
Doctoral Thesis

Towards a more sustainable
anomaly detection: new methods

and practical applications

Jorge Meira

2023









Towards a more sustainable

anomaly detection: new methods

and practical applications

Jorge Meira

Doctoral Thesis

January 2023

PhD Advisors:

Amparo Alonso Betanzos, Goreti Marreiros, Verónica Bolón Canedo

PhD Program in Computer Science





Amparo Alonso Betanzos

Catedrática de Universidad

Departamento de Ciencias de la

Computación y Tecnoloǵıas de la

Información

Universidade da Coruña

Goreti Marreiros

Profesora Coordinadora

Departamento de Ingenieŕıa In-

formática

Instituto Superior de Ingenieŕıa

de Oporto

Verónica Bolón Canedo

Profesora Titular de Universidad

Departamento de Ciencias de la

Computación y Tecnoloǵıas de la

Información

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Towards a more sustainable anomaly detection: new meth-

ods and practical applications ” ha sido realizada por D. Jorge Meira bajo nuestra

dirección en el Departamento de Ciencias de la Computación y Tecnoloǵıas de la In-

formación de la Universidade da Coruña, y concluye la Tesis Doctoral que presenta

para optar al grado de Doctor en Ingenieŕıa Informática con la Mención de Doctor

Internacional.

En A Coruña, a 6 de enero de 2023

Fdo.: Amparo Alonso Betanzos

Directora de la Tesis Doctoral

Fdo.: Goreti Marreiros

Directora de la Tesis Doctoral

Fdo.: Verónica Bolón Canedo

Directora de la Tesis Doctoral

Fdo.: Jorge Meira

Autor de la Tesis Doctoral





Acknowledgments

I would like to express my deepest gratitude to my supervisors, Goreti, Amparo,

and Verónica, for their unwavering guidance, professionalism, and encouragement

throughout my doctoral journey. Their invaluable expertise, support, and mentor-

ship have been instrumental in shaping my research and academic progress.

I am also grateful to my colleagues and friends at GECAD, particularly to Diogo,

Lúıs, João and Alda, for their constant support, assistance, and good company.

Their friendship and camaraderie have made my time in the lab an unforgettable

experience.

I would also like to extend my thanks to my colleagues and friends at LIDIA,

especially Laura, Isaac, Carlos, and Eva, for the welcoming and collaborative envi-

ronment they have created during my time in Coruña. Their generosity, knowledge,

and kindness have been a source of inspiration for me.

I am also deeply grateful to my family, especially my parents, and my brothers,

for their unwavering love and support throughout my academic journey. Their

encouragement and belief in me have been a constant source of motivation.

Lastly, I would like to express my deepest love and gratitude to my wife, for her

constant love, support, and encouragement. Her unwavering belief in me has been

my greatest source of strength and inspiration during the most challenging times.

I would also like to express my thanks to any other people, institutions, or

research groups that helped me during the research process, like LIAAD-Inesc-Tec

in Porto, School of Engineering in Manchester, and INL in Braga, professors or

collaborators, for their contributions and support.

This journey would not have been possible without the support and contributions

v



vi

of all of the people I have acknowledged here. I am deeply grateful for their help.

Jorge Meira



Success is not final;

Failure is not fatal:

It is the courage to continue that counts.

Winston Churchill





Resumo

A detección de anomaĺıas é un problema cŕıtico en moitos campos, con aplicacións

que van desde a detección de intrusións ata o diagnóstico de fallos e o mantemento

predictivo. Os métodos non supervisados gañaron unha gran popularidade debido

á súa capacidade para aprender de datos sen requirir exemplos etiquetados. Esta

tese doutoral presenta unha visión xeral completa dos métodos de detección de

anomaĺıas, cun enfoque espećıfico en técnicas non supervisadas e as súas aplicacións

en varios dominios.

A tese tamén enfatiza a sustentabilidade ao presentar métodos que están deseñados

para ser escalables, eficientes e capaces de manexar grandes e complexos conxuntos

de datos. Os mecanismos de afinación automática dos hiperparámetros, combinados

coas propiedades distribúıdas de algúns dos métodos, permiten un procesamento

eficiente e minimizan a necesidade de afinación manual, que pode ser consumidora

de tempo e recursos. Isto resulta nun enfoque máis sustentable e eficiente para a

detección de anomaĺıas, reducindo o risco de sobrecarga de sistemas e minimizando

a pegada de carbono do procesamento implicado.

Estes enfoques apĺıcanse a varios conxuntos de datos e dominios, inclúındo un

conxunto de datos de detección de intrusións de IoT, un fluxo de datos de sistema

ferroviario e as preferencias tuŕısticas baseadas no conxunto de datos de reseñas

de TripAdvisor. O rendemento dos métodos avaĺıase utilizando unha variedade de

métricas, como a precisión de clasificación, precisión, recall, curva ROC, tempo

de procesamento e tests estat́ısticos como o test post hoc Nemmenyi, amosando

resultados de vangarda.

A investigación presentada nesta tese fai unha contribución significativa á de-

tección de anomaĺıas ao introducir novos métodos máis eficientes para lidiar con

ix



x

conxuntos de datos grandes e complexos. Ademais, os métodos son escalables e sos-

tibles, o que son factores importantes para a súa implementación en aplicacións

do mundo real. En xeral, o traballo nesta tese proporciona unha visión detallada

e actualizada dos métodos de detección de anomaĺıas, co enfoque nas técnicas non

supervisadas e as súas aplicacións prácticas, especialmente coas novas tendencias

cara unha intelixencia artificial máis verde.



Resumen

La detección de anomaĺıas es un problema cŕıtico en muchos campos, con apli-

caciones que van desde la detección de intrusiones hasta el diagnóstico de fallos y

el mantenimiento predictivo. Los métodos no supervisados han ganado una gran

popularidad debido a su capacidad para aprender de los datos sin requerir ejemplos

etiquetados. Esta tesis doctoral presenta una visión general completa de los métodos

de detección de anomaĺıas, con un enfoque particular en las técnicas no supervisadas

y sus aplicaciones en una amplia variedad de dominios.

Además, la tesis hace énfasis en la sostenibilidad al presentar métodos que están

diseñados para ser escalables, eficientes y capaces de manejar grandes y comple-

jos conjuntos de datos. Los mecanismos de ajuste automático de hiperparámetros,

combinados con las propiedades distribuidas de algunos de los métodos, permiten

un procesamiento eficiente y minimizan la necesidad de ajuste manual, que puede

ser tardado y requerir recursos intensivos. Esto resulta en un enfoque más sostenible

y eficiente para la detección de anomaĺıas, reduciendo el riesgo de sobrecarga de los

sistemas y minimizando la huella de carbono del procesamiento involucrado.

Estos enfoques se aplican a varios conjuntos de datos y dominios, incluyendo un

conjunto de datos de detección de intrusiones de IoT, un flujo de datos de sistema

ferroviario y las preferencias tuŕısticas basadas en el conjunto de datos de reseñas

de TripAdvisor. El rendimiento de los métodos se evalúa utilizando una variedad de

métricas, como la precisión de clasificación, la precisión, el recall, la curva ROC, el

tiempo de procesamiento y los tests estad́ısticos como el test post hoc Nemmenyi,

mostrando resultados de vanguardia.

La investigación presentada en esta tesis hace una contribución significativa al

campo de la detección de anomaĺıas al introducir nuevos métodos más eficientes

xi



xii

para tratar con conjuntos de datos grandes y complejos. Además, los métodos son

escalables y sostenibles, lo cual son factores importantes para su implementación en

aplicaciones del mundo real. En general, el trabajo en esta tesis proporciona una

visión detallada y actualizada de los métodos de detección de anomaĺıas, con un

enfoque en técnicas no supervisadas y sus aplicaciones prácticas, especialmente con

las nuevas tendencias hacia una inteligencia artificial más verde.



Abstract

Anomaly detection is a critical problem in many fields, with applications ranging

from intrusion detection to fault diagnosis and predictive maintenance. Unsuper-

vised methods have gained widespread popularity due to their ability to learn from

data without requiring labeled examples. This doctoral thesis presents a comprehen-

sive overview of anomaly detection methods, with a particular focus on unsupervised

techniques, and their applications in a wide variety of domains.

The thesis also emphasizes sustainability by presenting methods that are de-

signed to be scalable, efficient, and able to handle large and complex datasets. The

automatic hyperparameter tuning mechanisms, combined with the distributed prop-

erties of some of the methods, enable efficient processing and minimize the need for

manual tuning, which can be time-consuming and resource-intensive. This results in

a more sustainable and efficient approach to anomaly detection, reducing the risk of

overloading systems and minimizing the carbon footprint of the processing involved.

These approaches are applied to various datasets and domains, including an IoT

intrusion detection dataset, a railway system data stream, and tourist preferences

based on the TripAdvisor reviews dataset. The performance of the methods is eval-

uated using a range of metrics, such as classification accuracy, precision, recall, area

under the curve ROC, processing time, and statistical tests such as the Nemmenyi

post hoc test, showing state-of-art results.

The research presented in this dissertation makes a significant contribution to

the field of anomaly detection by introducing new methods that are more efficient

for dealing with large and complex datasets. Moreover, the methods are scalable

and sustainable, which are important factors for their deployment in real-world

applications. Overall, the work in this thesis provides a detailed and up-to-date

xiii



xiv

overview of anomaly detection methods, with a focus on unsupervised techniques

and their practical applications, specially with the new tendencies towards a greener

AI.



Contents

1. Introduction 1

1.1. Types of Anomalous Patterns . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1. Predictive Maintenance . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2. Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3. Text and speech anomaly detection . . . . . . . . . . . . . . . 8

1.3. Anomaly Detection Challenges . . . . . . . . . . . . . . . . . . . . . . 9

1.4. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection 15

2.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. AD Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1. NSL-KDD dataset pre-processing . . . . . . . . . . . . . . . . 20

2.2.2. ISCX dataset pre-processing . . . . . . . . . . . . . . . . . . . 21

2.2.3. Unsupervised Methods . . . . . . . . . . . . . . . . . . . . . . 22

2.3. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xv



xvi CONTENTS

3. Fast Anomaly Detection with Locality-Sensitive Hashing and Hy-

perparameter Autotuning 29

3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1. Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.2. Anomaly level estimation . . . . . . . . . . . . . . . . . . . . . 40

3.3.3. LSHAD framework . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4. Hyperparameter Tuning and Experimentation . . . . . . . . . . . . . 43

3.4.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.2. Hyperparameter analysis . . . . . . . . . . . . . . . . . . . . . 46

3.4.3. LSHAD with hyperparameter autotuning . . . . . . . . . . . . 50

3.4.4. Estimator experiments . . . . . . . . . . . . . . . . . . . . . . 51

3.5. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1. Applied Methods . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2. AD performance comparison . . . . . . . . . . . . . . . . . . . 54

3.5.2.1. Synthetic datasets . . . . . . . . . . . . . . . . . . . 54

3.5.2.2. Real datasets . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2.3. Statistical test evaluation . . . . . . . . . . . . . . . 55

3.5.3. Scalability testing . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.4. Scalability versus AD performance . . . . . . . . . . . . . . . 60

3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4. Novel unsupervised methods applied in IoT intrusion Detection 63

4.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



CONTENTS xvii

4.2. IOT-23 Dataset preparation and Analysis . . . . . . . . . . . . . . . . 68

4.3. Methods used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4. Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1. AD Performance . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.2. AD Performance with Distributed Methods . . . . . . . . . . 76

4.4.3. Scalability Evaluation . . . . . . . . . . . . . . . . . . . . . . 77

4.4.4. Explaining Anomalies . . . . . . . . . . . . . . . . . . . . . . 79

4.4.5. Scalability vs AD Performance . . . . . . . . . . . . . . . . . . 82

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5. Data-Driven PdM Framework for Railway Systems 85

5.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1. Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2. Trains Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.3. Proposed model . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3. Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.1. Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences 103

6.1. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



xviii CONTENTS

6.2.1. Understanding the Problem Statement . . . . . . . . . . . . . 107

6.2.2. Collecting Dataset . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.3. Analyzing Dataset, Preprocessing, and Feature Engineering . . 107

6.2.4. Computational Techniques . . . . . . . . . . . . . . . . . . . . 112

6.3. Tests and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3.1. Classification and Regression Results with Supervised Methods 114

6.3.2. Anomaly Detection Results . . . . . . . . . . . . . . . . . . . 117

6.3.3. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7. Conclusions and Future Work 127

7.1. New algorithms and models . . . . . . . . . . . . . . . . . . . . . . . 128

7.2. Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.3. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4. Publications from the thesis . . . . . . . . . . . . . . . . . . . . . . . 132

7.5. Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References 135

A. Methods and Materials 159

A.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1.1. NSL-KDD dataset . . . . . . . . . . . . . . . . . . . . . . . . 159

A.1.2. ISCX dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.1.3. IOT-23 DATASET . . . . . . . . . . . . . . . . . . . . . . . . 160

A.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



CONTENTS xix

A.2.1. Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.2.2. Half Space Trees . . . . . . . . . . . . . . . . . . . . . . . . . 167

A.2.3. One-Class K Nearest Neighbour . . . . . . . . . . . . . . . . . 169

A.2.4. One-Class K-Means . . . . . . . . . . . . . . . . . . . . . . . . 170

A.2.5. Isolation Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.2.6. One-Class Scaled Convex Hull . . . . . . . . . . . . . . . . . . 172

A.2.7. One-Class Support Vector Machines . . . . . . . . . . . . . . . 174

A.2.8. LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.2.9. PA-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2.10.EADMNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2.11.LSHAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.3. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.3.1. Area Under the Curve . . . . . . . . . . . . . . . . . . . . . . 177

A.3.2. Accuracy, Recall, Precision, F1 Score . . . . . . . . . . . . . . 178

A.4. Nemenyi Statistical Test . . . . . . . . . . . . . . . . . . . . . . . . . 180

B. Resumen del trabajo 183

B.1. Desaf́ıos en la detección de anomaĺıas . . . . . . . . . . . . . . . . . . 184

B.2. Nuevos algoritmos y modelos . . . . . . . . . . . . . . . . . . . . . . 186

B.3. Aplicaciones prácticas . . . . . . . . . . . . . . . . . . . . . . . . . . 188





List of Tables

1.1. Typology of anomalies from [74] . . . . . . . . . . . . . . . . . . . . . 4

2.1. Comparative results using mean AUC (×100) for each algorithm using

the best combination of pre-processing techniques, in NSL-KDD and

ISCX datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1. Characteristics of different anomaly detection algorithms . . . . . . . 36

3.2. Datasets used to analyze hyperparameter tuning and anomaly detec-

tion evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3. Selected algorithm AUC results for 5 synthetic datasets . . . . . . . 55

3.4. Selected algorithm AUC results for small real datasets . . . . . . . . 56

3.5. Selected algorithm AUC results for medium real datasets . . . . . . . 56

3.6. AUC results for LSHAD, ADMNC, and Autoencoder for IoT-23 datasets 58

4.1. Related Work summary . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2. Unigram, Bigram, Trigram, feature extraction example technique . . 69

4.3. Algorithms characteristics . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4. AUC% Results of selected algorithms for IoT-23 Dataset . . . . . . . 74

4.5. AUC Results of LSHAD, EADMNC and Autoencoder for IoT-23

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xxi



xxii LIST OF TABLES

5.1. Related Work Comparison . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2. Selected hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1. Small example of the used dataset. . . . . . . . . . . . . . . . . . . . 108

6.2. List of the most used words in reviews. . . . . . . . . . . . . . . . . . 109

6.3. Precision and recall for scenario 4 with the classification method (Y

= “Rating”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4. Precision and recall for scenario 4 with the classification method (Y

= “Sentiment”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5. Mean Square Error (MSE), Root Mean Square Error (RMSE), and

Mean Absolute Error (MAE) for scenario 4 with the regression method

(Y = “Rating”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.6. MSE, RMSE, and MAE for scenario 4 with the regression method (Y

= “Sentiment”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.1. ISCX captured activity. The attacks were captured along with normal

network activity. To distinguish between a normal observation and an

abnormal one it is presented in the ISCX dataset an attribute called

“label” where value 1 represents an attack and value 0 represents

normal activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A.2. IoT-23 dataset malicious scenarios. See complete table information

at [153] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



List of Figures

1.1. Types of anomalies Examples based on [43]. . . . . . . . . . . . . . . 2

2.1. AD methodology – The datasets were splitted, normalized and dis-

cretized through pre-processing techniques before being applied in the

algorithms learning and testing phase. . . . . . . . . . . . . . . . . . 20

2.2. Critical difference diagram, Nemenyi post-hoc test. . . . . . . . . . . 25

2.3. Anomaly detection results in NSL-KDD. . . . . . . . . . . . . . . . . 26

2.4. Anomaly detection results in ISCX. . . . . . . . . . . . . . . . . . . . 27

3.1. Random projection in 2 dimensions. Axis x, y ∈ Q and the blue dots

are composed by random values from Q. . . . . . . . . . . . . . . . . 39

3.2. Hash table example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3. LSHAD diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Synthetic dataset of shapes representing 2 circular clusters (2CC),

2 banana clusters (2BC), 3 point clouds (3PC), 2 point clouds with

variance (2PV), and Anisotropic Clusters (3AC). . . . . . . . . . . . 45

3.5. LSHAD performance (AUC) varying the hyperparameter T , the num-

ber of hash tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6. LSHAD performance changing the hyperparameter L, the number of

random projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xxiii



xxiv LIST OF FIGURES

3.7. LSHAD performance changing the hyperparameter w, the quantiza-

tion bucket length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.8. LSHAD performance for different w values, with the ABS metric on

the horizontal axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9. AUC scores for the different estimators . . . . . . . . . . . . . . . . . 52

3.10. Nemenyi statistical test for the estimator AUC scores . . . . . . . . . 52

3.11. Nemenyi statistical test to evaluate AUC scores for AD methods . . . 57

3.12. Execution time of each algorithm increasing the size samples of the

Synthetic dataset. Axis are represented using logarithmic scale . . . . 60

3.13. Pareto front of a multi-objective optimization problem based on mean

AD performance for all datasets (higher is better) versus time com-

plexity (smaller is better) . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1. Histograms of each feature for the CTU-IoT-Malware-Capture-17-1

subset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2. Correlation plot of CTU-IoT-Malware-Capture-17-1 subset. . . . . . . 71

4.3. Nemenyi statistical test for evaluating AD AUC scores methods . . . 75

4.4. Execution time of each algorithm increasing the size samples of the

IoT-23 dataset (sub-set 35). Axis are represented using logarithmic

scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5. Explanatory tree after pruning using subset 20 from IoT-23 dataset. . 79

4.6. Explanatory tree after pruning using subset 42 from IoT-23 dataset. . 80

4.7. Explanatory tree after pruning using subset 3 from IoT-23 dataset. . 81

4.8. Pareto front of a multi-objective optimization problem based on the

mean performance AD of all IoT-23 subsets (higher is better) vs time

complexity (smaller is better) . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES xxv

5.1. Train System: dark arrows represent the pneumatic system, dashed

arrows the control system and the thin black arrows the sensors . . . 92

5.2. Proposed methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3. Anomalies detected by our method . . . . . . . . . . . . . . . . . . . 97

5.4. Models Validation approach. . . . . . . . . . . . . . . . . . . . . . . . 99

5.5. Performance results of the methods using the metrics Accuracy (a),

Precision (b), Recall (c) and F1 Score (d) . . . . . . . . . . . . . . . 100

6.1. Distribution by “Rating”. . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2. Correlation between the average number of words in the “Review”

with the assigned “Rating”. . . . . . . . . . . . . . . . . . . . . . . . 109

6.3. Density of the “Polarity” attribute obtained with Textblob. . . . . . . 110

6.4. Correlation between “Polarity” and “Rating”. . . . . . . . . . . . . . 111

6.5. Correlation between “Subjectivity” and “Rating”. . . . . . . . . . . . 112

6.6. Algorithms’ accuracy for the classification method (Y = “Rating”). . 114

6.7. Algorithms’ accuracy for the classification method (Y = “Sentiment”).115

6.8. Algorithms’ Mean Absolute Error for the regression method (Y =

“Rating”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.9. Algorithms’ Mean Absolute Error for the regression method (Y =

“Sentiment”). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.10. Cont. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.11. Anomaly scores distinguishing sentiment 1 from sentiment 0. The

first graphic represents the Isolation Forest results, the second shows

OCKNN results, and the third shows LOF results. The y-axis repre-

sents the scores and the x -axis represents the sample indices. . . . . . 120

6.12. First experiment—isolating class 0 from Y = “Sentiment” in Logistic

Regression output using LOF. . . . . . . . . . . . . . . . . . . . . . . 121



xxvi LIST OF FIGURES

6.13. Second experiment—isolating class 1 from Y = “Sentiment” feature

in Logistic Regression output using LOF. . . . . . . . . . . . . . . . . 122

6.14. Third experiment—isolating class 1 from Y = “Ranking” in Logistic

Regression output using LOF. . . . . . . . . . . . . . . . . . . . . . . 123

6.15. Fourth experiment—isolating class 5 from Y = “Ranking” in Logistic

Regression output using LOF. . . . . . . . . . . . . . . . . . . . . . . 124

A.1. Reconstruction of the mean square error. . . . . . . . . . . . . . . . . 167

A.2. HS-trees example by [200] and a recorded latest mass profile. The

left image represents the data partitioned, and the right image the

HS-tree generated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

A.3. OCKNN illustration example in two-dimensional space, where k = 1;

d1, d2, d3 are distances of points A,B and C respectively, to their

nearest neighbour; dx is the distance threshold to consider a given

data point to be anomalous. . . . . . . . . . . . . . . . . . . . . . . . 170

A.4. Ensemble of projected decisions on 2-D based on Fernández-Francos

et al. [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.5. ROC curve example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178



List of Acronyms

ABD Average Bucket Distance.

ABS Average Bucket Size.

AD Anomaly Detection.

ADMCN Anomaly Detector for Mixed Numerical and Categorical Inputs.

APU Air Production Unit.

AUC Area under the ROC Curve.

AutoML Automated Machine Learning.

Bary Barycentric Coordinates.

BC Bucket Count.

BiLSTM Bidirectional Long-Short-Term Memory.

CB Content-Based Filtering.

CD Critical Difference.

CESGA Centre of Supercomputing of Galicia.

CF Collaborative Filtering.

CFA Cross-feature Analysis.

DDoS Distributed Denial of Service.

xxvii



xxviii List of Acronyms

DF Demographic Filtering.

DOC-SVM Distributed One-Class Support Vector Machine.

DoS Denial of Service.

EADMNC Explainable Anomaly Detection on Mixed Numerical and Categorical

spaces.

EF Equal Frequency.

FPR False Positive Rate.

HNS Hide and Seek.

HS-Trees Half Space Trees.

IDS Intrusion Detection Systems.

IoT Internet of Things.

KDD Knowledge Discovery and Data Mining.

LOCI Local Outlier Correlation Integral.

LOF Local Outlier Factor.

Loop Local Outlier Probability.

LSH Locality Sensitive Hashing.

ML Machine Learning.

NLP Natural Language Processing.

OC-SVM One-Class Support Vector Machine.

OCKNN One-Class K Nearest Neighbour.

PA-I Passive-Aggressive Kernel.



List of Acronyms xxix

PDBS Piecewise Density-Biased Sampling.

PdM Predictive Maintenance.

POI Points of Interest.

RDD Resilient Distributed Datasets.

ROC Receiver Operating Characteristic.

RS Recommender System.

SCH Scaled Convex Hull.

SOM Self-Organizing Map.

SotA state-of-the-art.

SVD Singular Value Decomposition.

SVM Support Vector Machine.

TF-IDF Term Frequency-Inverse Document Frequency.

TPR True Positive Rate.

UNIDS Unsupervised Network Intrusion Detection System.





Chapter 1

Introduction

It is possible to find several definitions of anomaly detection in the literature,

such as the one by Chandola et al. [43], where AD is defined as the problem of

finding patterns in data that do not conform to expected behaviour. Foorthuis [74]

describes anomalies has occurrences in a dataset that are in some way unusual and

do not fit the general patterns. Anomalies can encompass a broad range of rare and

unique occurrences that can involve both static entities and time-based events. They

can be single instances or occur in groups, and can be either desired or undesired

observations. The definition of anomalies covers a diverse array of phenomena.

The field of AD has been approached from diverse research areas, and different

models have been proposed in many application domains in the last few years. This

field has received considerable attention from the ML and data mining communities,

as the ability to identify anomalous patterns in data is an important capacity to solve

a vast variety of problems in many research fields. Additionally, with the increasing

emphasis on sustainability and the need to reduce waste and minimize environmental

impact, it is important to ensure that the methods used for anomaly detection are

also sustainable. This means considering not only the accuracy and efficiency of the

methods, but also the resources they consume and their long-term impact on the

environment.

1



2 Chapter 1. Introduction

1.1. Types of Anomalous Patterns

Understanding the types of anomalies is critical for obtaining the most value from

the insights generated. Those insights are responsible for avoiding major problems

not only in the performance of processing and confirmation of results but also in

the conclusions obtained by interpreting and analyzing data from a specific context.

These problems can lead to incorrect strategies or decisions that can cause immediate

economic damage, such as production faults or system defects. Anomalies can be

classified in distinct ways depending on the domain or type of data. For instance,

in [43], the authors classify anomalies into three types (Figure 1.1):

Figure 1.1: Types of anomalies Examples based on [43].

Point or Global anomalies: It is defined as a Point or Global anomaly

when an observation or group of instances deviates from the rest of the data.

It is represented by a deviation or irregularity occurring randomly and not

associated with normal data behaviour. This anomaly is the main focus of

broad research work in the AD field [116]. An example in the credit fraud

transaction field might be a high amount spent on an individual’s credit card

transaction compared to its normal range of transaction values.

Contextual Anomalies: Also known as Conditional Anomaly, it occurs

when an observation or group of instances deviates from other observations

that exist in the same context. These data points can be abnormal in a par-

ticular context but may not be anomalous in another. This type of anomaly

is commonly used in time-series data [22]; for instance, a specific tempera-



1.1 Types of Anomalous Patterns 3

ture might be normal during the winter at a particular place, while the same

temperature during the summer at the same location would be anomalous.

Collective Anomalies: They occur when a subset of data points deviates

from the whole data pattern. The individual data instances in a collective

anomaly may not be anomalies by themselves. However, their occurrence

together as a collection is considered anomalous. For instance, a consecutive

40-day period of cold temperatures could be viewed as a collective anomaly.

These temperatures are unusual as they occur together and are likely caused

by the same underlying weather event.

Another way to classify the types of anomalies is presented in [74], which pro-

posed a framework for the typology of anomalies divided into five fundamental

data-oriented dimensions: data type, the cardinality of relationship, anomaly level,

data structure, and data distribution. The first three dimensions represent a classi-

ficatory principle that describes a key characteristic of the nature of data. Together,

these dimensions differentiate between nine basic anomaly types shown in Table 1.1.

The first dimension, types of data, describes the behaviour of occurrences. The

attributes or features are responsible for the deviant character of a given anomaly

type. Those attributes can be: Quantitative, numerical values that capture the

anomalous behaviour; Qualitative, categorical values that capture the anomalous

behaviour; Mixed, the variables that capture the anomalous behaviour can be Quan-

titative or Qualitative.

The second dimension, cardinality of relationship, retracts the relation be-

tween attributes when describing anomalous behaviour. It can be classified as:

Univariate when each attribute is independent and no relation between attributes

exists to describe anomalous patterns; in Multivariate, the opposite occurs as there

is a relationship between attributes that can describe the deviant behaviour of the

anomaly.

The third dimension, anomaly level, distinguishes between the types of anoma-

lies mentioned above, point anomalies (atomic, individual or low-level cases) versus

collective anomalies (aggregate, or groups).

The fourth dimension, data structure, is used to distinguish between typolo-



4 Chapter 1. Introduction

Table 1.1: Typology of anomalies from [74]

Types of Data
Quantitative
Attributes

Qualitative
Attributes

Mixed
Attributes

U
n
iv
a
ri
a
te

Type I
Uncommon

number anomaly

Type II
Uncommon

class anomaly

Type III
Simple Mixed
data anomaly

A
to
m
ic

C
a
rd

in
a
li
ty

o
f
R
e
la
ti
o
n
sh

ip

M
u
lt
iv
a
ri
a
te

Type IV
Muldimensional

numerical anomaly

Type V
Muldimensional

categorical anomaly

Type VI
Muldimensional

mixed data anomaly

A
n
o
m
a
ly

L
e
v
e
l

Type VII
Aggregate

numerical anomaly

Type VIII
Aggregate

categorical anomaly

Type IX
Aggregate

mixed data anomaly

A
g
g
re
g
a
te

gies. A given cell in Table 1.1 can contain several anomaly subtypes, which have

characteristics that can be traced back to the specific data formats that host them

(i.g. graphs and time series).

The last and fifth dimension, data distribution, refers to the collection of

feature values and their dispersion throughout the data space [98, 165]. The distri-

bution of the dataset is an important factor to consider when detecting anomalies.

The distribution strongly depends on the mentioned classificatory factors but focuses

on density and other dispersion-related aspects of the set.

Anomalies or outliers can also be characterized in different types for specific

domains. The work in [22] categorizes outliers/anomalies in three different types in

the time series domain. The authors defined the first two outlier types based on the

taxonomy from [43]:



1.2 Applications 5

Point outliers : An observation that shows an unusual behaviour in a specific

time instant when compared to other observations in the time series (global

observations) or to its neighbour observations (local outlier). They can be

univariate or multivariate regarding the impact provided in time-dependent

variables.

Subsequence outliers : Refers to the successive unusual behaviour of collective

observations in time. Each observation individually is not necessarily an outlier

but analyzing the behaviour of a consecutive set of observations makes it

anomalous. This definition is very similar to the definition from [43] known as

collective anomalies.

Outlier time series : Occurs when entire time series can also be outliers. How-

ever, they can only be identified when the input data are a multivariate time

series.

1.2. Applications

A wide variety of applications in the AD field have been proposed and presented

in the literature over the years. It still remains a hot topic in the Artificial In-

telligence domain due to its great contributions to a high diversity of applications

[150, 66, 190]. Some of the AD applications fields commonly developed and studied

are Health Care, Predictive Maintenance, Intrusion detection, Text and speech AD,

and Fraud Detection. This section describes recent works presented in the liter-

ature for the fields addressed in this thesis and explains the context of anomalies

respectively.

1.2.1. Predictive Maintenance

PdM, framed as an important issue in Industry 4.0, is able to anticipate problems

or emergencies before they happen, bringing huge advantages to industries that allow

them to optimize their results and obtain greater efficiency and profitability of the

equipment. In PdM, an anomaly represents a failure that must be prevented. AD

techniques have been extensively applied in this domain to detect such failures.



6 Chapter 1. Introduction

PdM can be applicable to all sectors where machines produce significant amounts

of data and require maintenance or fine-tuning of their parameters. PdM applica-

tions are already gaining traction in some industries such as:

Airlines: The aviation industry is grasping for opportunities to reduce costs.

Security risk management has shifted from post-accident investigations and

analyses to pre-accident warnings in an attempt to reduce flight risks by iden-

tifying untracked flight events and effectively preventing risks before they occur

[160]. Monitoring sensor data from planes together with AD methods allow to

increase passenger safety [9, 92, 18].

Transportation: Although airlines lead the group in terms of the complexity

of their equipment, other means of transportation, such as trains, also involve

complex machinery that can benefit from predictive maintenance.

Ports: Exposed to adverse conditions, the conditions of port equipment de-

teriorate rapidly. For instance, deviations in port container handling can be

detected by AD techniques [164].

Automotive: Automotive companies operate some of the largest robot parks

in the world. In automotive industries, pricing anomalies may occur for compo-

nents of various products, despite their similar physical features, which raises

the total production cost of the company. AD methods have an important

role in order to reduce production costs [84].

High-tech manufacturing: Operating complex equipment at optimal pa-

rameters is the main challenge for improving the efficiency of high-tech man-

ufacturers, such as semiconductor manufacturers. In high full automation

manufacturing, unexpected equipment breakdown results in throughput loss.

In order to capture the failure or deviation as early as possible, the time-to-

failure or remaining useful life of each equipment should be predicted. The

work from Hsu et al. [90] addressed the predictive maintenance and AD in

high-tech manufacturing by applying deep learning.

Oil and gas: Despite the increase in green energy, oil and gas is still one of

the largest industries. Both extraction and refining involve expensive equip-

ment that can cause risks to health and the environment in the event of failure,



1.2 Applications 7

as for example, the Deepwater Horizon oil spill in 2010 [131]. The stakes are

high to prevent such disasters with better analysis and maintenance.

It is also addressed in Chapter 5 a real case scenario where a data-driven pre-

dictive maintenance framework is proposed for the air production unit (APU)

system of a train of Metro do Porto [136].

1.2.2. Intrusion Detection

Nowadays, there are more and more types of computer attacks that are per-

formed in large numbers where organizations, individuals, society, and even nations

are affected. Several methods have been proposed to secure the host or network

against malicious behaviour, such as IDS [105]. These systems work as a layer of

protection by detecting intrusion events. Usually, two main approaches are used for

IDS namely, signature-based and anomaly-based. The first type uses rules in the

detection process. However, in a network environment, a large distributed network

would require a large number of rules for an IDS, which could be costly and time-

consuming. Additionally, if the rules are not sufficiently described, attackers might

be able to access the network [63].

To overcome the mentioned gap, anomaly-based systems have been proposed

based on ML methods to improve the AD performance significantly with reasonable

computational resources [63].

The authors in [207] presented an anomaly-based approach to detect network

attacks from flow-based features. They employed Autoencoder and Variational Au-

toencoder together with OC-SVM as anomaly detectors trained in a semi-supervised

learning manner.

Another example is the work from Al-Turaiki et al. [6] which proposed two mod-

els based on deep learning, more specific convolutional neural networks, to address

the binary and multiclass classification of network attacks. In addition, the authors

applied a hybrid two-step preprocessing approach to extract meaningful features.

A study of adversarial attacks against network IDS is proposed by Aiken and

Scott-Hayward [3]. The authors investigate the viability of adversarial attacks

against classifiers. They implemented an anomaly-based IDS, Neptune, as a tar-



8 Chapter 1. Introduction

get platform that uses several ML classifiers and traffic flow features. With the

development of an adversarial test tool, the authors showed that with the perturba-

tion of a few features, the detection accuracy of a specific SYN flood DDoS attack

by Neptune decreases from 100% to 0% across a number of classifiers.

Chapters 2 and 4 of this thesis present a comparative analysis of SotA unsu-

pervised methods to deal with intrusion detection. Chapter 2 shows a comparative

evaluation of network intrusion detection using two benchmark public datasets. In

chapter 4 we added two novel methods in our study to detect attacks on IoT devices

in a network environment. Both new methods can deal with large datasets: one,

recently proposed and published by members of LIDIA lab [24], provides explain-

ability to the obtained results, while the other (also a novel proposal of this doctoral

work) provides automatic hyperparameter tuning.

1.2.3. Text and speech anomaly detection

The application of AD in text mining allows the detection of novel topics, new

stories, or events in a collection of articles, documents, or web social media platforms.

In this domain, anomalies can be considered as new interesting events or anomalous

topics [43] (e.g. fake news, log events).

Examples of applications in this field are the work from Souza et al. [55]

which proposed a network-based approach using a one-class and transductive semi-

supervised learning algorithm that performs classification by first identifying poten-

tial interest and non-interest documents into unlabeled data and then propagating

labels to classify the remaining unlabeled documents. They applied their approach

by comparing it with four One-Class classification algorithms and analysing the

performance impact of each method.

In [198] it is presented an offline feature extraction approach, named LogEvent2vec.

The authors take the log event as input of word2vec method to extract the relevance

between log events and vectorize log events directly. Then they transform the log

event vector to the log sequence vector by applying Bary and TF-IDF techniques

and trained three classical supervised methods (Random Forests, Naive Bayes, and

Neural Networks) to detect the anomalies.



1.3 Anomaly Detection Challenges 9

NLP is a component of text mining that performs linguistic analysis that es-

sentially gives a machine the ability to understand the text and spoken words. It

combines linguistics-rule-based modeling of human language by applying statistical

or ML techniques. It is used for several tasks namely, speech recognition, sentiment

analysis, natural language generation, and named entity recognition. Several works

applied anomaly detection with the help of NLP methods to solve specific tasks such

as hate speech detection [142, 108] or sentiment detection in social media platforms

[180, 134]. In chapter 6 we describe another contribution of this thesis, consisting in

an NLP approach that combines AD methods to improve predictions about tourists’

preferences using the TripAdvisor dataset.

1.3. Anomaly Detection Challenges

Although significant improvements have been achieved in AD applications there

are still challenges to be achieved. A generalization of the AD challenges that are

present and common for the mentioned domains is described in this section:

Big data: The growth of smart devices and sensorization of industrial activ-

ities contributes to the generation of high volumes of data previously unseen.

The size of collected datasets has been steadily growing, sparking interest in

ML methods. The capacity of these methods to learn and perform complex

tasks was restricted by the scarcity of data. Due to the increase in data avail-

ability, the complexity of the learned tasks is now bounded by the capability of

the ML method to extract relevant insights. The high computational complex-

ity of ML methods makes it impractical to process large volumes of data. Even

though there are several solutions presented in the literature on distributed

and parallelized algorithms to deal with large datasets, existing approaches

for AD with distributed characteristics are scarce. The proposed method in

Chapter 3 addresses the issue of scalability and enables efficient processing

of large data, making it more sustainable in the long term. Furthermore, by

comparing its performance with a recent scalable method and traditional AD

techniques in the IoT Intrusion Detection field in Chapter 4, we demonstrate

the sustainability of our proposed method in terms of its ability to perform



10 Chapter 1. Introduction

well while dealing with large data.

Unlabeled data: The data collected and available from smart devices or

sensors is usually unlabeled. Labelling data demands substantial effort and

time as it is usually done manually by an expert in the application domain.

This is where unsupervised learning methods can be useful, as they can assist in

the discovery of hidden patterns and relationships in the data without the need

for labels. However, one of the main challenges with unsupervised learning is

the difficulty to validate the quality of the model, since there are no labels to

which to compare the predictions. Throughout this thesis, our proposals are

tested in several application domains: intrusion detection (chapter 2 and 4),

predictive maintenance (chapter 5) and text classification (chapter 6), with

the main focus being the use of unsupervised AD methods that can deal with

unlabeled data.

Defining Anomalies: Anomalies that arise due to malicious activity are

often changing and adapting. For instance, a model is trained to recognize

malicious patterns in e-mail messages but if new patterns appear that did not

exist before, the model might lose performance as they are not recognized as

abnormal. This type of change in data is known as concept drift. It is a

change in the statistical properties of the data that a ML model is trained on.

This can happen over time as the data distribution changes, or as the goals or

needs of the model’s users change. Normal behaviour is continuously evolving,

and the notion of normal behaviour now may not be sufficiently representative

of future behaviours. The challenge of AD algorithms design is studied using

non-anomalous samples only. As it would not be feasible to develop a generic

framework to cover all the aforementioned applications, several AD models

are developed so that each one deals with a specific domain. Although the

anomalies may be different depending on the domain or context, the novel AD

model proposed in Chapter 3 is not only able to deal with big datasets, as

mentioned above but is also capable of being generic and independent of the

domain application. To demonstrate its effectiveness, it has been validated

and tested in several application fields.

Hyperparameter Tuning: Hyperparameter tuning can be especially chal-

lenging in the context of AD. The performance of an AD model can be highly



1.3 Anomaly Detection Challenges 11

sensitive to the choice of hyperparameters. The definition of what consti-

tutes an anomaly can vary depending on the application, making it difficult to

evaluate the performance of a model. Also, the space of possible hyperparam-

eters can be large and the optimization process is time-consuming, making it

challenging to find the best set of hyperparameters for a given dataset. Ad-

ditionally, in many cases, the domain expert who is tasked with tuning the

hyperparameters of an AD model may not have a deep understanding of the

underlying data or the characteristics of anomalous behaviour. It is also a chal-

lenge when evaluating the performance of an AD model, as in most occasions,

there is no ground truth to which to compare the model’s predictions. This

can make it difficult to know whether the chosen hyperparameters are optimal

and whether the model is able to accurately detect anomalous behaviour. To

address this issue the proposed method in Chapter 3 mentioned above has also

an automatic tuning mechanism capable of adjusting its hyperparameters in-

dependently of the domain application. The automatic hyperparameter tuning

capabilities of the proposed method can help ensure that the method is being

used in the most resource-efficient way possible, making it more sustainable.

