation of the pre-synaptic (ui(t)) and post-synaptic (u j(t)) neu-
ron’ activities. ai j is a parameter that represents the importance
of the correlation between neuron activities and bi j and ci j im-
pose how ui and u j individually affect the learning. Addition-
ally, di j is an offset term that defines the weight adaptation un-
der no neuronal activity. Lastly, η is a learning rate that is com-
mon to all the synapses and defines the length of the learning
steps.

It should be mentioned that the learned weights at the end
of the simulations are not transmitted to the next generation.
The learning experience has an indirect impact to the evolution
process in form of the resulting fitness score achieved in the
episode. The parameter search spaces considered by NEAT are
wi j ∈ [−5, 5], βi ∈ [−2, 2], gi ∈ [0.05, 5] and τi ∈ [0.3, 32],
for any neurons i and j. Besides, the parameters of the Hebbian
learning rules are all constrained to the interval [−2, 2].

Table 1 gathers the hyper-parameters used in the evolution
process of NEAT. These values are mainly obtained through
heuristic search, trial and error and also considering the experi-
mental setup proposed by the authors of NEAT in their experi-
ments (see (Stanley and Miikkulainen, 2002)). The population
size is set to 300 and the fitness is evaluated 10 times. Provided
that λi is the size of species i, the selection operator is the tour-
nament selection with nsel genotypes selected in each species as
parents. Besides, the probability of node mutation is lower than
the probability of adding new connections in order to avoid un-
desired fast topology growth. The constants c1 and c2 are fixed
to the same value because the same importance is given to both
excess and disjoint gene differences. The similarity threshold δt
was probably the most challenging hyper-parameter to be ad-
justed. We found δt = 0.3 to be a nice trade-off for the used
CTRNNs. η is the learning rate of the Hebbian learning rules,
which is the same for all the synapses.

Variable Value Description
λ 300 Population size.

NE 10 Number of genotype evaluations.
nsel 0.3 λi Num. of parents selected

for crossover in species i.
pmw 0.1 Probability to modify gene parameters.
pmc 0.15 Probability to add a new connection.
pmn 0.05 Probability to add a new neuron.
σw 0.1 Std. dev. of the gaussian parameter mutation.

c1, c2 1 Importance of the disjoint and excess terms
for the genotype similarity.

c3 0.6 Importance of the parameter’s distance
for the genotype similarity.

δt 0.3 Similarity threshold of speciation.
E 2 Number of elites per species
η 5 · 10−3 Learning rate of the Hebbian learning rules.

Table 1: Best found evolution hyper-parameters for the experiment.

2.4. Fitness Function
The overall fitness function of the task switching experi-

ment is the combination of the fitness scores corresponding to
the two proposed tasks. The combination of these fitness scores,
shown in Eq. 4, is performed through a geometric mean.

Ftot =
√

FA FB (4)

Thus, the total fitness score should be highest when the robots
perform proficiently in both tasks. The values of FA and FB are
the fitness scores corresponding to Task A and Task B, respec-
tively.

Firstly, the light pursuit fitness function, considering a
group of R robots, is defined in Eq. 5,

FA =
1

(TE/2) R

TE/2∑
t=0

∑
r∈R

max
{

1 −
∥xℓ(t) − xr(t))∥2

ρℓ(t)
, 0
}

(5)

where xℓ and xr are the positions of the red light source and the
robots, respectively. The fitness score increases linearly as the
distance from robot r to the red light is diminished. Nonethe-
less, for those robots whose distance to the red light is larger
than a threshold ρℓ, the fitness rise will be zero. With the aim
of smoothing the abrupt discontinuity in the fitness function
during the task switching period, the distance threshold ρℓ is
changed dynamically as the simulation time marches. Specifi-
cally, it starts with a value of 1.5 and is decreased linearly with
time up to a steady value of 0.5, as established in Eq. 6.

ρℓ(t) = max
{
1.5 −

t
100
, 0.5
}

(6)

On the contrary, the fitness function to quantify the perfor-
mance of the robots in the object transportation task is com-
puted as follows. As mentioned in previous sections, the task
of transporting cubes consists in carrying blue cubes distributed
along the arena and gathering them into the correct ground area.
There are three ground areas in total, and the one with a yellow
light above is the nest where the robots have to transport the
cubes. We denote this correct ground area as g, its center coor-
dinates as xg and its radius as ρg. With this notation in mind,
Eq. 7 computes the number of cubes correctly placed in the nest
g at the end of the task at tend = TE/2,

nc = H
(
ρg − ∥xc(tend) − xg∥2

)
(7)

where xc denotes the position of cube c, andH is the Heaviside
function.

