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A B S T R A C T

Objectives: To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials
need progression-enriched patient populations. To assess whether the application of machine learning results in
patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive pa-
tients and validated it in the IMI-APPROACH knee osteoarthritis prospective study.
Design: We designed a two-stage recruitment process supported by machine learning models trained to rank
candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select pa-
tients for a screening visit. The second stage model used screening data to inform the final inclusion. The
effectiveness of this process was evaluated using the actual 24-month progression.
Results: From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247
completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and
combined pain and structure (P þ S, 5%), and a proportion of non-progressors (N, 52%) ~15% lower vs an
unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-
related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were
ranked higher than non-progressors for P þ S (median rank 65 vs 143, AUC ¼ 0.75), P (median rank 77 vs 143,
AUC ¼ 0.71), and S patients (median rank 107 vs 143, AUC ¼ 0.57).
Conclusions: The machine learning-supported recruitment resulted in enriched selection of progressive patients.
Further research is needed to improve structural progression prediction and assess this strategy in an interven-
tional trial.
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1. Introduction

Although there are many challenges affecting clinical trials, a
major bottleneck is the selection of the right patients for the right
treatment. The aim is to include a well-defined population in which
the intervention is likely to be effective. For example, when the goal of
a treatment is to slow down the disease, the inclusion criteria need to
identify patients at high risk of progression, so that the treatment ef-
fects can be better observed within the trial duration. Finding such
criteria is difficult for slowly progressing diseases such as osteoar-
thritis, dementia, or chronic pain, as the understanding of their
pathophysiology is still evolving. This leads to large and long-lasting,
or unsuccessful clinical trials [1,2].

Osteoarthritis (OA) is the most common form of arthritis [3] with a
high unmet medical need for disease-modifying treatments. It is char-
acterised by structural damage to cartilage and periarticular bones, and is
often accompanied by low-grade inflammation, resulting in pain and
disability. Currently, no pharmacological treatment is available that
could slow down or stop OA progression. The lack of therapeutic success
other than physiotherapy [4] is attributed, at least in part, to the inability
to enrich clinical trials with progressive patients [5].

The increasing amount of data from OA studies opens up the possi-
bility of using machine learning (ML) algorithms to inform the patient
selection process. Although these algorithms require extensive experi-
mentation and parameter tuning, they can extract complex patterns
present in the data overlooked by simpler methods routinely used in
medical science [6]. Recent diagnostic applications of ML models to
medical images resulted in expert-level performance [7]. However, that
was only possible with large and consistently formatted datasets.

The IMI-APPROACH consortium brings together data from five OA
cohorts, runs a new prospective clinical study focusing on knee OA [8],
and uses it as a “clinical trial of ML”. That is, an ML-supported selection
strategy is implemented in the cohort recruitment to prioritise progres-
sive patients, and is validated after 24 months using the follow-up data.
The objective of this work is to realistically estimate how well this se-
lection strategy could work if used in a clinical trial. Therefore, in this
article we (1) describe the design of the ML-supported selection strategy,
(2) evaluate its performance in simulated recruitment scenarios, and
finally (3) prospectively analyse the accuracy of the generated patients
ranking. We specifically focus on the enrichment in progressors among
the top patients and the stochastic differences between ranks of pro-
gressors and non-progressors.

2. Methods

2.1. Overview

Patients from existing cohorts across five European clinical centres
were identified and enrolled into the IMI-APPROACH study using a two-
stage recruitment process. In both stages, we used specialised machine
learning models trained to categorise the patients into four groups, rep-
resenting different level of observed disease progression. In the first
stage, historical data were used to predict the probability that a given
patient will progress within the two-year duration of the IMI-APPROACH
study. Based on the likelihood of progression, patients in each cohort
were ranked, and those with highest ranks were invited to the second
stage.

Invited patients went through a supplemental screening visit, during
which, up-to-date measurements of pain intensity and radiographic fea-
tures of the index knee were collected. The probability of progression was
predicted again, and the final ranking was constructed for enrolment.
Based on the ranks, the top 75% of the screened patients were enrolled in
the study.