Explainability: Explainability is particularly important in critical fields such

as healthcare, finance or network intrusion, where the consequences of making

incorrect decisions based on the results of an AD algorithm can be severe. By

providing users with a better understanding of how the algorithm is working

and why it is detecting certain anomalies, explainability can help improve the

trustworthiness and reliability of the results. However, most of the proposed

methods are not transparent and lack interpretability. In chapter 4 we describe

a comparative study of AD methods in the field of intrusion detection. Among

them, an explainable method is used, and an evaluation with an expert user

of the results obtained is presented.

In this doctoral thesis, our main goal is to address the presented challenges by

proposing not only methodologies or frameworks to deal with specific AD domains

but also a novel distributed AD method with auto hyperparameter tuning. All AD

methods are described and evaluated in the following five chapters of the thesis.

The main objective is to provide a comprehensive understanding of the different

methods and their AD effectiveness. Additionally, we aim to test these methods in



12 Chapter 1. Introduction

different application fields to demonstrate their versatility and utility.

1.4. Thesis Outline

This thesis is divided into 6 chapters. In this section, we provide a short summary

of the contents of each of the chapters:

Chapter 1 provides an introduction to the field of AD. It defines AD and

discusses its importance in a wide range of applications including intrusion

detection, text and speech AD, and PdM. This chapter outlines the main

challenges and provides an overview of this thesis.

Chapter 2 explores the use of unsupervised methods for AD in the intrusion

detection field. It discusses the applications of unsupervised methods in intru-

sion detection systems, comparing their advantages and limitations using two

benchmark datasets widely used in the literature.

Chapter 3 presents a novel AD method that is designed to be distributed,

capable of dealing with large datasets, and equipped with an automatic hy-

perparameter tuning mechanism. The chapter describes the method in detail

and compares it with other methods in terms of its characteristics and perfor-

mance. It also discusses the advantages and limitations of the method, and

its potential applications.

Chapter 4 applies several traditional unsupervised methods and two novel

methods (one is the new distributed model proposed in chapter 3 while the

other has explainable characteristics and has been published in ??) to an IoT

intrusion detection dataset. The performance of these methods is evaluated

concerning their AD performance, processing time, and the usefulness of expla-

nation trees. The chapter presents the results of the evaluation and discusses

the strengths and weaknesses of the applied methods.

Chapter 5 presents a data-driven approach for detecting anomalies in a railway

system using a data stream model. The model is designed to handle stream-

ing data in real-time and has limited memory, a forgetting mechanism, and



1.4 Thesis Outline 13

incremental learning, which allows it to perform well with limited resources.

The chapter discusses the potential applications of this model and compares

it with other SotA data stream methods.

Chapter 6 investigates strategies for predicting tourist preferences based on

their reviews. The chapter begins by describing the data and the prediction

problem, which involves using Natural Language Processing strategies to pre-

dict whether a review is positive or negative and the rating assigned by users

on a scale of 1 to 5. It then applies a range of NLP supervised methods combin-

ing them with unsupervised AD techniques to improve predictions on tourist

preferences. The chapter presents the results and discussion of the evaluation

performance.

Chapter 7 concludes the thesis by summarizing the main findings and contri-

butions of this dissertation and provides some possible lines for further work.

Appendix A includes additional or supplementary information. It describes

the datasets, the AD methods, and evaluation metrics that were used in this

thesis.

Appendix B provides a detailed abstract of the thesis written in Spanish. This

abstract provides a summary of the research presented in the thesis, including

the main challenges and contributions.





Chapter 2

Performance evaluation of

unsupervised techniques in

cyber-attack anomaly detection

Computer systems play a major role in modern everyday life. Almost everything

from personal calendars to financial records and e-commerce operations is done with

resources to a computing device with a network connection. Important information

is stored and sent in all sorts of devices, from small low-power smartwatches to huge

data centers. This creates an extensive attack vector that intended individuals

and/or organizations may try to outbreak. Attackers use a variety of different

techniques to try to exploit safety flaws in systems. This may result in sensible

data breaches, stolen user accounts or taking control over the system.

To combat these attacks, system administrators and security experts often need

to use safety measures to eliminate these attacks or at least mitigate their effects.

One of these safety measures are IDS. These systems perform cyber-attack detection,

using a variety of techniques to discover failures and malicious activity in computer

systems. IDS tend to follow one of two different approaches: (a) signature-based,

or (b) anomaly-based. Signature-based detection requires prior knowledge of an

attack before being able to identify it; on the other hand, techniques based on AD

work by acquiring knowledge of the patterns that represent “normal” or “attack”

data and then classify new data accordingly to their resemblance to those patterns.

15



16
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

This latter approach gives the IDS the possibility of detecting attacks, even if the

attack is not currently known (a zero-day attack, that is, an attack that is unknown

or unaddressed yet, and thus can be exploited to adversely affect the computer or

network), because these new attacks may present more similarities to other previous

attacks rather than to “normal” data.

Within anomaly-based approach IDS, different algorithms may be used. Super-

vised learning algorithms are suitable for problems in which a set of already existing

and previously classified samples can be used as a training dataset. On the other

hand, when novel vulnerabilities and attacks are involved, there are no classified

examples for a supervised algorithm to learn from it. One possibility in order to

deal with this problem is the use of unsupervised learning algorithms. Unsupervised

learning techniques can learn what is normal for a given set of data and then are

capable of finding deviations in new unclassified data, which in this scenario would

indicate a possible attack that until now was unknown.

In this chapter, we will explore the use of unsupervised ML techniques for AD.

In order to be able to make a comparison among them, we have selected one of the

traditional fields for the use of these models, IDS for detecting anomalies in network

traffic. The work presented in this chapter is published in the Journal of Ambi-

ent Intelligence and Humanized Computing [133]. This use case is very important

nowadays, as datasets are increasingly large, making it impossible to apply super-

vised models. Overall, this chapter will provide a comprehensive overview of the

role of unsupervised methods and IDS in detecting anomalies and securing networks

against threats.

The motivation for this study comes from the SASSI (Decision Support System

for Security in Computer System) project (ANI — P2020 17775), which objective is

the development of an Intelligent Decision Support System that centralizes, struc-

tures and allows the visualization of information regarding the activity of computer

networks and the individual machines in given networks, allowing the automatic

detection, prediction and prevention of anomalies, cyber-attacks and possible secu-

rity risks. This platform aims to support computer network administrators who are

increasingly faced with critical decision-making tasks regarding security problems

that cannot be detected by typical anti-malware protection systems. This work,

which was published in the Journal of Ambient Intelligence and Humanized Com-



2.1 Related Work 17

puting volume [133], focuses on cyber-attack and AD using unsupervised learning

algorithms, and explores six of these algorithms: Autoencoder, One-Class Nearest

Neighbor, Isolation Forest, One-Class K-Means, One-Class SCH and One-Class Sup-

port Vector Machines, over two different public datasets the NSL-KDD [185] and

the ISCX datasets [175].

Our results show that the techniques used are capable of archiving high-performance

results in the classification tasks tested in our case study and consequently are can-

didates for future implementation in an IDS.

This chapter has the following structure: Section 2.1 presents some related work

on this topic, Section 2.2 describes the workflow used including the pre-processing

techniques applied in our approach, Section 2.2.3 indicates all of the unsupervised

algorithms tested and which hyperparameters where used in our application, Section

2.3 presents a comparative evaluation of the results, and finally, Section 2.4 draws

the conclusion and ideas for future work.

2.1. Related Work

As IDS’s classification problems are a frequent topic of study in the literature,

many authors have proposed and studied interesting techniques to deal with the

problem of unknown attacks. The task of identifying if a new instance belongs to

the class of the data that has been used for training the classifier, or whether it is

an outlier, is known as one-class classification. This means that the classifier only

learns the data patterns of one class (target class) in the training phase. There are

other names called to this field like novelty or outlier detection, and concept learning

[104]. One-class algorithms were proven to be an important tool for several domains

as in disease detection [78], intrusion detection [81], text/document classification

[124], or PdM [174].

Fernández-Francos et al. [67] presented a novel One-Class classification algo-

rithm purposed for targeting distributed environments called One-Class Convex

Hull-Based Algorithm. Their results showed that this method was accurate in one-

class classification problems and efficient in big data scenarios due to the distributed

nature of the approach. Castillo et al. [39] proposed a DOC-SVM method for clas-



18
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

sification problems. They experimented with different datasets and their results

demonstrated that the proposed DOC-SVM was able to achieve accurate results

and with a reduction in the necessary training time when compared to other classi-

fiers known in the literature. Chen et al. [44] introduced the autoencoder ensembles

for unsupervised outlier detection. They presented the random edge sampling tech-

nique which randomly drops connections in a neural network retaining a certain level

of control on the connection density between several layers, so in this way, they can

create various models with different types of density. The mentioned method was

used in conjunction with the adaptive data sampling approach where the authors

applied the RMSprop [191] optimization method to speed up the learning process.

Their method, named as RandNet, which stands for Randomized Neural Network

for Outlier Detection, showed robustness in avoiding the overfitting problem, and it

was competitive with respect to other neural network techniques.

In the intrusion detection field, Goldstein et al. [82] presented a comparative

evaluation of unsupervised algorithms used in the context of AD. The algorithms

were applied to a group of different datasets, one of each was the KDD 99, described

in Section A.1.2, however, the analyses only used part of the dataset regarding HTTP

traffic. It is important to note that an improved version of this dataset called NSL-

KDD is presented and used in this paper.

Aleroud et al. [8] explored the detection of zero-day attacks, with an approach

that combines already existing methods with linear data transformation techniques

such as discriminant functions that separated the data in normal patterns from at-

tack patterns, and AD techniques using the One Class Nearest Neighbor algorithm

to identify the zero-day attacks. Their approach consisted of a system of several

static components and processes. The first component was the network data repos-

itory where they used the NSL-KDD dataset. The second component represented

the pre-processing methods applied in the NSL-KDD dataset, where they converted

numeric features into bins. The third module, Misuse detection, consisted in iden-

tifying attacks that are relevant to a particular context and also identifying normal

activities in the network to reduce the false positives alerts. This module used condi-

tional entropy to create known attack context profiles using patterns from historical

data. Finally, the last component represented the AD module which used the 1-NN

algorithm to detect deviation from normal activity and also used the SVD tech-



2.2 AD Methodology 19

nique to reduce the data dimensionality. They showed good performance in their

approach, detecting zero-day attacks with a low false positive rate.

Casas et al. [38] presented the concept of an UNIDS, using Sub-Space Clus-

tering and Multiple Evidence Accumulation techniques for outlier detection. Their

unsupervised security system consisted in analyzing packets captured in continuous

times slots of fixed length running in three consecutive steps. In the first step, it

was performed the clustering analysis to detect anomalous time slots. The second

step used a multi-clustering algorithm based on a combination of several techniques

[154] to rank the degree of abnormality of all the identified outlying flows. The

third step used a simple threshold detection technique to flag the top-ranked outly-

ing flows as anomalies. Their evaluation of this system included its application to

the KDD 99 dataset. Noto et al. [144] studied AD using an approach called FRaC,

feature regression and classification. The FRaC technique built a model of normal

data and the distances of its features and used the learnt model to detect when an

anomaly occurred. They also compared their approach with other commonly used

techniques, such as LOF, OC-SVM and CFA.

Our work intends to show and compare the behaviour of several one-class classi-

fication algorithms (some of them already mentioned in this section) and apply them

in two recent intrusion datasets with the purpose of identifying if these techniques

could be integrated in an IDS inside the SASSI project.

2.2. AD Methodology

In this chapter, we study the behaviour of several unsupervised algorithms based

on one-class classification, in order to verify if these techniques are a viable solution

to discover and detect unknown attacks. In this section, we describe the network

AD methodology, as shown in Figure 2.1. We present the datasets used and the

pre-processing techniques applied to them before feeding the algorithms, as well as

the unsupervised techniques employed.

In our exploration, we analyzed the NSL-KDD [185] and the ISCX datasets [175]

(Consult Appendix A section A.1.1 and A.1.2). These datasets contain samples from

normal activity and from simulated attacks in computer systems and are commonly



20
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

Figure 2.1: AD methodology – The datasets were splitted, normalized and dis-
cretized through pre-processing techniques before being applied in the algorithms
learning and testing phase.

used in the literature. Before using the learning algorithms, we employed some

pre-processing methods to prepare the data.

2.2.1. NSL-KDD dataset pre-processing

As we are testing one class classification algorithm, it was selected a portion of

normal data from the training set and a portion of both normal and attack data from

the test set, where the attack data contains all four attack categories and represents

10% of the test set.

Some pre-treatment techniques were applied to the dataset before performing the

discretization and normalization operations, as shown in Figure 2.1. Some features

were removed namely: ‘Num outbound cmds’, ‘Is hot login’, ‘level difficult’, ’Land’,

‘Wrong fragment’, because they have redundant values in at least one of the subsets.

In the case of the ‘level difficulty’ feature, it represents the level of difficulty of

attacks’ detection by learning algorithms. This feature was removed because its

information is not relevant to a real-world AD problem. Another pre-treatment

operation to the data was the conversion of nominal features to numerical features

since the algorithms to be employed afterwards cannot handle non-numerical data.



2.2 AD Methodology 21

After performing the cleaning of the subsets, two different pre-processing techniques

were applied to the data. First, the data with continuous features was discretized

with the equal frequency technique. With this technique, the values of the features

were divided into k bins in a way that each bin contains approximately the same

number of samples. Thus, each bin has n
k

adjacent values. The value of k is a

user-defined parameter, and to obtain this value we used the heuristic n where n is

the number of samples. This discretization technique can provide better accuracy

and fast learning in certain AD algorithms since the range of values is smaller [119].

The second pre-processing technique was data normalization, to have all the fea-

tures within the same scale. This operation prevents some classification algorithms

to give more importance to features with large numeric values. Once the features

are all on the same scale, the classifiers assign the same weight to each attribute.

The Z-Score and MinMax were the normalization techniques applied to the data.

The Z-score technique transforms the input, so the mean is zero and the standard

deviation is one. On the other hand, the MinMax transform the original input data

to a new specific set where the values range are between 0 to 1. We tested the

algorithms with each pre-processing technique and with both combined to evaluate

which techniques improve the performance of the algorithms. Then we made 5 ex-

periences with each algorithm with the best pre-processing techniques and calculate

all the performance metrics mean to compare their results.

2.2.2. ISCX dataset pre-processing

For this dataset, we did the following changes before applying the pre-processing

techniques shown in Figure 2.1 and described in the NSL-KDD dataset:

All nominal features were converted to numerical – the algorithms used cannot

handle non-numeric features;

All “Payload” features were removed – These are string features, so it is not

possible to train and test the algorithms with these features;

The source and destination IP address features were removed – There is no

interest in training the algorithms with these features since the IP addresses

are constantly changing;



22
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

A new feature was created to represent the time interval of an operation on

the network, defined as the difference between the features “stop date time”

and “start date time”.

2.2.3. Unsupervised Methods

Unsupervised learning algorithms are suitable for scenarios where the objective

is to perform outlier detection on a dataset. Some of these algorithms follow the

basic idea of learning from a training dataset that only contains normal samples,

and in the classification, the output is either “normal” if it resembles the learned

set or “outlier” if it does not. These algorithms are named one-class classification

methods and appear to be good candidates for the problems of discovering unknown

attacks since every attack can be considered an outlier. In this work, we applied a

set of 6 different one-class algorithms, namely Autoencoder, Nearest Neighbor, K-

Means, Isolation Forest, Support Vector Machines, and Scaled Convex Hull, where

performance was evaluated over the NSL-KDD and ISCX datasets. The description

of the methods can be consulted in Appendix A, Section A.2.

For the Autoencoder, the Area Under the Curve metric was employed to com-

pare the performance of the algorithm with different hyperparameters values. The

hyperparameters values used were:

Hidden c (50,5,50) - defines the number of hidden layers and units of the neural

network, in this case, the vector c (50, 5, 50) contains 3 values and each value

corresponds to the number of neurons per layer;

Activation: Tanh - we define the activation function hyperbolic tangent;

Epochs = 20 - Specify the number of times to iterate the dataset.

We used the h2o.anomaly function after the model finalized its training process. This

function is intended to detect anomalies in a dataset. The function reconstructs the

original dataset using the training model and calculates the MSE for each point in

the test set. Then we created a graphic that represents the reconstruction of the

mean square error as shown in Figure A.1. This graphic represents an example of a

test made on a test sample of the ISCX dataset. It turns out that at a certain point



2.2 AD Methodology 23

the MSE increases. This means that the model could not correctly identify these

records, which could be considered an anomaly. So, we drew a threshold, in this

case, equal to 0.002, where all records above this threshold are treated as anomalies.

For AD in the NSL-KDD and ICSCX datasets, and for the OCNN algorithm,

the value of k was chosen to be equal to 1 since this value obtained the highest

performance in the data classification.

Regarding the OC K-Means, the silhouette analysis that measures how close each

point in one cluster is to points in the neighbouring clusters was used. This measure

gives us information about the best parameter (number of clusters) to apply. In

both the NSL-KDD and ISCX datasets the ideal number of clusters was set to 4.

In our tests for the Isolation Forest, we used the default algorithm parameter of

100 trees in both datasets, since experimentally the variation of this parameter did

not show any substantial impact on the performance.

In the SCH experiments we found that the best hyperparameters for this algo-

rithm were:

A value of λ = 1, 22 in the NSL-KDD and a λ = 1, 11 in the ISCX dataset;

Around 2000 projections;

A center type that uses the average of the CH vertices in the projected space.

Finally, for the OC-SVM, the tests performed allowed us to obtain the best following

hyperparameters in AD for the NSL-KDD and ISCX datasets:

The radial base kernel function was used;

The γ = 0.3 in the NSL-KDD and γ = 4.2 in the ISCX (parameter used for

the radial basis kernel);

The v = 0.01 in the NSL-KDD and v = 0.005 in the ISCX.



24
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

2.3. Performance Evaluation

All combinations of the pre-processing techniques with the unsupervised learning

algorithms were tested and we present the results of the best techniques applied to

each algorithm for NSL-KDD and ISCX datasets in table 2.1. To evaluate the per-

formance of the classifiers we used several metrics described in Appendix A Section

A.3.

As we can see in table 2.1, the algorithms One-class K-means and 1-Nearest

Neighbor had the best performance applying the Z-Score techniques. The Isolation

Forest algorithm had the best results without any kind of data transformation as

it uses binary trees in the process of data recursive partitioning. In the case of the

Autoencoder, SCH and v-SVM had the best performances in detecting anomalies

by applying MinMax and EF techniques in the pre-processing phase.

Table 2.1: Comparative results using mean AUC (×100) for each algorithm using
the best combination of pre-processing techniques, in NSL-KDD and ISCX datasets

Best Pre-Processing
Techniques

OC Algorithms
NSL-KDD
(AUC)

ISCX
(AUC)

No pre-processing Isolation Forest 81.71 90.70
Zscore K-Means 84.76 77.06
Zscore 1-Nearest Neighbor 84.85 95.20
Equal Frequency + MinMax Autoencoder 83.65 80.44
Equal Frequency + MinMax Scaled Convex Hull 85.30 85.95
Equal Frequency + MinMax Support Vector Machines 83.14 91.63

Looking at the NSL-KDD results, the SCH classifier had the best performance

with an AUC value of around 85. The other algorithms obtained very close results

ranging between 81 and 84 AUC, where the 1-Nearest Neighbor was the second-best

classifier with an AUC close to 85. Regarding the ISCX dataset, analyzing the table,

we can observe that the 1-Nearest Neighbor algorithm obtained the highest AUC

result, followed by v-SVM. In this dataset, the AUC results were higher compared

to the NSL-KDD. One of the reasons for this is the fact that the NSL-KDD has 38

different types of attacks compared to the ISCX with only 4 different types.

To verify if there is a significant difference between the performance of the classi-

fier in both datasets we applied the Nemenyi post-hoc statistical test (See Appendix



2.3 Performance Evaluation 25

A Section A.4) and presented a critical difference diagram [56] as shown in Figure

2.2. As we can see all the algorithms are connected to each other (thickest horizontal

line underneath the critical difference scale), meaning that they are not significantly

different (at level α = 0.10).

Figure 2.2: Critical difference diagram, Nemenyi post-hoc test.

The non-significant difference between algorithms can be explained because we

only used two datasets to test the classifiers due to the lack of good datasets in the

cybersecurity field. Even though the classifiers are not significantly different to each

other, we can see that on average Nearest Neighbor, SCH and v-SVM have a high

score compared to the other three algorithms.

Since the test set has unbalanced classes, we plotted the performance of the

algorithms using other metrics that can measure the errors more in detail. These

metrics are: Recall, Precision and F1 score.

Starting with the NSL-KDD dataset, observing Figure 2.3, looking at the F1

score metric as it represents the harmonic mean combining the two other metrics,

we can see that all algorithms showed similar results. The isolation Forest and K-

Means with 53% and 55% respectively and the others ranging between 60% to 66%,

being SCH the algorithm with the highest F1 score. We can look also at precision

and recall metrics as to have a better perception of the false positives and false

negatives costs. Few false negatives represent a higher value of recall and vice-versa,

and we can also say the same regarding precision with respect to the false positives.

Observing the graphic in Figure 2.3, all algorithms except SCH and v-SVM had a

recall value much higher than precision, so the false positives were much higher than

the false negatives in these cases. In cybersecurity, it is important to have a low false

negative rate since it represents the worst-case scenario, where data is predicted as a



26
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

Figure 2.3: Anomaly detection results in NSL-KDD.

normal activity, while in fact, it represents malicious or abnormal activity. Regarding

the SCH and v-SVM, they both had the highest F1 score compared to the other

AD techniques but at the same time, they had more misclassified observations that

represent false negatives than misclassified observations representing false positives.

Analyzing Figure 2.4, concerning the ISCX dataset, we observe that Nearest

Neighbor, SCH and v-SVM have much better performance results than those ob-

tained for the NSL-KDD. On the other hand, the Isolation Forest and K-means

algorithms remained with approximately the same results as in NSL-KDD. Another

fact that can be observed is that the algorithm SCH generates fewer false negatives

and increases the false positives when trying to detect the four different types of

attacks contained in the ISCX dataset.



2.4 Conclusion 27

Figure 2.4: Anomaly detection results in ISCX.

2.4. Conclusion

Threats in information systems have become increasingly intelligent and they

can deceive basic security solutions such as firewalls and antivirus. Anomaly-based

IDSs allow monitored network traffic classification or computer system calls classifi-

cation in normal activity or malicious activity. The efficiency of intrusion detection

depends on the techniques used in these systems. As mentioned, the work carried

out was motivated by the SASSI project. The goal was to verify if any of the

unsupervised techniques presented in this paper could be implemented in an IDS

to support Systems administrators in the decision-making process of anomaly and

novelty detection tasks. We can conclude that all algorithms could detect most of

the anomalies and also showed that they managed to separate adequately the data

between classes even though they were unbalanced (to represent a more realistic

environment). To choose the best method, we focus not only on the overall perfor-



28
Chapter 2. Performance evaluation of unsupervised techniques in cyber-attack

anomaly detection

mance but also on the type of errors generated. Analyzing the performance metrics,

we conclude that the 1-Nearest Neighbor, SCH and v-SVM presented the highest

results in both datasets but the SCH and v-SVM generated more false negatives

than false positives errors in the NSL-KDD dataset. Being this type of error an un-

desirable scenario in cybersecurity, we suggest the implementation of the 1-Nearest

Neighbor since it is capable of detecting most of the anomalies and moreover it was

also one of the fastest unsupervised techniques in the computing process of AD. Al-

though unsupervised learning methods are great to generalize, detecting unknown

patterns and also handle unlabeled data problems, they have also some constraints.

These methods can’t be too specific about the definition of the data, leading to less

accuracy (generating a high number of false positives for this specific problem), also

most implementations can’t deal with large datasets due to their high computational

power.



Chapter 3

Fast Anomaly Detection with

Locality-Sensitive Hashing and

Hyperparameter Autotuning

In this chapter, we will introduce a new AD method that addresses several lim-

itations of traditional unsupervised methods, some of which were presented in the

previous chapter. Specifically, this novel method is designed to be distributed, al-

lowing it to scale to large datasets and handle high-dimensional data efficiently. The

proposed method was published in The Information Sciences Journal [135]. It also

includes an automatic hyperparameter tuning mechanism, allowing for improved

performance through the optimization of model parameters. By leveraging its dis-

tributed architecture and hyperparameter tuning capabilities, it is able to detect

anomalies with greater accuracy and efficiency than many traditional approaches.

Overall, this chapter will provide a detailed overview of the design and performance

of this novel AD method, highlighting its advantages and potential applications in

a variety of settings.

As mentioned in Chapter 1, anomalies are events that differ sufficiently from

most of the data to indicate that they have been generated from a different process.

Their minority nature is problematic, as this hinders the use of supervised ML

methods, given that it is difficult to find or build data with these labelled events.

As a solution, unsupervised techniques can be used that can be trained to model

29



30
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

normal data on unlabeled data, thereby enabling patterns that deviate from the

normal to be detected.

The literature records a wide variety of AD methods that can be categorized

according to a given approach [43]. Proximity-based algorithms detect anomalies

by measuring their proximity to normal data points, such that elements distant

from all others can be regarded as anomalies. This category includes distance-based

methods, which rank elements according to their distance from neighbours, and

density-based methods, which compare the density around a data point with that of

local neighbours. Our proposed method is a density-based method. With density-

based methods, the working assumption is that points located in low-density regions

have a high probability of being anomalies: the density around a normal point is

similar to the density around its neighbours, but is considerably different from the

density around an anomaly [111]. Our method (described in detail in Section 3.3)

corresponds to this category since its main characteristic is to randomly split data

into different density groups and then analyze the density of each data point so as to

infer an anomaly score. Several density-based anomaly detection methods have been

described in the literature, including LOF [27], and some of its variations [96, 184],

LOCI [151] and Loop [110].

AD models are becoming increasingly popular, partially due to increasingly large

datasets in a Big Data context, and unlabeled data are increasingly common, mainly

because sources vary greatly, e.g., connected devices such as cell phones, fleets of

vehicles, or industrial machinery; anomalies, for instance, could derive from a ma-

chine on the verge of malfunctioning, or a vehicle that has experienced unusual

environmental conditions. AD for large quantities of data is a difficult task, as it

requires considerable computational resources. One solution is the development and

application of distributed AD methods.

When dealing with large datasets, a distributed paradigm allows for parallel

computation to distribute data across different nodes, with each node operating on

the data in parallel. The immutable nature of distributed operations, such as in the

Apache Spark framework, helps ensure consistency in computations. To exemplify,

assume that we have a task such as summing all n elements of a given dataset, and

the time for a single operation is t units. In the case of sequential execution by a

single processor, the summation time required will be n ∗ t, but if execution is by 4



31

processors, time would be reduced to (n/4) ∗ t plus merging overhead in time units.

Scalability is becoming a must for this type of task, although at present only a few

algorithms are able to cope with large datasets [77, 62, 61].

Another field that has emerged in recent years is AutoML [16]. Almost every

ML method has hyperparameters, and thus a key task is the optimization of these

hyperparameters so as to maximize algorithm performance. AutoML automatically

sets these hyperparameters to optimize performance, thereby reducing human effort

and obtaining a more rapid and simple solution.

The method that is presented in this chapter describes a novel density-based

method for AD, called LSHAD, based on the LSH technique. LSHAD was devel-

oped to address the above-described problems regarding the difficulty of processing

very large datasets composed of data generated daily, and the lack of unsuper-

vised methods for AD problems capable of automatically adjusting hyperparameters.

Therefore, the main contributions of this work are the following:

Adaptation of the LSH technique to AD in large datasets.

Autotuning of hyperparameters. ML success heavily relies on humans to select

appropriate hyperparameters, a very complex and time-consuming task that

becomes even more critical when it has to be carried out by ML non-experts

rather than experts, which happens quite often. There is therefore a great

need for AutoML methods [16].

A distributed algorithm, since development is in the Apache Spark framework

using the MapReduce approach for distributed environments

This method is rapid and effective when the objective is to process large quantities of

data in search of anomalies. It achieves a similar (in some cases better) performance

in AD compared to other methods. It also has the advantage over alternative meth-

ods that it is rapidly configured, as there is no need to tune hyperparameters, and

can handle large datasets. By being able to process large amounts of data efficiently,

this method can help reduce the computational resources needed for anomaly de-

tection, which can reduce the environmental impact. Furthermore, the automatic

hyperparameter tuning capabilities of the LSHAD method can help ensure that the

method is being used in the most resource-efficient way possible, which can further



32
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

contribute to its sustainability. The scalable and efficient nature of the LSHAD

method makes it a valuable tool for promoting sustainability in anomaly detection.

The rest of this chapter is organized as follows: Section 3.1 describes the LSH

technique developed by Indyk and Motwani [94] and applied to our algorithm; Sec-

tion 3.2 reviews SotA methods used for AD; Section 3.3 explains LSH detailed

functionalities and describes 4 different types of estimators. Section 3.4 describes

our LSHAD algorithm, explains the automatic hyperparameter tuning process, and

describes an experiment to identify the best estimator. Section 3.5 evaluates our

method and compares it to other algorithms in terms of AD and execution time.

Finally, Section 3.6 summarizes our main conclusions.

3.1. Background

The basic concept underlying LSH, introduced by Indyk and Motwani [94], is

to identify approximate nearest neighbors through the use of hash functions. The

underlying principle that two points in the feature space that are close to each other

are very likely to have the same hash function. LSH is formally defined by Indyk

and Motwani [94] as follows:

Definition 1. Given a space Rdim, and distance thresholds r1, r2, a family H ={
h : Rdim → U

}
is called (r1, r2, P1, P2)-sensitive if for any two points p, q ∈ Rdim it

satisfies:

if ∥p− q∥ ⩽ r1 then PH[h(q) = h(p)] ⩾ P1,

if ∥p− q∥ ⩾ r2 then PH[h(q) = h(p)] ⩽ P2.

The first condition above states that nearby objects within distance r1 will collide

in the same bucket with a high probability, whereas the second condition states that

distant objects will be hashed to the same bucket with a small probability. In order

for a family H to be useful it has to satisfy P1 > P2 and r1 < r2.

Generated from H is a h hash function by the concatenation of various L

random projections (a user-specified parameter explained in Section 3.3), h =<

proj1, proj2, ..., projL >. As shown in Definition 1, the method is probabilistic, so



3.2 Related Work 33

the problem of false neighbor detection needs to be dealt with. A common practice

to make the hashes more specific by increasing L. However, if hashes are very spe-

cific, many points may end up in different buckets from their neighbors. Therefore,

T hashes are generated for each point. The impact of L and T on algorithm perfor-

mance is studied in Section 3.4. LSH speeds up the search for neighbors in requiring

much less computational effort than the brute-force approach of measuring every

possible pairwise distance. LSH and variants have already been successfully applied

in practical scenarios such as computer vision [115], recommender systems [49], and

linguistics [1]

In implementing the LSH technique in our AD algorithm, the goal is to rapidly

retrieve neighbor counts to be used as a ranking score for AD. We assume that points

with few neighbors are very likely to be anomalous. An advantage of using this

technique is that it rapidly processes data in high-dimensional spaces, which, when

combined with distributed implementation in Apache Spark, makes our LSHAD

algorithm highly scalable.

3.2. Related Work

Below existing work related to AD and outlier detection algorithms, with very

similar definitions [178] is described. We first describe frequently used and recent

general methods, then we focus on density-based methods, and lastly, some LSH

variants.

Liu et al. [118] developed their Isolation Forest algorithm that works with binary

trees. Each tree is created by partitioning instances recursively and randomly se-

lecting a split value for a specific attribute. Tree path length is used as an anomaly

score, with data points with shorter path lengths considered anomalies.

OC-SVM [171], a variant of the classical SVM algorithm, is another method

that can be applied to AD problems. It relies on finding the smallest hypersphere

containing all training examples after mapping by a kernel function. Different ap-

proaches to fitting an SVM model are training with data from different classes,

training with data from unknown classes, and training with data from a single class.

In the OC-SVM method, all the data in the training set are represented by only one



34
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

class. In AD problems the method is usually used to train data belonging to the

non-anomalous class, as these data are commonly available. The algorithm separates

all data points from the origin and maximizes the distance from the hypersphere to

the origin, resulting in a binary function that captures regions in the input space

where the data density probability is high [171].

Mart́ınez-Rego et al. [126] proposed a modification of the One-class classification

with a PA-I algorithm combining it with a Bernoulli CUSUM chart to deal with

stream change problems. With this adaptation, the method is capable of accurately

fitting the support of normal data in an online fashion. Thus, it can dynamically

adapt to changes in data distribution.

Deep learning is still a hot topic, with numerous applications and approaches

described in the literature in fields such as computer vision [25], speech recognition

[152], natural language processing [85, 79], etc [89, 91]. Deep-learning methods are

also widely used in AD problems [42], especially the autoencoder architecture [40].

This method is trained in order to make output features the same or very similar to

input features [80]. Autoencoders are composed of two parts: the encoding layer(s)

compress(es) the input into a latent-space representation, and the decoding layer(s)

reconstruct(s) the output from this representation. The anomaly ranking score

is computed from the reconstruction error metric, which measures the difference

between input and output data.

Eiras-Franco et al. [62] recently proposed the ADMCN algorithm, which, as

the name indicates, targets data with both categorical and numerical variables.

The model is trained through a maximum-likelihood objective function optimized

with stochastic gradient descent. It is capable of dealing with large quantities of

data since implemented in Apache Spark, the algorithm lends itself well to parallel

computation.

Concerning density-based methods, Breunig et al. [27] proposed the LOF algo-

rithm, which searches for anomalous data points by measuring the local deviation of

a given point from its neighbours. The same concept inspired other developments,

such as LOCI [151], which aims at fast outlier detection using the local correlation

integral. This improved method can identify not only outliers but also groups of

outliers, providing an automatic cutoff to determine whether or not a point is an out-



3.2 Related Work 35

lier. Its main drawback is its quadratic complexity, which makes it computationally

expensive, and thus prohibitive for very large datasets.

LSH methods have recently been successfully applied to AD problems. Wang et

al. [199] proposed an LSH framework for ranking points according to the likelihood

that they are anomalous. The data is first split in clusters and then a ranking of

points is computed by building LSH tables. Each point is next evaluated according

to its rank to isolate a certain number of anomalies. This ranking mechanism is

based on the number of points hashed to the same bucket on the assumption that

points in buckets with few elements are likely to be anomalies. The authors reported

that they could isolate the top anomalies very quickly, usually by scanning less than

3% of the dataset, and in their empirical study their method outperformed other

AD methods, although the comparison was with just two other methods.

Pillutla et al. [158] presented an approach in which LSH is used to prune non-

outlier data points according to their redundancy in a hash table. The algorithm

then processes the data using the pruned points, which makes this approach compu-

tationally less costly. The authors developed a distributed system for their algorithm

and evaluated their method in terms of AD and communication time, but did not

compare their method with other algorithms.

Zhang et al. [208] proposed a density-biased sampling approach using LSH to

count neighbors and obtain a scalable density estimate. They also proposed a param-

eter tuning rule, specific to AD for LSH. They formally investigated density-biased

sampling for AD, suggesting that, given the different importance of data points ac-

cording to density, this approach to sampling would have a higher impact on AD

performance compared to uniform sampling, and conducting an empirical study to

compare the approaches.

The works by Wang et al.[199], Pillutla et al.[158], and Zhang et al.[208] described

in this section use LSH techniques for AD problems. We identified the following

differences with our method:

Although the results reported by Wang et al.[199] showed that their method

is more scalable than others included in their study, they did not mention

whether their method is capable of performing distributed computing (as was

the case for Pillutla et al.[158]). Implementation of our method in Apache



36
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

Spark enables distributed data processing across various processor cores, and

thereby enabling larger datasets to be handled than handled by competitors.

Our method adjusts hyperparameters automatically, relieving the user of this

time-consuming task and contributing to the AutoML field.

Our experimental study (described in detail below) is much broader, as we

compare our method across a wide range of datasets and with different AD

methods.

Table 4.3 summarizes the different methods, considering hyperparameter auto-

tuning and distributed computing capabilities.

Table 3.1: Characteristics of different anomaly detection algorithms

Methods Auto-Hyperparameter Distributed
One Class SVM Yes1 No

LOF Yes1 No
LOCI No No

Pillutla et al.[158] method No No
Wang et al.[199] No No
Zhang et al.[208] No No

PA-I No No
Autoencoder No Yes

IForest No No
ADMNC No Yes
LSHAD Yes Yes

3.3. Proposed Method

Before we describe the use of the LSH technique for AD, we explain the automatic

hyperparameter tuning mechanism implemented in our method and the impact of

each hyperparameter on the process of generating random projections and creating

1It has several hyperparameters, with only one tuned automatically



3.3 Proposed Method 37

groups of neighbors. We also describe several density estimators that measure the

number of neighbors for each data point.

The main idea behind our method is to obtain an estimate of the density of

the different input space regions rapidly and inexpensively thanks to distributed

computation using the MapReduce approach implemented in Apache Spark [205].

Our proposed method leverages the LSH technique by applying hash functions to

group data points in buckets with their neighbors. The number of neighbors in

each bucket is then used to compute several evaluation metrics that score and rank

elements according to level of anomaly. This process is described in Algorithm

1. First, a suitable set of hyperparameters is obtained using the tuning procedure

described in Section 3.4 (Line 1). Then a hasher, consisting of L ∗ T hyperplanes,

is created to obtain the hashes for each element in the training dataset D. The

number of elements corresponding to each hash is counted and used to compute an

estimator (Line 3). Finally, the estimator values are used to establish a threshold

below which a point is considered an anomaly. The threshold is selected so that the

number of elements that fall below it corresponds with the anomaly ratio for the

training data, which is provided by the user.

Algorithm 1: Pseudocode for LSHAD. Training phase.

Input : D ← Set of training points,
anomalyRatio← Fraction of the dataset expected to be

anomalous
Output: hasher ← set of hyperplanes to obtain hashes,

estPerHash← dictionary associating each hash with its
estimator value,

threshold← estimator value used to deem an element to be
anomalous

1 L, T, w ← tuneHyperparameters(D);
2 hasher ← new Hasher(L, T, w);
3 estPerHash← hasher.hashAndEstimatePerHash(D);
4 threshold← computeThreshold(estPerHash, anomalyRatio);

The model, consisting of an estimator value for each hash, a set of projection hy-

perplanes, and a threshold value, is fitted to the training data, and assessing whether

a test point p is an anomaly follows the process described in Algorithm 2. First, the

hashes for p are computed (Line 1), then the estimator values corresponding to the



38
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

assigned hashes are accumulated. If the resulting value fails to reach the threshold

established by the learned model, then p is an anomaly.

Once the model is trained, predictions can be made using the Algorithm 2.

Checking a test point requires generating all its hash values with the hasher. An

estimator is calculated using the precomputed counts in the model, which represent

the properties of the training data distribution.

Algorithm 2: Pseudocode for LSHAD. Detection phase.

Input : p← Test point,
hasher ← Hasher of the trained model,
estPerHash← Estimator dictionary,
threshold← Estimator threshold

Output: Boolean value indicating whether p is an anomaly
1 hashes← hasher.hash(p);
2 estimator ← 0;
3 foreach h ∈ hashes do
4 estimator ← estimator + estPerHash[h];

end
Result: estimator < threshold

3.3.1. Hashing

Although the LSH techniques that we use can draw on many LSH hash fami-

lies, since our implementation is based on the Euclidean distance, we selected the

corresponding classical hash function, formally computed as follows:

proj(x|α, β) = ⌊x · α + β

w
⌋ (3.1)

The projection proj(x|α, β) : Rd → Z maps a d dimensional vector x, represent-

ing each data point, onto the set of integers, where α is a random vector drawn

from a Gaussian distribution, and where β is a real number uniformly chosen from

the interval [0 : w]. This scalar projection is then quantized into a set of hash

buckets, grouping all elements that are close together in the original space in the

same bucket. The user-specified hyperparameter w in Equation 3.1 represents the



3.3 Proposed Method 39

resolution of the quantization. Figure 3.1 shows one such hash function, consisting

of a random projection in 2 dimensions with a specific w value.