Thereafter, using the previously computed value of nc

(cubes correctly collected), the overall fitness function of the
task is displayed in Eq. 8,

FB = max

 1
N2

cubes

∑
c∈C

nc + dc, 0

 (8)

where C is the set of blue cubes in the arena and Ncubes denotes
the total number of cubes. In addition, for every cube c, dc rises
the fitness score when the cubes are moved towards the nest
(see Eq. 9).

dc =


1, if ∥xc(tend) − xg∥2 < ∥xc(0) − xg∥2

0, Otherwise
(9)
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(a) t = 1 (b) t = 500 (c) t = 1500 (d) t = 2000

(e) t = 2500 (f) t = 3000 (g) t = 3500 (h) t = 4000

Figure 3: Frames of a simulation of the task switching experiment under the task order A, B. The switch of tasks is produced at time step 2000. The robots are
represented using green balls with black contour and with a line denoting its heading orientation. The cubes are the blue squares, the red and yellow lights are
painted as circles of the corresponding color and the large grey circles are the ground areas.
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(a) Task Order: A −→ B
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(b) Task Order: B −→ A

Figure 4: Temporal evolution of the Euclidean distance between robots and the
red light source under different orderings of tasks. In (a) Task A is presented
first and in (b) Task B is the starting task. In both cases the switch of task is
produced at time instant 2000, which is represented with a vertical line. The
dark blue curves represent the median value of the distance using the robots
positions of 50 independent simulations. The contours of the blue shadows il-
lustrate the first (lower shadow) and third (upper shadow) quartiles.

Notice that if the cube has been displaced in the direction
opposite to the ground area g, then dc = 0. The motivation be-
hind including the summation of distances

∑
c∈C dc is to smooth

the fitness function and prevent deceptive solutions due to pre-
mature convergence.

3. Results

Fig. 3 collects different frames of a simulation of the task
switching experiment using the best evolved genotype. In the
shown simulation, the robots should start solving Task A (red
light pursuit) and conclude with Task B (cube transportation).
The task switching is requested at simulation time instant 2000.
In Figs. 3a-d, the agents successfully follow the red light source.
In contrast, from Fig. 3e until the ending of the simulation, the
robots ignore the red light source and aim at transporting the
blue cubes to the ground area in the north. The last frame il-
lustrates that all the cubes have been suitably collected in the
correct ground area.

Focusing now on the behavior of the robots when Task A
is addressed, Fig. 4 illustrates the distance between robots and
the targeted red light source, as simulation cycles are elapsed.
In order to build the plots, 50 independent simulation episodes
are collected. The dark blue curve represents the median value,
among the 50 sample simulations, of the Euclidean distance be-
tween the robot and the red light. Additionally, the contours of
the blue shadows depict the first and third quartiles. In Fig. 4a,
the task order is A, B and in Fig. 4b the ordering is B, A. The
switch of tasks is produced at t = 2000 and it is represented as a
vertical line. In these two plots, it can be observed that the Eu-
clidean distance drastically decreases when the requested task is
A. Furthermore, it reaches a steady state of about 0.2 m of dis-
tance to the light, in median value. The distance variation when
robots solve Task A is, generally, remarkably reduced. Regard-
ing the time slots corresponding to Task B, the distance to the
light is larger and has much more variability because robots ig-
nore the red light in order to collect blue cubes. Both plots
expose that, at t = 2000, when the task switching occurs, the
robots almost instantaneously realize that the task to be solved
has changed and they correctly modify their behavior.

In contrast, Fig. 5 depicts the behavior of the robots when
Task B is requested. It shows a scenario with 2 cubes. For
each cube, the figure displays the Euclidean distance between
the cube’s position and the center of the nest where the objects
have to be stored. The correct nest is the one underneath the
yellow light source acting as beacon. The orange and blue dark
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(a) Task Order: A −→ B
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Figure 5: Temporal evolution of the Euclidean distance between each instantiated cube and nest ground area, under different orderings of tasks. In (a) Task A is
presented first and in (b) Task B is the starting task. In both cases the switch of task is produced at time instant 2000, which is represented with a vertical line.
The horizontal red line indicates the radius of the ground area. The dark curves represent the median value of the distance using the cubes and nest positions of 50
independent simulations. The contours of the shadows illustrate the first (lower shadow) and third (upper shadow) quartiles.

curves indicate the temporal evolution of the median value of
the previously mentioned distance using 50 independent simu-
lation trials. The contours of the shadows highlight the tempo-
ral evolution of the first and third quartiles. Fig. 5a shows the
results when the task order is A, B while Fig. 5b depicts the dis-
tance when Task B is firstly requested. The vertical black line
marks the time instant when the task switching is produced and
the horizontal red line indicates the radius of the nest ground
area. Therefore, when the distance between cubes and the nest
is below this threshold, it means that the corresponding cube
has been properly stored inside the correct nest. It can be ap-
preciated that, at the last cycle of the corresponding time slot
(4000 in Fig. 5a and 2000 in Fig. 5b), almost all the cubes are
correctly placed inside of the nest. The rate at which robots
displace the cubes is also remarkably steady along the 50 sim-
ulations. Furthermore, within the time window corresponding
to Task A, the cubes are generally static because the robots are
accomplishing the red light pursuit.

4. Conclusions

In this paper, we addressed a task switching problem in
which robots have to solve multiple tasks sequentially and
switch among them at the correct timing. The agents are con-
trolled by CTRNN models that are optimized using a combi-
nation of artificial evolution and learning. The evolutionary al-
gorithm used is the NeuroEvolution of Augmenting Topologies
(NEAT) and the learning is produced during the simulation run
time using Hebbian learning rules. The specific tasks that have
to be solved by the robots sequentially are the pursuit of a light
source and the transportation of small cubes to a common nest
area. After the optimization process, a statistically significant
sample of multiple independent simulations are collected and
analysed. The results showed that the robots can successfully
solve both of the requested tasks and correctly switch between
them at the correct timing.
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