After 24 months, the actual progression was measured, and the
positioning of progressive patients in the screening ranking was
evaluated.
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2.2. Data

Table 1 describes the source cohorts used in the study. HOSTAS [9]
and DIGICOD [10] cohorts included primarily hand OA patients, but as
OA commonly affects more than one joint, these patients often develop
knee OA as well. PROCOAC [11] and CHECK [12] are the largest
long-running European cohorts focused on knee and hip OA. Finally,
MUST [13] is a general OA cohort with no follow-up visits. All data were
de-identified by the cohort owners before analysis.

Because each of the source cohorts followed a different study proto-
col, syntactic and semantic incompatibilities between them were
inherent and had to be resolved through data harmonisation. Typically,
the harmonisation ends with a single dataset with a common subset of
attributes (shared across all cohorts). In our case, the resulting common
subset was too small to define OA progression. Therefore, instead of
harmonising all data into a single dataset, we performed a custom made
pairwise harmonisation to a reference cohort (CHECK). For all cohorts,
the mapping to CHECK was possible only for 10–30% of the original
attributes (see eTable 1 in the Supplement).

2.3. Patient categories

Patient categorisation [7] used in this work shares some similarities
with the FNIH biomarker study [14] and includes one non-progressive
category (N) and three progressive categories related to pain (P), struc-
ture (S), and combined pain and structure (Pþ S). Structural progression
was measured using radiographic readings of minimum joint space width
(JSW), performed with Knee Images Digital Analysis (KIDA) [15]. Pain
was measured using the pain subscale from the WOMAC questionnaire
[16]. Progression was analysed for periods of observation no shorter than
two years to match a typical length of a clinical trial (see eFig. 1 in the
Supplement).

To decide the category, measurements at the beginning and at the end
of a period were compared. A period was assigned the S category if the
minimum JSW decreased by at least 0.3 mm per year. A period was
assigned the P category if the pain increased at least by the minimal
clinically important difference per year (5 points on a 0–100 scale) and
was substantial at the end of a period (at least 40 points). For a rapid pain
increase of at least 10 points per year, the end pain threshold was lower
(at least 35 points). The P category was also assigned if substantial pain
(at least 40 points) was sustained at both the start and the end of a period.
A period was assigned the Pþ S category if criteria for both P and Swere
satisfied, and the remaining N category if neither of them was satisfied.

2.4. Classification algorithm

The machine learning strategy was chosen based on previous exper-
iments with CHECK and OAI cohorts [17]. We used a multi-model
approach (duo classifier) built on top of the cost-sensitive variant of the
random forest algorithm [18], where the probability of satisfying the
progression criteria (pain or structure related) was independently esti-
mated by two sub-models (see eFig. 2 in the Supplement).

2.5. Model scoring

To express the clinical preference for patients in Pþ S category and to
realistically estimate the effect of selection of top patients from the
ranking, we designed a domain-specific recruitment score that repre-
sents an average quality of simulated selections of different size (see
eEquation 2 in the Supplement). We used it to pick the best model
parameter configuration.

2.6. Recruitment

Initially, we expected the recruitment to be performed with two in-
dependent machine learning models. A selection-specific model, trained



Table 1
Characteristics of the cohorts used in model training and recruitment.

cohort location patients median age sex (M/F) visits activity focus

MUST Oslo, NO 630 64 30%/70% 1 2010–2013 –

HOSTAS Leiden, NL 538 62 16%/84% 3 2009–2017 hand
DIGICOD Paris, FR 377 67 16%/84% 2 2013–2017 hand
PROCOAC A Coru~na, ES 983 68 26%/74% 7 2002–2016 knee/hip
CHECK Utrecht, NL 1002 58 20%/80% 10 2006–2015 knee/hip
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to identify patients from the harmonised cohort to invite for a screening
visit, and a screening-specific model, trained to support the post-
screening enrolment decisions. However, the pairwise harmonisation
resulted in five different datasets (four harmonised and the original
CHECK cohort) and required training of cohort-specific selection models.
Fig. 1 shows the two stages of the recruitment and the ML models used in
the process.