Figure 3.1: Random projection in 2 dimensions. Axis x, y ∈ Q and the blue dots
are composed by random values from Q.

A hash function, represented by such L random projections, defines the hash

value (Equation 3.2):

H(x) =< proj1(x|α1, β1), ..., projL(x|αL, βL) > (3.2)

Where proji(x|αi, βi), 1 ≤ i ≤ L (from Equation 3.2) is computed by Equation 3.1.

After all the hash functions are generated, observations with the same hash values

are grouped together.

Using the same notation as used in Definition 1 in Section ??, in order for a

family H to be useful it has to satisfy the condition that the probability of P1 is

much higher than that of P2. Hash functions H(x) will, in some cases, not fulfill

this condition, especially as they are generated at random. To ensure that P1 > P2

while taking into account the probabilistic properties of H(x), T hash tables are

created, each one indicating the hash of each data point. As a result, each point x



40
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

will receive a set of hashes {H1(x), H2(x)...HT (x)}. When grouping elements with

the same hash, the method creates groups of elements that have a high probability

of being close together. However, increasing the values of parameters L and T also

increases the computational complexity of the algorithm, since more hashes need to

be generated. It is therefore necessary to identify suitable values for these parameters

that trade off accurate AD against as little computational effort as possible.

Figure 3.2 shows an example of a hash table H(x), with data points on the left

and the hash table on the right. The rows represents different hash values and the

righthand column shows the collisions, which occur when data points share the same

hash value.

Figure 3.2: Hash table example

3.3.2. Anomaly level estimation

Once a suitable hasher has been found, the next step is to estimate the density

of the regions of the input space represented by each hash. Points hashed to low

estimator buckets will be deemed anomalous. We explored 4 different density esti-

mators, as follows. Let D be the input dataset and let bh = {x ∈ D,H(x) = h} be

the set of points with hash h in one of the tables t. We define the neighbors of point

x as the set of elements in the dataset that share a hash with x across all T tables:

neigh(x) =
⋃T

t=1 bHt(x):

Estimator A represents the number of points in the bucket:

EA(h) = |bh| (3.3)



3.3 Proposed Method 41

Estimator B is the average number of neighbors of the points contained in the

bucket:

EB(h) =

∑
x∈bh neigh(x)

|bh|
(3.4)

Estimator C represents the ratio between EA(x) and EB(x):

EC(h) =
EA(x)

EB(x)
(3.5)

Estimator D represents the sum of the inverse of the number of neighbors of

all points in the bucket:

ED(h) =
∑
x∈bh

1

neigh(x)
(3.6)

In Section 3.4 we analyze the 4 estimators to determine which one gives the best

anomaly ranking score.

3.3.3. LSHAD framework

LSHAD is implemented in the Apache Spark framework, designed for fast per-

formance using RAM for caching and MapReduce for processing data. Parallel

computation is enabled by the use of RDD, an immutable partitioned collection of

records with partitions that can be operated in parallel. Even though RDD are im-

mutable, they can be transformed into other RDD using functions such as mapping,

filtering, joining, groupBy, etc. The immutability ensures consistent computations

since any changes in RDD are permanent; the fact that data can be safely shared

across various processes and threads enhances the computation process by caching

RDD. Figure 3.3 shows how LSHAD makes use of RDD to compute tasks in parallel.

First, LSHAD splits data into train and test sets, and each set is transformed

into an RDD in which data is partitioned according to a user-defined number of

nodes/partitions that allowing task to run in parallel. In the training phase, LSHAD

adjusts its hyperparameters in 2 iterative steps performed in parallel in the multiple

partitions, namely, creating hashes, and retrieving specific measurements to search



42
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

for the w size values that build optimal hash tables. Section 3.4 describes this

process in detail.

Figure 3.3: LSHAD diagram

In the testing phase, LSHAD calculates new hashes for each test point in each

partition. It then accumulates the estimator values corresponding to the hashes

assigned to all evaluated points. Finally, all estimator values are collected and

compared to a threshold value to determine whether an observation is normal or

anomalous.



3.4 Hyperparameter Tuning and Experimentation 43

3.4. Hyperparameter Tuning and Experimenta-

tion

AutoML has been a hot research topic in recent years [16], as applying traditional

ML methods is time-consuming, resource-intensive, and challenging. Manual hyper-

parameter tuning is challenging, as besides being very computationally expensive,

hyperparameter tuning has a great influence on the final algorithm results.

Given the possible difficulties faced by a non-expert user in tuning hyperparam-

eters when only unlabeled data is available, for LSHAD, we implemented automatic

hyperparameter tuning, studying the behavior of each user-specified parameter, that

is, the resolution of quantization buckets w, the number of random projections L,

and the number of tables T .

3.4.1. Datasets

To analyze the hyperparameters and evaluate various AD methods, we selected

several datasets widely used in the literature for classification tasks but adapted for

AD tasks. The datasets, presented in Table 3.2, were downloaded from the UCI ML

[60], Zenodo2 and Stratosphere Research Laboratory3 Repository.

Regarding the UCI ML Repository datasets, we used a version of Abalone, which

contains data on abalone shell characteristics that predict its age (number of rings

of a cut shell). The idea is to observe whether an algorithm can identify differences

in specific age ranges. Thus, for Ab. 1-8, Ab. 9-11, and Ab.11-29, classes considered

anomalous are 1-8, 9-11, and 11-29, respectively, while all other classes are considered

non-anomalous

Also used was a sample of 20% of the CoverType dataset, composed of carto-

graphic variables that classify different types of forest cover. In this dataset, class

2 instances (Lodgepole Pine) were considered normal, while class 4 instances (Cot-

tonwood/Willow) were considered anomalous.

Other datasets selected from the same repository were German Credit, Arrhyth-

2https://zenodo.org/
3https://www.stratosphereips.org/



44
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

Table 3.2: Datasets used to analyze hyperparameter tuning and anomaly detection
evaluation

Synthetic datasets Samples Features
2 banana clusters (2BC) 1,000 2
2 circular clusters (2CC) 1,000 2
2 point clouds with variance (2PV) 1,000 2
3 anisotropic clusters (3AC) 1,000 2
3 point clouds (3PC) 1,000 2
Real datasets: small - -
Abalone 1-8 (Ab. 1-8) 4,177 11
Abalone 9-11 (Ab. 9-11) 4,177 11
Abalone 11-29 (Ab. 11-29) 4,177 11
Arrhythmia (Arrhyth) 420 278
German Credit (GC) 1,000 20
Heart 270 14
Pima Diabetes (Pima) 768 9
Breast Cancer (Breast) 683 10
Real datasets: medium - -
CoverType (CT) 56,911 12
KDDCup99 (KDD99) 44,000 41
KDDCup99 (http) (KDD99h) 64,293 40
KDDCup99 (smtp) (KDD99s) 97,23 40
IDS 2012 42,301 27
IOT-23 sample (ID dataset: 1) 44550 18
Real datasets: large - -
IOT-23 (ID: 1) 1,008,749 18
IOT-23 (ID: 3) 156,101 18
IOT-23 (ID: 7) 11,454,723 18
IOT-23 (ID: 9) 6,378,294 18
IOT-23 (ID: 17) 54,659,864 18
IOT-23 (ID: 33) 54,454,592 18
IOT-23 (ID: 35) 10,447,796 18
IOT-23 (ID: 36) 13,645,107 18
IOT-23 (ID: 39) 73,568,982 18
IOT-23 (ID: 43) 67,321,810 18
IOT-23 (ID: 48) 3,394,347 18
IOT-23 (ID: 49) 5,410,562 18
IOT-23 (ID: 52) 19,781,379 18
IOT-23 (ID: 60) 3,581,029 18



3.4 Hyperparameter Tuning and Experimentation 45

mia, Pima Diabetes, Breast Cancer, Heart, three versions of the KDDCup99 dataset,

and finally, IDS 2012, an update of the KDDcup99 that solves some of its problems.

For the German Credit dataset, representing people receiving bank loans classified

as good or bad credit risks according to specific attributes, we considered bad credit

risk as the anomalous class. For the Heart dataset, we considered patients with the

disease to be an anomalous class. Regarding KDDCup99, a well-known intrusion

detection dataset, we used the following versions: KDD99 (a sample of the full KD-

DCup99 with all cyberattacks), KDD99-SMTP (reduced KDDCup99 filtering only

SMTP connections), and KDD99-HTTP (reduced KDDCup99 filtering only HTTP

connections). For the KDDCup versions and the IDS 2012 datasets, we considered

any sort of intrusion as anomalies.

From the Zenodo repository, we took a synthetic dataset of two-dimensional

combinations of attributes of clusters of different shapes (see Figure 3.4).

Figure 3.4: Synthetic dataset of shapes representing 2 circular clusters (2CC), 2
banana clusters (2BC), 3 point clouds (3PC), 2 point clouds with variance (2PV),
and Anisotropic Clusters (3AC).

From the Stratosphere Research Laboratory repository, we took a newly released

dataset called Aposemat IoT-23, containing several subsets of malicious and benign



46
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

network traffic for real IoT devices, for which we consider attacks as anomalies.

To analyze hyperparameter behaviour and test the estimators we used 8 real

datasets, namely, Ab.1-8, Arrhythmia, German Credit, CoverType, all KDDCup99

versions, and IDS 2012, and to evaluate and compare the AD methods we used all

datasets, as described in Section 3.5.

3.4.2. Hyperparameter analysis

To analyze the behaviour of each hyperparameter and its impact on the per-

formance of our method, we conducted an experimental study to identify regular

patterns or correlations between the performance of the LSHAD algorithm and hy-

perparameter values in order to build an automatic tuning mechanism.

For all the experiments we used five-fold cross-validation, computing the average

for each metric used. For this particular study, the datasets were modified in order

to retain 1 % of anomalies. This was done to both provide an accurate anomaly rate

to the algorithm, and to ensure that normality is learned by keeping the number

of anomalies low. This would not be possible in real-life as the user would have

verified that the training dataset represented normality and would need to provide

an estimate of the anomaly rate for the training dataset.

We first fixed a constant value for the parameter w and tested the performance of

the algorithm using the metric area under the curve (AUC) for one of the estimators

for different values of L and T .

Analysing the results, it was observed that by increasing the number of hash

tables (T), LSHAD performance remained very similar irrespective of the number

of random projections, L, to be generated. We tested values from 1 to 128 for L for

each different T value; for visualization purposes, Figure 3.5 shows a plot of LSHAD

AUC performance measured for 2 random projections, L = 2, and for different hash

table values T (from 5 to 1,000). As can be observed, LSHAD performance improves

as the number of hash tables increases, until stagnating at a particular AUC value.

This behaviour was expected, as mentioned in Section ??, as repeating this random

process several times will increase the likelihood that 2 similar data points will collide

in the same bucket. As can be seen in Figure 3.5, for most datasets the LSHAD



3.4 Hyperparameter Tuning and Experimentation 47

5 10 50 100 500 1,000

0.5

0.6

0.7

0.8

0.9

1

T

A
U

C

Abalone1-8 Arrhythmia German Credit

CoverType KDD99 KDD99-HTTP

KDD99-SMTP IDS 2012

Figure 3.5: LSHAD performance (AUC) varying the hyperparameter T , the number
of hash tables.

performance approached optimum at T = 50; for higher values, performance was

maintained or slightly improved, while in some cases, the repetition resulting from

a high number of hash tables deteriorated performance.

Figure 3.6 depicts the model AUC versus different values of L (for a fixed T=50),

showing that different L values have a small impact on LSHAD performance for the

CoverType dataset4 and all the KDD99 dataset versions. Performance deteriorated

greatly for Abalone 1-8 with more than 8 random projections and for Arrhythmia,

with more than 32 random projections, and improved greatly for IDS 2012 with

more than 16 random projections. No conclusions could be drawn regarding the

effect of L in the German Credit dataset; therefore, we fixed the parameter L = 4,

as an acceptable value to trade off performance against computational cost. This

is because shorter hashes require less memory in saving the model and so can be

4Performance is similar to that for KDD99-SMTP but this is not visible in Figure 3.6 since the
corresponding line is behind the KDD99-SMTP line.



48
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

1 2 4 8 16 32 64

0.5

0.6

0.7

0.8

0.9

1

L

A
U

C

Abalone1-8 Arrhythmia German Credit

CoverType KDD99 KDD99-HTTP

KDD99-SMTP IDS 2012

Figure 3.6: LSHAD performance changing the hyperparameter L, the number of
random projections

processed faster.

In the next experimental step, for the same test approach, we fixed the values of

both the T and L parameters. We set T = 50, because, as observed from Figure 3.5,

performance improvement is not significant beyond that value, and we set L = 4 as

the optimal tradeoff value described above.

Using these fixed values, we analyzed the effect of w, the length of the quanti-

zation buckets, with Figure 3.7 showing that w has a great impact on AD accuracy,

although its optimal value depends on the characteristics of the dataset. Conse-

quently, when T = 50 and L = 4, performance can be optimized by simply tweaking

w. This simplifies the hyperparameter tuning process, which is merely a matter of

finding a suitable w value for the given dataset.

For an unlabeled dataset, however, the effect of w on AD detection accuracy

cannot be directly observed, since no labels are available to measure performance.

To obtain more information, we thus extracted other indirect unsupervised metrics



3.4 Hyperparameter Tuning and Experimentation 49

0.25 0.5 1 2 4 8 16 32 64 128

0.2

0.4

0.6

0.8

1

w

A
U

C

Abalone1-8 Arrhythmia German Credit

CoverType KDD99 KDD99-HTTP

KDD99-SMTP IDS 2012

Figure 3.7: LSHAD performance changing the hyperparameter w, the quantization
bucket length.

to observe if they were correlated with algorithm performance:

BC: number of buckets generated.

ABS: Let |D| be the cardinality of the input data and let b be each bucket size

from B buckets generated. Hence:

ABS =

∑
b∈B b

BC

|D|
(3.7)

ABD: Average Euclidean distance of the first element in the bucket to its

neighbours.

To assess the suitability of these metrics, we explored several w values for the

datasets and plotted each metric versus the AUC. While no pattern was observed

for the BC and ABD metrics, the ABS was found to contain useful information. For



50
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

0.0001 0.001 0.01 0.1 1

0.2

0.4

0.6

0.8

1

ABS

A
U

C

Abalone1-8 Arrhythmia German Credit

CoverType KDD99 KDD99-HTTP

KDD99-SMTP IDS 2012

Figure 3.8: LSHAD performance for different w values, with the ABS metric on the
horizontal axis.

most of the tested datasets, LSHAD performance was much improved when ABS

was in the range [0.05, 0.1], as can be observed in Figure 3.8. ABS can therefore be

used to obtain a suitable value for w since a w value that lands ABS in the [0.05, 0.1]

range will be likely to achieve good AD accuracy. Moreover, since the effect of w

on ABS is known (a larger w increases ABS, while a smaller w decreases ABS), the

search for a suitable w can be performed efficiently.

3.4.3. LSHAD with hyperparameter autotuning

Algorithm 3 depicts our LSHAD model, which takes into account the ABS metric

above. It begins by estimating a suitable value of w using a binary search.

A search interval must first be set, for which the lower threshold is always set

to 1 (line 2). The upper threshold is found by doubling the w value and using it

for hashing until small enough buckets result (line 3). That range is then explored



3.4 Hyperparameter Tuning and Experimentation 51

Algorithm 3: Pseudocode for LSHAD:. Hyperparameter training.

Input : D ← Set of training points
Output: L, T, w ← tuned hyperparameters

1 L← 4, T ← 50;
2 wCandidate← 1, avBucketSize← 0, leftLimit← 1, rightLimit← 1;
3 while avBucketSize < 0.05 do
4 avBucketSize← hashGroupAndCount(D,L, T, wCandidate);
5 wCandidate← wCandidate ∗ 2;

end
6 rightLimit← wCandidate;
7 while avBucketSize < 0.05 or avBucketSize > 0.1 do
8 wCandidate← ⌊(leftLimit + rightLimit)/2⌋;
9 avBucketSize← hashGroupAndCount(D,L, T, wCandidate);

10 if avBucketSize < 0.05 then
11 leftLimit← wCandidate;

end
12 if avBucketSize > 0.1 then
13 rightLimit← wCandidate;

end
14 if leftLimit >= rightLimit then
15 break;

end

end
Result: L, T, wCandidate

using a binary search (loop on line 7) to find a value for w that produces buckets

with an average number of elements between 0.05 and 0.1 times the size of D. Once

found, L,T and the retrieved w are reported as the tuned hyperparameters.

3.4.4. Estimator experiments

Regarding the proposed estimators in Section 3.3, namely, EA(h), EB(h), EC(h),

ED(h), we compared their AUC performance for each given dataset to determine

which produced the best ranking score for classification. Figure 3.9 depicts a graph

showing the AUC score for each estimator, showing that they all produced similar

results with small variations in the AUC for different datasets. In fact, the statistical

Nemenyi post-hoc test [56] with α = 0.05 could not significantly differentiate the



52
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

estimator scores (see Figure 3.10). We chose our algorithm to use the C estimator

by default as it was the estimator with the lowest critical difference value.

A
b.
1-
8

A
rr
hy

G
.C
.

C
ov
er
T
yp
e

K
D
D

K
D
D
-h
tt
p

K
D
D
-s
m
tp

ID
S

0.6

0.8

1

Estimator AUC

A B C D

Figure 3.9: AUC scores for the different estimators

Figure 3.10: Nemenyi statistical test for the estimator AUC scores

3.5. Performance Evaluation

Below we evaluate the LSHAD algorithm compared to other methods in terms

of processing time and AD performance.



3.5 Performance Evaluation 53

3.5.1. Applied Methods

To measure and compare the performance of our method against other meth-

ods, a variety of state-of-the-art algorithms (many referred to in Section 3.2) were

selected. As LSHAD is a density-based method, we first selected the well-known

LOF and LOCI methods and used Euclidean (E), Jaccard (J) and Hamming (H)

distances, for which we employed a Matlab implementation5. From the same cate-

gory, we also selected the approach by Zhang et al.6 [158], as it also uses LSH for

scalable density estimation; in this case, we tested their JAVA implementation7 of

4 algorithms using their PDBS, namely:

1 Sample PDBS (1 Samp PDBS)- drawing one sample for all points to

compute the k-NN distance

Iterative PDBS (Ite PDBS)- drawing one sample for each point to compute

the k-NN distance

Iterative+Ensemble PDBS (Ite+Ens PDBS)- drawing multiple samples

for each point to make ensembles for the k-NN distance

Isolation Forest PDBS (IForest PDBS)- using the IForest detection method.

Other methods related to unsupervised AD were also selected for our evaluation: the

Autoencoder implementation in Python using the Elephas8 framework, an extension

of Keras that allows distributed deep-learning models to be run at scale with Spark;

the One-Class SVM with radial basis (SVM-R) and linear (SVM-L) kernel functions,

for which we used the Matlab LibSVM interface9; a distributed version of SVM that

can handle large datasets (DOC-SVM) [39]; an online one-class classifier with a

PA-I [126], also built-in Matlab; and finally, ADMNC implemented in Scala-Apache

Spark10.

5https://github.com/jeroenjanssens/lof-loci-occ
6From the LSH methods presented in Section 3.2, this is the only algorithm available to test
7https://bit.ly/2ugZQ0x
8http://maxpumperla.com/elephas/
9https://www.csie.ntu.edu.tw/ cjlin/libsvm/

10https://github.com/eirasf/ADMNC



54
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

All the methods were tested with several datasets with different compositions in

order to observe algorithm behaviour in a variety of scenarios. We first used a sim-

ple synthetic dataset11 suite with just 3 dimensions and 1000 samples representing

different shapes as described in Table 3.2. We also used the real datasets described

in Section 3.4.

In our experiments we performed five-fold cross-validation, filtering around 1%

of the class anomaly samples for each dataset with the aim of simulating a real AD

scenario, as done in Section 3.4 to test the different hyperparameters. Note that, to

overcome computational difficulties for some methods, we only used 2 folds rather

than 5 folds in testing the medium datasets. In addition, as we use the AUC metric

for evaluation, we ignore the threshold variable described in Section 3.4.3 and use

the anomaly score provided by the estimator as the LSHAD output. Used for the

experiments was a MacBook Pro laptop with 8GB of RAM memory and a 2.9GHz

Intel Dual-Core i5 processor.

3.5.2. AD performance comparison

For visualization purposes, we split the tables according to the datasets’ struc-

ture. Table 3.3 shows AUC results for the synthetic datasets, Table 3.4 shows algo-

rithm performance results for small datasets with fewer than 5000 samples (Abalone,

Arrhythmia, German Credit, Heart, Pima Diabetes, Breast Cancer) and finally, Ta-

ble 3.5 shows algorithm performance results for medium datasets, with more than

5000 samples (CoverType, KDDCup99 datasets, IDS 2012).

3.5.2.1. Synthetic datasets

We first made a comparison of the algorithms for a simple classification task,

applying 5 datasets of different shapes with 2 dimensions each, represented in Figure

3.4. Table 3.3 shows that our LSHAD method obtains state-of-the-art results in AD

for the different data shapes, except for the 2 circular clusters. While LSHAD

obtains the best performance for the 2-point clouds with variance, overall the best

performance is achieved by the much more exhaustive LOF and LOCI methods.

11https://zenodo.org/record/1171077#.XkE-HBP7TOR



3.5 Performance Evaluation 55

Table 3.3: Selected algorithm AUC results for 5 synthetic datasets

2BC 2CC 2PV 3AC 3PC
LOF (E) 82.78 78.40 78.40 90.20 96.90
LOF (H) 83.03 78.60 79.58 90.20 96.80
LOF (J) 83.10 78.62 79.73 90.10 96.80
LOCI (E) 80.46 76.20 75.61 88.12 94.80
LOCI (H) 80.63 78.20 76.57 88.64 95.20
LOCI (J) 80.11 75.40 76.65 87.81 96.87
SVM-L 50.13 52.00 53.40 56.80 62.80
SVM-R 72.36 56.54 81.30 83.00 91.80
DOC-SVM (RBF) 55.40 51.80 59.80 66.20 60.80
PA-I 55.77 58.00 56.60 64.20 70.80
ADMNC 53.80 59.29 70.26 85.32 82.70
Autoencoder 59.80 56.70 68.54 70.32 69.79
1 Samp(PDBS) 69.71 54.38 81.47 82.70 95.08
Ite (PDBS) 68.90 55.00 80.09 83.13 95.68
Ite+Ens(PDBS) 76.18 57.68 81.22 86.51 97.06
IForest(PDBS) 61.47 56.47 66.93 78.51 72.50
LSHAD 76.34 61.07 82.29 89.30 97.34

3.5.2.2. Real datasets

For the small datasets, from Table 3.4 it can be seen that AUC scores are very

variable. Although LSHAD did not obtain the best score in any dataset, its results

are average state-of-the-art, and in some cases close to the best. For the medium

datasets, Table 3.5 reports a similar outcome. Note that LOF and LOCI were

excluded from the comparison, as their quadratic complexity made them compu-

tationally excessively costly in managing large datasets, nor was it possible to test

DOC-SVM, as its Matlab implementation failed in trying to split large datasets.

3.5.2.3. Statistical test evaluation

We ran a statistical Nemenyi post-hoc test [56] (See Appendix A Section A.4)

with α = 0.05 to check for any significant statistical difference between methods. In

Figure 3.11, which shows the algorithms sorted by score, it can be observed that the

12This is a sample of the IoT-23 Subset with ID 1



56
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

Table 3.4: Selected algorithm AUC results for small real datasets

Ab. 1-8 Ab. 9-11 Ab. 11-29 Arrhyth GC Heart Breast Pima
LOF (E) 69.36 60.29 59.27 66.70 58.47 61.22 60.21 68.38
LOF (H) 69.36 60.29 59.27 69.83 56.46 69.58 59.18 68.18
LOF (J) 69.36 60.29 59.27 70.10 56.81 65.28 60.17 68.23
LOCI (E) 85.24 67.56 71.55 67.35 59.17 86.42 99.51 73.48
LOCI (H) 85.26 68.56 71.55 71.41 57.09 72.25 99.37 69.87
LOCI (J) 85.15 68.74 71.59 71.44 56.63 85.39 99.40 72.75
SVM-L 79.44 61.40 76.70 67.94 56.97 85.16 99.50 59.77
SVM-R 81.21 67.56 74.48 74.79 64.52 81.14 97.76 67.10
DOC-SVM 55.61 57.48 55.02 65.30 54.19 53.83 74.97 67.12
PA-I 84.98 65.11 71.13 69.32 62.16 71.02 69.33 55.90
ADMNC 84.53 61.20 79.30 61.40 62.76 72.31 91.34 59.20
Autoencoder 82.23 58.34 67.76 79.54 64.00 83.20 97.90 67.10
1 Samp(PDBS) 70.85 52.72 68.82 73.06 53.70 68.00 98.60 70.16
Ite(PDBS) 70.07 50.75 68.78 71.93 54.10 59.67 98.62 68.90
Ite+Ens(PDBS) 73.80 50.97 73.31 72.60 54.50 62.67 98.30 72.10
IForest(PDBS) 84.61 55.60 70.66 72.10 55.60 53.83 91.63 53.98
LSHAD 77.24 53.82 67.13 72.22 58.23 79.95 98.58 71.13

Table 3.5: Selected algorithm AUC results for medium real datasets

CT KDD99 KDD99h KDD99s IDS IOT-2312

Autoencoder 98.95 99.13 99.99 99.69 80.44 88.05
1 Samp(PDBS) 96.59 93.29 59.90 99.68 53.64 93.83
Ite(PDBS) 95.39 84.96 59.90 99.69 54.45 93.67
Ite+Ens(PDBS) 98.88 90.93 59.40 99.69 55.29 93.60
IForest (PDBS) 99.50 96.67 94.81 99.73 92.99 93.70
PA-I 99.49 98.90 99.50 95.92 96.50 73.55
SVM-R 99.53 95.35 99.91 99.32 61.61 73.96
SVM-L 95.01 69.37 99.95 99.51 80.66 77.01
ADMNC 57.94 94.05 91.62 88.26 56.75 93.29
LSHAD 99.66 97.74 99.44 99.85 87.32 93.92

Nemenyi test divided the algorithms in 3 groups, represented by horizontal thick

lines. LSHAD was placed in the group of algorithms with the best performance, for

which there is no statistical difference.



3.5 Performance Evaluation 57

Figure 3.11: Nemenyi statistical test to evaluate AUC scores for AD methods

3.5.3. Scalability testing

To test method scalability, we used a synthetic dataset from the generator de-

veloped by Eiras-Franco et al. [62] 13. Varying size, we started with 100 samples

and increased the sample 5 times for each iteration. Since the methods are imple-

mented on different platforms, we measured relative algorithm execution time as

the ratio between the processing time for the first dataset with 100 samples and the

processing time for each other specific dataset size. This allowed us to approximate

the empirical time complexity of each method. Selected for this test were the LOF

and LOCI methods with Hamming distance, SVM-L, SVM-R, Autoencoder, DOC-

SVM, PA-I, ADMNC, and IForest(PDBS) (as the fastest of the 4 PDBS methods).

Figure 4.4 depicts the execution time results of each algorithm, showing that all the

algorithms process the data very rapidly for small datasets (100 and 500 samples),

except LOCI and LOF (given their quadratic complexity). DOC-SVM was unable

to process datasets with more than 2500 samples due to its current implementa-

tion, and needed more time to process the small datasets compared to the other

algorithms; PA-I execution time started to increase significantly for datasets with

more than 2500 samples, exceeding linear complexity; SVM-L exhibits quadratic

13http://github.com/eirasf/ADMNC/



58
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

complexity; IForest(PDBS), although showing acceptable execution times for small

datasets, could not handle datasets of more than 62500 samples; and SVM-R per-

formed adequately up to 12500 samples, then slowed down considerably, exceeding

quadratic complexity.

For the larger datasets, ADMNC, Autoencoder, and LSHAD achieved the best

execution times, while LSHAD showed the lowest complexity when handling the

largest amount of data ( 1562500 samples).

An experiment was also carried out with the IoT-23 dataset since it has some

large subsets in the order of 7GB, rounding 70,000,000 records [153]. Only the

LHSAD, ADMNC, and Autoencoder algorithms were used, given the evidence that

they could deal with large datasets, given their distributed approach. The algo-

rithms were applied to each IoT-23 dataset subset and five-fold cross-validation was

performed. The resources of the CESGA were used, consisting of 22 machines with

35GB of RAM and 22 cores each.

Table 3.6: AUC results for LSHAD, ADMNC, and Autoencoder for IoT-23 datasets

ID DATASET LSHAD ADMNC Autoencoder
1 89.60 ±0.87 91.95 ± 1.87 62.58 ± 0.0038
3 99.53 ± 0.12 95.45 ± 0.61 96.80 ± 0.0011
7 99.94 ± 0.02 99.68 ± 0.43 99.71 ± 0.00023
9 99.97 ± 2.42 64.99 ± 15.72 99.89 ±8.96e− 9
17 71.76 ± 21.05 97.22 ± 1.06 99.99 ±6.79e− 5
33 76.42 ± 5.08 83.31 ± 18.26 51.81 ± 0.017
35 98.48 ± 1.38 99.84 ± 0.06 95.21 ± 0.017
36 99.77 ± 0.29 99.36 ± 1.21 99.99 ±8.99e− 8
39 97.42 ± 0.21 76.98 ± 2.80 99.99 ± 4.54e-5
43 91.29 ± 3.23 99.99 ± 0.0005 59.72 ± 0.038
48 99.78 ± 0.19 99.55 ± 0.78 99.58 ±9.02e− 6
49 99.52 ± 0.15 99.37 ± 0.30 99.27 ±132e− 5
52 94.19 ± 3.55 99.61 ± 0.57 99.99 ±1.71e− 7
60 99.65 ± 0.17 99.80 ± 0.15 99.99 ±7.18e− 6

Avg. AUC 94.09 93.36 92.82

Table 4.5 shows that the overall average AUC for LSHAD was slightly better

than for ADMNC and Autoencoder. However, the 3 algorithms outperformed each

other in specific scenarios. Results were similar, at around 99% AUC, for subsets 3,



3.5 Performance Evaluation 59

7, 35, 36, 48, 49, 52, and 60, while differences occurred with the remaining subsets:

for subsets 1, 33, and 43: LSHAD and ADMNC outperformed Autoencoder, for

subset 9 and 39, LSHAD and Autoencoder outperformed ADMNC; and for subset

17, ADMNC and Autoencoder outperformed LSHAD. LSHAD thus produced similar

or better results than ADMNC or Autoencoder for all subsets except subset 17.

While LSHAD achieved the best average AUC, slightly better (1%) than its

competitors, overall the three methods did an excellent AD job for this dataset.

Autoencoder had the lowest average AUC, but only performed poorly with 3 datasets

(1, 33, 43); its higher standard deviation on those datasets indicates difficulty in

adjusting the parameters. While the reasons are difficult to ascertain, due to the

lack of transparency and interpretation of this method (it operates like a black box),

we can deduce the possible cause. First, dataset 33 is unbalanced, as only 2.54%

represents benign data. This quantity of normal activity may not be sufficiently

representative, causing the Autoencoder to generate noise when reconstructing its

input. Moreover, for dataset 33 (Kenjiro attack type capture), data distribution may

be noisy, as the performance of both LHSAD and ADMNC with this dataset was also

poorer relative to their results for the other datasets. Second, while datasets 1 and 43

have balanced classes, the problem may lie in a loss of important information in the

compression phase, as autoencoders are lossy [47] in the degradation that occurs in

compression. The density-based methods using the hashing (LSHAD) and Gaussian

mixture model (ADMNC) techniques function better for the specific distributions in

these datasets. Comparing LSHAD with ADMNC, ADMNC slightly outperformed

LSHAD in several datasets. Nonetheless, the weakest performance of LHSAD was

an impressive AUC of 71%.

Note that the optimal values defined for LHSAD hyperparameters tested on

medium datasets (Section 3.4) also hold for large datasets, as indicated by the high-

performance results. This would suggest that LSHAD is suitable for processing

large-dimension datasets, with acceptable accuracy rates, as it is among the best-

performing algorithms and also is among the most scalable methods.



60
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

53 54 55 56 57 58 59

100

101

102

103

104

105

106

O(n)

O(n2)

O(n3)

Number of elements

R
el

at
iv

e
T

im
e

LSHAD LOF LOCI

PA-I SVM-R SVM-L

DOC-SVM ADMNC IForest(PDBS)

Autoencoder

Figure 3.12: Execution time of each algorithm increasing the size samples of the
Synthetic dataset. Axis are represented using logarithmic scale

3.5.4. Scalability versus AD performance

We used the Pareto optimization method [187] to evaluate the tradeoff between

scalability and AD for the algorithms. In multi-objective optimization, the Pareto

front is defined as the border between the region of feasible points (not strictly

dominated by any other) for which all constraints are satisfied and the region of

unfeasible points (dominated by others).

Figure 4.8 plots all the algorithms used in our study, maximizing the average

AUC (X axis) and minimizing processing speed (Y axis). To compute t time com-

plexity we used the number of samples of the largest dataset n that each algorithm

was capable of handling and the processing time t required, that is, log(t)
log(n)

. Figure

4.8 shows that LSHAD, LOCI, and SVM-R are on the Pareto front, although note



3.6 Conclusions 61

that LOCI and SVM-R were unable to process the largest datasets.

60 62 64 66 68 70 72 74 76 78 80

0.5

1

1.5

2

2.5

Average AUC %

T
im

e
C

om
p

le
x
it

y

LSHAD LOF LOCI

PA-I SVM-R SVM-L

ADMNC IForest(PDBS) Autoencoder

Figure 3.13: Pareto front of a multi-objective optimization problem based on mean
AD performance for all datasets (higher is better) versus time complexity (smaller
is better)

In summary, in our experiments for accuracy and scalability, LSHAD is demon-

strated to be among the best state-of-the-art methods, and has the additional ad-

vantage of hyperparameter autotuning.

3.6. Conclusions

LSHAD is a novel algorithm based on the LSH technique, developed in order

to obtain an AD model that could handle large-scale datasets. We leverage LSH,

which enables groups of similar data points to be detected, to estimate the density

of the input space regions, which is used, in turn, to estimate the probability of a

data point being an anomaly.



62
Chapter 3. Fast Anomaly Detection with Locality-Sensitive Hashing and

Hyperparameter Autotuning

Our algorithm, implemented in the Apache Spark framework, is tailored for

distributed environments and so is capable of processing large datasets due to its

scalability properties. An important advantage of our method is its AutoML feature,

which implements automatic hyperparameter tuning and thereby reduces computa-

tional resource needs and the time required for manual hyperparameter tuning.

The LSHAD algorithm was compared for AD and scalability performances with

state-of-art methods in a variety of datasets. Our empirical study demonstrates

that LSHAD is comparable to the best available methods in achieving satisfactory

AD results for both synthetic and real datasets, and performs better than other

methods in terms of scalability, especially with very large datasets. In summary,

our contributions are as follows:

1. We propose a novel AD method based on LSH that obtains accuracy results

on a par with SotA methods and scalability results that outperform those of

any of its competitors.

2. The model manages distributed scenarios, as it was developed using the Apache

Spark framework and so can distribute data processing across multiple clus-

ters.

3. The model automates the time-consuming and error-prone hyperparameter

tuning process, which not only improves efficiency but also makes the algo-

rithm available to non-expert users in the ML field, currently not a feature of

most AD models.

Additionally, the scalability and efficiency of the LSHAD algorithm make it a sus-

tainable solution for large-scale AD tasks. The ability to process large datasets and

to reduce computational resource needs through automatic hyperparameter tuning

reduces the environmental impact of the algorithm, making it a sustainable choice

for AD applications in the long term.



Chapter 4

Novel unsupervised methods

applied in IoT intrusion Detection

With the development of technology and information systems, the IoT concept

is increasingly present in our daily lives. It is now possible to interact with different

smart objects connecting the physical and the digital worlds through the Internet.

Thus, it will also be possible to record data related to our actions more effectively

and use this information to our advantage to integrate services and applications.

However, the advancement of such technology comes along together with significant

risks and vulnerabilities.

IoT has brought major benefits to society and industries, however, the security

of such technology has not yet matured. The increased number of connected IoT

devices will provide more opportunities for attackers to obtain access and utilize

them in large-scale attacks. Securing IoT devices is becoming increasingly difficult

for both consumers and manufacturers [2].

The great dependence on this technology both at a personal and business level

highlights the importance of information security these days. Smart-connected ob-

jects will become even more common than smartphones are nowadays and, thus,

access to personal and sensitive data should be restricted and monitored. Ensuring

confidentiality, integrity, and availability is a great challenge since these systems are

subject to various types of attacks, some to stop services, others to steal information

[69].

63



64 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

The lack of security measures and dedicated AD systems for these heteroge-

neous networks make them vulnerable to a range of attacks, such as Denial of Ser-

vice (DoS/DDoS), spoofing, data leakage, causing damage to hardware and system

blackouts, disrupting the system availability and even physically harming individuals

[12, 13].

As mentioned and described in Chapter 2, IDS have been developed over the

years as a solution to face attacks performed in computational systems connected

to the Internet. Such systems are usually classified regarding the detection methods

used [206]. These systems are differentiated into four categories: textbfSignature-

based IDS using signatures stored in the internal database to identify network be-

haviours that match such signatures; Anomaly-based IDS which usually apply

statistical or Machine Learning techniques to construct the normal behaviour pro-

file. This approach is effective to detect new attacks; Specification-based IDS

similar to the Anomaly-based IDS, these systems identify deviation from normal

behaviours but using rules and thresholds (specified by a human expert) that define

the expected behaviour for network components such as protocols, nodes and routing

table; Hybrid IDS where this category uses concepts from signature, anomaly and

specification-based IDS to maximise their advantages and minimise their limitations.

Signature-based IDS systems such as Bro [155] and SNORT [166] are ineffective

within IoT ecosystems since they only work with traditional IP-only networks [203].

According to Zarpelão et al. [206], research on IDS schemes appropriate for IoT is

still incipient. Thus, solutions available in the literature do not cover a wide range

of intrusions and IoT technologies. Thereby, we aim at analysing various unsu-

pervised learning AD techniques as a solution to be used in an Anomaly-based or

Hybrid-based IDS for IoT devices. As was seen in previous chapters, large unlabeled

datasets are a challenge for AD models, especially in critical domains such as Intru-

sion Detection. Explainability is crucial for understanding the behaviour of models,

especially when it comes to identifying and handling anomalies. Additionally, tun-

ing the hyperparameters of models is a problem that needs to be addressed when

working with large datasets. These challenges are further exacerbated in critical

domains where the consequences of misdetection can be severe. Therefore, in this

chapter, we evaluate a range of traditional unsupervised AD methods, as well as two

novel approaches, the LSHAD presented in the previous chapter and EADMNC, on



65

an IoT intrusion detection large dataset. Our evaluation will focus on both AD rates

and time processing performance, as well as the usefulness of the explanation trees

obtained from the EADMNC method.The novel LSHAD and EADMNC methods

not only demonstrate strong performance on both AD, but they are also designed

with sustainability in mind. The efficient use of computational resources and the

automatic hyperparameter tuning feature of the LSHAD algorithm make it a highly

sustainable solution for anomaly detection in real-world scenarios. The scalability

properties of both methods also ensure that they can handle large datasets, reducing

the need for additional computational resources to be used. Overall, this chapter

will provide a thorough analysis of the strengths and limitations of traditional and

novel AD methods, highlighting the importance of both accuracy and efficiency in

the selection of an appropriate approach. The main contributions provided in this

chapter are:

The analysis and data pre-processing description of the new IoT-23 dataset

recently developed by A. Parmisano et al. [153].

The evaluation and comparison, in terms of detection performance and scala-

bility, of a suite of 8 different unsupervised algorithms over the IoT-23 dataset.

One of the methods in the comparison suite, named EADMNC [24], generates

explanatory trees. Such trees provide knowledge and understanding regarding

the IoT attacks performed in the IoT-23 dataset. In this work, a human expert

in the cybersecurity field analyses the results obtained.

Two of the eight methods are scalable (LSHAD [135], and the previously

mentioned EADMNC [24]), and in this work, we include a comparison of

these two detection methods in terms of their performance detection using all

the data from each subset.