2.6.1. Selection stage
As all cohorts have been harmonised to a common subset of attributes

with CHECK, we trained each selection model on the CHECK data (using
it as a proxy for the real cohort) and then made predictions using the real
cohort patients's data (specifically, the most recent visit). The data were
used unfiltered and the distribution of the categories across periods was:
63% N, 12% P, 20% S and 5% P þ S.

Due to the variable timing of the historical visits (see eTable 3 in the
Supplement), an additional complication occurred. The model training
had to be adjusted, to ensure that when a patient's most recent visit has
taken place several years prior, the model still predicts progression
during the period of the IMI-APPROACH study, that is shifted forward in
time (see Fig. 2 for illustration). As a result, multiple selection models
were trained with different time shifts: 4 for HOSTAS, 3 for PROCOAC
and DIGICOD, 2 for MUST, and 1 for CHECK patients.

To construct a balanced aggregated ranking for each cohort we
applied three different ranking functions and a shift-dependent penalty
(for details see eMethods 1.3.6 in the Supplement).

2.6.2. Screening stage
The screening model was trained on the CHECK data limited to a

subset of attributes measured during the screening visit including: basic
Fig. 1. Two stages of the recruitment process. All historical data were pairwise harm
score each patient and construct a ranking of candidates for the screening visit. Up-to-
to generate the final ranking, from which �75% of patients were enrolled into the IM
cohorts was part of the contingency plan and rarely used (mainly in Oslo).
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patient information (age, sex, BMI), pain intensity questionnaires (KOOS,
NRS), and KIDA radiographic features (bone density, eminence height,
joint space width, femoral-tibial angle, osteophyte area). These attributes
had high impact on the decisions of the all-attribute model and were
practical to measure during a short visit.

We assumed that all patients at this stage will fulfil the American
College of Rheumatology (ACR) classification criteria for knee OA, and
we filtered out from the training set all periods that did not satisfy them
at baseline. The filtering reduced the number of training periods from
3001 to 1917 and the distribution of categories was altered to 61.1% N,
15.5% P, 17.5% S and 5.8% P þ S.

The screening process remained open to new patients, from outside of
the existing cohorts. They were subject to the same inclusion/exclusion
criteria (see NCT03883568) and were evaluated by the same screening
model.

2.7. Enrolment

The enrolment objectives were: (1) to include approximately 300
patients in total, (2) to balance the proportion of enrolled to rejected
patients at the 3:1 level (�25% rejections) locally (for each recruitment
centre) and globally (for the entire study), (3) to distribute the screening
visits across the recruitment centres according to the inclusion targets:
150 in Utrecht, 30 in Oslo, 30 in A Coru~na, 60 in Leiden, and 30 in Paris.
Due to limitations in centres capacity and patient availability, the in-
clusion targets were modified to 50 in Leiden and 20 in Paris, and the
other three centres included more patients to compensate.

The enrolment decisions were made weekly, following the avail-
ability of new screening data. To closely monitor the enrolment pro-
gression andminimize delays, we developed a web application to support
onised to CHECK to train the cohort-specific models. These models were used to
date measurements taken at the screening visit were used by the screening model
I-APPROACH cohort. Option to recruit new patients from outside of the existing



Fig. 2. Illustration of a shift in time between the most recent visit and the period in which the disease progression needs to be predicted.
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the decision making process. It automatically fetched new patient data,
used the screening model to make predictions and generated the ranking,
visualised the current progress, and allowed to preview the impact of an
enrolment decision before it was made. Fig. 3 illustrates the exact flow of
data after the screening visit.

2.8. Validation

The recruitment strategy was validated using the actual progression
observed at the end of the study. The evaluation used 223 patients with
complete pain data and KIDA radiographic features at 24-month follow-
up. Each patient was assigned a progression category, using the same
criteria as in the model training.

To verify the usefulness of the ranking, that is whether progressive
patients were given higher rank than non-progressors, we compared the
distribution of ranks between patients in different categories, and the
proportion of progressors in the top and the bottom half of the ranking.