The rest of this chapter is organised as follows: Section 4.1 reviews SotA IDS

designing solutions as well as machine learning methods applied in IoT for intru-

sion and AD; Section 4.2 analyses the new IoT-23 dataset; Section 4.3 presents

all the unsupervised learning algorithms used for performance evaluation; Section

4.4 describes the evaluation and comparison of the methods in terms of AD and

execution time performance and also presents an analysis of the attacks in IoT-23



66 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

dataset using the explainability property of EADMNC, highlighting its importance

for understanding the execution process behind IoT attacks. Finally, Section 4.5

summarises the main conclusions of our work.

4.1. Related Work

AD in the IoT infrastructure is a growing interest. Thus, even though some work

has been carried out in this area, it is still a very active field of research.

In [86], Hasan et al. compared several ML models in their performance to predict

attacks and anomalies in IoT systems. They concluded that Random Forest models

had the best overall performance for their particular study using a dataset from the

Kaggle repository provided by Pahl et al. [149].

Brun et al. present a methodology using a deep learning approach with dense

random neural networks for the online detection of network attacks against IoT

gateways [28]. Their approach can predict the probability that a network attack is

ongoing from a set of metrics extracted from packet captures.

Vu et al. [196] proposed a novel representation learning method to better predic-

tively “describe” unknown attacks, facilitating supervised learning-based AD meth-

ods. The authors developed three regularized versions of AutoEncoders to learn a

latent representation from the input data. To evaluate the performance of the pro-

posed models, the authors did experiments on nine recent IoT datasets[132]. The

experimental results showed that new latent representation could significantly en-

hance the performance of supervised learning methods in identifying unknown IoT

attacks.

Al-Hawawreh et al. [140] used deep learning models to develop an AD technique

for Internet industrial control systems that can learn using information collected

from TCP/IP packets. Regarding deep learning models, the authors used an Au-

toEncoder algorithm for producing the optimal parameters when learning normal

network behaviours. Autoencoder optimal parameters are then used, as an effec-

tive tuning mechanism, in a standard supervised deep neural network model. Their

model was tested on two benchmark datasets, the UNSW-NB15 [139] and the NSL-



4.1 Related Work 67

KDD [185]. Their method achieved a high detection rate and low false alarms

compared with other techniques developed in recent studies.

Bostani and Sheikjan [23] proposed a real-time hybrid intrusion detection frame-

work consisting of two IDS-based type modules: specification-based and anomaly-

based to detect sink attacks and selective forwarding. The authors used agents in

their specification-based module to analyze the behaviour of host nodes and send

results to the route node through normal data packets. The agents using incoming

data packages in the anomaly-based module employ the unsupervised optimum-path

forest algorithm for projecting clustering. Their model can work in a distributed

platform due to its MapReduce-based architecture [205]. It can detect anomalies

in parallel as a global detection approach. Their proposed method has also been

extended to detect wormhole attacks.

Eskandari et al. [64] presented the anomaly-based IDS named PassBan to secure

IoT devices. The solution can take full advantage of edge computing to detect cyber

threats as it can be deployed on cheap IoT gateways. Their IDS detected common

cyber-attacks, namely Port Scanning, HTTP Login Brute Force, SSH Login Brute

Force, and SYN Flood attacks. The authors showed that PassBan could detect

almost all malicious traffic with very low False Positive rates and relatively high

accuracy.

Deploying an IDS on IoT devices can be a solution for protecting them from

intrusions [183, 14, 146]. However, most IDS are not prepared for problems such as

rare malicious or even benign activities which are not present in the training data,

thus possibly causing an increase of false positives and negatives. Also, many models

do not scale well when dealing with large amounts of data. Thus, in this work,

we present an empirical evaluation with several unsupervised learning techniques

as fittable solutions to integrate with an IDS for IoT capable of dealing with the

mentioned problems. Since these techniques aim to detect anomalous patterns that

are not present in the training phase, by implementing them together with supervised

techniques, it should be possible to reduce the false positive/negative rate [145, 112,

106]. Besides, some of these methods can handle large amounts of data due to their

distributed characteristics. A summary of the related work discussed in this section

is represented in Table 4.1.



68 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

Table 4.1: Related Work summary

Works Dataset Methods Evaluation Metrics
[86] DS2OS [149] RF, LR, SVM, DT, ANN Accuracy, Precision, Recall, ROC curve

[28]
Simulated dataset –
not available

Dense RNN
Nº: UDP, ICMP, packages (Long/short time),
broadcast messages,
diff. btw. established connections.

[196] Nine IoT datasets [132] Autoencoder
False Alarm Rate,
Miss Detection Rate, AUC

[140] UNSW-B15 [139], NSL-KDD [185] Autoencoder + DNN Accuracy, Detection Rate, False Positive Rate

[23]
Simulated dataset –
not available

Optimum Path Forest
True Positive Rate,
False Positive Rate, Accuracy

[64]
Simulated dataset –
not available

Isolation Forest,
Local Outlier Factor

Confusion Matrix, Precision, Recall, F1 Score

4.2. IOT-23 Dataset preparation and Analysis

IoT-23 is a recent dataset of network traffic captured from IoT devices from A.

Parmisano et al. [153], published in January 2020, with captures ranging from 2018

to 2019. This is the large-scale dataset over which the different AD methods were

evaluated and compared. The dataset is described in detail in Appendix A Section

A.1.3.

The IoT-23 dataset went through a preparation process before applying the AD

algorithms: We first discarded the features ts and uid since they generate a unique

value for each record and therefore do not offer relevant or generalisable information

to assist the algorithms in pattern detection. As the unsupervised methods used

in our work cannot deal with strings, we converted all string values from proto,

service, conn state, local orig, local resp and history features into numerical

values. In cases where “-” appeared in data, referring to empty values generated

by the Zeek analyser tool, we replaced it with the value -1. Concerning IP address

features (id.orig h , id.resp h) we applied Unigram, Bigram, and Trigram feature

extraction techniques. The idea is to extract three features from the IP address

to assist the AD algorithms in identifying patterns through subnets. Consequently,

requests from unexpected IP addresses or unexpected requests from known IP ad-

dresses could be indicators of potentially malicious activities. We first separated all

IP address elements by the dots. Each feature is a representation of one or several IP

address elements. The first feature denominated by IP Unigram represents the first

IP address element. The second feature, named IP Bigram, has the concatenation

of the first and second element of the IP address. The third and last feature, IP



4.2 IOT-23 Dataset preparation and Analysis 69

Trigram, contains the three elements of the IP address, all concatenated. It is im-

portant to note that the second and third elements of the IP address are composed

of three elements, even if their value is less than 100. In that case, zeros are added

to the left (see Table 4.2 as an example).

Table 4.2: Unigram, Bigram, Trigram, feature extraction example technique

IP Unigram IP Bigram IP Trigram
192 192168 192168001 => 192.168.1.199

We also ignored the different types of attacks, as our goal is to identify anomalies,

and we are using unsupervised learning methods. Thus our idea is to simulate a

real environment that can potentially be targeted by unknown attacks. We only

considered two classes for the label feature. The “Benig” class is represented by

value 0, and the “Malicious” class is represented by value 1, corresponding to any

attack or suspicious activity in the IoT devices.

As can be seen in Table A.2, the IoT-23 dataset contains large subsets of data.

Because most of the algorithms chosen cannot handle large amounts of data, we

selected a random sample from each subset, containing approximately 10 000 records.

When extracting each sample from the subset, we take care of balancing the classes.

There were cases in which balancing the classes was not possible due to the small

size of the subset or the small percentage of records of a particular class (e.g., ID

subsets 8, 20, 21, 34, 36, 42, 44, 48, 49, 52 and 60). For these cases, we tested the

algorithms, keeping the original proportion of classes of each subset.

We generated several histograms to understand the distribution of each feature

in each subset. As an example, in Figure 4.1 we can see the histograms from the

CTU-IoT-Malware-Capture-17-1 subset. We verified that each feature distribution

was different in each scenario except for the ‘local orig’ and ‘local resp’ features.

For these two features, the values were always 0 in all scenarios, meaning in this

particular case, that the originated and response connections were given as undefined

by the Zeek analyzer tool.

Regarding the correlation between features (see example plot from Figure 4.2),

it can be observed that in most scenarios, the features ‘duration’, ‘orig bytes’,

‘resp bytes’, ‘orig pkts’, and ‘resp pkts’ are strongly correlated. The longer the



70 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

Figure 4.1: Histograms of each feature for the CTU-IoT-Malware-Capture-17-1 sub-
set.

connection lasts, the more information (i.e. packets, bytes) is received/sent between

users/devices, being this the reason for correlated features. This correlation also

happens with ‘ip ori unigram’, ‘ip ori bigram’, ‘ip ori trigram’ since these features

arose from the same original feature. Before applying the AD algorithms, we normal-

ized each subset to prevent some methods from giving more importance to features

with large numeric values.



4.3 Methods used 71

Figure 4.2: Correlation plot of CTU-IoT-Malware-Capture-17-1 subset.

4.3. Methods used

We selected a variety of SotA unsupervised learning methods used in AD prob-

lems to measure and compare their performance, including two recently developed

methods from Eiras-Franco et al. [62] and Meira et al. [135] (the last one described

in Chapter 3), both with distributed properties that can handle large amounts of

data.

We carried out the evaluation using eight different algorithms: OC-NN, OC-

SVM, LOF, IForest, PA-I, Autoencoder, EADMNC and LSHAD. All of them are

described in Appendix A Section A.2.

Table 4.3 represents a summary of the selected methods identifying for each one

certain characteristics: Their Scalability, in order words, the property of handling a

large amount of data; their Explainability, meaning the capability of justifying their

1It has several hyperparameters, with only one being automatic tuned



72 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

Table 4.3: Algorithms characteristics

Methods Auto-Hyperparameter Scalable Explainable
OC-NN Yes1 No No

OC-SVM Yes1 No No
LOF Yes1 No No

IForest No No No
PA-I No No No

Autoencoder No yes No
EADMNC No Yes Yes

LSHAD Yes Yes No

output; the property of automatic tuning their hyperparameters, in order to free the

users from the task of manually adjusting hyperparameters, an operation that will

need the assistance of an expert in machine learning.

4.4. Experimentation

This section presents the AD results of the selected unsupervised algorithms. We

provide an analysis of the results obtained for the IoT-23 dataset and a comparative

evaluation between processing time and AD performance methods.

4.4.1. AD Performance

As mentioned in Section 4.3, a variety of unsupervised learning state-of-the-art

methods was selected to evaluate and provide a comparative analysis of their results

for IoT AD problems using the IoT-23 dataset as a benchmark.

We employed the Apache-Spark version with the automatic hyperparameter tun-

ing mechanism2 for the LSHAD method, developed by Meira et al. [135]. The fol-

lowing methods included in the scikit-learn Python machine learning library3 were

used:

2https://github.com/eirasf/lsh-anomaly-detection
3https://scikit-learn.org/stable/index.html



4.4 Experimentation 73

The OC-SVM with the radial basis function kernel;

The OC-NN using distances from the first neighbour;

LOF using the auto hyperparameter which will attempt to decide the most ap-

propriate algorithm to compute the nearest neighbors and the hyperparameter

novelty enabled;

IForest using 500 estimators in the ensemble.

Also, we used the Autoencoder implementation in Python from Elephas frame-

work4 an extension of Keras, which allows to run distributed deep learning models

at scale with Spark, employing a bottleneck architecture of 3 layers with 50 neurons

in the first and last layer, five neurons in the middle layer and a hyperbolic tangent

activation function. For PA-I method it was used the built-in MatLab implementa-

tion from Mart́ınez-Rego et al. [126]. Finally, it was used the EADMNC method

from Botana et al. [24] implemented in Scala Apache-Spark5.

Cross-validation with five folds was performed in our experiments, using a Mac-

Book-Pro laptop with 8GB of RAM with a 2.9GHz Intel Dual-Core i5 processor. We

used the AUC metric to measure the performance of each model. We opted for this

metric since some subsets are unbalanced, and AUC abstracts such problems by giv-

ing equal importance to sensitivity and specificity. Also, this metric is mainly used

in the literature when it comes to evaluating or comparing AD methods. It mea-

sures the quality of the model’s predictions regardless of the classification threshold

chosen.

Table 4.4 shows the AUC results of each algorithm in each subset of the IoT23

dataset. We can observe that the OC-NN has the best detection performance

with an average AUC of 99% in all IoT-23 subsets. This high score allows us

to conclude that the Minkowski distance (distance metric used by default in the

algorithm) between data points in the feature space can distinguish normal and

malware activities in each scenario. Although this is a very high detection score, we

can observe that other methods have also obtained relevant results. Thus, LSHAD

and EADMNC, rank as the second and third methods in performance (above 97%),

4http://maxpumperla.com/elephas/
5https://bit.ly/2YzMGrd



74 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

Table 4.4: AUC% Results of selected algorithms for IoT-23 Dataset

ID Dataset LSHAD OC-SVM IForest Autoencoder OC-NN PA-I EADMNC LOF
1 97.07 88.00 88.89 65.46 95.00 99.13 74.60 87.10
3 99.13 68.34 85.26 82.35 97.49 99.96 95.07 92.73
7 99.98 99.58 91.90 73.00 100 100 99.82 99.14
8 99.97 99.95 99.31 99.99 99.90 100 99.98 99.99
9 81.69 54.76 62.18 86.98 98.32 100 97.72 98.28
17 97.47 62.50 70.52 91.69 99.55 99.98 98.18 82.90
20 99.96 99.92 91.42 99.82 99.96 81.67 99.95 95.57
21 99.97 99.95 85.55 99.94 99.96 80.00 99.94 96.61
33 99.45 93.67 76.62 69.64 99.79 58.61 99.58 97.24
34 99.23 99.05 73.69 81.73 98.91 99.92 99.73 80.14
35 99.88 99.96 73.41 52.82 99.95 99.84 99.87 99.75
36 99.50 99.94 79.71 99.75 100 100 99.91 94.81
39 99.38 62.99 64.86 100 99.41 100 85.79 98.88
42 99.88 99.97 99.98 99.94 99.97 75.00 99.78 91.82
43 99.94 99.83 63.66 61.30 99.99 99.66 99.98 99.64
44 99.56 99.53 97.75 98.85 100 92.00 98.60 94.29
48 99.94 99.71 99.55 95.36 99.66 99.67 99.84 94.77
49 99.36 93.32 94.31 95.35 99.38 99.98 98.85 76.09
52 99.77 99.94 91.69 99.80 99.94 99.99 99.84 94.75
60 99.86 99.22 81.22 98.94 99.20 99.84 99.67 94.50

Avg. AUC 98.55 91.01 83.57 87.63 99.32 94.26 97.73 93.45

and it is worth remarking on this, as they can automatically adjust its parameters

(the first) and provide an explanation to the results (the second). At the same time,

both can manage large-scale datasets. PA-I and LOF rank as fourth and fifth,

with average AUCs above 94% and 93%, respectively. In addition, PA-I method

has a high number of first ranks (it ranks first in 11 of the 20 subsets). Finally,

OC-SVM, IForest and Autoencoder are the three last methods in performance

with Average AUCs between 91% and 83% .

Analyzing each scenario, Table 4.4 shows that most methods were able to cor-

rectly detect the Mirai attack, being this a simple attack technique applying brute

force in telnet with a dictionary combination (scenarios 34, 35, 43, 44, 48, 49, 52,

60). The methods OC-SVM and IForest presented poor performance detection

AUC results for scenario 9 corresponding to Linux, Hajime attack, being this a

more sophisticated attack technique, while PA-I was able to separate adequately

both classes with a 100% AUC, and OC-NN, and EADMNC methods obtained

AUCs above 98%. The OC-SVM could not detect the Mushtik and IRC bot attack

from scenarios 3 and 39, showing a low AUC score. Overall the algorithms proved

to be good solutions to be used for AD problems in IoT devices.



4.4 Experimentation 75

To verify if the overall methods have a significant statistical difference between

them, it was performed the Nemenyi post-hoc statistical test [56] with α = 0.05

(Figure 4.3). Nemenyi statistical test is described in Appendix A Section A.4.

Figure 4.3: Nemenyi statistical test for evaluating AD AUC scores methods

Analysing Figure 4.3, we can see that, regarding their performance, the Nemenyi

test separated the algorithms into four groups represented as the thick horizontal

lines, being the best group of methods ordered from top to bottom. The methods

connected to the same horizontal thick lines do not present significant statistical

differences (e.g. the first and best group of methods are: OC-NN, LSHAD, PA-I,

EADMNC and OC-SVM). The methods that appear in the last group and are

not present in the first group (IForest, Autoencoder LOF), show statistical dif-

ferences with OC-NN. On the other hand, Autoencoder is in the fourth group,

and it is not statistically different compared to the LSHAD method in the first

group, since both are connected in the second group. However, LSHAD and PA-I

are statistically different compared to LOF and IForest. The same happens with

EADMNC that shows the statistical difference with IForest. However, it is not

statistically different from the other methods since it connects them in the first,

second and third groups. We can consider the first group of methods (OC-NN,

LSHAD, PA-I and EADMNC) as the best solutions for AD problems in IoT

devices due to their high-performance results. However, there are other properties

of the methods to take into accounts, such as their complexity, scalable character-

istics and the ability to handle large datasets, which is the case of EADMNC and

LSHAD since they were developed using the MapReduce approach from Apache

Spark.



76 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

4.4.2. AD Performance with Distributed Methods

We compared the AD performance of EADMNC, LSHAD and Autoencoder

as all of them are scalable and capable of dealing with large data scenarios. Thus, we

used all the data from each subset of the IoT-23 dataset and applied five-fold cross-

validation. The resources of the Centre of Supercomputing of Galicia (CESGA)

were used [70], employing 22 machines with 35GB of RAM and 22 cores each.

Table 4.5: AUC Results of LSHAD, EADMNC and Autoencoder for IoT-23 Datasets

ID DATASET LSHAD ADMNC Autoencoder
1 89.60 ±0.87 91.95 ± 1.87 62.58 ± 0.0038
3 99.53 ± 0.12 95.45 ± 0.61 96.80 ± 0.0011
7 99.94 ± 0.02 99.68 ± 0.43 99.71 ± 0.00023
8 99.97 ±0.05 82.41 ± 0.06 99.99 ± 6.78e-5
9 84.11 ± 2.42 64.99 ± 15.72 99.89 ±8.96e− 9
17 71.76 ± 21.05 97.22 ± 1.06 99.99 ± 1.32e-6
20 99.96 ± 0.042 99.94 ± 0.45 99.82 ±0.002
21 99.97 ± 0.04 99.94 ± 0.277 99.94 ±0.0004
33 76.42 ± 5.08 83.31 ± 18.26 51.81 ± 0.017
34 99.10 ± 0.37 99.08 ± 0.52 92.10 ± 0.004
35 98.48 ± 1.38 99.84 ± 0.06 95.21 ± 0.017
36 99.77 ± 0.29 99.36 ± 1.21 99.99 ± 8.99e-8
39 97.42 ± 0.21 76.98 ± 2.80 99.99 ± 4.54e-5
42 99.94 ± 0.04 99.78 ± 0.03 99.94 ± 0.0003
43 91.29 ± 3.23 99.99 ± 0.0005 59.72 ± 0.038
44 99.56 ± 0.59 98.60 ± 0.67 98.85 ± 0.002
48 99.78 ± 0.19 99.55 ± 0.78 99.58 ±9.02e− 6
49 99.52 ± 0.15 99.37 ± 0.30 99.27 ± 132e-5
52 94.19 ± 3.55 99.61 ± 0.57 99.99 ± 1.71e-7
60 99.65 ± 0.17 99.80 ± 0.15 99.99 ± 7.18e-6

Avg. AUC 95.00 94.34 92.82

The detection performance of all methods, represented in Table 4.5, decreases

by about 3% - 4% compared to evaluation subsets samples in Table 4.4 for LSHAD

and EADMNC. Regarding Autoencoder obtained much better results compared

to the subsets samples, except for the subsets 1, 33 and 43, which showed a small

decrease. This decrease occurs because the samples of small subsets used previously

do not contain all the information regarding the activity in the network, leading



4.4 Experimentation 77

to a degradation in the performance of methods when dealing with large subsets

containing noisy data. Despite this, for all methods, there is no significant decrease

in performance, showing very similar performance to the Average AUC in Table

4.5, with LSHAD algorithm performing slightly better. All methods can properly

detect all different types of attacks, except:

Kenjiro attack in subsets 17 and 33 where LSHAD presented relatively low

AUC results, 71 and 76, respectively. Despite EADMNC and Autoencoder

performed well in subset 17 (97,22 and 99.99). The results for subset 33,

although better than those of LSHAD regarding EADMNC, were only 83

AUC, while Autoencoder could not detect the attack showing 51.81 AUC;

EADMNC had a drastic decrease of performance when detecting Linux, Ha-

jime attack type in subset 9, compared to the performance achieved when

detecting the same attack type in a small sample (Table 4.4);

Hakai and IRCbot attack types (Subsets 8 and 39) were not properly detected

by EADMNC, showing AUC results of 82 and 76, respectively;

Autoencoder showed poor performance in detecting Hide and Seek attack

from scenario 1, such as Mirai attack from scenario 43.

Hajime, Hakai and Kenjiro attacks are all more sophisticated variants of the more

simple Mirai botnet. Thus, these three variants are not detected as easily by the

methods tested as in the case of Mirai. It is also interesting to note that EADMNC

shows the difficulty in distinguishing normal from abnormal behaviour in IRC pro-

tocol where IRC botnet was performed.

4.4.3. Scalability Evaluation

To test the scalability of the methods, in Figure 4.4 we have used the subset 35

from the IoT-23 dataset, in which size was varied. We started with a sample of 100

records and increased it by five times in each iteration. We measured the execution

time by the ratio of the process time duration from the first sample with 100 records

and the duration process time of a specific sample size for each algorithm, allowing



78 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

us to empirically approximate the time complexity of each method since the methods

are implemented in different platforms.

53 54 55 56 57 58 59

100

101

102

103

104

105

106

O(n)

O(n2)

O(n3)

Number of elements

R
el

at
iv

e
T

im
e

LSHAD LOF PA-I

OC-SVM EADMNC IForest

Autoencoder OC-NN

Figure 4.4: Execution time of each algorithm increasing the size samples of the IoT-
23 dataset (sub-set 35). Axis are represented using logarithmic scale

Looking at Figure 4.4 we can observe that all the methods can process the data

very fast for small sizes of samples (100 to 2.500 records). With more than 2.500

samples, we can verify that LOF, OC-SVM and OC-NN tend to quadratic com-

plexity with OC-SVM not being able to handle the largest sample size (1.562.500

records). The Autoencoder shows linear-complexity while the remaining methods

started with sub-linear complexity and then tended to linear complexity, except for

LSHAD which maintained a sub-linear complexity. It is also interesting to observe

the behaviour of EADMNC. It was the most scalable method, slowly increasing

the processing time until LSHAD overtakes it, the method with the lowest com-

plexity of all the suite of studied methods when handling the largest amount of data

with a sample of 1.562.500 records, thus making it the best method for dealing with



4.4 Experimentation 79

huge datasets.

At this point, we identified OC-NN as the best algorithm to detect anomalies

and LSHAD as the best scalable algorithm. However, there is another characteristic

of the methods worth taking into account in cybersecurity datasets, and that is the

ability to offer explanations of the underlying process of anomaly identification, one

of the advantages of the EADMNC algorithm.

4.4.4. Explaining Anomalies

In order to carry out an in-depth analysis of the AD results, we have explored the

explainability characteristic of the EADMNC algorithm. The use of regression trees

allows this method to justify the flagging of elements as anomalies, thus identifying

the features with the most significant impact when an attack (anomaly) is detected.

In this subsection, we present and discuss some interesting examples within the trees

generated for several subsets of the IoT-23 dataset.

Figure 4.5: Explanatory tree after pruning using subset 20 from IoT-23 dataset.

Reading Figure 4.5 from left to right, each node shows: the proportion of ele-

ments that it represents regarding the full subset (shown in blue), overall variance

of the anomaly estimators of elements in the node (shown in blue), the weighted es-

timator variance w.r.t children nodes (shown in dark blue)-first line- and mean and

standard deviation for the subset of estimators-second line-. The coloured boxes



80 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

range from green to yellow and orange to red to indicate the likelihood level of an

observation being considered as normal activity or as an anomaly, respectively. The

redder the box, the more likely the observation is to be an anomaly, and the greener

the more likely the observation is to be normal activity. Observations with no box

are considered neutral.

Figure 4.5 offers a beautifully simple but effective pruned tree for the detection

of attacks by the Torii botnet. This tree is not just another Mirai variant, being

much more sophisticated than its predecessor, such as being able to target a much

wider range of devices and being much more stealthy and persistent than other

IoT botnets. It is, hence, somewhat surprising that we can get such high detection

rates (AUC is 99,95%) with such a simple tree. At the root of the tree, we have

the attribute resp ip bytes that represents the number of IP level bytes that the

responder sent. This feature follows the rule of thumb that, generally, less traffic

corresponds to more benign activities. In fact, if the number of bytes is less than

or equal to 79, traffic is overwhelmingly considered benign with a rate of 1 to 148.

An additional check, this time for traffic generated by the originator, further filters

anomalies. Concretely, only if orig ip bytes is above 138 bytes traffic is labelled as

malicious. Going back to the root node again, anything above 79 bytes is deemed

malicious. This tree is, as well, the perfect exemplification of the principle of more

is worse in network security, showing how malicious traffic is always represented by

terminal nodes to the right of benign ones.

Figure 4.6: Explanatory tree after pruning using subset 42 from IoT-23 dataset.

Something similar happens with the pruned tree of subset 42, Figure 4.6, in which

we see again that more data exchanges, in this case, orig bytes representing the



4.4 Experimentation 81

number of payload bytes sent by the originator perfectly divide between malicious

and benign traffic. Curiously enough, with a threshold of 79 bytes, like in the

previous example, and similarly linking lesser values to benign and higher values to

malicious traffic.

Figure 4.7: Explanatory tree after pruning using subset 3 from IoT-23 dataset.

A very insightful tree is the one generated for subset 3 of the IoT-23 dataset

and shown in Figure 4.7. This attack corresponds to the Muhstick botnet. This is a

purportedly Chinese6 malware that has been evolving a great deal and targeting IoT

and cloud servers since at least 2018, mining cryptocurrencies and perpetrating other

nefarious activities by mainly exploiting web-based vulnerabilities and implementing

command and control over IRC channels. The detection strategy exemplified by

the tree is interesting on several levels. A very human-like approach is dividing

the protocols in a set of safe and unsafe regarding the threat at hand, and that is

precisely what the tree does at its root, deeming traffic over protocols such as DHCP,

DNS, and SSH very likely malicious in this context. Of course, this only is reasonable

over this concrete set of data and will not generalise well, as blank classifications

6Check https://www.bleepingcomputer.com/news/security/chinese-linked-muhstik-botnet-
targets-oracle-weblogic-drupal/



82 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

such as these will likely lead to too many false positives. It is interesting to note

the further use of ip dest unigram to refine the degree of normalcy. In this case,

the use of a threshold of 154.4 indicates that IP ranges starting with values below

155 are considered more conducive to malicious traffic. A similar rule of less is

best occurs in the subtree to the left, where we see that traffic associated with

responder ports below 2739 is considered mostly benign, mainly if the number of

packets sent by the originator is low. Alternatively, the other subtree to the right

says that if the duration of the connection is known (and hence not -1, which codes

unknown/missing values), then the associated traffic is likely benign. All in all, a

very interesting way to characterise this particular kind of malicious traffic providing

valuable information for system administrators in order to create prevention actions

for any type of attack on IoT networks.

4.4.5. Scalability vs AD Performance

An important question is whether it is possible to find a good balance between

AD performance and scalability. To evaluate this trade-off it was applied the Pareto

Optimization method [187]. In multi-objective optimization, the Pareto front is the

border between the region of feasible points (not strictly dominated by any other),

for which all constraints are satisfied, and the region of unfeasible points(dominated

by others). The Pareto-optimal set is the set of criteria for which no other criterion

has both a higher performance detection and higher scalability, hence the members

of the Pareto-optimal set are said to be non-dominated [73].

In Figure 4.8 all the algorithms used in our study are represented in order to

maximize the average AUC metric of all IoT-23 subsets (X axis) and minimize the

processing time (Y axis). To compute the time complexity, we used:

The number of samples of the largest subset n that each algorithm could

handle;

The time t each algorithm took to process a particular subset.

Thus, it was applied log(t)
log(n)

. Observing Figure 4.8 we can see that OC-NN and

LSHAD are in the Pareto-Front. LSHAD dominate all methods regarding time



4.4 Experimentation 83

80 82 84 86 88 90 92 94 96 98 100

0.4

0.6

0.8

1

1.2

1.4

1.6

Average AUC %

T
im

e
C

om
p

le
x
it

y

LSHAD LOF PA-I

OC-SVM EADMNC IForest

Autoencoder OC-NN

Figure 4.8: Pareto front of a multi-objective optimization problem based on the
mean performance AD of all IoT-23 subsets (higher is better) vs time complexity
(smaller is better)

complexity. On the other hand, OC-NN dominate all methods regarding perfor-

mance detection. EADMNC is not in the Pareto-front since it is slightly dominated

by LSHAD concerning performance detection. However, it is the only method ca-

pable of explaining its results, a crucial characteristic to understand how the IoT

attacks are performed. These algorithms do not show a significant difference in

AD performance. Therefore, by sacrificing slight detection performance, we have

two methods (LSHAD and EADMNC) with valuable functionalities to tackle big

data challenges, such as computing large amounts of data and achieving explain-

ability/transparency in data results.



84 Chapter 4. Novel unsupervised methods applied in IoT intrusion Detection

4.5. Conclusion

In this chapter has evaluated a set of state-of-the-art unsupervised learning meth-

ods mainly used for AD problems, identifying their solid points and suitability and

providing recommendations when dealing with IoT datasets. The evaluation pro-

cess measures each algorithm’s AD and time performance using the recent IoT-23

dataset. We have also explored some functionalities of the methods that can be

relevant in the application area, such as the ability to handle large datasets, the

ability to autotune hyperparameters and the ability to provide explanations about

the detected anomalies.

Detection performance results showed that OC-NN is the best method, with a

very high 99 average AUC score for a random sample of the selected IoT-23 subsets.

However, a Nemenyi statistical test did not show a significant statistical difference

between other methods such as EADMNC, LSHAD, OC-SVM and PA-I. Al-

though OC-NN was also able to detect anomalies when computational resources

are scarce, this method will likely not be the best option to use in an IDS setting

since it presents quadratic complexity in the processing time performance evalua-

tion. On the other hand, LSHAD, Autoencoder and EADMNC are promising

solutions in an Anomaly or Hybrid-based IDS setting, since all showed to be fast

and scalable, presenting sub-linear complexity, and maintaining an adequate de-

tection performance, not significantly different statistically from that of OC-NN.

Other aspects to take into account are that LSHAD has an automatic hyperpa-

rameter tuning mechanism that relieves users from any costly tuning steps and that

EADMNC automatically delivers explanations for the anomalies detected. Fur-

thermore, both methods are scalable and therefore sustainable when compared to

their competitors. All methods could handle the full subsets of the IoT-23 dataset

since they were developed using the MapReduce approach from Apache Spark. Re-

sults showed that detection performance slightly decreased when using all data, and

both obtained similar performance.



Chapter 5

Data-Driven PdM Framework for

Railway Systems

In this chapter, we confront another of the open challenges in anomaly detection

models: working with streaming data. In this respect, we present here a data-

driven approach for detecting anomalies in a railway system using a combination

of two unsupervised methods. This framework is designed as a data stream model,

allowing it to handle streaming data in real-time and also promoting sustainability.

In contrast to the static data-based methods presented in previous chapters, this

model has limited memory and incorporates a forgetting mechanism and incremental

learning, resulting in lower processing times and lower computational resource usage,

thus contributing to a more green approach to the anomaly detection process. The

work presented in this chapter has been accepted for publication in the Intelligent

Data Analysis journal [136]. This approach is well-suited for detecting anomalies in

complex, dynamic systems such as in the case of train systems, where data streams

are constantly changing and traditional methods may be inadequate. By leveraging

the strengths of multiple unsupervised techniques, this model is able to accurately

identify unusual events and behaviours, providing valuable insights for the system’s

maintenance and optimization. Overall, this chapter will provide a detailed overview

of the design and performance of this data-driven approach, highlighting its potential

for use in a variety of streaming data applications.

PdM) is a method that uses real-time analytic tools to assess collected data from

85



86 Chapter 5. Data-Driven PdM Framework for Railway Systems

various parts of one industrial machine [202]. The goal is to detect malfunctions as

quickly as possible and fix them before they lead to catastrophic failure. Anomaly

detection lies at the core of PdM, with the primary focus on finding anomalies in the

working components of machines at early stages and alerting supervisors to carry

out maintenance activities [100].

This work describes a data-driven predictive maintenance system to detect anoma-

lies on an APU installed on trains of Metro of Porto. The goal is to identify as

early as possible potential failures and notify the maintenance team of an anomaly

(undetectable with traditional maintenance criteria), avoiding the inconvenience of

removing a train from the operation and saving time and money for the company.

The data is collected from the APU using a set of analogic sensors and reading

directly from the APU control system some digital signals that control the state of

the APU. We receive the data in regular time intervals, and the learning process

extracts information in near real-time to build a predictive model. The model can

send an alarm to the maintenance teams, allowing timely intervention on the train.

In this work, we propose an online predictive model capable of dealing with

incoming stream data with adaptive learning properties. Since the data incoming

from the sensors is endless and received as a continuous flow, we choose to deepen the

data stream mining topic, where the methods’ computational resources are limited

(memory, computational power, processing time). These methods are based on

incremental learning as data is induced incrementally and contemplate a forgetting

mechanism to deal with limited memory. They differ from batch learning models

such as Deep Neural Networks, which are static, computational power is usually a

must to get the best fitting in data, and the learning process is performed offline.

Furthermore, we followed a semi-supervised learning approach since we did not

know when train failures occurred at the beginning of the project.Therefore, we

have combined two methods, the HS-Trees algorithm for one-class AD in evolving

streams [182] and an adaptation of the K-Nearest Neighbour [71, 186] capable of

doing one-class classification in streaming data.

The main idea of our proposal is to use HS-Trees as the primary anomaly detector

method to filter the incoming data. HS-Trees sends the observations detected as

anomalies to the One-Class K-Nearest Neighbour method to reduce false positives.



5.1 Related Work 87

Our model presented high-performance results, detecting most of the catastrophic

failures and producing fewer false positives compared to the HS-Trees method.

The chapter is organized as follows: we provide an overview of the related work

in the context of AD in Section 5.1. Section 5.2 describes the data used, the problem

definition and the detailed description of our proposal. Section 5.3 presents the AD

results of our model. Finally, Section 5.4 points out the main conclusions.

5.1. Related Work

Using sensors to monitor industrial equipment combined with the emergence of

high-speed networks like 5G and computational systems allowed the development

and adaptation of machine learning techniques to AD and predictive maintenance.

In this section, we will present some studies regarding these two topics.

Maintenance in industrial equipment and repair procedures are typically respon-

sive to a not-predicted issue. Since malfunctions in equipment affect the safety,

availability, and environment, the authors in [109] proposed a real-time monitor

to schedule monitoring tasks. These tasks obtain sensor information, measure

the state and condition of several components, and determine when the most ap-

propriate moment is to apply a PdM action on the equipment. The PdM topic

has been attracting growing interest over the last years with several proposals

exploring different machine learning methods for predictive maintenance or AD

[109, 162, 114, 157, 165, 123, 113, 101, 45, 29, 17, 169, 99]. More recently, a sur-

vey proposed by [53] analyses all the related work regarding the usage of machine

learning techniques for predictive maintenance on the railway industry.

Industrial equipment often lacks sufficient and diverse anomalous data to build a

binary classification system. Thus many of the predictive maintenance models rely

on unsupervised AD algorithms, which are responsible for determining whether an

observation of the sensor deviates from the normal state of the equipment [68, 127].

Detecting the presence of anomalies in real-time provides valuable insights and

knowledge about the equipment to make a rigorous assessment of possible main-

tenance interventions. There are several works in the literature related to the topic

of predictive maintenance in railway systems, and they can be organized into super-



88 Chapter 5. Data-Driven PdM Framework for Railway Systems

vised or unsupervised learning approaches:

Supervised Learning

Rabatel et al. [162] explored the application of sequential patterns to correctly

identify normal and abnormal data generated by a set of sensors installed in three

key train components.

Li et al. [114] proposed a five-step predictive maintenance framework. The first

step is the feature extraction of the dataset containing information about bearings

on the train. The second step is reducing dimensional space using the Principal

Component Analysis. The model adopted was the Support Vector Machine. Finally,

a confidence level for alarm prediction was defined, and a rule simplification divides

the feature space into non-overlapping small grids.

In terms of predicting failures on door trains, Manco et al. [123] developed an

application to predict and explain door failures using an outlier detection method.

Pereira et al. [157] developed a failure detection system for classifying irregular

open/close cycles within trains based on the difference between the inlet and outlet

pressure in specific intervals of the cycle. More recently, Ribeiro et al. [165] explored

data-driven PdM based on anomaly and novelty detection implemented to predict

failure in the automatic door system. The results showed that a low-pass filter could

significantly reduce the number of false alarms.

Fumeo et al. [76] described a condition-based maintenance algorithm that ex-

plores the online support vector regression algorithm to predict the remaining useful

life of the railway vehicle. In particular, the authors aim to detect failures on the

axle bearings as soon as possible.

Wan-Jui Lee [113] used the Linear Regression model to describe two different

compressor operations (idle and running time). The authors used logistic functions

to define the boundaries of the two classes or compressor operations modes. The

system is used for air leakage detection by AD in a train’s braking pipes. They

used a density-based clustering method with a dynamic threshold to distinguish

anomalies.

Bukhsh et al. [29] explored the usage of tree-based models like Random Forest,

Decision trees, or XGBoost to predict the status of railway switches. Additionally,



5.1 Related Work 89

the authors explored the Local Interpretable Model-Agnostic Explanations (LIME)

to explain the possible reasons for the malfunction. Kalathas and Papoutsidakis [99]

applied two well-known classification algorithms, the J48 and M5P, to monitor the

health state of traction and braking subsystems of the Greek Railway. Adopting tree

algorithms helps the maintenance teams understand the reason for the malfunction.

Kang et al. [101] described a system that uses a Bayesian statistical learning

model to represent the expected behaviour of the train in terms of speed. The

study’s main objective was to capture changes and anomalies in the trains’ speed

to detect some malfunctions as early as possible.

Barros et al. [17] proposed adopting a rule-based system to detect anomalies

on a train compressor unit. This system monitored several analogical and digital

variables and then used a low pass filter to smooth the analogical signals and count

the number of peaks in a time window. The rules were designed based on the

maintenance teams’ expertise to define the compressor units’ normal state.

Unsupervised Learning

Salierno et al. [169] proposed architecture for predictive maintenance on the

railway domain. The proposed architecture is to predict failures in the interlocking

railway system of the Italian Railway. The authors adopted a Long Short Term

Memory model to capture abnormal patterns of the interlocking system.

Davari et al. [54] describe a sparse autoencoder network for PdM on a metro

railway domain. The proposed autoencoder is designed to predict failures on the air

compressor subsystem to remove the train from circulation safely.

Chen et al. [45] presented a predictive system for the compressor air unit. The

authors used a recurrent neural network using Long Short-Term Memory architec-

ture for failure prediction. The authors compared their method with the random

forest method, and the results showed that the neural network proposal was more

stable when compared with the Random Forest.

All the described related works (summarized in table 5.1) rely on identifying

the normal state of the system/component, considering as possible anomalies the

observations that do not have the same familiar patterns. Different machine learning

models or techniques were applied depending on the context and characteristics of



90 Chapter 5. Data-Driven PdM Framework for Railway Systems

the equipment.

Our approach differs from the state of the art because it relies on machine learn-

ing techniques to identify abnormal patterns correctly. The supervised approaches

presented in this section do not work in real-time because we do not know the

ground truth. When we compare with unsupervised learning approaches, where

some authors look to the autoencoders’ higher values of reconstruction error to sig-

nal an anomaly, we suffer from a false positive alarms problem. Our method relies

on a semi-supervised learning algorithm, HS-Tree, which learns a single class and

classifies all the other classes as an anomaly.

If the output of one observation is positive for an anomaly, we use a kNN

algorithm to see if the observation is distant from known normal observations of

the air compressor unit. The ablation study in this manuscript shows a significant

improvement in the evaluation metrics.

Table 5.1: Related Work Comparison

Ref. Target System Model Explainable Model Evaluation Metric

[162] Train Sequence Patterns No Recall & Precision
[123] Doors Outlier No AUC
[157] Doors LPF No False Alarm Rate & Impostor

Pass Rate
[165] Doors LPF No Reduced False Alarm Rate & Re-

duced Impostor Pass Rate & De-
tection Error

[113] Air Compressor Linear Regression No RMSE & Confusion Matrix
[101] Train Bayesian Model No Error
[45] Air Compressor RNN / LSTM No F-Measure & AUC & Accuracy

& Recall & Precision
[17] Air Compressor Rule-based No F-measure
[29] Railway switches XGB / RF / DT Yes Accuracy & F-Measure & Kappa
[99] Railway switches J48 / M5P Yes Recall & Precision & Matthews

Correlation Coefficient
[114] Bearings SVM No Accuracy & Recall & Precision
[76] Axle bearings SVR No Mean Absolute Percentage Error
[169] Interlocking LSTM No Error
[54] Air Compressor SAE No F-measure



5.2 Methodology 91

5.2. Methodology

5.2.1. Problem Definition

The APU is part of a compressed air system, which produces pressurizing air

from an electric motor. The electrical current consumed by the motor is converted

into kinetic energy. The compressed air system is a crucial component of the train

and delivers essential pressurized air to several clients like pneumatic suspension,

oil injection on the rail to reduce the friction and noise on the curves, and injection

of sand to gain traction rails, and finally, connect other trains. Applying predictive

maintenance here is essential to predict the equipment failure before it happens,

decreasing costs and optimizing the service.

5.2.2. Trains Data

The data acquisition system collects information from several analogical sensors

and digital signals generated by the APU control system. Based on the failure

history of the train fleet, it is possible to identify the critical components of the

system that generate the majority of the failures. These critical components are:

(i) electrical valve; (ii) pressure valve; (iii) oil leaks; (iv) electrical motor; (v) pres-

sure switches; and (vi) drying towers. The sensors and places to install them were

strategically defined, considering the output of the failure history study. Figure 5.1

shows an overview of the train system.

The data acquisition system communicates with a cloud server that receives the

data from the sensors with 1 Hz of sampling frequency. The system stores the data

collected from the sensors and respective timestamps to a data logger file, and every

five minutes, the file is sent to the server using the TCP/IP protocol application.

The considered analogical sensors were the following.

TP2 - Measures the pressure on the compressor.

TP3 - Measures the pressure generated at the pneumatic panel.

H1 - This valve is activated when the pressure read by the pressure switch of



92 Chapter 5. Data-Driven PdM Framework for Railway Systems

Figure 5.1: Train System: dark arrows represent the pneumatic system, dashed
arrows the control system and the thin black arrows the sensors

the command is above the operating pressure of 10.2 bar.

DV pressure - Measures the pressure exerted due to pressure drop generated

air dryers towers, and when it is equal to zero, the compressor is working under

load.

Motor Current - Measures the current of one phase of the three-phase motor,

which should present values close to 0 A when the compressor turns off, close

to 4 A when the compressor is working offloaded and close to 7 A when the

compressor is working under load. When the compressor starts to work, the

motor current presents values close to 9 A.

Oil Temperature - Measures the temperature of the oil present on the com-

pressor

Flowmeter - Measures the airflow that leaves the APU for Reservoirs

The considered digital sensors were the following.

COMP - The electrical signal of the air intake valve on the compressor. It is

active when there is no admission of air on the compressor, meaning that the

compressor turns off or working offloaded.



5.2 Methodology 93

DV electric - the electrical signal that commands the compressor outlet valve.

When it is active, it means that the compressor is working under load; when

it is not active, it means that the compressor is off or offloaded.

TOWERS - Defines which tower is drying the air and which tower is draining

the humidity removed from the air. When it is not active, it means that tower

one is working; when it is active, it means that tower two is working.

MPG - Is responsible for activating the intake valve to start the compressor

under load when the pressure in the APU is below 8.2 bar. Consequently, it

will activate the sensor COMP, which assumes the same behaviour as MPG

sensor.

LPS - Is activated when the pressure is lower than 7 bars.

Oil Level - Detects the oil level on the compressor and is active (equal to one)

when the oil is below the expected values.

5.2.3. Proposed model

For our proposal, we only considered the analogical sensors data arriving in the

stream recorded at each second. Figure 5.2 illustrates our anomaly detection model

for predicting catastrophic failures. The algorithms employed to build the proposed

model and detect the train system’s catastrophic failures, namely HS-Trees and the

OCKNN are described in Appendix A Section A.2.

Before feeding HS-Trees algorithm, we aggregated the data in minutes through

the timestamp feature. This operation extracted each sensor’s mean, median, stan-

dard deviation, and variance. Our experiences found that the information extracted

by each minute was sufficient to prevent the HS-Trees algorithm from losing perfor-

mance, thus optimizing the data processing time as it computes fewer records.

After running several experiments with HS-Trees, we noticed that this method

was generating a large number of false positives since only 4 % of data was reported

as a failure, while HS-Trees was detecting around 25 % of failures. To tackle this

problem, we adopted the OCKNN algorithm to deal with data arriving continuously.



94 Chapter 5. Data-Driven PdM Framework for Railway Systems

Figure 5.2: Proposed methodology

The idea is that the OCKNN evaluates each anomaly detected observation from HS-

Trees to check if it was detected correctly.

Data points are updated in the OCKNN training set if HS-Trees inferred these

points as normal data. The update process considers the maximum and minimum

distances to neighbour’s values captured during the stream. Distant normal points

to its neighbours are added to the training set while neighbour points with the

lowest distance are removed. This update mechanism showed high-performance

results as stacking points with high distances present high sensitivity when detecting

anomalous data.

In the case of HS-Trees inferred points as anomalous, the OCKNN method cal-



5.2 Methodology 95

culates the distance from each arriving data point to its closest neighbour to verify

whether they are at an abnormal distance. To better understand our model, it is

presented in Algorithm 4 the pseudo-code implementation.

Before starting the data stream, initial parameters and data structures were

defined: A set of initial training data with 1400 records for the OCKNN method,

which represents a whole day stack (24h) from a period that we know there was no

anomaly in the train system; a K number of neighbours to compute distances to

the arriving data points from which we only used 1 neighbour; a distMax variable to

record the maximum distance to its neighbour set as 0 (lowest value to be replaced

in the first iteration) and a distMin variable to record the minimum distance to its

neighbour set as 9999 (a high value to be replaced in the first iteration). The output

of our model returns a list of TimeStamp values that indicate when an anomaly has

occurred in the APU train system.

The data stream cycle starts in Line 2, where variable x is assigned to each

arrival data point. The algorithm starts by computing the distance to the nearest

neighbour, in line 8. Then it computes the distance percentile, which is used as

a threshold to identify anomalies (line 5), employing a Zscore table value of 2.326

representing percentile 99%, which means detecting 1% of observations with high

distance to neighbours. Then, the HS-Trees method starts by inferring the arrival

data point (line 6), checking if it corresponds to an anomaly (line 7). If the data

point is considered anomalous, it validates if the distance to its neighbour is greater

than the threshold percentile (line 8). If confirmed, the TimeStamp value is stored

in the list S (line 9). Also, the algorithm records the distMax assigning its value to

the nearest neighbour distance of the current data point if that distance is greater

than the previous distMax value.

In case HS-Trees infers the arrival data point as normal behaviour (line 12) the

algorithm assigns distMin and distMinIndex as the current data point distance to its

neighbour and the neighbour id respectively only if that distance is less than previous

distMin value. The next validation is performed to update the OCKNN training set

with points identified as a normal activity of the train system by the HS-Trees if it

matches a certain condition. The data is incremented in the OCKNN training set

if the current normal data point distance to its neighbour is greater than the third

quartile of distMax value. The algorithm also discards from OCKNN training set the



96 Chapter 5. Data-Driven PdM Framework for Railway Systems

Algorithm 4: Pseudo-code for HS-trees with OCKNN approach.

Input : Di ← OCKNN set of initial training points
Ds ← Data Stream
distMax ← Maximum distance to neighbours
distMin ← Minimum distance to neighbours
K ← Number of OCKNN neighbours

Output: S ← Anomalies TimeStamp
1 S ← 0, Di ← 1400, distMax ← 0, distMin ← 9999, K ← 1,

OCKNN.fit(Di);
2 while Ds continues do
3 Receiving the next streaming point x;
4 dist← OCKNN.ComputeDistance(x);
5 distPercentile← distMean + zScore ∗ distSTD;
6 predict← HSTrees.predict(x);
7 if predict == anomaly then
8 if dist > distPercentile then
9 S.append(x.T imestamp);

end
10 if dist > distMax then
11 distMax = dist;

end

end
12 if predict == normal then
13 if dist < distMin then
14 distMin = dist;
15 distMinIndex = closestNeighbour.index;

end
16 if dist > distMax ∗ 0.75 then
17 Di.drop(x[distMinIndex]);
18 Di.append(x);
19 OCKNN.fit(Di);
20 distMax = 0;
21 distMin = 9999;

end

end
22 HSTrees.partialF it(x);

end
Result: S



5.2 Methodology 97

nearest neighbour data point with the lowest distance. Then, distMax and distMin

values are reset. These operations are listed from line 16 to 21. Finally, HS-Trees

is incrementally fitted for each data point in order to build the mass profile used to

estimate anomalies (line 22).

As anomalous events are rare, we define a threshold value representing 1 % of

the arriving data with the highest distance values to its nearest neighbour. This

threshold parameter value allowed our method to detect most anomalous periods

generating few type I and II errors. Figure 5.3 shows the anomalous data points

detected by our method in one of the performed experiments. Distance values equal

to zero represent data points classified as normal behaviour, while distance values

greater than zero are the anomalies detected by our method. The colours represent

the real meaning of the data. In red are the data points that correspond to the real

anomalies, and in blue, the data points that correspond to the real normal behaviour

of the train system.

Figure 5.3: Anomalies detected by our method

It can be seen in Figure 5.3 a set of normal values detected as anomalies probably

due to the initial fit of the HS-Trees model to the data distribution. The model clas-

sifies fewer observations as anomalous from mid-March, identifying practically part

of all anomalous periods with only a few examples represented by normal activity

(false negatives). This model was developed with python, using the implementation

of the HS-Trees algorithm from the scikit-multiflow1 library [138] and the imple-

1https://scikit-multiflow.github.io/



98 Chapter 5. Data-Driven PdM Framework for Railway Systems

mentation of the K Nearest-Neighbour algorithm from the scikit-learn2 library [156]

adapted to work as one class classification with online data.

5.3. Model Evaluation

In this section, we evaluate our model and report the result of our experiments.

We evaluated the model’s effectiveness using data from a train in operation in 5

months of 2020, with some catastrophic failures reported during that period. The

data contains 21 periods reported as anomalous. Some last a few minutes, others a

couple of hours.

5.3.1. Evaluation Procedure

In order to evaluate the performance of our approach, five experiments were

carried out with some state-of-the-art anomaly detection algorithms in the context

of data streams, using the data from the analogical sensors present in the APU

system. Therefore, the mean, median, standard deviation and variance from the

DV pressure, TP2, TP3, H1, Oil temperature, Motor current and mode were used.

The last feature concerns the status of the train. This feature has three states:

in progress, stopped, and under maintenance. Maintenance status data has been

discarded as tests are performed on the trains, causing the APU system to gener-

ate anomalous values, misleading the model’s predictions. It is also important to

mention that all data were normalized using the standard window scaling technique,

which standardizes features by removing the mean and scaling to unit variance. The

mean and standard deviation are computed on a given window frame.

Regarding the algorithms, we tested our approach (HSTreeOCKNN) against

AD methods for data streams such as: Half-Space-Trees (HSTrees) [182], XStream

[125], Isolation Forest (IForestASD) [58] and ExactStorm [11].

To assess the models, we verified that the detected anomalies were within the

reported anomalous period, as shown in Figure 5.4. If for a given model, there is an

overlap in its output to the ground truth (in that anomalous period is detected more

2https://scikit-learn.org/stable/



5.3 Model Evaluation 99

than one anomaly), then all observations from that period are counted as anomalous

(True Positive) in the model’s output. Note that the results of our methodology were

validated by experts at Metro do Porto.

Figure 5.4: Models Validation approach.

We performed several experiments to adjust the hyperparameters reaching the

settings in Table 5.2.

We used the accuracy, Precision, Recall, and F1 metrics for model evaluation,

giving the necessary information to analyze the type I and type II errors.

5.3.2. Discussion

First, we start by analyzing the results of the models in Figure 5.5(a) where

metric accuracy was used. We can observe that our model was the best, reaching an

accuracy of around 98 %, followed by the XStream algorithm that achieved a 1%

lower accuracy when compared to our approach. IForestASD was ranking third

with an accuracy of 92 %, while ExactStorm and HSTree performed worst with

an 87 % and 85 % accuracy respectively. A high accuracy value was expected since

Table 5.2: Selected hyperparameters

HSTreeOCKNN HSTree IForestASD XStream ExactStorm
N Estimators 15 15 25 15 -
Window Size 400 400 400 400 400
Depth 10 10 - 7 -
size limit 75 75 - - -
Max Radious - - - - 0.15
N Components - - - 20 -



100 Chapter 5. Data-Driven PdM Framework for Railway Systems

H
ST
re
eO
C
K
N
N

H
ST
re
e

X
St
re
am

IF
or
es
tA
SD

Ex
ac
tS
to
rm

0

50

100
98.53

85.92
97.49 92.09 87.89

(a) Accuracy%

H
ST
re
eO
C
K
N
N

H
ST
re
e

X
St
re
am

IF
or
es
tA
SD

Ex
ac
tS
to
rm

0

50

10082.02

27.31

87.22

27.9 23.19

(b) Precision%

H
ST
re
eO
C
K
N
N

H
ST
re
e

X
St
re
am

IF
or
es
tA
SD

Ex
ac
tS
to
rm

0

50

100
93.29 99.44

79.26

32.12

56.66

(c) Recall%

H
ST
re
eO
C
K
N
N

H
ST
re
e

X
St
re
am

IF
or
es
tA
SD

Ex
ac
tS
to
rm

0

50

10086.99

42.8

83.05

29.86 32.9

(d) F1 Score%

Figure 5.5: Performance results of the methods using the metrics Accuracy (a),
Precision (b), Recall (c) and F1 Score (d)

failures were rare, representing only 4 % of all data. However, this information is

vague and insufficient to analyze the types of errors generated by the models.

Analyzing the remaining metrics, it can be seen in Figure 5.5(b) the percentage

of type I errors generated by the models. In this case, the XStream was the

best model with 87 % precision, followed by HSTreeOCKNN achieving 82 %. As

OCKNN receives the output of HS-Trees to train and validate anomalies, we know



5.4 Conclusions 101

a priori that there would be an increase in performance due to the elimination of

false positives by the OCKNN. Therefore was expected an increase in the precision

metric by our method, which is visible in Figure 5.5(b), representing a 55 % higher

value if we only used HS-Trees model to tackle this problem. The other models

presented a poor performance, with values below 30 % precision, which means that

these models misclassified most observations as anomalous.

Analyzing Figure 5.5(c) concerning recall metric, the results presented by the

models are much better (except for the IForestASD), meaning all methods gener-

ated low type II errors. The models should generate less FN than FP since these

errors indicate that an anomaly was mistaken for normal activity in the APU train

systems. Failure to classify anomalous activity into normal activity will cause the

train to run into a catastrophic failure, leading to high repair costs and the spo-

radic closure of the railway. As it can be seen, HSTree could detect almost every

anomaly with a high cost of FP (Figure 5.5(b)). HStreeOCKNN was placed in

second with 93 % of recall, a small cost of generating FN compared to HStree in

order to get a higher precision value. XStream did a decent job with a 79 % recall

value. At last, ExactStorm with 56 % recall followed by IForestASD detecting

only a few anomalies.

To analyze the balance between precision and recall metrics, we can observe

Figure 5.5(d), which presents the model’s performance evaluated by the F1 score

metric. Therefore, our approach was the best, achieving 87 % F1 score, followed by

XStream as it was observed in Figures 5.5(b) and 5.5(c), it had a slightly lower type

I error rate than the HSTreeOCKNN model, but with a significantly higher type

II error rate. HSTree shows a poor F1 score due to the high type I error rate, while

IForestASD and ExactStorm presented the worst performance in both precision

and recall metrics.

5.4. Conclusions

Predictive Maintenance enables more efficient, longer-term planning for mainte-

nance operations and makes it easier to allocate maintenance resources and define

operational maintenance goals. One of the most promising aspects of the railway



102 Chapter 5. Data-Driven PdM Framework for Railway Systems

industry’s transformation is Predictive Maintenance through data collected on the

equipment during operation to identify failures in real-time. Therefore, repairs can

be adequately planned without unexpectedly taking trains out of service for emer-

gencies or unnecessary routine Maintenance.

This work presents a data-driven predictive maintenance framework for the APU

train system of Metro of Porto. We used the HS-Trees method combined with

OCKNN to build a predictive model capable of detecting catastrophic anomalies

and dealing with streaming data.

Our empirical study shows that the use of HS-Trees provided significant perfor-

mance improvements when used in conjunction with OCKNN. The proposed pre-

dictive model obtained high AD performance while maintaining fewer false positives

and negatives compared to SotA methods. Distances from neighbours are a viable

solution to reduce false positives for this problem.



Chapter 6

Anomaly Detection on Natural

Language Processing to Improve

Predictions on Tourist Preferences

In this chapter, we address a different application field, specifically tourism,

and a different type of data, text reviews written by tourists. We explore the use

of argumentation-based dialogue models to facilitate the decision-making process

in the context of predicting tourist preferences for points of interest. To do this,

we study strategies for automatically predicting the ratings that tourists assign

to these points of interest based on their reviews. To achieve this goal, we use

natural language processing techniques to predict whether a review is positive or

negative, and the rating assigned by the user on a scale of 1 to 5. We then apply a

range of supervised machine learning methods, including logistic regression, random

forests, decision trees, and k-nearest neighbours, to determine whether a tourist

likes or dislikes a particular point of interest. However, our main focus in this

chapter is on the use of unsupervised techniques to improve the performance of

our supervised model in identifying only those tourists who truly like or dislike a

particular point of interest. To do this, we utilize a distinctive approach in this field

by applying unsupervised techniques for AD problems. The goal is to identify and

classify only those tourists who have a strong preference for a particular point of

interest, rather than trying to classify all tourists. Overall, this chapter will provide

103



104
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

a detailed analysis of the various methods and approaches we used, with a particular

focus on the role of unsupervised techniques in predicting tourist preferences using

argumentation-based dialogue models. The presented work was published in the

Electronics Journal [134].

Argumentation-based dialogue models are extremely useful in contexts where a

group of agents is intended to find solutions for complex decision problems using

negotiation and deliberation mechanisms [34, 35, 31]. In addition, they allow human

decision-makers to understand the reasons that led to a given decision (enhancing

the acceptance of decisions) and to define mechanisms for intelligent explanations

[189, 130]. These models receive the decision-maker’s preferences as input (for in-

stance, regarding criteria and alternatives), which are typically used to model the

agents that represent them [33]. However, obtaining these preferences is not a simple

process: first, in the contemporary and highly dynamic world in which we live, it is

less and less comfortable for decision-makers to answer questionnaires and, second,

it is sometimes difficult to express preferences through questionnaires [32, 36]. To fa-

cilitate this task, strategies that aim to automatically identify the users’ preferences

have been proposed. One of these strategies consists in using ML algorithms and

NLP to automatically extract from a text corpus the users’ opinions through differ-

ent strategies such as text wrangling and pre-processing, named entity recognition

and sentiment analysis [181, 48]. However, there are many algorithms and strate-

gies that can be applied. Therefore, it is mandatory to develop specific procedures

according to the application topic, to achieve the best results.

In this chapter, we studied the problem previously described under the topic of

group recommendation systems, more specifically in the context of tourism, in which

there has been an increased interest in the development of technologies capable of

making recommendations according to the interests of each group member. We as-

sumed as habitual that users/tourists express their opinions regarding POI on social

networks (such as TripAdvisor, Facebook, or Booking.com) and we sought to take

advantage of this to automatically predict their preferences non-intrusively. For this,

we used a public dataset (available in Kaggle) and applied the development lifecycle

for intelligent systems using concepts of NLP defined in [188]. More specifically,

we developed forecast models using five supervised ML algorithms (Logistic Regres-

sion [201], Random Forest [26], Decision Trees [161], K-Nearest Neighbors [72], and



6.1 Related Work 105

Long/Short-Term Memory [88]), using them both as classification and regression

methods. We also applied three unsupervised ML algorithms (One-Class Nearest

Neighbor [186], Isolation Forest [117], and Local Outlier Factor [27]) used for AD to

improve the supervised ML methods’ results. In addition, we used NLP to extract

more knowledge from the users’ reviews and various libraries of Sentiment Analysis

(Vader [93], TextBlob [122] and Flair [4]) to find those that best fit this context.

The rest of the Chapter is organized in the following order: Section 6.1 re-

views SotA works in the field of recommendation systems. Section 6.2 describes our

methodology. Section 6.3 presents the obtained results. In the last section, some

conclusions are put forward.

6.1. Related Work

Several works have been conducted and proposed for the development of recom-

mended systems in the tourism context. Nilashi et al. [143] applied multi-criteria

ratings in developing a new method for hotel recommendations in e-tourism plat-

forms. The authors used supervised and unsupervised ML techniques to analyze the

customers’ online reviews. Cenni and Goethals [41] examined 100 reviews for lan-

guages written in English, Dutch, and Italian and analyzed three features, namely

the types of speech acts that users used, the specific topics that they evaluated, and

the extent to which they up-scaled or down-scaled their evaluative statements. The

authors found a general trend towards similarity between the three language user

groups under examination.

Valvida et al. [192] propose TripAdvisor as a source of data for sentiment analysis

tasks. The authors develop an analysis for studying the matching between users’

sentiments and automatic sentiment-detection algorithms. They provide some of the

challenges regarding sentiment analysis on TripAdvisor. In [5], the authors present

a review focused on the multi-criteria review-based RS, where they explain the user

reviews’ elements in detail and how these can be integrated into the RS to help

develop their criteria to enhance its performance. The authors presented four future

trends to support researchers who wish to pursue studies in this field based on the

survey.



106
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

The work of Kbaier et al. [103] focused on building personalized RS in the

tourism field. They proposed a hybrid RS that combines the three best-known

recommender methods: CF, CB, and DF. In order to implement these recommender

methods, the authors applied different ML algorithms, which were the K-Nearest

Neighbors for both CB and CF and the Decision Tree for the DF. They conducted an

extensive experimental study based on different evaluation metrics using extracted

data from TripAdvisor.

In the work of Logesh et al. [121], they proposed an Activity and Behavior-

Induced Personalized RS (ABiPRS) as a hybrid approach to predict persuasive POI

recommendations. Their RS is designed to support travelling users by providing

a compelling list of POIs as recommendations. As an extension, the authors de-

signed a new group recommendation model to meet the requirements of the group

of users by exploiting relationships between them. They also have developed a novel

hybridization approach for aggregating recommendations from multiple RSs to im-

prove the effectiveness of recommendations. The authors evaluated their approach

on real-time large-scale datasets of Yelp and TripAdvisor.

In [177], the authors provided a fascinating study of users’ evaluations of serendip-

ity in urban recommender systems through a survey among 1641 citizens. They

studied which characteristics of recommended items contribute to serendipitous ex-

periences and to what extent this increases user satisfaction and conversion. Their

results are aligned with findings in other application domains in the sense that there

is a strong relation between the relevance and novelty of recommendations and the

corresponding experienced serendipity. They found that serendipitous recommen-

dations increase the chance of users following up on these recommendations.

6.2. Methodology

In this section, we describe the methodology in detail. We start by describing

the problem that we intend to address. Next, we justify the choice of the dataset,

and carry out its analysis, covering preprocessing and feature engineering. Finally,

we approach the used computational techniques and describe the tests and results

obtained.



6.2 Methodology 107

6.2.1. Understanding the Problem Statement

The problem we want to overcome is to predict, non-intrusively and with a high

level of accuracy, how much a tourist likes/dislikes a given POI. Subsequently, we

intend to use the predicted preferences to model intelligent agents that represent

tourists in a group recommendation system, who seek to jointly decide (using an

argumentation-based dialogue model) and recommend to the group of tourists the

set of POIs to visit. For this, we chose to use the reviews that tourists wrote on

social media (TripAdvisor) to predict their preferences.

6.2.2. Collecting Dataset

The chosen dataset was selected based on 2 criteria: it needed to be a public

dataset and should best represent the context in which this work intends to be ap-

plied. Therefore, a dataset available at Kaggle [7] and which is composed of more

than 20 thousand hotel reviews extracted from TripAdvisor was selected. The fact

that there are already many works on Kaggle’s repository that use this dataset

allowed us to know beforehand that it would be very difficult to obtain good re-

sults, since, for example, for predicting 5 classes, the presented accuracy of the vast

majority varies between 30% and 60%.

6.2.3. Analyzing Dataset, Preprocessing, and Feature Engi-

neering

The dataset is composed of the attributes “Review” and “Rating”. Table 6.1

shows some examples of the type of records that make up the dataset. The “Rating”

is between 1 and 5, where 1 is the worst and 5 is the best possible evaluation.

The dataset consisted of 20,491 records and 2 attributes, and it did not have

any missing data. Figure 6.1 shows the distribution by “Rating”. As can be seen,

the dataset is quite unbalanced, with many more records with a positive evaluation

(Rating 5:9054; Rating 4:6039) than with a negative evaluation (Rating 2:1793;

Rating 1:1421). Furthermore, the number of records with an intermediate evaluation

is also much lower than the number of records with a positive evaluation (Rating



108
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

Table 6.1: Small example of the used dataset.

Review Rating

nice hotel expensive parking got good deal sta... 4
ok nothing special charge diamond member hilto... 2
nice rooms not 4 experience hotel monaco seat... 3
unique, great stay, wonderful time hotel monac... 5
great stay great stay, went seahawk game aweso... 5

3:2184).

Figure 6.1: Distribution by “Rating”.

To study possible correlations between the “Review” and the assigned “Rating”,

we created 3 new attributes: “Word Count”, “Char Count”, and “Average Word Length”.

The “Word Count” stands for the number of words used in the “Review”, the

“Char Count” stands for the number of characters used in the “Review”, and

the “Average Word Length” stands for the average size of the words used in the

“Review”. The “Average Word Length” did not show statistical relevance, but we

found that the most negative reviews tended to be composed of more words than

the most positive reviews (Figure 6.2), which made us believe that the attribute

“Word Count” would be very relevant for the creation of the model.



6.2 Methodology 109

Figure 6.2: Correlation between the average number of words in the “Review” with
the assigned “Rating”.

In the next step, we analyzed which words were most used in the reviews. In

addition, we analyzed which words were most used in negative reviews (Rating 1

and 2) and in positive reviews (Rating 3, 4, and 5). We found that many of the

most used words were the same, both in positive and in negative reviews. In Table

6.2 are presented the most used words considering all the reviews. The fact that

many of the most used words are the same, in both positive and negative reviews,

made us wonder if eliminating these words would be a good strategy in creating the

model.

Table 6.2: List of the most used words in reviews.

Word # Word # Word # Word # Word #
hotel 42,079 not 30,750 room 30,532 great 18,732 n’t 18,436
staff 14,950 good 14,791 did 13,433 just 12,458 stay 11,376
no 11,360 rooms 10,935 nice 10,918 stayed 10,022 location 9515
service 8549 breakfast 8407 beach 8218 food 8026 like 7677
clean 7658 time 7615 really 7612 night 7596 . . . . . .

Then, we used some libraries to perform sentiment analysis. Sentiment analysis

techniques allow the identification of people’s opinions, feelings, or attitudes through

their comments. These techniques make it possible to determine a sentiment in a



110
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

given sentence being classified as positive, negative, or neutral, using scalar values,

and also through polarity (quantifying the sentiment as positive or negative through

a value). These techniques are widely used in domains such as social networks, and

their application is an excellent exercise to aid in interpreting and analyzing data

from this particular field. Therefore, we applied 3 different libraries: Textblob,

Vader, and Flair. Textblob and Vader presented similar results, while Flair did

not obtain results that correlated with the “Rating”. With Textblob, we obtained

2 new attributes (Polarity and Subjectivity), and with Vader, we obtained 3 new

attributes Positive Sentiment, Negative Sentiment, and Neutral Sentiment. Figure

6.3 presents the density of the “Polarity” attribute obtained with Textblob. We

found that the “Polarity” is mostly positive, which makes sense since, as we saw

earlier, most reviews are also positive.

Figure 6.3: Density of the “Polarity” attribute obtained with Textblob.

Figure 6.4 presents the correlation between “Polarity” and “Rating”. We can

see that the polarity rises as the rating increases, which clearly demonstrates the

existence of a correlation. However, we also found that the boxplots of each rating

level are superimposed, which is a strong indicator of the difficulty in achieving

success in creating classification models. In addition, we verified the existence of

many outliers, which may not actually be accurate, as is the case for “Rating”



6.2 Methodology 111

equal to 1, in which we verified the existence of many records with the polarity

between −1 and −0.65. Figure 6.5 presents the correlation between “Subjectivity”

and “Rating”. As we can see, there does not seem to exist any kind of correlation

between subjectivity and rating.

To create a more simplified version of the assessment made by tourists, we gen-

erated a new attribute called “Sentiment”, with a value equal to 1 for records where

the “Rating” was equal to or greater than 3 and with a value equal to 0 for records

where the “Rating” was less than 3. This attribute will allow us to distinguish

positive ratings from negative ratings.

We also carried out important preprocessing activities that allowed us to pre-

pare the dataset and discover some important aspects. First, we put all the corpus

in lowercase. Then, we tokenized the corpus and performed lemmatization and re-

moved all the punctuation. In addition, we used other techniques, such as removing

stopwords, stemming, and considering only the characters of the alphabet; however,

these did not allow us to obtain better results. Finally, we used the MinMaxScaler

to normalize the data.

Figure 6.4: Correlation between “Polarity” and “Rating”.



112
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

Figure 6.5: Correlation between “Subjectivity” and “Rating”.

6.2.4. Computational Techniques

Considering the objective of this work, we believed that it would be important to

test the results that would be possible to obtain with different algorithms, both as

classification methods and as regression methods for supervised learning. We antic-

ipated that if algorithms as classification methods failed due to previously identified

limitations, algorithms as regression methods could be an acceptable alternative in

the context of the objective of this work. Due to the vast number of existing meth-

ods, we decided to choose the classic and the most widely used in the literature.

Our main criterion was the diversity of the mechanics with which these methods

are structured. Hence, we chose methods from different categories based on decision

trees, distances, neural networks, and decision boundaries. The algorithms used

were: Logistic Regression [201], Random Forest [26], Decision Tree [161], K-Nearest

Neighbors [72], and BiLSTM [88]. The first 4 used the Scikit-learn library and the

last one used the Keras library.

We also considered applying unsupervised techniques used in AD problems.

These methods are present in numerous domains and research fields. These can be

found in industrial machinery failure [15, 179, 168], credit card fraud [30, 97, 167],



6.3 Tests and Evaluation 113

image processing [83, 50], medical and public health [98, 141, 204], network intru-

sion [176, 195, 193, 10], and others [46, 159, 170, 65, 133]. We focused on One-Class

Classification (OCC) [186] methods to understand whether we could improve the

results of the best classification algorithm. To do so, we selected three unsuper-

vised methods from the Scikit-learn library: Isolation Forest, OCKNN, and LOF

(described in Appendix A).

6.3. Tests and Evaluation

Several experiments were carried out with the selected algorithms to tune pa-

rameters for optimization. However, as no significant differences were found, the

default configuration provided by the used libraries was employed for all algorithms.

For estimating the performance of the ML models, we performed cross-validation

with five repetitions.

We defined six different scenarios to create models. In the first three scenarios

(#1, #2 and #3), the set of most used words that did not express feelings were

removed (hotel, room, staff, did, stay, rooms, stayed, location, service, breakfast,

beach, food, night, day, hotel, pool, place, people, area, restaurant, bar, went, water,

bathroom, bed, restaurants, trip, desk, make, floor, room, booked, nights, hotels,

say, reviews, street, lobby, took, city, think, days, husband, arrived, check, and told),

and in the other 3 (#4, #5 and #6), all words were kept.

For all scenarios, we used the TfidfVectorizer class from the Scikit-learn li-

brary to transform the “Review new” feature to feature vectors, and we defined

max features equal to 5000. In addition, in scenarios #1 and #4, the features

considered were: “Review new”, “Polarity”, “Word Count”, “Char Count”, “Aver-

age Word Length”, “Positive Vader Sentiment”, and “Negative Vader Sentiment”;

in scenarios #2 and #5, the features considered were “Review new” and “Polarity”;

and in scenarios #3 and #6, only the feature “Review new” was considered. We

applied each supervised learning algorithm to each scenario with both the classifica-

tion and regression methods. Thus, all combinations were used for a 5-class problem

(Y = “Rating”) and a 2-class problem (Y = “Sentiment”). Finally, we applied three

AD methods to the output of the best classification model (2-class problem).



114
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

6.3.1. Classification and Regression Results with Supervised

Methods

Figure 6.6 presents the results obtained with the five algorithms for each of the

scenarios defined with the classification method for the 5-class problem (Y = “Rat-

ing”). Note that the Logistic Regression method is limited to two-class classification

problems by default. However, with the Scikit-learn library, Logistic Regression can

handle multi-class classification problems using the approach one-vs-rest [21]. Ana-

lyzing Figure 6.6, the Logistic Regression algorithm obtained the best results for all

scenarios, with an accuracy always higher than 0.6, followed by the Random Forest

algorithm. The other three algorithms obtained considerably lower results, and in

the case of the BiLSTM algorithm, the results were very poor, as it classified all

cases with a “Rating” of 4.

Figure 6.6: Algorithms’ accuracy for the classification method (Y = “Rating”).

Since scenario 4 was the one that allowed us to achieve the best results, in terms

of accuracy, Table 6.3 presents precision and recall for each of the algorithms in

scenario 4 with the classification method for the 5-class problem. We verified that

the Logistic Regression and Random Forest algorithms presented interesting results.

It is possible to verify that relatively high values were obtained for the extreme cases

(“Rating” = 1 and “Rating” = 5), but the quality was quite low in the classification

of intermediate values.



6.3 Tests and Evaluation 115

Table 6.3: Precision and recall for scenario 4 with the classification method (Y =
“Rating”).

Precision Recall
L 1 L 2 L 3 L 4 L 5 L 1 L 2 L 3 L 4 L 5

Logistic Regression 0.66 0.47 0.46 0.53 0.72 0.65 0.40 0.27 0.52 0.82
Random Forest 0.63 0.48 0.42 0.47 0.64 0.70 0.27 0.04 0.39 0.90
Decision Tree 0.49 0.33 0.23 0.39 0.62 0.50 0.32 0.23 0.39 0.62
KNN 0.37 0.20 0.19 0.40 0.64 0.60 0.22 0.18 0.31 0.67
BiLSTM 0 0 0 0.29 0 0 0 0 1 0

Figure 6.7 presents the results obtained with the 5 algorithms for each of the

scenarios defined with the classification method for the 2-class problem (Y = “Sen-

timent”). As can be seen, the results were quite good. Once again, the Logistic

Regression and Random Forest algorithms obtained the best results, with the Lo-

gistic Regression algorithm showing an accuracy very close to 0.95. The Decision

Tree and K-Nearest Neighbors algorithms obtained reasonable results, mainly in

scenarios where more features were considered. The BiLSTM algorithm returned

the worst results.

Figure 6.7: Algorithms’ accuracy for the classification method (Y = “Sentiment”).

Table 6.4 presents precision and recall for each of the algorithms in scenario 4

with the classification method for the 2-class problem. The results presented by

the Logistic Regression algorithm are quite solid. It is verified that the recall for



116
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

L 1 (Sentiment = 0) is lower than desirable, but this is probably explained by the

dataset being unbalanced.

Table 6.4: Precision and recall for scenario 4 with the classification method (Y =
“Sentiment”).

Precision Recall

L 1 L 2 L 1 L 2

Logistic
Regression

0.849624 0.946389 0.702736 0.976846

Random Forest 0.873541 0.922977 0.558458 0.98495
Decision Tree 0.657431 0.934858 0.649254 0.937022
KNN 0.735152 0.923111 0.569652 0.96179671
BiLSTM 0 0.843061 0 1

The next experiences concern the application of the algorithms to the previously

presented scenarios with the regression method. Figure 6.8 presents the Mean Ab-

solute Error obtained with the 5 algorithms for each of the scenarios defined with

the regression method for the 5-class problem (Y = “Rating”). We found that most

algorithms obtained poor results. However, the Random Forest algorithm presented

very interesting results, obtaining a Mean Absolute Error of 0.69 in scenario 4 (which

is quite good considering the problem in question).

Table 6.5 presents the Mean Squared Error, Root Mean Square Error, and Mean

Absolute Error for each of the algorithms in scenario 4 with the regression method

for the 5-class problem. Once again, it is possible to verify that the Random Forest

algorithm obtained very good results, unlike the other algorithms. Although the

BiLSTM algorithm seems to give reasonable results, this only happens due to the

fact that it always generates the same output and most reviews are positive.

Figure 6.9 presents the Mean Absolute Error obtained with the 5 algorithms for

each of the scenarios defined with the regression method for the 2-class problem (Y

= “Sentiment”). We verified that, in this case, all algorithms, with the exception of

the BiLSTM algorithm, obtained very good results.

Table 6.6 presents the Mean Squared Error, Root Mean Square Error, and Mean

Absolute Error for each of the algorithms in scenario 4 with the regression method for

the 2-class problem. The Logistic Regression algorithm again presented very good



6.3 Tests and Evaluation 117

Figure 6.8: Algorithms’ Mean Absolute Error for the regression method (Y = “Rat-
ing”).

Table 6.5: Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE) for scenario 4 with the regression method (Y = “Rating”).

MSE RMSE MAE

Logistic
Regression

4.140872 2.034913 1.77198

Random Forest 0.733771 0.856604 0.694623
Decision Tree 8.018544 2.831703 1.942417
KNN 5.818965 2.412253 2.007092
BiLSTM 1.522414 1.233862 0.978359

results that were consistent across all experiments. In this scenario, the K-Nearest

Neighbors algorithm also presented interesting results.

6.3.2. Anomaly Detection Results

Through our next experiments, we selected OCC methods used in AD problems.

We applied them to score the predicted output of the best classification algorithm—

in this case, the Logistic Regression. These anomaly detectors are trained with

normal data, identifying patterns that deviate from normality, which are considered



118
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

Figure 6.9: Algorithms’ Mean Absolute Error for the regression method (Y = “Sen-
timent”).

Table 6.6: MSE, RMSE, and MAE for scenario 4 with the regression method (Y =
“Sentiment”).

MSE RMSE MAE

Logistic
Regression

0.097812 0.312749 0.154837

Random Forest 0.07346 0.271034 0.146088
Decision Tree 0.154987 0.393684 0.154987
KNN 0.095474 0.308988 0.143406
BiLSTM 0.132327 0.363768 0.267391

anomalies. The main goal is to analyze whether these techniques can help the

recommendation system that we intend to develop to correctly classify as many

users as possible—that is, to detect whether they like a POI, improving the Logistic

Regression performance.Therefore, as we can observe in Figure 6.11, the class 0

(showed as red dots), which we have considered as the anomalous one in this scenario,

is dispersed through the graph in the Isolation Forest and OCKNN methods. We

can also visualize that users with negative sentiments are at the top for the LOF

method, with the highest scores. However, some of them are overlapped with users

with positive sentiments, which means that although improvements in reducing false

positives are possible, they come with the cost of increasing false negatives. We



6.3 Tests and Evaluation 119

identified LOF as the best method to apply for this purpose as it was shown to

better separate the Y = “Sentiment” classes through its score compared to the other

methods.

Figure 6.10: Cont.

We then performed four different experiments with this technique, analyzing

the precision and recall metrics, as we intended to reduce false positives (increase

precision), taking the increase in false negatives (decrease recall) into account. Thus,

in the first two experiments, we applied LOF to separate Y = “Sentiment” classes by

training with users with positive sentiments to isolate users with negative sentiments

in the first experiment, while in the second experiment, we did the same, switching

the classes (training with users with negative sentiment to isolate users with positive

sentiment). We repeated the process for experiments three and four, this time using

Y = “Ranking” to isolate the extreme ranking values, meaning that, in experiment

three, we used users who rated 5 to train in order to isolate users who rated 1 and



120
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

Figure 6.11: Anomaly scores distinguishing sentiment 1 from sentiment 0. The first
graphic represents the Isolation Forest results, the second shows OCKNN results,
and the third shows LOF results. The y-axis represents the scores and the x -axis
represents the sample indices.

vice versa for the fourth experiment.

To visualize the experiments, we built different graphics (Figures 6.12–6.15).

The y-axis represents precision and recall percentage values, and in the x -axis, the

percentile thresholds from LOF are given. That is, the percentage instances with

the highest score from LOF output are considered the isolated class. For example,

threshold percentile 95% means that instances that have a score value greater than

95% of the highest score output are considered as the isolated class.

We can observe in all experiments that recall presents a linear increase when

threshold values also increase, while precision shows a slight decrease for high thresh-

old values. It is essential to mention that threshold percentile 100% represents the

output of Logistic Regression without cuts, which is why recall is always 100%,

which means the absence of false negatives since we are using the values predicted

by the Logistic Regression method of only a specific class.
In the first experiment (Figure 6.12), we aimed to discard class 0 from the Logistic

Regression output, reducing the population from class 1 in order to obtain the

maximum users who liked a POI. We can see that if using a threshold percentile

of 50%, we obtain approximately 99% precision, but with a high cost for the recall

value (52%). In this experiment, precision has a slight increase when reducing the



6.3 Tests and Evaluation 121

50 55 60 65 70 75 80 85 90 95 99

50

55

60

65

70

75

80

85

90

95

100

Thresholds percentil %

%

Precision

Recall

Figure 6.12: First experiment—isolating class 0 from Y = “Sentiment” in Logistic
Regression output using LOF.

class 1 population in 20% (threshold percentile 80%), achieving a precision of 98%,

while recall decreases at 82%. It obtains an acceptable recall value while precision

converges to its highest value.

In Figure 6.13, it is possible to observe the experiment in which we intended to

hit the highest number of users who did not like a POI. In this scenario, LOF shows

poor performance since it could not separate adequately class 1 from class 0. In

order to be able to increase precision in only 2% (from 84% to 86%), recall drops

from 99% to 51%.

Regarding the third experiment, shown in Figure 6.14, our goal was to discard

users who rated a POI as 1, while reaching the maximum number of users who

rated a specific POI as 5. Regarding the third experiment, shown in Figure 6.14,

we wanted to discard users who rated a POI as 1 while reaching the maximum

number of users who rated a specific POI as 5; it can be seen that precision can

increase from 73% to 78% when reducing the population from users who rate 5 in



122
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

50 55 60 65 70 75 80 85 90 95 99

50

55

60

65

70

75

80

85

90

95

100

Thresholds percentil %

%

Precision

Recall

Figure 6.13: Second experiment—isolating class 1 from Y = “Sentiment” feature in
Logistic Regression output using LOF.

50%. This increase of 5% is the same, visible in the first (Figure 6.12) and last

experiment (Figure 6.15); however, the highest precision value is much higher in the

first scenario.

6.3.3. Discussion

In this chapter, we carried out several experiments to understand the capability

of machine learning models to predict user reviews on the TripAdvisor platform.

We started with the classification and regression of two problems, multi-class (Y =

“Rating”) and binary (Y = “Sentiment”), to observe the models’ behaviour. The

results in the multi-class problems were not very high, especially in identifying the

intermediate classes (Rating 2, 3, 4) due to the composition of the dataset. In

the dataset analysis, we verified that, in addition to the classes being unbalanced

(Figure 6.1), there is an overlap in the user evaluations (Figure 6.4). On the one



6.3 Tests and Evaluation 123

50 55 60 65 70 75 80 85 90 95 99
50

55

60

65

70

75

80

85

90

95

100

Thresholds percentil %

%

Precision

Recall

Figure 6.14: Third experiment—isolating class 1 from Y = “Ranking” in Logistic
Regression output using LOF.

hand, the dataset may not be sufficiently representative—for example, in comments

with a level 3 rating—and, on the other hand, the fact that users are different

can also have a large impact on a scale from 1 to 5, i.e., the same words have

different meanings/weights for different people and people who evaluate a POI with

the same rating may express it in a completely different way. As expected, the

binary problem = Sentiment) results were higher since the data were aggregated by

the extreme ratings (1, 5), where the overlapped observations were minor compared

to intermediate ratings. Since our goal was to identify those ratings classified as

positive, which actually obtained a positive rating from the user (and vice versa),

we applied AD techniques to improve the Logistic Regression precision. We verified

that the LOF was the best AD method to better differentiate classes from the

Logistic Regression output compared to OCKNN and Isolation Forest. The LOF

algorithm could reduce false positives but with an associated cost (with linear growth

derived from the noise present in the dataset) of increasing false negatives, which is

excellent since it is essential that the recommendation system we intend to develop



124
Chapter 6. Anomaly Detection on Natural Language Processing to Improve

Predictions on Tourist Preferences

50 55 60 65 70 75 80 85 90 95 99

55

60

65

70

75

80

85

90

95

100

Thresholds percentil %

%

Precision

Recall

Figure 6.15: Fourth experiment—isolating class 5 from Y = “Ranking” in Logistic
Regression output using LOF.

can identify POIs that users will like or not like with certainty.

6.4. Conclusions

This work aimed to study strategies to automatically predict tourists’ prefer-

ences regarding tourism points of interest. The method consisted in using Machine

Learning algorithms and Natural Language Processing techniques on reviews that

tourists posted on TripAdvisor to predict their assigned ratings. The chosen dataset

presented several issues, making it difficult to achieve better results (the top three

were being unbalanced, having comments that were not about the POI, and having

comments with very poor writing quality). Since this was a public dataset, we al-

ready knew it would be extremely challenging because most existing works present

accuracy rates between 30% and 60%. However, we decided to use this dataset as

it is a good example of the reality and type of problems that exist in the context of



6.4 Conclusions 125

the topic of this work.

The work carried out allowed us to reach important conclusions. First, the

inclusion of sentiment analysis had a much smaller positive impact than expected.

Furthermore, it was possible to notice that, for this dataset, the Vader and TextBlob

models obtained a good correlation with the ratings associated with comments, while

Flair did not. Second, although negative comments are usually longer, the inclusion

of the “Word Count” attribute did not prove to be relevant. Third, the Logistic

Regression algorithm proved to be, for classification, the one that achieved greater

accuracy, while the Random Forest algorithm, for regression, proved to be the one

that obtained the smallest error. The Bidirectional LSTM algorithm obtained poor

results for both classification and regression, most likely because the dataset was not

large enough and contained several outliers, making it difficult for LSTM to extract

patterns and generalize the data.

Finally, we verified that we can improve the precision of a model using AD

techniques, albeit with a certain decrease in recall. The cost of increasing false

negatives is defined by the anomalous threshold, which is a user-specified parameter.

Therefore, the threshold can be adjustable so that there is a beneficial trade-off

between precision and recall. We intended to create a model to identify only those

tourists who truly like or dislike a particular point of interest, in which the main

objective is not to identify everyone, but fundamentally not to fail those who are

identified in those conditions.

Our experiments provide valuable information as they give an idea of the be-

haviour of ML models in a real scenario, helping to develop approaches for those

who intend to create a recommendation system for decision support systems in the

tourism field.





Chapter 7

Conclusions and Future Work

AD is a crucial task in many fields. The ability to identify and analyze unusual or

unexpected patterns in data can help organizations prevent potential problems and

improve their operations. Over the years, the technology used for AD has evolved

significantly. Early approaches relied on simple statistical methods and manual

inspection of data, but these were limited in their ability to handle large and complex

data sets. Today, AD is a vast and widely studied field where new approaches are

constantly emerging. With the advent of ML and big data technologies, the field

of AD has seen significant advancements and will continue to be an important area

of research and development in the future. Despite of such improvements, there

are still limitations to be addressed such as scalable methods capable of dealing

with large volumes of data, the lack of transparency in most SotA methods, the

computational costs of hyperparameter tuning, or the ability to deal with stream

data without the need for labels. In this thesis, we have tried to confront some of

these problems, and several methods and comparative studies were presented and

proposed to address the challenges described in Chapter 1. Below we briefly detail

the main contributions of this work:

127



128 Chapter 7. Conclusions and Future Work

7.1. New algorithms and models

The new algorithms and models proposed to address the challenges of AD are

the following:

The first contribution is the LSHAD algorithm, which is a novel and sustain-

able AD method based on LSH capable of dealing with large-scale datasets.

The resulting algorithm is highly parallelizable and its implementation in

Apache Spark further increases its ability to handle very large datasets. More-

over, the algorithm incorporates an automatic hyperparameter tuning mech-

anism so that users do not have to implement costly manual tuning. This

sustainable approach to AD has the added advantage of being an unsuper-

vised method, that does not need labelled data for the learning process. The

hyperparameter tuning mechanism is able to adjust its hyperparameters de-

spite the input data domain. The LSHAD method is novel, and both of its

characteristics, hyperparameter automation and distributed properties are not

usual in AD techniques. The results for experiments with LSHAD across a

variety of datasets point to SotA AD performance while handling much larger

datasets than SotA alternatives. In addition, evaluation results for the tradeoff

between AD performance and scalability show that our method offers signifi-

cant advantages over competing methods.

Another contribution is the data-driven approach for AD using a data stream

model, which is designed also to be more sustainable than other available mod-

els. The proposed method assists in the early detection of failures and errors in

machinery before they reach critical stages. We present an AD model following

an unsupervised approach, combining the Half-Space-trees method with One

Class K Nearest Neighbor, adapted to deal with data streams. Since the data

incoming from the sensors is endless and received as a continuous flow, the

framework is capable of dealing with data streams where the methods’ com-

putational resources are limited (memory, computational power, processing

time) providing sustainability to the method. The model is based on incre-

mental learning as data is induced incrementally and contemplate a forgetting

mechanism to deal with limited memory. We evaluate our approach and com-

pare it with the Half-Space-Trees method applied without the One Class K



7.2 Practical Applications 129

Nearest Neighbor combination. Our model produced few type I errors, signifi-

cantly increasing the value of precision when compared to the Half-Space-Trees

model. Our proposal achieved high AD performance, predicting most of the

catastrophic failures of the APU train system.

Lastly, the thesis presents a study of strategies with NLP techniques for pre-

dicting tourist preferences based on their reviews. We explored different Ma-

chine Learning methods to predict users’ ratings. We used NLP strategies

to predict whether a review is positive or negative and the rating assigned by

users on a scale of 1 to 5. We then applied supervised methods such as Logistic

Regression, Random Forest, Decision Trees, K-Nearest Neighbors, and Recur-

rent Neural Networks to determine whether a tourist likes/dislikes a given

point of interest. Additionally, we used a distinctive approach in this field

through unsupervised techniques for AD problems. The goal was to improve

the supervised model in identifying only those tourists who truly like or dislike

a particular point of interest, in which the main objective is not to identify

everyone, but fundamentally not to fail those who are identified in those con-

ditions. The experiments carried out showed that the developed models could

predict with high accuracy whether a review is positive or negative but have

some difficulty in accurately predicting the rating assigned by users. Unsu-

pervised method Local Outlier Factor improved the results, reducing Logistic

Regression false positives with an associated cost of increasing false negatives.

7.2. Practical Applications

This thesis also explores the application of the proposed algorithms and models

in various fields. The main application is intrusion detection, as cyber security is

a critical area in computer systems, especially when dealing with sensitive data.

At present, it is becoming increasingly important to assure that computer systems

are secured from attacks due to modern society’s dependence on those systems.

To prevent these attacks, nowadays most organizations make use of anomaly-based

IDS. Usually, IDS contain machine learning algorithms which aid in predicting or

detecting anomalous patterns in computer systems. Most of these algorithms are

supervised techniques, which contain gaps in the detection of unknown patterns



130 Chapter 7. Conclusions and Future Work

or Zero-day exploits since these are not present in the algorithm learning phase.

To address this problem, we present in this thesis an empirical study of several

unsupervised learning algorithms used in the detection of unknown attacks. In

this study, we evaluated and compared the performance of different types of AD

techniques in two publicly available datasets: the NSL-KDD and the ISCX. The

aim of this evaluation allows us to understand the behaviour of these techniques and

understand how they could be fitted in an IDS to fill the mentioned flaw. Also, the

present evaluation could be used in the future, as a comparison of results with other

unsupervised algorithms applied in the cybersecurity field. The results obtained

show that the techniques used are capable of carrying out AD with acceptable

performance and thus making them suitable candidates for future integration in

Intrusion Detection tools.

In addition to intrusion detection, an evaluation study of novel unsupervised

methods to deal with IoT attacks is presented in this thesis. The challenge of

providing security to networks is becoming increasingly harder, particularly with

the recent deluge of smart devices with average to poor security joining networks

worldwide. With the evolution of the IoT and devices increasingly connected to the

Internet, the challenge of ensuring the security and integrity of the network and all

connected devices arises. The use of IDS seeks to help protect networks, for ex-

ample, by preventing IoT devices from being used maliciously or raising awareness

when they have been compromised. This dissertation explores the new Aposemat

IoT-23 dataset of network traffic containing malware and benign scenarios executed

in IoT devices. We initially performed an exploratory analysis of the dataset. We

used it to evaluate several AD methods to evaluate their capability to distinguish

between normal and abnormal network behaviour. Therefore, one of our contribu-

tions is to present a comparison of SotA solutions to detect intrusions in IoT. In our

evaluation, we tested AD rates and time processing performances but also explored

the usefulness of the explanation trees obtained from a novel AD algorithm denomi-

nated by EADMNC. Results showed that most of the methods under scrutiny have

an excellent AD score, but the One-Class Nearest Neighbour is systematically the

best performer. However, this method has the disadvantage of its lack of scalability

and, thus, we show that novel methods such as LSHAD and EADMNC are much

better suited for dealing with large datasets.



7.2 Practical Applications 131

Another field widely studied in AD is the PdM. The emergence of the Industry

4.0 trend brings automation and data exchange to industrial manufacturing. Using

computational systems and IoT devices allows businesses to collect and deal with

vast volumes of sensorial and business process data. The growing and proliferation

of big data and machine learning technologies enable strategic decisions to be made

based on the analyzed data. It is presented in this thesis a data-driven PdM frame-

work for the APU) system of a train of Metro do Porto. The proposed model is also

applicable in PdM field, where it has been shown to be effective in identifying and

predicting failures in equipment, reducing downtime and costs. This is achieved by

using stream data, which enables it to process data in real-time and detect anomalies

in a timely manner.

In addition, we addressed the Argumentation-based dialogue models field. These

models have shown to be appropriate for decision contexts in which it is intended

to overcome the lack of interaction between decision-makers, either because they

are dispersed, they are too many, or they are simply not even known. However, to

support decision processes with argumentation-based dialogue models, it is neces-

sary to have knowledge of certain aspects that are specific to each decision-maker,

such as preferences, interests, and limitations, among others. Failure to obtain this

knowledge could ruin the model’s success. We sought to facilitate the information

acquisition process by studying strategies to automatically predict the tourists’ pref-

erences (ratings) in relation to points of interest based on their reviews. The study of

tourist preferences prediction based on reviews, using Argumentation-based dialogue

models, also provided insights into the use of NLP and unsupervised techniques in

this field and showed how this approach can facilitate the information acquisition

process and predict the tourists’ preferences based on their reviews. The results of

this study demonstrate the potential of this approach in decision-making contexts,

and its ability to overcome the lack of interaction between decision-makers.

As described, this thesis covers a broad suite of problems arising from the ad-

vent of the AD field, while also taking into account sustainability considerations.

The proposed approaches have demonstrated their capability to deal with large

amounts of data unlabeled, providing hyperparameter tuning mechanisms and data

interpretability. Thus, it is expected that the contribution of this thesis will open

the door to the development of new sustainable approaches that can deal with AD



132 Chapter 7. Conclusions and Future Work

problems taking into account the referred limitations.

7.3. Future Work

As future work, we plan to develop new unsupervised AD approaches in the

PdM domain. Most of the works in the literature related to data-driven approaches

in PdM apply classical machine learning techniques or more complex methods in

the deep learning field. However, unsupervised learning methods that deal with

data streams are not usually applied even though performing as well as the previ-

ously referred methods with additional benefits such as needing less computational

resources with limited and incremental learning characteristics.

We are currently working on a solution for detecting railway defects and classi-

fying their severity through data stream methods. We intend to develop a model

that is not only able to detect and classify faults but also is robust to adversarial

attacks. These attacks involve the deliberate introduction of unusual or unexpected

behaviour in a system in order to cause it to malfunction or behave in a way that is

beneficial to the attacker, which in this case could lead to an undetected defect in

the railway causing in the worst scenario a train derailment.

7.4. Publications from the thesis

The contents of the present research have been published in the following spe-

cialized journals and conferences:

Journal publications

J Meira, R Andrade, I Praça, J Carneiro, V Bolón-Canedo, A Alonso-Betanzos

and G Marreiros. Performance evaluation of unsupervised techniques in cyber-

attack anomaly detection. Journal of Ambient Intelligence and Humanized

Computing 11 (11), 4477-4489. 2020. doi:10.1007/s12652-019-01417-9. JCR

Q1.

https://doi.org/10.1007/s12652-019-01417-9


7.5 Other Publications 133

J Meira, C Eiras-Franco, V Bolón-Canedo, G Marreiros, and A Alonso-Betanzos.

Fast anomaly detection with locality-sensitive hashing and hyperparameter au-

totuning. Information Sciences, 607, pp.1245-1264. 2022.

doi:10.1016/j.ins.2022.06.035. JCR Q1.

J Meira, B Veloso, V Bolón-Canedo, M Goreti, and A Alonso-Betanzos. Data-

driven predictive maintenance framework for railway systems. Intelligent Data

Analysis, In Press. 2023. JCR Q3.

J Meira, J Carneiro, V Bolón-Canedo, A Alonso-Betanzos, P Novais, and

G Marreiros. Anomaly Detection on Natural Language Processing to Im-

prove Predictions on Tourist Preferences. Electronics, 11(5), p.779. 2022.

doi:10.3390/electronics11050779. JCR Q2

Journal publications (Under review process)

J Meira, C Eiras-Franco, V Bolón-Canedo, G Marreiros, A Alonso-Betanzos,

and J Hernandez-Castro. Unsupervised learning methods for IoT IDS with

Aposemat IoT-23 Dataset. 2022.

Conferences

Meira, J., Andrade, R., Praça, I., Carneiro, J. and Marreiros, G. Compara-

tive results with unsupervised techniques in cyber attack novelty detection.

In International Symposium on Ambient Intelligence (pp. 103-112). 2018.

Springer, Cham. doi:10.1007/978-3-030-01746-0 12

7.5. Other Publications

During the PhD program, other works have been developed and published in the

following specialized journals and conferences:

https://doi.org/10.1016/j.ins.2022.06.035
https://doi.org/10.3390/electronics11050779
https://doi.org/10.1007/978-3-030-01746-0_12


134 Chapter 7. Conclusions and Future Work

Journal publications

Martinho, D., Freitas, A., Sá-Sousa, A., Vieira, A., Meira, J., Martins, C. and

Marreiros, G. A Hybrid Model to Classify Patients with Chronic Obstruc-

tive Respiratory Diseases. Journal of Medical Systems, 45(3), pp.1-11. 2021.

doi:10.1007/s10916-020-01704-5. JCR Q1

Conceição, L., Rodrigues, V., Meira, J., Marreiros, G. and Novais, P. Sup-

porting Argumentation Dialogues in Group Decision Support Systems: An

Approach Based on Dynamic Clustering. Applied Sciences, 12(21), p.10893.

2022. doi:10.3390/app122110893. JCR Q2

Conferences

De Berardinis, J., Pizzuto, G., Lanza, F., Chella, A., Meira, J. and Cangelosi,

A. At your service: Coffee beans recommendation from a robot assistant. In

Proceedings of the 8th International Conference on Human-Agent Interaction

(pp. 257-259). 2020. doi:10.1145/3406499.3418765.

Crista, V., Martinho, D., Meira, J., Carneiro, J., Corchado, J. and Marreiros,

G. A Hybrid Model to Classify Physical Activity Profiles. In International

Conference on Practical Applications of Agents and Multi-Agent Systems (pp.

268-278). 2022. Springer, Cham. doi:10.1007/978-3-031-18697-4 22.

Carneiro, J., Meira, J., Novais, P. and Marreiros, G. Using Machine Learning

to Predict the Users Ratings on TripAdvisor Based on Their Reviews. In

Practical Applications of Agents and Multi-Agent Systems (pp. 127-138).

2021. Springer, Cham. doi:10.1007/978-3-030-85710-3 11.

https://doi.org/10.1007/s10916-020-01704-5
https://doi.org/10.3390/app122110893
https://doi.org/10.1145/3406499.3418765
https://doi.org/10.1007/978-3-031-18697-4_22
https://doi.org/10.1007/978-3-030-85710-3_11


Bibliography

[1] M. A. Abdulhayoglu and B. Thijs. Use of locality sensitive hashing (lsh)

algorithm to match web of science and scopus. Scientometrics, 116(2):1229–

1245, 2018. pages 33

[2] T. A. Ahanger, A. Aljumah, and M. Atiquzzaman. State-of-the-art survey

of artificial intelligent techniques for iot security. Computer Networks, page

108771, 2022. pages 63

[3] J. Aiken and S. Scott-Hayward. Investigating adversarial attacks against

network intrusion detection systems in sdns. In 2019 IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-SDN),

pages 1–7. IEEE, 2019. pages 7

[4] A. Akbik, T. Bergmann, D. Blythe, K. Rasul, S. Schweter, and R. Vollgraf.

Flair: An easy-to-use framework for state-of-the-art nlp. In Proceedings of the

2019 conference of the North American chapter of the association for compu-

tational linguistics (demonstrations), pages 54–59, 2019. pages 105

[5] S. M. Al-Ghuribi and S. A. M. Noah. Multi-criteria review-based recommender

system–the state of the art. IEEE Access, 7:169446–169468, 2019. pages 105

[6] I. Al-Turaiki and N. Altwaijry. A convolutional neural network for improved

anomaly-based network intrusion detection. Big Data, 9(3):233–252, 2021.

pages 7

[7] M. H. Alam, W.-J. Ryu, and S. Lee. Joint multi-grain topic sentiment: mod-

eling semantic aspects for online reviews. Information Sciences, 339:206–223,

2016. pages 107

135



136 BIBLIOGRAPHY

[8] A. Aleroud and G. Karabatis. Toward zero-day attack identification using

linear data transformation techniques. In 2013 IEEE 7th International Con-

ference on Software Security and Reliability, pages 159–168. IEEE, 2013. pages

18

[9] I. Alhussein and A. H. Ali. Application of dbscan to anomaly detection in

airport terminals. In 2020 3rd International Conference on Engineering Tech-

nology and its Applications (IICETA), pages 112–116. IEEE, 2020. pages 6

[10] S. A. Althubiti, E. M. Jones, and K. Roy. Lstm for anomaly-based network

intrusion detection. In 2018 28th International telecommunication networks

and applications conference (ITNAC), pages 1–3. IEEE, 2018. pages 113

[11] F. Angiulli and F. Fassetti. Detecting distance-based outliers in streams of

data. In Proceedings of the sixteenth ACM conference on Conference on in-

formation and knowledge management, pages 811–820, 2007. pages 98

[12] E. Anthi, A. Javed, O. Rana, and G. Theodorakopoulos. Secure data sharing

and analysis in cloud-based energy management systems. In Cloud Infrastruc-

tures, Services, and IoT Systems for Smart Cities, pages 228–242. Springer,

2017. pages 64

[13] E. Anthi, L. Williams, M. S lowińska, G. Theodorakopoulos, and P. Burnap.

A supervised intrusion detection system for smart home iot devices. IEEE

Internet of Things Journal, 6(5):9042–9053, 2019. pages 64

[14] B. Arrington, L. Barnett, R. Rufus, and A. Esterline. Behavioral modeling

intrusion detection system (bmids) using internet of things (iot) behavior-

based anomaly detection via immunity-inspired algorithms. In 2016 25th In-

ternational Conference on Computer Communication and Networks (ICCCN),

pages 1–6. IEEE, 2016. pages 67

[15] G. Aydemir and B. Acar. Anomaly monitoring improves remaining useful

life estimation of industrial machinery. Journal of Manufacturing Systems,

56:463–469, 2020. pages 112



BIBLIOGRAPHY 137

[16] M. Bahri, F. Salutari, A. Putina, and M. Sozio. Automl: state of the art with a

focus on anomaly detection, challenges, and research directions. International

Journal of Data Science and Analytics, pages 1–14, 2022. pages 31, 43

[17] M. Barros, B. Veloso, P. M. Pereira, R. P. Ribeiro, and J. Gama. Failure detec-

tion of an air production unit in operational context. In J. Gama, S. Pashami,

A. Bifet, M. Sayed-Mouchawe, H. Fröning, F. Pernkopf, G. Schiele, and

M. Blott, editors, IoT Streams for Data-Driven Predictive Maintenance and

IoT, Edge, and Mobile for Embedded Machine Learning, pages 61–74, Cham,

2020. Springer International Publishing. pages 87, 89, 90

[18] L. Basora, X. Olive, and T. Dubot. Recent advances in anomaly detection

methods applied to aviation. Aerospace, 6(11):117, 2019. pages 6

[19] P. Bhandaru. What is botnet, prevention and detection techniques, 2018.

pages 163

[20] C. M. Bishop. Neural networks for pattern recognition. Oxford university

press, 1995. pages 166

[21] C. M. Bishop and N. M. Nasrabadi. Pattern recognition and machine learning,

volume 4. Springer, 2006. pages 114

[22] A. Blázquez-Garćıa, A. Conde, U. Mori, and J. A. Lozano. A review on out-

lier/anomaly detection in time series data. ACM Computing Surveys (CSUR),

54(3):1–33, 2021. pages 2, 4

[23] H. Bostani and M. Sheikhan. Hybrid of anomaly-based and specification-based

ids for internet of things using unsupervised opf based on mapreduce approach.

Computer Communications, 98:52–71, 2017. pages 67, 68

[24] I. Botana, C. Eiras-Franco, and A. Alonso-Betanzos. Regression tree based

explanation for anomaly detection algorithm. MDPI Proceedings, 54:7, 2020.

pages 8, 65, 73, 176

[25] A. Bouguettaya, H. Zarzour, A. M. Taberkit, and A. Kechida. A review on

early wildfire detection from unmanned aerial vehicles using deep learning-

based computer vision algorithms. Signal Processing, 190:108309, 2022. pages

34



138 BIBLIOGRAPHY

[26] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. pages 104,

112

[27] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying

density-based local outliers. In ACM sigmod record, volume 29, pages 93–104.

ACM, 2000. pages 30, 34, 105, 175

[28] O. Brun, Y. Yin, E. Gelenbe, Y. M. Kadioglu, J. Augusto-Gonzalez, and

M. Ramos. Deep learning with dense random neural networks for detecting

attacks against iot-connected home environments. In International ISCIS Se-

curity Workshop, pages 79–89. Springer, Cham, 2018. pages 66, 68

[29] Z. A. Bukhsh, A. Saeed, I. Stipanovic, and A. G. Doree. Predictive mainte-

nance using tree-based classification techniques: A case of railway switches.

Transportation Research Part C: Emerging Technologies, 101:35–54, 2019.

pages 87, 88, 90

[30] F. Carcillo, Y.-A. Le Borgne, O. Caelen, Y. Kessaci, F. Oblé, and G. Bon-

tempi. Combining unsupervised and supervised learning in credit card fraud

detection. Information sciences, 2019. pages 112

[31] J. Carneiro, P. Alves, G. Marreiros, and P. Novais. A multi-agent system

framework for dialogue games in the group decision-making context. In

World Conference on Information Systems and Technologies, pages 437–447.

Springer, 2019. pages 104

[32] J. Carneiro, P. Alves, G. Marreiros, and P. Novais. Group decision support sys-

tems for current times: Overcoming the challenges of dispersed group decision-

making. Neurocomputing, 423:735–746, 2021. pages 104

[33] J. Carneiro, R. Andrade, P. Alves, L. Conceição, P. Novais, and G. Marreiros.

A consensus-based group decision support system using a multi-agent mi-

croservices approach. In Proceedings of the 19th International Conference on

Autonomous Agents and MultiAgent Systems, pages 2098–2100, 2020. pages

104



BIBLIOGRAPHY 139

[34] J. Carneiro, D. Martinho, G. Marreiros, A. Jimenez, and P. Novais. Dynamic

argumentation in ubigdss. Knowledge and Information Systems, 55(3):633–

669, 2018. pages 104

[35] J. Carneiro, D. Martinho, G. Marreiros, and P. Novais. Arguing with behav-

ior influence: a model for web-based group decision support systems. Interna-

tional Journal of Information Technology & Decision Making, 18(02):517–553,

2019. pages 104

[36] J. Carneiro, P. Saraiva, L. Conceição, R. Santos, G. Marreiros, and P. Novais.

Predicting satisfaction: perceived decision quality by decision-makers in web-

based group decision support systems. Neurocomputing, 338:399–417, 2019.

pages 104

[37] P. Casale, O. Pujol, and P. Radeva. Approximate convex hulls family for one-

class classification. In International workshop on multiple classifier systems,

pages 106–115. Springer, 2011. pages 172

[38] P. Casas, J. Mazel, and P. Owezarski. Unsupervised network intrusion detec-

tion systems: Detecting the unknown without knowledge. Computer Commu-

nications, 35(7):772–783, 2012. pages 19

[39] E. Castillo, D. Peteiro-Barral, B. G. Berdiñas, and O. Fontenla-Romero. Dis-

tributed one-class support vector machine. International journal of neural

systems, 25(07):1550029, 2015. pages 17, 53

[40] T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli. The autoen-

coding variational autoencoder. Advances in Neural Information Processing

Systems, 33:15077–15087, 2020. pages 34

[41] I. Cenni and P. Goethals. Negative hotel reviews on tripadvisor: A cross-

linguistic analysis. Discourse, Context & Media, 16:22–30, 2017. pages 105

[42] R. Chalapathy and S. Chawla. Deep learning for anomaly detection: A survey.

arXiv preprint arXiv:1901.03407, 2019. pages 34

[43] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.

ACM computing surveys (CSUR), 41(3):1–58, 2009. pages xxiii, 1, 2, 4, 5, 8,

30



140 BIBLIOGRAPHY

[44] J. Chen, S. Sathe, C. Aggarwal, and D. Turaga. Outlier detection with autoen-

coder ensembles. In Proceedings of the 2017 SIAM international conference

on data mining, pages 90–98. SIAM, 2017. pages 18

[45] K. Chen, S. Pashami, Y. Fan, and S. Nowaczyk. Predicting air compressor

failures using long short term memory networks. In EPIA Conference on

Artificial Intelligence, pages 596–609. Springer, 2019. pages 87, 89, 90

[46] T. Chen, X. Liu, B. Xia, W. Wang, and Y. Lai. Unsupervised anomaly de-

tection of industrial robots using sliding-window convolutional variational au-

toencoder. IEEE Access, 8:47072–47081, 2020. pages 113

[47] X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman,

I. Sutskever, and P. Abbeel. Variational lossy autoencoder. arXiv preprint

arXiv:1611.02731, 2016. pages 59

[48] X. Chen, H. Xie, G. Cheng, L. K. Poon, M. Leng, and F. L. Wang. Trends

and features of the applications of natural language processing techniques for

clinical trials text analysis. Applied Sciences, 10(6):2157, 2020. pages 104

[49] X. Chi, C. Yan, H. Wang, W. Rafique, and L. Qi. Amplified locality-sensitive

hashing-based recommender systems with privacy protection. Concurrency

and Computation: Practice and Experience, page e5681, 2020. pages 33

[50] J. K. Chow, Z. Su, J. Wu, P. S. Tan, X. Mao, and Y.-H. Wang. Anomaly

detection of defects on concrete structures with the convolutional autoencoder.

Advanced Engineering Informatics, 45:101105, 2020. pages 113

[51] C. Cimpanu. New hakai iot botnet takes aim at d-link, huawei, and re-

altek routers. ZDNet. url: https://www. zdnet. com/article/new-hakai-iot-

botnettakes-aim-at-d-link-huawei-and-realtek-routers/(visited on 05/02/2022),

2018. pages 163

[52] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. On-

line passive-aggressive algorithms. Journal of Machine Learning Research,

7(Mar):551–585, 2006. pages 176



BIBLIOGRAPHY 141

[53] N. Davari, B. Veloso, G. d. A. Costa, P. M. Pereira, R. P. Ribeiro, and J. Gama.

A survey on data-driven predictive maintenance for the railway industry. Sen-

sors, 21(17):5739, 2021. pages 87

[54] N. Davari, B. Veloso, R. P. Ribeiro, P. M. Pereira, and J. Gama. Predictive

maintenance based on anomaly detection using deep learning for air produc-

tion unit in the railway industry. In 2021 IEEE 8th International Conference

on Data Science and Advanced Analytics (DSAA), pages 1–10. IEEE, 2021.

pages 89, 90

[55] M. C. de Souza, B. M. Nogueira, R. G. Rossi, R. M. Marcacini, B. N. Dos San-

tos, and S. O. Rezende. A network-based positive and unlabeled learning ap-

proach for fake news detection. Machine Learning, 111(10):3549–3592, 2022.

pages 8

[56] J. Demšar. Statistical comparisons of classifiers over multiple data sets. Jour-

nal of Machine learning research, 7(Jan):1–30, 2006. pages 25, 51, 55, 75,

180

[57] L. Deng, D. Yu, et al. Deep learning: methods and applications. Foundations

and trends® in signal processing, 7(3–4):197–387, 2014. pages 165

[58] Z. Ding and M. Fei. An anomaly detection approach based on isolation forest

algorithm for streaming data using sliding window. IFAC Proceedings Volumes,

46(20):12–17, 2013. pages 98

[59] Docs.zeek.org. Zeek user manual v3.2.0. https://docs.zeek.

org/en/current/scripts/base/protocols/conn/main.zeek.html#

base-protocols-conn-main-zeek, 2019. pages 164, 165

[60] D. Dua and E. Karra Taniskidou. Uci machine learning repository

[http://archive. ics. uci. edu/ml]. irvine, ca: University of california. School of

Information and Computer Science, 2017. pages 43

[61] C. Eiras-Franco, B. Guijarro-Berdiñas, A. Alonso-Betanzos, and A. Baha-

monde. A scalable decision-tree-based method to explain interactions in dyadic

data. Decision Support Systems, 127:113141, 2019. pages 31, 176

https://docs.zeek.org/en/current/scripts/base/protocols/conn/main.zeek.html#base-protocols-conn-main-zeek
https://docs.zeek.org/en/current/scripts/base/protocols/conn/main.zeek.html#base-protocols-conn-main-zeek
https://docs.zeek.org/en/current/scripts/base/protocols/conn/main.zeek.html#base-protocols-conn-main-zeek


142 BIBLIOGRAPHY

[62] C. Eiras-Franco, D. Mart́ınez-Rego, B. Guijarro-Berdiñas, A. Alonso-

Betanzos, and A. Bahamonde. Large scale anomaly detection in mixed nu-

merical and categorical input spaces. Information Sciences, 487:115–127, 2019.

pages 31, 34, 57, 71, 176

[63] S. Eltanbouly, M. Bashendy, N. AlNaimi, Z. Chkirbene, and A. Erbad. Ma-

chine learning techniques for network anomaly detection: A survey. In 2020

IEEE International Conference on Informatics, IoT, and Enabling Technolo-

gies (ICIoT), pages 156–162. IEEE, 2020. pages 7

[64] M. Eskandari, Z. H. Janjua, M. Vecchio, and F. Antonelli. Passban ids: An

intelligent anomaly based intrusion detection system for iot edge devices. IEEE

Internet of Things Journal, 2020. pages 67, 68

[65] G. Fenza, M. Gallo, and V. Loia. Drift-aware methodology for anomaly de-

tection in smart grid. IEEE Access, 7:9645–9657, 2019. pages 113

[66] G. Fernandes, J. J. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi, and M. L.

Proença. A comprehensive survey on network anomaly detection. Telecom-

munication Systems, 70(3):447–489, 2019. pages 5

[67] D. Fernández-Francos, Ó. Fontenla-Romero, and A. Alonso-Betanzos. One-

class convex hull-based algorithm for classification in distributed environ-

ments. IEEE Transactions on Systems, Man, and Cybernetics: Systems,

50(2):386–396, 2017. pages xxvi, 17, 172, 173

[68] D. Fernández-Francos, D. Mart́ınez-Rego, O. Fontenla-Romero, and

A. Alonso-Betanzos. Automatic bearing fault diagnosis based on one-class

ν-svm. Computers & Industrial Engineering, 64(1):357–365, 2013. pages 87

[69] E. W. T. Ferreira, G. A. Carrijo, R. de Oliveira, and N. V. de Souza Araujo.

Intrusion detection system with wavelet and neural artifical network approach

for networks computers. IEEE Latin America Transactions, 9(5):832–837,

2011. pages 63

[70] C. Finisterrae. Centre of supercomputing of galicia (cesga). Science and

Technology Infrastructures (in spanish ICTS), Tech. Rep, 2012. pages 76



BIBLIOGRAPHY 143

[71] E. Fix. Discriminatory analysis: nonparametric discrimination, consistency

properties, volume 1. USAF school of Aviation Medicine, 1985. pages 86, 169

[72] E. Fix and J. L. Hodges. Discriminatory analysis. nonparametric discrimina-

tion: Consistency properties. International Statistical Review/Revue Interna-

tionale de Statistique, 57(3):238–247, 1989. pages 104, 112

[73] C. M. Fonseca and P. J. Fleming. On the performance assessment and compar-

ison of stochastic multiobjective optimizers. In International Conference on

Parallel Problem Solving from Nature, pages 584–593. Springer, 1996. pages

82

[74] R. Foorthuis. On the nature and types of anomalies: A review of deviations

in data. International Journal of Data Science and Analytics, 12(4):297–331,

2021. pages xxi, 1, 3, 4

[75] J. Fruhlinger. The mirai botnet explained: How iot devices almost brought

down the internet, 2018. pages 162

[76] E. Fumeo, L. Oneto, and D. Anguita. Condition based maintenance in rail-

way transportation systems based on big data streaming analysis. Procedia

Computer Science, 53:437–446, 2015. pages 88, 90

[77] S. Gao, Z.-Y. Li, M.-H. Yang, M.-M. Cheng, J. Han, and P. Torr. Large-scale

unsupervised semantic segmentation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2022. pages 31

[78] A. B. Gardner, A. M. Krieger, G. Vachtsevanos, B. Litt, and L. P. Kaelbing.

One-class novelty detection for seizure analysis from intracranial eeg. Journal

of Machine Learning Research, 7(6), 2006. pages 17

[79] Z. Geng, Y. Zhang, and Y. Han. Joint entity and relation extraction model

based on rich semantics. Neurocomputing, 429:132–140, 2021. pages 34

[80] A. Géron. Hands-on machine learning with Scikit-Learn, Keras, and Tensor-

Flow: Concepts, tools, and techniques to build intelligent systems. O’Reilly

Media, 2019. pages 34



144 BIBLIOGRAPHY

[81] G. Giacinto, R. Perdisci, M. Del Rio, and F. Roli. Intrusion detection in

computer networks by a modular ensemble of one-class classifiers. Information

Fusion, 9(1):69–82, 2008. pages 17

[82] M. Goldstein and S. Uchida. A comparative evaluation of unsupervised

anomaly detection algorithms for multivariate data. PloS one, 11(4):e0152173,

2016. pages 18

[83] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh, and

A. v. d. Hengel. Memorizing normality to detect anomaly: Memory-augmented

deep autoencoder for unsupervised anomaly detection. In Proceedings of the

IEEE/CVF International Conference on Computer Vision, pages 1705–1714,

2019. pages 113

[84] M. T. Guerreiro, E. M. A. Guerreiro, T. M. Barchi, J. Biluca, T. A. Alves,

Y. de Souza Tadano, F. Trojan, and H. V. Siqueira. Anomaly detection in

automotive industry using clustering methods—a case study. Applied Sciences,

11(21):9868, 2021. pages 6

[85] Y. Han, Y. Lang, M. Cheng, Z. Geng, G. Chen, and T. Xia. Dtaxa: An

actor–critic for automatic taxonomy induction. Engineering Applications of

Artificial Intelligence, 106:104501, 2021. pages 34

[86] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem. Attack and anomaly

detection in iot sensors in iot sites using machine learning approaches. Internet

of Things, 7:100059, 2019. pages 66, 68

[87] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support

vector machines. IEEE Intelligent Systems and their applications, 13(4):18–28,

1998. pages 174

[88] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997. pages 105, 112

[89] W. Hong, E. J. Hwang, J. H. Lee, J. Park, J. M. Goo, and C. M. Park. Deep

learning for detecting pneumothorax on chest radiographs after needle biopsy:

Clinical implementation. Radiology, page 211706, 2022. pages 34



BIBLIOGRAPHY 145

[90] C.-Y. Hsu and W.-C. Liu. Multiple time-series convolutional neural network

for fault detection and diagnosis and empirical study in semiconductor man-

ufacturing. Journal of Intelligent Manufacturing, 32(3):823–836, 2021. pages

6

[91] X. Hu, Y. Han, and Z. Geng. A novel matrix completion model based on

the multi-layer perceptron integrating kernel regularization. IEEE Access,

9:67042–67050, 2021. pages 34

[92] K.-W. Huang, G.-W. Chen, Z.-H. Huang, and S.-H. Lee. Anomaly detection in

airport based on generative adversarial network for intelligent transportation

system. In 2022 IEEE International Conference on Consumer Electronics-

Taiwan, pages 311–312. IEEE, 2022. pages 6

[93] C. Hutto and E. Gilbert. Vader: A parsimonious rule-based model for senti-

ment analysis of social media text. In Proceedings of the international AAAI

conference on web and social media, volume 8, pages 216–225, 2014. pages 105

[94] P. Indyk and R. Motwani. Approximate nearest neighbors: towards remov-

ing the curse of dimensionality. In Proceedings of the thirtieth annual ACM

symposium on Theory of computing, pages 604–613. ACM, 1998. pages 32,

177

[95] N. Japkowicz. Concept learning in the absence of counterexamples: An

autoassociation-based approach to classification. Rutgers The State Univer-

sity of New Jersey-New Brunswick, 1999. pages 166

[96] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large

databases. In Proceedings of the seventh ACM SIGKDD international con-

ference on Knowledge discovery and data mining - KDD ’01, pages 293–298,

New York, New York, USA, 2001. ACM Press. pages 30

[97] H. John and S. Naaz. Credit card fraud detection using local outlier fac-

tor and isolation forest. International Journal of Computational Science and

Engineering, 7(4):1060–1064, 2019. pages 112

[98] T. Jombart, S. Ghozzi, D. Schumacher, T. J. Taylor, Q. J. Leclerc, M. Jit,

S. Flasche, F. Greaves, T. Ward, R. M. Eggo, et al. Real-time monitoring



146 BIBLIOGRAPHY

of covid-19 dynamics using automated trend fitting and anomaly detection.

Philosophical Transactions of the Royal Society B, 376(1829):20200266, 2021.

pages 113

[99] I. Kalathas and M. Papoutsidakis. Predictive maintenance using machine

learning and data mining: A pioneer method implemented to greek railways.

Designs, 5(1):5, 2021. pages 87, 89, 90

[100] P. Kamat and R. Sugandhi. Anomaly detection for predictive maintenance in

industry 4.0-a survey. In E3S Web of Conferences, volume 170, page 02007.

EDP Sciences, 2020. pages 86

[101] S. Kang, S. Sristi, J. Karachiwala, and Y. Hu. Detection of anomaly in train

speed for intelligent railway systems. Int. Conf. Control. Autom. Diagnosis,

ICCAD, 2018. pages 87, 89, 90

[102] Kaspersky. What is a trojan? - definition and explanation, 2021. pages 164

[103] M. E. B. H. Kbaier, H. Masri, and S. Krichen. A personalized hybrid tourism

recommender system. In 2017 IEEE/ACS 14th International Conference on

Computer Systems and Applications (AICCSA), pages 244–250. IEEE, 2017.

pages 106

[104] S. S. Khan and M. G. Madden. One-class classification: taxonomy of study

and review of techniques. The Knowledge Engineering Review, 29(3):345–374,

2014. pages 17

[105] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman. Survey of intrusion

detection systems: techniques, datasets and challenges. Cybersecurity, 2(1):1–

22, 2019. pages 7

[106] G. Kim, S. Lee, and S. Kim. A novel hybrid intrusion detection method

integrating anomaly detection with misuse detection. Expert Systems with

Applications, 41(4):1690–1700, 2014. pages 67

[107] T. Kohonen. Self-organized formation of topologically correct feature maps.

Biological cybernetics, 43(1):59–69, 1982. pages 167



BIBLIOGRAPHY 147

[108] S. A. Kokatnoor and B. Krishnan. Twitter hate speech detection using stacked

weighted ensemble (swe) model. In 2020 Fifth International Conference on

Research in Computational Intelligence and Communication Networks (ICR-

CICN), pages 87–92. IEEE, 2020. pages 9

[109] A. Koons-Stapf. Condition based maintenance: Theory, methodology, & ap-

plication. 01 2015. pages 87

[110] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Loop: local outlier

probabilities. In Proceedings of the 18th ACM conference on Information and

knowledge management, pages 1649–1652. ACM, 2009. pages 30

[111] H.-P. Kriegel, P. Kröger, and A. Zimek. Outlier detection techniques. Tutorial

at KDD, 10, 2010. pages 30

[112] A. D. Landress. A hybrid approach to reducing the false positive rate in

unsupervised machine learning intrusion detection. In SoutheastCon 2016,

pages 1–6. IEEE, 2016. pages 67

[113] W.-j. Lee. Anomaly detection and severity prediction of air leakage in train

braking pipes. International Journal of Prognostics and Health Management,

21, 2017. pages 87, 88, 90

[114] H. Li, D. Parikh, Q. He, B. Qian, Z. Li, D. Fang, and A. Hampapur. Improv-

ing rail network velocity: A machine learning approach to predictive main-

tenance. Transportation Research Part C: Emerging Technologies, 45:17–26,

2014. pages 87, 88, 90

[115] Z. Li, J. Tang, L. Zhang, and J. Yang. Weakly-supervised semantic guided

hashing for social image retrieval. International Journal of Computer Vision,

128(8):2265–2278, 2020. pages 33

[116] B. Lindemann, B. Maschler, N. Sahlab, and M. Weyrich. A survey on anomaly

detection for technical systems using lstm networks. Computers in Industry,

131:103498, 2021. pages 2

[117] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In 2008 Eighth IEEE

International Conference on Data Mining, pages 413–422. IEEE, 2008. pages

105



148 BIBLIOGRAPHY

[118] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1):3, 2012.

pages 33, 171, 172

[119] H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: An enabling

technique. Data mining and knowledge discovery, 6(4):393–423, 2002. pages

21

[120] Z. Liu, J. Liu, C. Pan, and G. Wang. A novel geometric approach to bi-

nary classification based on scaled convex hulls. IEEE transactions on neural

networks, 20(7):1215–1220, 2009. pages 172

[121] R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, and X. Li. Efficient user

profiling based intelligent travel recommender system for individual and group

of users. Mobile Networks and Applications, 24(3):1018–1033, 2019. pages 106

[122] S. Loria et al. textblob documentation. Release 0.15, 2(8), 2018. pages 105

[123] G. Manco, E. Ritacco, P. Rullo, L. Gallucci, W. Astill, D. Kimber, and M. An-

tonelli. Fault detection and explanation through big data analysis on sensor

streams. Expert Syst. Appl., 87:141–156, nov 2017. pages 87, 88, 90

[124] L. M. Manevitz and M. Yousef. One-class svms for document classification.

Journal of machine Learning research, 2(Dec):139–154, 2001. pages 17

[125] E. Manzoor, H. Lamba, and L. Akoglu. xstream: Outlier detection in feature-

evolving data streams. In Proceedings of the 24th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1963–1972, 2018.

pages 98

[126] D. Mart́ınez-Rego, D. Fernández-Francos, O. Fontenla-Romero, and

A. Alonso-Betanzos. Stream change detection via passive-aggressive classifica-

tion and Bernoulli CUSUM. Information Sciences, 305:130–145, 2015. pages

34, 53, 73, 176

[127] D. Mart́ınez-Rego, O. Fontenla-Romero, A. Alonso-Betanzos, and J. C.

Principe. Fault detection via recurrence time statistics and one-class clas-

sification. Pattern Recognition Letters, 84:8–14, 2016. pages 87



BIBLIOGRAPHY 149

[128] D. Martinus and J. Tax. One-class classification: Concept-learning in the

absence of counterexamples. Delft University of Technology, 2001. pages 166

[129] O. Mazhelis. One-class classifiers: a review and analysis of suitability in the

context of mobile-masquerader detection. South African Computer Journal,

2006(36):29–48, 2006. pages 166

[130] P. McBurney and S. Parsons. Dialogue games for agent argumentation. In

Argumentation in artificial intelligence, pages 261–280. Springer, 2009. pages

104

[131] M. K. McNutt, R. Camilli, T. J. Crone, G. D. Guthrie, P. A. Hsieh, T. B.

Ryerson, O. Savas, and F. Shaffer. Review of flow rate estimates of the deep-

water horizon oil spill. Proceedings of the National Academy of Sciences,

109(50):20260–20267, 2012. pages 7

[132] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breiten-

bacher, and Y. Elovici. N-baiot—network-based detection of iot botnet at-

tacks using deep autoencoders. IEEE Pervasive Computing, 17(3):12–22, 2018.

pages 66, 68

[133] J. Meira, R. Andrade, I. Praça, J. Carneiro, V. Bolón-Canedo, A. Alonso-

Betanzos, and G. Marreiros. Performance evaluation of unsupervised tech-

niques in cyber-attack anomaly detection. Journal of Ambient Intelligence

and Humanized Computing, 11(11):4477–4489, 2020. pages 16, 17, 113

[134] J. Meira, J. Carneiro, V. Bolón-Canedo, A. Alonso-Betanzos, P. Novais, and

G. Marreiros. Anomaly detection on natural language processing to improve

predictions on tourist preferences. Electronics, 11(5):779, 2022. pages 9, 104

[135] J. Meira, C. Eiras-Franco, V. Bolón-Canedo, G. Marreiros, and A. Alonso-

Betanzos. Fast anomaly detection with locality-sensitive hashing and hyper-

parameter autotuning. Information Sciences, 607:1245–1264, 2022. pages 29,

65, 71, 72, 177

[136] J. Meira, B. Veloso, V. Bólon-Canedo, M. Goreti, and A. Alonso-Betanzos.

Data-driven predictive maintenance framework for railway systems. Intelligent

Data Analysis, In Press, 2022. pages 7, 85



150 BIBLIOGRAPHY

[137] T. Micro. “hide ‘n seek” botnet uses peer-to-peer infrastructure to compromise

iot devices, 2018. pages 162

[138] J. Montiel, J. Read, A. Bifet, and T. Abdessalem. Scikit-multiflow: A multi-

output streaming framework. The Journal of Machine Learning Research,

19(1):2915–2914, 2018. pages 97

[139] N. Moustafa and J. Slay. Unsw-nb15: a comprehensive data set for network in-

trusion detection systems (unsw-nb15 network data set). In 2015 military com-

munications and information systems conference (MilCIS), pages 1–6. IEEE,

2015. pages 66, 68

[140] A.-H. Muna, N. Moustafa, and E. Sitnikova. Identification of malicious activ-

ities in industrial internet of things based on deep learning models. Journal

of Information Security and Applications, 41:1–11, 2018. pages 66, 68

[141] K. Naidoo and V. Marivate. Unsupervised anomaly detection of healthcare

providers using generative adversarial networks. Responsible Design, Imple-

mentation and Use of Information and Communication Technology, 12066:419,

2020. pages 113

[142] U. Naseem, I. Razzak, and P. W. Eklund. A survey of pre-processing tech-

niques to improve short-text quality: a case study on hate speech detection on

twitter. Multimedia Tools and Applications, 80(28):35239–35266, 2021. pages

9

[143] M. Nilashi, O. Ibrahim, E. Yadegaridehkordi, S. Samad, E. Akbari, and A. Al-

izadeh. Travelers decision making using online review in social network sites:

A case on tripadvisor. Journal of computational science, 28:168–179, 2018.

pages 105

[144] K. Noto, C. Brodley, and D. Slonim. Frac: a feature-modeling approach

for semi-supervised and unsupervised anomaly detection. Data mining and

knowledge discovery, 25(1):109–133, 2012. pages 19

[145] H. Om and A. Kundu. A hybrid system for reducing the false alarm rate of

anomaly intrusion detection system. In 2012 1st International Conference on



BIBLIOGRAPHY 151

Recent Advances in Information Technology (RAIT), pages 131–136. IEEE,

2012. pages 67

[146] C. O’Reilly, A. Gluhak, M. A. Imran, and S. Rajasegarar. Anomaly detection

in wireless sensor networks in a non-stationary environment. IEEE Commu-

nications Surveys & Tutorials, 16(3):1413–1432, 2014. pages 67

[147] C. Osborne. Meet torii, a new iot botnet far more sophisticated than mirai

variants. URL:” https://www. zdnet. com/article/meet-torii-a-new-iot-botnet-

far-more-sophisticated-than-mirai, 2018. pages 163

[148] P. Paganini. Mirai okiru botnet targets for first time ever in the history arc-

based iot devices, 2018. pages 164

[149] M.-O. Pahl and F.-X. Aubet. All eyes on you: Distributed multi-dimensional

iot microservice anomaly detection. In 2018 14th International Conference on

Network and Service Management (CNSM), pages 72–80. IEEE, 2018. pages

66, 68

[150] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel. Deep learning for anomaly

detection: A review. ACM Computing Surveys (CSUR), 54(2):1–38, 2021.

pages 5

[151] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci: Fast

outlier detection using the local correlation integral. In Proceedings 19th In-

ternational Conference on Data Engineering (Cat. No. 03CH37405), pages

315–326. IEEE, 2003. pages 30, 34

[152] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and

S. Narayanan. A review of speaker diarization: Recent advances with deep

learning. Computer Speech & Language, 72:101317, 2022. pages 34

[153] A. Parmisano, S. Garcia, and M. J. Erquiaga. Stratosphere laboratory. apose-

mat iot-23. a labeled dataset with malicious and benign iot network traffic.,

2020. pages xxii, 58, 65, 68, 161, 162

[154] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional

data: a review. Acm sigkdd explorations newsletter, 6(1):90–105, 2004. pages

19



152 BIBLIOGRAPHY

[155] V. Paxson. Bro: a system for detecting network intruders in real-time. Com-

puter networks, 31(23-24):2435–2463, 1999. pages 64

[156] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Ma-

chine learning in python. the Journal of machine Learning research, 12:2825–

2830, 2011. pages 98

[157] P. Pereira, R. P. Ribeiro, and J. Gama. Failure prediction – an application in

the railway industry. Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), 8777:264–275, 2014. pages 87, 88,

90

[158] M. R. Pillutla, N. Raval, P. Bansal, K. Srinathan, and C. Jawahar. Lsh based

outlier detection and its application in distributed setting. In Proceedings of

the 20th ACM international conference on Information and knowledge man-

agement, pages 2289–2292. ACM, 2011. pages 35, 36, 53

[159] T. Pourhabibi, K.-L. Ong, B. H. Kam, and Y. L. Boo. Fraud detection: A

systematic literature review of graph-based anomaly detection approaches.

Decision Support Systems, 133:113303, 2020. pages 113

[160] K. Qin, Q. Wang, B. Lu, H. Sun, and P. Shu. Flight anomaly detection via a

deep hybrid model. Aerospace, 9(6):329, 2022. pages 6

[161] J. R. Quinlan. Probabilistic decision trees. In Machine Learning, pages 140–

152. Elsevier, 1990. pages 104, 112

[162] J. Rabatel, S. Bringay, and P. Poncelet. Anomaly detection in monitoring

sensor data for preventive maintenance. Expert Syst. Appl., 38(6):7003–7015,

2011. pages 87, 88, 90

[163] Radware. The rise of the botnets: Mirai & hajime, 2017. pages 163

[164] D. Rahmawati and R. Sarno. Anomaly detection using control flow pattern and

fuzzy regression in port container handling. Journal of King Saud University-

Computer and Information Sciences, 33(1):11–20, 2021. pages 6



BIBLIOGRAPHY 153

[165] R. P. Ribeiro, P. Pereira, and J. Gama. Sequential anomalies: a study in the

railway industry. Machine Learning, 105(1):127–153, 2016. pages 87, 88, 90

[166] M. Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,

volume 99, pages 229–238, 1999. pages 64

[167] N. Rtayli and N. Enneya. Enhanced credit card fraud detection based on svm-

recursive feature elimination and hyper-parameters optimization. Journal of

Information Security and Applications, 55:102596, 2020. pages 112

[168] J.-R. Ruiz-Sarmiento, J. Monroy, F.-A. Moreno, C. Galindo, J.-M. Bonelo,

and J. Gonzalez-Jimenez. A predictive model for the maintenance of industrial

machinery in the context of industry 4.0. Engineering Applications of Artificial

Intelligence, 87:103289, 2020. pages 112

[169] G. Salierno, S. Morvillo, L. Leonardi, and G. Cabri. An architecture for

predictive maintenance of railway points based on big data analytics. In In-

ternational Conference on Advanced Information Systems Engineering, pages

29–40. Springer, 2020. pages 87, 89, 90

[170] K. K. Santhosh, D. P. Dogra, and P. P. Roy. Anomaly detection in road

traffic using visual surveillance: A survey. ACM Computing Surveys (CSUR),

53(6):1–26, 2020. pages 113

[171] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.

Estimating the support of a high-dimensional distribution. Neural computa-

tion, 13(7):1443–1471, 2001. pages 33, 34

[172] B. Schölkopf, R. C. Williamson, A. Smola, J. Shawe-Taylor, and J. Platt.

Support vector method for novelty detection. Advances in neural information

processing systems, 12, 1999. pages 174, 175

[173] T. Security. Hakai botnet shows signs of intense activity in latin america,

2018. pages 163

[174] H. J. Shin, D.-H. Eom, and S.-S. Kim. One-class support vector machines—an

application in machine fault detection and classification. Computers & Indus-

trial Engineering, 48(2):395–408, 2005. pages 17



154 BIBLIOGRAPHY

[175] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani. Toward developing

a systematic approach to generate benchmark datasets for intrusion detection.

computers & security, 31(3):357–374, 2012. pages 17, 19

[176] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi. A deep learning approach to

network intrusion detection. IEEE transactions on emerging topics in compu-

tational intelligence, 2(1):41–50, 2018. pages 113

[177] A. Smets, J. Vannieuwenhuyze, and P. Ballon. Serendipity in the city: User

evaluations of urban recommender systems. Journal of the Association for

Information Science and Technology, 73(1):19–30, 2022. pages 106

[178] A. Smiti. A critical overview of outlier detection methods. Computer Science

Review, 38:100306, 2020. pages 33

[179] R. M. Souza, E. G. Nascimento, U. A. Miranda, W. J. Silva, and H. A. Lep-

ikson. Deep learning for diagnosis and classification of faults in industrial

rotating machinery. Computers & Industrial Engineering, 153:107060, 2021.

pages 112

[180] F. K. Sufi and M. Alsulami. Automated multidimensional analysis of global

events with entity detection, sentiment analysis and anomaly detection. IEEE

Access, 9:152449–152460, 2021. pages 9

[181] S. Sun, C. Luo, and J. Chen. A review of natural language processing tech-

niques for opinion mining systems. Information fusion, 36:10–25, 2017. pages

104

[182] S. C. Tan, K. M. Ting, and T. F. Liu. Fast anomaly detection for streaming

data. In Twenty-Second International Joint Conference on Artificial Intelli-

gence, 2011. pages 86, 98, 167, 168

[183] M. Taneja. An analytics framework to detect compromised iot devices using

mobility behavior. In 2013 International Conference on ICT Convergence

(ICTC), pages 38–43. IEEE, 2013. pages 67

[184] J. Tang, Z. Chen, A. W. Fu, and D. W. Cheung. Capabilities of outlier

detection schemes in large datasets, framework and methodologies. Knowledge

and Information Systems, 11(1):45–84, dec 2006. pages 30



BIBLIOGRAPHY 155

[185] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani. A detailed analysis of

the kdd cup 99 data set. In 2009 IEEE symposium on computational intelli-

gence for security and defense applications, pages 1–6. Ieee, 2009. pages 17,

19, 67, 68, 160

[186] D. M. J. Tax. One-class classification: Concept learning in the absence of

counter-examples. 2002. pages 86, 105, 113, 169

[187] J. Teich. Pareto-front exploration with uncertain objectives. In Interna-

tional Conference on Evolutionary Multi-Criterion Optimization, pages 314–

328. Springer, 2001. pages 60, 82

[188] J. Thanaki. Python natural language processing. Packt Publishing Ltd, 2017.

pages 104

[189] M. Thimm. Strategic argumentation in multi-agent systems. KI-Künstliche

Intelligenz, 28(3):159–168, 2014. pages 104

[190] S. Thudumu, P. Branch, J. Jin, and J. J. Singh. A comprehensive survey of

anomaly detection techniques for high dimensional big data. Journal of Big

Data, 7(1):1–30, 2020. pages 5

[191] T. Tieleman, G. Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012. pages 18

[192] A. Valdivia, M. V. Luzón, and F. Herrera. Sentiment analysis in tripadvisor.

IEEE Intelligent Systems, 32(4):72–77, 2017. pages 105

[193] N. T. Van, T. N. Thinh, et al. An anomaly-based network intrusion detection

system using deep learning. In 2017 international conference on system science

and engineering (ICSSE), pages 210–214. IEEE, 2017. pages 113

[194] M. Vicente, B. Gelera, A. Remilliano, C. Toyama, and J. Urbanec. Bashlite

updated with mining and backdoor commands, 2019. pages 164

[195] R. Vinayakumar, K. Soman, and P. Poornachandran. Applying convolutional

neural network for network intrusion detection. In 2017 International Confer-

ence on Advances in Computing, Communications and Informatics (ICACCI),

pages 1222–1228. IEEE, 2017. pages 113



156 BIBLIOGRAPHY

[196] L. Vu, L. Cao, Q. Nguyen, D. Nguyen, H. Dinh, and E. Dutkiewicz. Learn-

ing latent representation for iot anomaly detection. IEEE Transactions on

Cybernetics, 2020. pages 66, 68

[197] R. S. Wahono, N. S. Herman, and S. Ahmad. A comparison framework of

classification models for software defect prediction. Advanced Science Letters,

20(10-11):1945–1950, 2014. pages 180

[198] J. Wang, Y. Tang, S. He, C. Zhao, P. K. Sharma, O. Alfarraj, and A. Tolba.

Logevent2vec: Logevent-to-vector based anomaly detection for large-scale logs

in internet of things. Sensors, 20(9):2451, 2020. pages 8

[199] Y. Wang, S. Parthasarathy, and S. Tatikonda. Locality Sensitive Outlier De-

tection: A ranking driven approach. In 2011 IEEE 27th International Con-

ference on Data Engineering, pages 410–421. IEEE, apr 2011. pages 35, 36

[200] R. Wetzig, A. Gulenko, and F. Schmidt. Unsupervised anomaly alerting for

iot-gateway monitoring using adaptive thresholds and half-space trees. In 2019

Sixth International Conference on Internet of Things: Systems, Management

and Security (IOTSMS), pages 161–168. IEEE, 2019. pages xxvi, 168

[201] R. E. Wright. Logistic regression. 1995. pages 104, 112

[202] J. Yan, Y. Meng, L. Lu, and L. Li. Industrial big data in an industry 4.0 en-

vironment: Challenges, schemes, and applications for predictive maintenance.

IEEE Access, 5:23484–23491, 2017. pages 86

[203] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a trillion

(unfixable) flaws on a billion devices: Rethinking network security for the

internet-of-things. In Proceedings of the 14th ACM Workshop on Hot Topics

in Networks, pages 1–7, 2015. pages 64

[204] M. Yuan, N. Boston-Fisher, Y. Luo, A. Verma, and D. L. Buckeridge. A

systematic review of aberration detection algorithms used in public health

surveillance. Journal of biomedical informatics, 94:103181, 2019. pages 113

[205] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In Presented as part of



BIBLIOGRAPHY 157

the 9th {USENIX} Symposium on Networked Systems Design and Implemen-

tation ({NSDI} 12), pages 15–28, 2012. pages 37, 67

[206] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga. A

survey of intrusion detection in internet of things. Journal of Network and

Computer Applications, 84:25–37, 2017. pages 64

[207] S. Zavrak and M. İskefiyeli. Anomaly-based intrusion detection from network

flow features using variational autoencoder. IEEE Access, 8:108346–108358,

2020. pages 7

[208] X. Zhang, M. Salehi, C. Leckie, Y. Luo, Q. He, R. Zhou, and R. Kotagiri.

Density biased sampling with locality sensitive hashing for outlier detection.

In International Conference on Web Information Systems Engineering, pages

269–284. Springer, 2018. pages 35, 36

[209] C. Zheng, J. Yang, and A. Davila. Muhstik botnet attacks tomato routers to

harvest new iot devices, 2020. pages 163





Appendix A

Methods and Materials

This appendix describes the datasets, AD methods and evaluation metrics used

in this thesis.

A.1. Datasets

A.1.1. NSL-KDD dataset

In 1999, in the third international competition in the conference KDD, the KDD

99 dataset (UCI Machine Learning Repository 2015)1 was presented to the scientific

community. This dataset is frequently used in the literature of IDS evaluation, and

contains simulated network activity samples, corresponding to normal and abnormal

activity divided in five categories:

DoS: An intruder tries to make a service unavailable (contains 9 types of DoS

attacks);

Remote to Local (R2L): An intruder tries to obtain remote access to the

victim’s machine (contains 15 types of R2L attacks);

User to Root (U2R): An intruder with physical access to the victim’s ma-

chine tries to gain super-user privileges (contains 8 types of U2R attacks);

1https://archive.ics.uci.edu/ml/datasets/KDD+Cup+1999+Data

159



160 Appendix A. Methods and Materials

Probe: An intruder tries to get information about a victim’s machine (con-

tains 6 types of Probe attacks);

Normal: It constitutes the normal operations or activities in the network

Tavallaee et al. [185] made some improvements to KDD 99 dataset and the result

was the NSL-KDD dataset. This dataset is already organized into two subsets: one

to train the algorithms, and another one to test them. Each data sample contains

43 features where four of which are nominal type, six are binary and the rest of

them are numerical type.

A.1.2. ISCX dataset

ISCX is a dataset developed by Shiravi et al. (Shiravi et al. 2012) at the Cana-

dian cybersecurity institute. This dataset is based on the concept of profiles that

contain detailed descriptions of abstract intrusions and distributions for applica-

tions, protocols, services, and low-level network entities. To create this dataset, real

network communications were analyzed to create profiles for agents that generate

real traffic for HTTP, SMTP, SSH, IMAP, POP3 and FTP protocols. In this regard,

a set of guidelines have been established to delineate a valid dataset that establishes

the basis for profiling. These guidelines are vital to the effectiveness of the dataset

in terms of realism, total capture, integrity, and malicious activity (Shiravi et al.

2012). Each data sample in the ISCX dataset contains 21 attributes. There is a

total of 7 days of network traffic captured with 4 different attack types shown in

Table A.1.2.

A.1.3. IOT-23 DATASET

The IoT-23 dataset consists of 23 IoT network traffic capture in the form of pcap

files. From these, 20 are scenarios corresponding to infected IoT devices, and three

represent benign ones. The benign come from an Amazon Echo home intelligent

personal assistant, a Somfy smart doorlock and a Philips HUE smart led lamp.

The authors used a Raspberry Pi to execute specific malware samples with several

protocols, performing different actions in each malicious scenario. All 23 scenarios



A.1 Datasets 161

Table A.1: ISCX captured activity. The attacks were captured along with normal
network activity. To distinguish between a normal observation and an abnormal
one it is presented in the ISCX dataset an attribute called “label” where value 1
represents an attack and value 0 represents normal activity

Capturing date Network activity
11/06/2010 Normal
12/06/2010 Normal
13/06/2010 Normal + Internal infiltration into the network
14/06/2010 Normal + HTTP Denial of Service
15/06/2010 Normal + Distributed Denial of Service using a Botnet IRC
16/06/2010 Normal
17/06/2010 Normal + Brute Force SSH

were carried out in a controlled network environment with an unrestricted internet

connection, simulating a standard environment for a real IoT device.

Regarding all the files available, we have used the conn.log.labeled files from

each scenario. The Zeek network analyser generated these files through the original

pcap file, which contains the flows of the capture network connection as a normal

Zeek conn.log file. Nevertheless, it also contains two new columns for the labels. A

python script added these columns that compared this data with rules to validate if

the flow data fit the labelling criteria. We ignored the three benign scenarios in our

work since these have only a few data flows (1983 flows in all three sample scenarios).

Each of the other malicious scenarios already has an acceptable quantity of benign

flows. In this way, we aim to understand whether each algorithm can differentiate

normal from abnormal network behaviour in each scenario.

According to the authors of [153], they captured long periods of running malware

by rotating pcap files every 24 hours, due to the large size of the traffic generated.

However, in some cases, the authors had to stop the capture because of the rapid

growth of the pcap file size. As can be seen in Table A.2, some of the captures differ

significantly in the number of hours recorded.

In each scenario, the authors capture a certain type of intrusion:

HNS - It compromises machines through a worm-like technique that generates

a random list of IP addresses as potential victims. HNS can execute various



162 Appendix A. Methods and Materials

Table A.2: IoT-23 dataset malicious scenarios. See complete table information at
[153]

ID SubSet ZeekFlows Benign % #Malware % Pcap Size Malware
1 1,008,749 46.52 53.48 140 MB Hide and Seek
3 156,104 2.91 97.09 56 MB Muhstik
7 11,454,723 0.66 99.34 897 MB Linux.Mirai
8 10,404 20.95 79.05 2.1 MB Linux.Hajime
9 6,378,294 0.35 99.65 472 MB Hakai
17 54,659,864 0.06 99.94 7.8 GB Kenjiro
20 3,210 99.5 0.5 3.9 MB Torii
21 3,287 99.57 0.43 3.9 MB Torii
33 54,454,592 2.54 97.46 3.9 GB Kenjiro
34 23,146 8.3 91.7 121 MB Mirai
35 10,447,796 79.08 20.92 3.6G Mirai
36 13,645,107 0.02 99.98 992 MB Okiru
39 73,568,982 0.01 99.99 5.3GB IRCBot
42 4,426 99.86 0.14 2.8 MB Trojan
43 67,321,810 30.56 69.44 6 GB Mirai
44 237 89.79 10.21 1.7 GB Mirai
48 3,394,347 0.11 99.89 1.2G Mirai
49 5,410,562 0.07 99.93 1.3 GB Mirai
52 19,781,379 0.01 99.99 4.6 GB Mirai
60 3,581,029 0.07 99.93 21 GB Gagfyt

commands, similar to a P2P protocol interfering with the device’s operation.

It comes with several anti-tampering techniques to prevent others from kid-

napping or to poison the victim’s device. It can also target devices through

web exploit capabilities. Unlike other IoT botnets, HNS does not have a DDoS

function. However, it adds cyber espionage features to the botnet via a file

theft component[137];

Mirai - Contains a limited dictionary of 61 username and password combina-

tions to be brute-forced in the Telnet protocol. It employs a simple, clear-text

TCP-based protocol on port 23 for C&C communications, and omits domains

or Domain Generation Algorithms (DGA) to protect its C&C from being dis-

covered and quickly blocklisted. It is a simple botnet attack, yet lethal. On 21

October 2016, Mirai botnet launched the largest-ever DDoS attacks against

DNS provider Dyn, causing websites like Twitter, Paypal and Amazon to be

unreachable for several hours across Europe and the US [75];



A.1 Datasets 163

Hajime - It leverages the infection method and brute force exploits of Mirai

however is capable of updating itself. Hajime can efficiently and quickly ex-

pand its member bots with richer functionality. The distributed bot network

used for C&C and updating uses trackerless torrents through the well known

public BitTorrent P2P network, employing several dynamic hashes that change

daily to better conceal C&C activity [163];

IRC BOT - It was the first built botnet. It uses an IRC-based chat channel

to perform automated tasks. It is usually configured as a channel operator and

enables the performance of several channel-specific tasks on behalf of the user.

They are accountable for many cyber attacks, from DDoS and spam attacks

to click fraud and Keylogging [19];

Muhstik - It is a botnet variant with a self-propagating worm-like capabil-

ity to infect Linux servers and IoT devices. It uses multiple exploits taking

advantage of vulnerabilities in web servers and platforms such as Weblogic,

WordPress and Drupal. Muhstik usually launches DDoS attacks and cryp-

tocurrency mining in IoT bots, allowing the attacker to earn profits [209];

Hakai - It is distributed to vulnerable devices through brute-force attacks

or 0-day exploits as Mirai-variant. Hakai is used to perform HTTP, UDP,

TCP and STD flood DDoS attacks. Hakai has risen tremendously, showing

indication of extreme activity in Latin America [173]. Moreover, the Hakai

codebase has made it into the hands of other groups, originating two different

Hakai-based variants named Kenjiro and Izuku [51];

Torii - It differs from other well-known botnets, especially in its advanced

techniques. Torii tries to be more persistent and stealthy once the device is

compromised. It comes with a set of features for extracting sensitive infor-

mation. It has a modular architecture capable of executing and searching

commands via multiple layers of encrypted transmission. In addition, Torii

supports a wide range of target architectures, including PowerPC, SuperH,

ARM, MIPS, x86, x64 and others. [147].

Gagfyt - It is considered one of the progenitor IoT botnets, initially spread

by exploiting Shellshock vulnerabilities in Busybox on various devices in 2015.

After infection, Gagfyt uses Telnet to perform reconnaissance and propagate.



164 Appendix A. Methods and Materials

Gagfyt commands can target embedded systems and, in some circumstances,

bypass DDoS mitigation services. It also has backdoor capabilities and cryp-

tocurrency mining [194].

Trojan - It is a malware disguised as legitimate software. It can infect devices

with phishing or other social engineering attack techniques, for instance, by

opening an infected email attachment or clicking on a link to a malicious

website. It tricks users into installing the malware working behind the scenes

to achieve, mostly, access and control over a particular device or machine.

[102].

Okiru - It is another Mirai variant reaching billions of devices due to its specific

targeting of ARC processors. Okiru’s telnet attack login information is slightly

longer than Mirai, it supports up to 114 credentials and its configuration is

encrypted in two parts with encrypted telnet bombardment passwords. [148].

Regarding the data characteristics, the conn.log.labeled files used in our ex-

periments have 23 features, these being:

ts - Time of the first packet

uid - Unique identifier of the connection.

id.orig h, id.orig p, id.resp h, id.resp p - The Connection’s 4-tuple of

endpoint addresses/ports.

proto - The transport layer protocol of the connection;

duration - The connection duration. For tear-downs of 3 or 4-way connec-

tions, not including the final ACK;

service - An identification of an application protocol being sent over the

connection;

orig bytes - The number of payload bytes the originator sent;

resp bytes - The number of payload bytes the responder sent;

conn state - Several connection status, see in [59];



A.2 Methods 165

local orig - T If the connection is originated locally; F If it was originated

remotely. Empty if is undefined;

local resp - The same as local orig but instead of representing originated

connection it represents connection responded from;

missed bytes - Indicates the number of bytes missed in content gaps, which

is representative of packet loss;

orig pkts - Number of packets that the originator sent;

orig ip bytes - Number of IP level bytes that the originator sent;

resp pkts - Number of packets that the responder sent;

resp ip bytes - Number of IP level bytes that the responder sent;

history - Records the state history of connections as a string of letters. The

meaning of those letters can be seen in [59];

tunnel parents - if this connection was through a tunnel, it indicates the uid

values for any encapsulated parent connections used during the lifetime of this

internal connection..

label - The class of the record. Benign activity in the network or malicious.

If it is malicious indicates the name of the malware;

detailed-label - Detailed description of the malicious activity.

A.2. Methods

A.2.1. Autoencoders

An Autoencoder is a neural network that is part of a sub-area of machine learning

called Deep learning (sets of algorithms with several layers of processing which are

used to model high-level abstractions of data [57]). Neural Networks are intercon-

nected processing units that are organized by one or more layers which can be used

in the implementation of a complex functional mapping between input and output



166 Appendix A. Methods and Materials

variables [20]. They can perform linear or non-linear transformations through the

processing of the units in the different layers [129].

The autoencoder, also known as autoassociator, is a kind of neural network that

is trained to make the input features the same or very similar to the output features

[95]. In the classification task, the autoencoder can reproduce accurately only the

vectors whose structure is similar to the structure learned by the neural network.

As a neural network, the autoencoders are sensitive to outliers since they con-

tribute to the minimization of the error function. The disadvantage of this method is

the need of employing a number of parameters that have to be specified by the user

[128]. These parameters consist of selecting a number of hidden layers, the number

of hidden units in each layer, the type of transformation function, the learning rate

and the stopping rule. In addition to these parameters, it is necessary to estimate

the number of weights (usually equal to the number of hidden units and input units)

for the training set. A large amount of data is essential for an accurate estimation

of weights. The computational resources for this algorithm are considerably high,

since the learning process is iterative, being repeated several times throughout the

training set until the stop rule is satisfied. For the application of this algorithm, the

H2O package2 was used. This package is an open-source mathematical engine for

big data processing machine learning algorithms, such as generalized linear models,

gradient boosting, Random Forests and neural networks (deep learning) in several

cluster environments.

After loading the datasets (NSL-KDD and ISCX) already pre-processed to this

engine, the h2o.deeplearning function was used to train the autoencoder algorithm.

Regarding the parameters to be used, we tested several, but we find that Glander’s3

approach, applying a bottleneck architecture used to fraud detection in credit card

transactions, presented better results. When tuning the autoencoder, we used a

separated validation set, and we found that using a bottleneck architecture, where

the number of neurons in the middle layer is lower than the first and last layers,

presented better classification results.

2https://cran.r-project.org/web/packages/h2o/index.html



A.2 Methods 167

Figure A.1: Reconstruction of the mean square error.

A.2.2. Half Space Trees

HS-Trees is a one-class anomaly detector algorithm built to deal with data

streaming environments [182]. HS-Trees is an ensemble that learns incrementally

as the data arrives, capable of performing unsupervised learning in evolving data.

The basic concept of this algorithm is to create binary trees by partitioning data

into sub-spaces or regions. When generating a tree, the algorithm selects a random

dimension and splits it into disjoint, equal-volume halves, thus creating the left and

right side child nodes. This process is repeated until the tree reaches a maximum

depth (user-specified parameter). Therefore, any data point in the domain travels

a single path from the tree’s root to the leaves going through the different sub-

spaces. Although the data is splitted into density sub-spaces, this algorithm differs

from clustering algorithms such as SOM [107] since HS-Trees output are scores of

anomalous values estimated by the density regions, SOM computes clusters regions

through distance based-techniques. The HS-trees captures the mass in each node,

representing the number of data points, and uses it to profile each data point’s

anomaly estimation.

The data-stream is partitioned into windows of equal sizes, named reference



168 Appendix A. Methods and Materials

window and latest window. In reference window the algorithm learns the mass

profile (r value stored in each node) to infer the anomaly scores of new data points

arriving in the latest window [182]. According to the mass profile values, a data

point is considered normal for high mass regions, while anomalous data points fall

into low mass regions. Also, the latest window (l value stored in each node) records

the mass profile, and once this window is full, that is, after a set of data points are

recorded in the new mass profile, the latest window, overrides the old mass profile

and becomes the reference window. Thus reference window always keeps the latest

mass profile, used to evaluate the new data that arrives in the stream. This process

repeats until the end of the stream.

Figure A.2: HS-trees example by [200] and a recorded latest mass profile. The left
image represents the data partitioned, and the right image the HS-tree generated.

Figure A.2 shows a representation of a HS-Trees. The HS-Trees partitions the

domain dimensions with range values [0,1] on the left side, where dots represent data

points. The right side of Figure A.2 shows an HS-tree with a three-depth level. The

inner nodes contain information regarding the splitting values and which dimension

was partitioned, leaves contain mass profile values of the latest window. Also, it is

possible to observe the mass profile value stored in the root’s right child (l = 9).

This value is incremented by one when a newly arrived data point traverses it on its

path to a leaf.

To make the algorithm more robust, t ∈ N > 0 HS-trees are created and com-

bined to form an ensemble algorithm, reducing the spread or dispersion of predic-

tions, thus, improving performance. Also, a random perturbation is assigned to each

feature space when split in the tree’s root, providing diversity to the algorithm.



A.2 Methods 169

Each tree in the ensemble computes a score for each data point independently

regarding the anomaly score. The computed score allows the new arrival data point

to traverse through the tree’s nodes until it reaches the leaves or a node with a mass

profile equal to or less than a user-determined value s denoted by the size limit

(minimum mass required in a node). The final anomaly computed score is the sum

of all anomaly scores of the HS-trees.

A.2.3. One-Class K Nearest Neighbour

The OCKNN [186] is an adaptation of the original K-Nearest Neighbour algo-

rithm [71] for supervised learning using distances between neighbours to classify the

data. The K in OCKNN is the number of nearest neighbours, the core deciding

factor. This algorithm is a lazy learning algorithm since it does not learn in the

training phase, where all data points are used at the time of prediction. This algo-

rithm only stores or memorises the data points in the training phase and waits until

classification is performed. It is named One-Class since it requires only one class

in the training phase. After memorising all data points, in the prediction phase,

the algorithm uses a user-specified distance metric such as euclidean, Manhattan,

Chebyshev, Minkowski, Minkowski or Mahalanobis to compute distances between

points in the domain space. The mean distance between the new data point and its

k nearest neighbours from the training set is calculated.

The mean distance value of each data point to its k neighbours represents the

anomaly score. An anomalous classification is made if a distance value for a specific

data point is more significant than a d ∈ R > 0 distance threshold (user-specified

parameter).

It can be observed in Figure A.3 how the OCKNN algorithm works for one

neighbour (K = 1). The black dots within the drawn area represent the normal

data points. The stars (A and C) are data points classified as anomalous since

distance d1, and d3 are more significant than the distance threshold dx, while data

point B is classified as normal as distance d2 is minor than dx.



170 Appendix A. Methods and Materials

Figure A.3: OCKNN illustration example in two-dimensional space, where k = 1;
d1, d2, d3 are distances of points A,B and C respectively, to their nearest neighbour;
dx is the distance threshold to consider a given data point to be anomalous.

A.2.4. One-Class K-Means

The K-Means is a clustering algorithm, which is the process of partitioning a

set of data (or objects) into smaller subclasses with common characteristics. The

number of clusters is defined initially and remains fixed throughout the process. The

goal of this algorithm is to find different groups in data defined by the variable k.

Based on the data features, this algorithm works iteratively to assign each obser-

vation or object to one of the k groups. The algorithms start by estimating the k

centroids that are the centers of each cluster. In this step, each object is assigned to

its nearest centroid, based on the squared Euclidean distance. As shown in equation

A.1, being ci the collection of centroids in set C, each object x is assigned to a

cluster based on where dist( · ) is the standard Euclidean distance.

argminci∈c dist(ci, x)2 (A.1)

Then subsequently the centroids are recomputed. This process is done by taking

the mean of all objects assigned to that centroid’s cluster. In equation A.2 the set

of data point assignments for each ith cluster centroid is Si.

ci =
1

|Si|
∑
xi∈si

xi (A.2)



A.2 Methods 171

To apply this algorithm as a one-class classification, the building process of

clusters should only use normal data examples. In the classification process, the

algorithm calculates all the test data points’ distances to the closest cluster. If

the calculated distance to each object is higher than a defined threshold value, the

sample is classified as an anomaly.

A.2.5. Isolation Forest

Isolation Forest [118] is a method for outlier detection that uses data structures

called trees, such as binary trees. Each tree is created by partitioning the instances

recursively, by randomly selecting an attribute and a split value between the max-

imum and minimum values of the selected attribute. Being T an external node

of a tree with no child or an internal node designated by a test with exactly two

daughter nodes (Tl, Tr). A test is an attribute q with a split value p, where q < p

meaning the data points will be divided into Tl, Tr. To build an isolation tree, the

data X = x1, . . . , xn will be recursively divided by randomly selecting an attribute

q and a split value p, until it reaches three conditions [118]:

The tree reaches a height limit;

|X| = 1;

All data in X have the same values;

To detect anomalies, the observations are sorted according to their path lengths

or anomaly scores. The path length h(x) represents the number of edges x that go

through an isolation tree from the root node until the traversal is terminated at an

external node. To calculate the anomaly score, Lui et al. [118] used the analysis

from Binary Search Tree (BST) to estimate the average path length of an isolation

tree represented in equation A.3:

c(n) = 2H(n− 1)− (
2(n− 1)

n
) (A.3)

The observations from the dataset are represented by n and H(i) is a harmonic

number and can be estimated by the Euler’s constant. The parameter c(n) was used



172 Appendix A. Methods and Materials

to normalize h(x) since it represents the average of given n. Equation A.4 represents

the anomaly score s of an observation x:

s(x, n) = 2−E(h(x))
c(n) (A.4)

E(h(x)) is the average of h(x) from a collection of isolation trees. Using the

anomaly score from [118], the authors verified that observations with a s value

much smaller than 0.5 are quite safe to be regarded as normal observations, while

observations with a s value very close to 1 are definitely anomalies, and observations

that return s ≈ 0.5 don’t really mean any distinct anomaly.

A.2.6. One-Class Scaled Convex Hull

The Scaled Convex Hull (SCH) is an algorithm based on a previously proposed

method by Casale et al. [37] that uses the geometrical structure of the Convex Hull

(CH) to define the class in one-class classification problems. This algorithm uses

random projections and an ensemble of CH models in two dimensions, and thus this

method can be suitable for larger dimensions in an acceptable execution time [67].

As we can see in equation A.5.

CH(S) =


|s|∑
i=1

θixi|(∀i : θ ≥ θ) ∧
|s|∑
i=1

θi = 1, xi ∈ S

 (A.5)

the CH of a finite set of points S ∈ Rd provides a tight approximation among

several convex forms being this approximation prone to over-fitting. Fernández-

Francos et al. [67] used reduced/enlarged versions of the original CH to avoid the

over-fitting problem, where in the training phase an outlier can lead to shapes that

do not represent the target class accurately. To resolve this problem they applied

the formula presented by Liu et al. [120] to calculate the expanded polytope, where

the vertices are defined with respect to the center point c = ( 1
|S|)

∑
i xi, ∀xi ∈ S and

the expansion parameter λ ∈ [0,+∞] as in equation A.6:

vλ : {λv + (1− λ)c|v ∈ CH(S)} (A.6)



A.2 Methods 173

The parameter λ represents a constant extension (λ > 1) or constant contraction

(0 < λ < 1) of the CH regarding c. An approximation of the decision made by the

expanded CH in the original d-dimensional space by means of an ensemble of τ

randomly projected decisions on 2-D spaces was proposed. In this way, the authors

defined a decision rule that states that a point does not belong to the modelled class

if and only if there exists at least one projection in which the point lies outside the

projected CH.

To have a better understanding of this method, Figure A.4 is graphically repre-

sented as an example where a 3-D convex figure is approximated by three random

projections in 2-D. We can observe in Figure A.4 that the point can be inside one

or more projections but in fact, that point lies outside the original geometric form.

Figure A.4: Ensemble of projected decisions on 2-D based on Fernández-Francos et
al. [67].

In the SCH algorithm Fernández-Francos et al. [67] proposed three different

definitions of center:

1. The average of all points in the projected space;

2. The average of the CH vertices in the projected space;

3. The average position of all the points in the projected polytope.



174 Appendix A. Methods and Materials

Each type of center leads to different decision regions (if a point belongs or not

to the target class), giving more flexibility to this method.

A.2.7. One-Class Support Vector Machines

SVM have the capability to solve classification and regression problems. This

algorithm focuses on the search for a hyperplane (generalization of a plane in differ-

ent dimensions, for example in a two-dimensional plane is a line that separates and

classifies data) that better divides a dataset into two classes.

SVMs are effective in classifying linearly separable data or having an approxi-

mately linear distribution. However, there are many cases where it is not possible

to properly divide the training data using a hyperplane. To solve this problem,

SVMs can create a non-linear decision boundary by projecting a non-linear function

ϕ to a space with a higher dimension. This means that SVMs can project the data

from the training set of its original space I to a new space of greater dimension,

denominated as feature space F [87].

To calculate the scalar products between objects mapped in the new space,

functions called Kernels K(xi, xi) = ϕ(x)Tϕ(xi) are used. The usefulness of kernels

lies therefore in the simplicity of their calculation and in their capacity to represent

abstract spaces. The most used kernels are the polynomials, the radial base function

and the sigmoidal. Each of them has parameters that must be determined by the

user.

The hyperplane equation is represented by wTx + b = 0, with w ∈ F and b ∈ R

in two-dimensional space. The constructed hyperplane as mentioned determines

the margin between the classes. The use of slack variables εi will allow some data

points to lie within the margin where the constant C > 0 determines the trade-off

between maximizing the margin and the number of training data points within the

margin [172]. This way they will prevent SVM from over-fitting with noisy data.

The objective function of the SVM classifier is represented in equation A.7:



A.2 Methods 175

minw,b,ε
||w||

2
+ c

n∑
i=1

εi

subject to :

yi(w
Tϕ(xi) + b) ≥ 1− εi, ∀i = 1, ..., n

εi ≥ 0, ∀i = 1, ..., n

(A.7)

Therefore, for anomaly detection problems the One-Class Support Vector Ma-

chines (OCSVM or v-SVM) will only train with data from one class, in this case,

the class that represents normal activity in the network. Basically, it separates all

the data points from the origin and maximizes the distance from the hyperplane to

the origin. This results in a binary function that captures regions in the input space

where the probability density of the data lives. The minimization function is given

by equation A.8 [172]:

minw,b,ε,p
1

2
||w||2 +

1

vn

n∑
i=1

εi − p

subject to :

(w · ϕ(xi)) ≥ p− εi, ∀i = 1, ..., n

εi ≥ 0, ∀i = 1, ..., n

(A.8)

As we can see in equation A.8 the parameter v characterizes the solution, instead

of the C parameter that decided the smoothness in equation A.7. The parameter v

sets an upper bound on the fraction outliers and a lower bound on the number of

training examples used as support vectors. Due to the importance of this parameter,

this approach is also known as v-SVM.

A.2.8. LOF

Within distance-based category methods, we can find the density-based method

named LOF [27]. This algorithm computes the ratios between the local density area

around a specific data point and the local densities of its neighbours. It provides a

ranking estimator quantifying how isolated a point is with regard to the density of



176 Appendix A. Methods and Materials

its neighbourhood. Because this particular method ranks data points by only con-

sidering their neighbourhood density, it might miss potential anomalies if densities

are close to those of their neighbours.

A.2.9. PA-I

Mart́ınez-Rego et al. [126] proposed a modification of the One-class classifica-

tion with passive-aggressive Kernel algorithm [52] and combined it with a Bernoulli

CUSUM chart to deal with stream change detection problems. This adaptation

provided the method with the capability of accurately fitting the support of normal

data in an online fashion. Thus, it can dynamically adapt to changes in data distri-

bution and automatically control the growth of the number of support vectors. The

authors showed with empirical results in real datasets that the proposed method

presented better change detection capabilities when compared to state-of-the-art

algorithms for stream anomaly detection problems.

A.2.10. EADMNC

EADMNC is a new approach proposed by IRL Botana et al. [24] to address ex-

planation with the recent ADMNC algorithm [62]. The authors designed ADMNC

method to handle anomaly detection for large-scale problems with a mixture of

categorical and numerical input variables. The approach presented in [62] uses a

probabilistic perspective. A Gaussian mixture model is used to model continuous

input features, while categorical input features are estimated using a logistic model

with a maximum likelihood approach optimized with a stochastic gradient descent

algorithm. The whole method implemented in Apache Spark with parallelized com-

putation is thus scalable to large datasets. In [24], the ADMNC algorithm was

extended, adding a new layer that opens the ADMNC black box by offering pre-hoc

explainability. The authors used Regression decision trees to segment input data

into homogeneous groups attending to their variables. The clusters, defined as leaf

nodes of a shallow decision tree, will group elements with approximately the same

level of anomaly, indicated by the average estimator that ADMNC assigned to the

elements of said cluster[61]. The variance of the CART regression model provides



A.3 Metrics 177

information about how homogeneous the estimators of elements in a tree node are.

The tree splits turn nodes into more specific groups that contain similar elements.

The cluster homogeneity and explanation quality, given by the depth of each path,

allows the user to choose the level of detail for explanations.

A.2.11. LSHAD

The Locality Sensitive Hashing for Anomaly detection is a method proposed by

Meira et al. [135] and detailed described in Chapter 3 based on the LSH technique

initially proposed by [94]. The basic concept is to identify approximate nearest

neighbours through the use of hash functions. Each hash function is represented by

a random projection in feature space splitting data points into groups of neighbours.

This technique works with the basic principle that when two points in the feature

space are close, they are likely to have the same hash function. The procedure

of generating hash functions presents a high random component, being therefore

probabilistic. This randomness leads to the problem of false neighbours detection,

where points in the same hash could be points far apart with low similarity. The

algorithm concatenates Hash functions to decrease the occurrence of this event. LSH

allows to speed up the neighbour’s search by reducing the complexity compared to

the K Nearest Neighbour algorithm.

The proposed method from Meira et al. [135] adopted LSH to deal with large

amounts of data in anomaly detection problems. It uses the number of elements

generated by the hash functions to estimate the anomaly score. The model incorpo-

rates a process for auto-tuning its hyperparameters and is developed in the Apache

Spark framework for distributed environments, thus rendering a scalable algorithm.

A.3. Metrics

A.3.1. Area Under the Curve

A well-known way of comparing the classifier’s performance is using the AUC

metric. The AUC calculates the area under a ROC curve which is a graph showing



178 Appendix A. Methods and Materials

the classification performance at various thresholds settings drawn by two param-

eters, the TPR TruePositives(TP )
TP+FalseNegatives(FN)

and the FPR FalsePositives(FP )
FP+TrueNegatives(TN)

. Each point

on the ROC represents a TPR
FPR

pair corresponding to a particular decision threshold.

Figure A.5: ROC curve example.

Figure A.5 represents an example of a ROC curve, where we can see the trade-off

between TPR and FPR. Those classification algorithms that have a curve close to

the top-left corner indicate better performance (as seen in the blue line). As close

as the curve is to the diagonal line (marked in orange) where TPR = FPR, the less

accurate the classifier is.

The AUC) is a metric that can be useful to summarize the performance of each

classifier providing an aggregate measure of performance across all possible classifi-

cation thresholds. AUC can be seen as the probability of the model distinguishing

between the positive class (anomaly) and the negative class (normal activity).

A.3.2. Accuracy, Recall, Precision, F1 Score

Accuracy in equation A.9 measures the percentage of correct predictions made

by the ML model, calculated as the number of correct predictions divided by the

total number of predictions. Regarding the precision and recall metrics in equation



A.3 Metrics 179

A.10 and A.11, both measure the rate of FP and FN, respectively. For instance, a

high recall value means low FN, while a small precision indicates high FP values. To

analyze the balance of these two metrics, we compute the F1 score as the harmonic

mean of Precision and Recall. While it is possible to take a simple average of the

two scores, harmonic means are more resistant to outliers. When using these two

metrics, there is often a tradeoff between them, so it is important to evaluate them

together using another metric called F1 score, shown in equation A.12. Thus F1

score is a balanced metric that appropriately quantifies the correctness of models.

True Positive (TP) - The number of observations correctly identified as an

anomaly;

False Positive (FP or Type I error) - The number of observations classified as

an anomaly but corresponding to normal behaviour;

True Negative (TN) - The number of observations correctly identified as nor-

mal behaviour;

False Negative (FN or Type II error) - The number of observations classified

as a normal behaviour but corresponding to anomalies;

accuracy =
TP + TN

TP + FP + TN + FN
(A.9)

precision =
TP

TP + FP
(A.10)

recall =
TP

TP + FN
(A.11)

F1score = 2 ∗ recall ∗ precision
recall + precision

(A.12)



180 Appendix A. Methods and Materials

A.4. Nemenyi Statistical Test

The Nemmenyi post hoc test [56] is a statistical method used to compare the

performance of multiple classifiers and it can be used to compare the performance

of different models. The Nemmenyi Statistical test is a non-parametric method,

meaning it does not rely on assumptions about the underlying distribution of the

data. It is based on the idea of ranking the classifiers or treatments based on their

performance and comparing the ranks to determine whether the differences between

them are statistically significant. To perform the Nemmenyi statistical test, the

mean rank for each classifier is first calculated:

Let’s say we have K classifiers or treatments, denoted by C1, C2, ..., CK. For

each classifier, we calculate the mean rank across all N data points as follows:

Mean rank for C1 =
∑N

i=1 ranksC1,i

N

Mean rank for C2 =
∑N

i=1 ranksC2,i

N

...

Mean rank for CK =
∑N

i=1 ranksCK,i

N

Next, the CD is calculated. The CD is a measure of the minimum difference

in mean ranks that is considered statistically significant. It is calculated as follows

[197]:

CD = qα ∗

√
K ∗ (K + 1)

(6 ∗N)
(A.13)

where qα is the critical value from the Student’s t-distribution with K−1 degrees

of freedom.

Finally, the mean ranks of each pair of classifiers are compared and determine

whether the difference between them is greater than the CD. If it is, the difference

is considered statistically significant:

For each pair of classifiers or treatments (Ci, Cj), we compare their mean ranks

as follows:



A.4 Nemenyi Statistical Test 181

If |Mean rank for Ci− Mean rank for Cj| > CD, then the difference between

Ci and Cj is considered statistically significant.





Appendix B

Resumen del trabajo

La detección de anomaĺıas (AD) es una tarea crucial en muchos campos. La ca-

pacidad de identificar y analizar patrones inusuales o inesperados en los datos puede

ayudar a las empresas a prevenir problemas potenciales y mejorar sus operaciones.

Con el tiempo, la tecnoloǵıa utilizada para AD ha evolucionado significativamente.

Las primeras aproximaciones se basaron en métodos estad́ısticos simples e inspección

manual de datos, pero estos teńıan limitaciones en su capacidad para manejar con-

juntos de datos grandes y complejos.

Hoy en d́ıa, la detección de anomaĺıas es un campo ampliamente estudiado donde

surgen constantemente nuevos enfoques. Con el auge de la inteligencia artificial y

las tecnoloǵıas de big data, el campo de la detección de anomaĺıas ha experimentado

avances significativos y seguirá siendo un área importante de investigación y desar-

rollo en el futuro. A pesar de estos avances, todav́ıa hay limitaciones que abordar,

como métodos escalables capaces de manejar grandes volúmenes de datos, la falta

de transparencia en la mayoŕıa de los métodos de vanguardia, los costos computa-

cionales del ajuste de hiperparámetros, o la capacidad de lidiar con datos en tiempo

real sin la necesidad de etiquetas. Además, con el creciente énfasis en la sosteni-

bilidad y la necesidad de reducir los residuos y minimizar el impacto ambiental, es

importante asegurarse de que los métodos utilizados para la detección de anomaĺıas

también sean sostenibles. Esto significa considerar no solo la precisión y la eficiencia

de los métodos, sino también los recursos que consumen y su impacto a largo plazo

en el medio ambiente.

183



184 Appendix B. Resumen del trabajo

B.1. Desaf́ıos en la detección de anomaĺıas

Como acabamos de comentar, a pesar de los significativos avances logrados en

las aplicaciones de detección de anomaĺıas, todav́ıa hay desaf́ıos por alcanzar. A

continuación se presentan varios retos actualeds para los métodos de detección de

anomaĺıas que están presentes en diferentes áreas de aplicación:

Big data: El crecimiento de dispositivos inteligentes y la sensorización de las

actividades industriales contribuyen a la generación de grandes volúmenes de

datos previamente no vistos. El tamaño de los conjuntos de datos recopila-

dos ha crecido constantemente, lo que ha despertado interés en los métodos

de aprendizaje automático. La capacidad de estos métodos para aprender y

realizar tareas complejas se véıa limitada por la escasez de datos. Debido al

aumento de la disponibilidad de datos, la complejidad de las tareas está ahora

limitada por la capacidad del método de aprendizaje automático para extraer

conclusiones relevantes. La alta complejidad computacional de los métodos de

aprendizaje automático hace que sea poco práctico procesar grandes volúmenes

de datos. Aunque hay varias soluciones presentadas en la literatura sobre algo-

ritmos distribuidos y paralelizados para tratar con grandes conjuntos de datos,

los enfoques existentes para la detección de anomaĺıas con caracteŕısticas dis-

tribuidas son escasos.

Datos sin etiquetar: Los datos recopilados y disponibles de dispositivos

inteligentes o sensores suelen estar sin etiquetar. Etiquetar los datos requiere

un esfuerzo y tiempo significativos ya que suele hacerse manualmente por un

experto en el dominio de aplicación. Es aqúı donde los métodos de aprendizaje

no supervisado pueden ser útiles, ya que pueden ayudar en la descubrimiento

de patrones y relaciones ocultos en los datos sin la necesidad de etiquetas. Sin

embargo, uno de los principales desaf́ıos con el aprendizaje no supervisado es

la dificultad para validar la calidad del modelo, ya que no hay etiquetas con

las que comparar las predicciones.

Definir anomaĺıas: Las anomaĺıas que surgen debido a una actividad mali-

ciosa a menudo cambian y se adaptan. Por ejemplo, se entrena un modelo para

reconocer patrones maliciosos en mensajes de correo electrónico, pero si apare-



B.1 Desaf́ıos en la detección de anomaĺıas 185

cen nuevos patrones que antes no exist́ıan, el modelo puede perder rendimiento

ya que no se reconocen como anormales. Este tipo de cambio en los datos se

conoce como concept shift. Es un cambio en las propiedades estad́ısticas de

los datos en los que se entrena un modelo de aprendizaje automático. Esto

puede suceder con el tiempo a medida que la distribución de los datos cam-

bia, o a medida que los objetivos o necesidades de los usuarios del modelo

cambian. El comportamiento normal está en constante evolución, y la noción

de comportamiento normal ahora puede no ser suficientemente representativa

de los futuros comportamientos. El desaf́ıo del diseño de algoritmos de de-

tección de anomaĺıas se estudia utilizando solo muestras no anómalas. Como

no seŕıa factible desarrollar un marco genérico para cubrir todas las aplica-

ciones mencionadas anteriormente, se desarrollan varios modelos de detección

de anomaĺıas para que cada uno se ocupe de un dominio espećıfico.

Ajuste de hiperparámetros: El ajuste de hiperparámetros puede ser espe-

cialmente desafiante en el contexto de la detección de anomaĺıas. El rendimiento

de un modelo de detección de anomaĺıas puede ser altamente sensible a la

elección de hiperparámetros. La definición de lo que constituye una anomaĺıa

puede variar dependiendo de la aplicación, lo que dificulta evaluar el rendimiento

de un modelo. Además, el espacio de hiperparámetros posibles puede ser

grande y el proceso de optimización es laborioso, lo que dificulta encontrar el

mejor conjunto de hiperparámetros para un conjunto de datos dado. Además,

en muchos casos, el experto en el dominio que se encarga de ajustar los hiper-

parámetros de un modelo de detección de anomaĺıas puede no tener una com-

prensión profunda de los datos subyacentes o las caracteŕısticas del compor-

tamiento anómalo. También es un desaf́ıo cuando se evalúa el rendimiento de

un modelo de detección de anomaĺıas, ya que en la mayoŕıa de las ocasiones

no hay una verdad absoluta con la que comparar las predicciones del modelo.

Esto puede dificultar saber si los hiperparámetros elegidos son óptimos y si el

modelo es capaz de detectar con precisión el comportamiento anómalo.

Explicabilidad: La explicabilidad es particularmente importante en campos

cŕıticos como la salud, las finanzas o la detección de intrusiones, donde las

consecuencias de tomar decisiones incorrectas basadas en los resultados de un

algoritmo de detección de anomaĺıas pueden ser graves. Al proporcionar a



186 Appendix B. Resumen del trabajo

los usuarios una mejor comprensión de cómo funciona el algoritmo y por qué

detecta ciertas anomaĺıas, la explicabilidad puede ayudar a mejorar la confia-

bilidad de los resultados. Sin embargo, la mayoŕıa de los métodos propuestos

no son transparentes y carecen de interpretabilidad.

En esta tesis, hemos intentado enfrentar algunos de estos problemas, y se presen-

taron varios métodos y estudios comparativos para abordar los desaf́ıos descritos. A

continuación, detallamos brevemente las principales contribuciones de este trabajo:

B.2. Nuevos algoritmos y modelos

Los nuevos algoritmos y modelos propuestos para abordar los desaf́ıos de AD

son los siguientes:

La primera contribución es el algoritmo LSHAD, que es un nuevo y sostenible

método AD basado en LSH capaz de manejar grandes conjuntos de datos. El

algoritmo resultante es altamente paralelizable y su implementación en Apache

Spark aumenta aún más su capacidad para manejar conjuntos de datos muy

grandes. Además, el algoritmo incorpora un mecanismo de ajuste automático

de hiperparámetros para que los usuarios no tengan que implementar un cos-

toso ajuste manual. Este enfoque sostenible de AD tiene la ventaja adicional

de ser un método no supervisado, que no necesita datos etiquetados para el

proceso de aprendizaje. El mecanismo de ajuste de hiperparámetros es capaz

de ajustar sus hiperparámetros a pesar del dominio de datos de entrada. El

método LSHAD es novedoso, y sus caracteŕısticas, automatización de hiper-

parámetros y propiedades distribuidas, no son habituales en las técnicas AD.

Los resultados experimentales con LSHAD en una variedad de conjuntos de

datos apuntan a un rendimiento comparable al de los métodos del estado del

arte, con el beneficio añadido de poder manejar conjuntos de datos mucho más

grandes que las otras alternativas. Además, se realizaron experimentos para

buscar un equilibrio entre el rendimiento detectando anomaĺıas y la escalabil-

idad, que demostraron que nuestro método ofrece ventajas significativas sobre

los métodos competidores del estado del arte.



B.2 Nuevos algoritmos y modelos 187

Otra contribución es el enfoque basado en datos para la detección de anomaĺıas

utilizando un modelo de flujo de datos, que está diseñado también para ser

más sostenible que otros modelos disponibles. El método propuesto ayuda

en la detección temprana de fallos y errores en maquinaria antes de que al-

cancen etapas cŕıticas. Presentamos un modelo de detección de anomaĺıas

siguiendo un enfoque no supervisado, combinando el método Half-Space-trees

con One Class K Nearest Neighbor, adaptado para tratar con flujos de datos.

Dado que los datos que llegan de los sensores son interminables y recibidos

como un flujo continuo, el método propuesto es capaz de tratar con flujos de

datos donde los recursos computacionales de los métodos son limitados (memo-

ria, poder computacional, tiempo de procesamiento) dando sostenibilidad al

método. El modelo se basa en el aprendizaje incremental ya que los datos se

inducen incrementalmente y contemplan un mecanismo de olvido para tratar

con la memoria limitada. Evaluamos nuestro enfoque y lo comparamos con

el método Half-Space-Trees aplicado sin la combinación One Class K Near-

est Neighbor. Nuestro modelo produjo pocos errores de tipo I, aumentando

significativamente el valor de precisión en comparación con el modelo Half-

Space-Trees. Nuestra propuesta logró un alto rendimiento en detección de

anomaĺıas, predeciendo la mayoŕıa de los fallos catastróficas del sistema de

tren APU.

Por último, la tesis presenta un estudio de estrategias con técnicas de PLN

(procesado de lenguaje natural) para predecir las preferencias tuŕısticas en

base a opiniones de usuarios. En este trabajo, exploramos diferentes métodos

de aprendizaje automático para predecir las calificaciones de los usuarios. Uti-

lizamos estrategias de PLN para predecir si una reseña es positiva o negativa y

la calificación asignada por los usuarios en una escala de 1 a 5. A continuación

aplicamos métodos supervisados como la Regresión Loǵıstica, Random Forest,

Decision Trees, K-Nearest Neighbors y Redes Neuronales Recurrentes para de-

terminar si a un turista le gusta/no le gusta un determinado punto de interés.

Además, utilizamos un enfoque distintivo en este campo mediante técnicas

no supervisadas para problemas de detección de anomaĺıas. El objetivo era

mejorar el modelo supervisado en la identificación solo de aquellos turistas que

realmente les gusta o no les gusta un punto de interés particular, en el cual el

objetivo principal no es identificar a todos, sino fundamentalmente no fallar



188 Appendix B. Resumen del trabajo

a aquellos que se identifican en esas condiciones. Los experimentos realizados

mostraron que los modelos desarrollados podŕıan predecir con alta precisión si

una reseña es positiva o negativa pero tienen alguna dificultad en predecir con

precisión la calificación asignada por los usuarios. El método no supervisado

Local Outlier Factor mejoró los resultados, reduciendo los falsos positivos de

la Regresión Loǵıstica con un costo asociado de aumentar los falsos negativos.

B.3. Aplicaciones prácticas

En esta tesis, también se exploran las aplicaciones de los algoritmos y modelos

propuestos en varios campos. La principal aplicación es la detección de intrusos,

ya que la seguridad cibernética es un área cŕıtica en los sistemas informáticos, es-

pecialmente cuando se trata de datos sensibles. En la actualidad, es cada vez más

importante asegurar que los sistemas informáticos estén protegidos de los ataques

debido a la dependencia de la sociedad moderna de estos sistemas. Para prevenir

estos ataques, actualmente la mayoŕıa de las organizaciones utilizan sistemas de de-

tección de intrusiones (IDS) basados en anomaĺıas. Generalmente, los IDS contienen

algoritmos de aprendizaje automático que ayudan a predecir o detectar patrones

anómalos en los sistemas informáticos. La mayoŕıa de estos algoritmos son técnicas

supervisadas, que presentan lagunas en la detección de patrones desconocidos o ex-

plotaciones de d́ıa cero, llamados aśı ya que estos no están presentes en la fase de

aprendizaje del algoritmo. Para abordar este problema, en esta tesis se presenta

un estudio emṕırico de varios algoritmos de aprendizaje no supervisado utilizados

en la detección de ataques desconocidos. En este estudio, evaluamos y compara-

mos el rendimiento de diferentes tipos de técnicas de AD en dos conjuntos de datos

disponibles públicamente: NSL-KDD e ISCX. El objetivo de esta evaluación es en-

tender el comportamiento de estas técnicas y comprender cómo podŕıan ajustarse en

un IDS para llenar la mencionada laguna. También, la presente evaluación podŕıa

utilizarse en el futuro como una comparación de resultados con otros algoritmos no

supervisados aplicados en el campo de la ciberseguridad. Los resultados obtenidos

muestran que las técnicas utilizadas son capaces de realizar detección de anomaĺıas

con un desempeño notable y, por lo tanto, son candidatos adecuados para su futura

integración en herramientas de detección de intrusos.



B.3 Aplicaciones prácticas 189

En cuanto a la detección de intrusos, se presentaen esta tesis un estudio de eval-

uación de nuevos métodos no supervisados para lidiar con ataques IoT. El desaf́ıo

de proporcionar seguridad a las redes se está haciendo cada vez máis dif́ıcil, espe-

cialmente con la recente aparición de dispositivos inteligentes con seguridad media

a baja que se unen a las redes en todo el mundo. Con la evolución del IoT y los dis-

positivos cada vez más conectados a Internet, surge el reto de asegurar la seguridad

e integridad de la red y de todos los dispositivos conectados. El uso de IDS busca

ayudar a proteger las redes, por ejemplo, impidiendo que los dispositivos IoT se util-

icen de manera maliciosa o alertando de cuando fueron comprometidos. Esta tesis

explora el nuevo conjunto de datos Aposemat IoT-23 de tráfico de red que contiene

malware y escenarios benignos ejecutados en dispositivos IoT. Inicialmente, real-

izamos un análisis exploratorio del conjunto de datos. Lo utilizamos para evaluar

varios métodos de detección de anomaĺıas en relacioón a su capacidad para distin-

guir entre el comportamento de red normal y anormal. Por tanto, una de nuestras

contribuciones es presentar una comparación de métodos del estado del arte para

detectar intrusiones en IoT. En nuestra evaluación, probamos las tasas de detección

de anomaĺıas y el rendimiento del tiempo de procesamento, pero también explo-

ramos la utilidad de los árboles de explicación obtenidos por un nuevo algoritmo

de detección de anomaĺıas denominado EADMNC. Los resultados mostraron que

la mayoŕıa de los métodos examinados tienen una excelente puntuación detectando

anomaĺıas, pero el One-Class kNN obtiene sistemáticamente el mejor rendimiento.

Con todo, este método tiene la desventaja de su falta de escalabilidad y, por lo tanto,

mostramos que los nuevos métodos como LSHAD y EADMNC son mucho más

adecuados para tratar con grandes conjuntos de datos.

Otro campo ampliamente estudiado en AD es el Mantenimiento Predictivo. La

aparición de la Industria 4.0 trae automatización y intercambio de datos a la fab-

ricación industrial. El uso de sistemas computacionales y dispositivos IoT permite

a las empresas recopilar y manejar grandes volúmenes de datos sensoriales y de

procesos comerciales. El crecimiento y la proliferación de las tecnoloǵıas de big

data y aprendizaje automático permiten tomar decisiones estratégicas basadas en

los datos analizados. En esta tesis se presenta un método de mantenimiento predic-

tivo basado en datos para el sistema de unidad de producción de aire (APU) de un

tren del Metro do Porto (Portugal). El modelo propuesto también es aplicable en

el campo del mantenimiento predictivo, donde se ha demostrado ser efectivo en la



190 Appendix B. Resumen del trabajo

identificación y predicción de fallos en el equipo, reduciendo el tiempo de inactividad

y los costos. Esto se logra mediante el uso de datos en streaming, lo que permite

procesar los datos en tiempo real y detectar anomaĺıas de manera oportuna.

Además, abordamos el campo de los modelos de diálogo basados en argumentación.

Estos modelos han demostrado ser apropiados para contextos de decisión en los que

se pretende superar la falta de interacción entre los tomadores de decisiones, ya sea

porque están dispersos, son demasiados o simplemente no se conocen. Sin embargo,

para apoyar procesos de decisión con modelos de diálogo basados en argumentación,

es necesario tener conocimiento de ciertos aspectos espećıficos de cada tomar de

decisiones, como preferencias, intereses y limitaciones, entre otros. La falta de ob-

tención de esta información podŕıa arruinar el éxito del modelo. Buscamos facilitar

el proceso de adquisición de información mediante el estudio de estrategias para

predecir automáticamente las preferencias de los turistas (calificaciones) en relación

con los puntos de interés en base a sus opiniones. El estudio de la predicción de

preferencias tuŕısticas basadas en opiniones, utilizando modelos de diálogo basados

en argumentación, también proporcionó una visión sobre el uso de técnicas de PLN y

no supervisadas en este campo y mostró cómo este enfoque puede facilitar el proceso

de adquisición de información y predecir las preferencias de los turistas en base a sus

opiniones. Los resultados de este estudio demuestran el potencial de este enfoque en

contextos de toma de decisiones y su capacidad para superar la falta de interacción

entre los tomadores de decisiones.

Como se ha visto, esta tesis abarca una amplia gama de problemas derivados

de la aparición del campo de detección de anomaĺıas teniendo también en cuenta

las consideraciones de sostenibilidad. Los enfoques propuestos han demostrado su

capacidad para enfrentarse a problemas con grandes cantidades de datos sin etique-

tar, proporcionando mecanismos de ajuste de hiperparámetros e interpretabilidad

de datos. Por lo tanto, se espera que la contribución de esta tesis abra la puerta

al desarrollo de nuevos modelos sostenibles que puedan abordar los problemas de

detección de anomaĺıas teniendo en cuenta las limitaciones mencionadas.


	Meira_Jorge_TD_2023 7
	Meira_Jorge_TD_2023
	1 Introduction
	1.1 Types of Anomalous Patterns
	1.2 Applications
	1.2.1 Predictive Maintenance
	1.2.2 Intrusion Detection
	1.2.3 Text and speech anomaly detection

	1.3 Anomaly Detection Challenges
	1.4 Thesis Outline

	2 Performance evaluation of unsupervised techniques in cyber-attack anomaly detection 
	2.1 Related Work
	2.2 AD Methodology
	2.2.1 NSL-KDD dataset pre-processing
	2.2.2 ISCX dataset pre-processing
	2.2.3 Unsupervised Methods

	2.3 Performance Evaluation
	2.4 Conclusion

	3 Fast Anomaly Detection with Locality-Sensitive Hashing and Hyperparameter Autotuning
	3.1 Background
	3.2 Related Work
	3.3 Proposed Method
	3.3.1 Hashing 
	3.3.2 Anomaly level estimation
	3.3.3 LSHAD framework

	3.4 Hyperparameter Tuning and Experimentation
	3.4.1 Datasets
	3.4.2 Hyperparameter analysis
	3.4.3 LSHAD with hyperparameter autotuning
	3.4.4 Estimator experiments

	3.5 Performance Evaluation
	3.5.1 Applied Methods
	3.5.2 AD performance comparison
	3.5.2.1 Synthetic datasets
	3.5.2.2 Real datasets
	3.5.2.3 Statistical test evaluation

	3.5.3 Scalability testing
	3.5.4 Scalability versus AD performance

	3.6 Conclusions

	4 Novel unsupervised methods applied in IoT intrusion Detection 
	4.1 Related Work
	4.2 IOT-23 Dataset preparation and Analysis
	4.3 Methods used
	4.4 Experimentation
	4.4.1 AD Performance
	4.4.2 AD Performance with Distributed Methods
	4.4.3 Scalability Evaluation
	4.4.4 Explaining Anomalies
	4.4.5 Scalability vs AD Performance

	4.5 Conclusion

	5 Data-Driven PdM Framework for Railway Systems 
	5.1 Related Work
	5.2 Methodology
	5.2.1 Problem Definition
	5.2.2 Trains Data
	5.2.3 Proposed model

	5.3 Model Evaluation
	5.3.1 Evaluation Procedure
	5.3.2 Discussion

	5.4 Conclusions

	6 Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences
	6.1 Related Work
	6.2 Methodology
	6.2.1 Understanding the Problem Statement
	6.2.2 Collecting Dataset
	6.2.3 Analyzing Dataset, Preprocessing, and Feature Engineering
	6.2.4 Computational Techniques

	6.3 Tests and Evaluation
	6.3.1 Classification and Regression Results with Supervised Methods
	6.3.2 Anomaly Detection Results
	6.3.3 Discussion

	6.4 Conclusions

	7 Conclusions and Future Work
	7.1 New algorithms and models
	7.2 Practical Applications
	7.3 Future Work
	7.4 Publications from the thesis
	7.5 Other Publications

	References
	A Methods and Materials
	A.1 Datasets
	A.1.1 NSL-KDD dataset
	A.1.2 ISCX dataset
	A.1.3 IOT-23 DATASET

	A.2 Methods
	A.2.1 Autoencoders
	A.2.2 Half Space Trees
	A.2.3 One-Class K Nearest Neighbour
	A.2.4 One-Class K-Means
	A.2.5 Isolation Forest
	A.2.6 One-Class Scaled Convex Hull
	A.2.7 One-Class Support Vector Machines
	A.2.8 LOF
	A.2.9 PA-I
	A.2.10 EADMNC
	A.2.11 LSHAD

	A.3 Metrics
	A.3.1 Area Under the Curve
	A.3.2 Accuracy, Recall, Precision, F1 Score

	A.4 Nemenyi Statistical Test

	B Resumen del trabajo
	B.1 Desafíos en la detección de anomalías
	B.2 Nuevos algoritmos y modelos
	B.3 Aplicaciones prácticas