Additionally, the screeningmodel prediction quality was assessed with
the F1 score and area under the ROC curve (AUC), using the separate P and
S probabilities returned by the model. F1 score is a measure of a binary
classifier performance used in information retrieval and was designed for
problems with rare positive examples. F1 score is defined as a harmonic
mean of positive predictive value (precision) and sensitivity (recall), and it
attempts to balance conflicting goals of retrieving as little false positives as
possible (high precision) while retrieving all relevant information (high
recall). Compared to the AUC, the F1 score represents a trade-off between
true positives, false positives and false negatives, while AUC represents a
trade-off between true positives and false positives alone.

2.9. Statistical analysis and performance comparison

In model selection and parameter tuning, the ML model performance
was estimated on samples not used in training with repeated 10-fold
Fig. 3. Data flow between project partners during the decision-making process. The c
knee radiographs were uploaded to the XNAT database [16]. The images were analys
together with the eCRF data were imported to the tranSMART data warehouse [17]
ranked. Based on that ranking, each centre capacity and inclusion numbers, enrolmen
the screening visit.
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stratified cross-validation, which resulted in 2500 models tested per
parameter configuration. Throughout the article, the median score across
all cross-validation repeats is reported (for details see eMethods 1.3.2 in
the Supplement).

In comparison of ranks a one-sided non-parametric Mann-Whitney U
test was used, with correction for ties and continuity, and significance
level α ¼ 0.025. For each comparison, group medians, the U test value,
the effect size (rank-biserial correlation [19]), and the p-value was
reported.

Confidence intervals of the screening model classification perfor-
mance were computed using the bootstrap percentile method (n¼ 1000).

All ML experiments were performed using the scikit-learn library
[20]. In data harmonisation, preprocessing, analysis and generation of
statistics, we used pandas [21], NumPy [22], and SciPy [23]. For data
visualisation we used seaborn [24] and Matplotlib [25].

3. Results

3.1. Selection of the best models

We performed a large number of simulated recruitment experiments
to find best model parameters (maximising the recruitment score).
Table 2 shows the results for all models (selection and screening) with the
best of the three ranking functions. Often the recruitment score and other
measures (F1 score, AUC) disagreed on the choice of the best model
configuration, as the latter do not model the clinical preference for
enriched cohort, but only focus on the pure classification performance.

The exact differences in simulated recruitment between the model
with a highest F1 score and models with a highest recruitment score (for
all ranking functions and weight schemes) are detailed in eTables 5–18,
and the distribution of F1 and AUC scores is shown in eFigs. 4–17 in the
Supplement. The difference in favour of the recruitment score is visible
for all models and is bigger for the models with a smaller time shift.
linical data were entered into an electronic case report form (eCRF) and the index
ed centrally at Utrecht (which took 1–2 weeks), and the resulting KIDA readings
. After that, the screening model predictions were made and the patients were
t was decided and the baseline visits were scheduled no later than 9 weeks after



Table 2
Results of the simulated recruitment for model configurations with the highest recruitment score. For each model the proportions of recruited patients in non-
progressive category (N), and three progressive categories related to pain (P), structure (S), and combined pain and structure (P þ S) are shown. Additionally, the
value and the corresponding rank amongst all configurations (in brackets) of the F1 score and the area under the ROC curve is given, together with the recruitment score
(RS) using progressive weights.

selection model r.fun. N only P only S P þ S F1 score AUC(P) AUC(S) RS

MUST, 3y shift, top 60 sum 45% 37% 12% 7% 0.658 (32) 0.696 (50) 0.429 (70) 0.216
MUST, 5y shift, top 60 sum 50% 38% 7% 5% 0.669 (15) 0.803 (11) 0.514 (65) 0.164
HOSTAS, no shift, top 60 sum 23% 52% 7% 18% 0.458 (83) 0.628 (43) 0.570 (62) 0.428
HOSTAS, 2y shift, top 60 sum 42% 32% 15% 12% 0.478 (83) 0.642 (12) 0.482 (44) 0.336
HOSTAS, 3y shift, top 60 sum 47% 37% 10% 7% 0.597 (77) 0.718 (1) 0.449 (72) 0.196
HOSTAS, 5y shift, top 60 sum 67% 27% 5% 2% 0.584 (76) 0.696 (10) 0.548 (5) 0.068
DIGICOD, no shift, top 30 z-score 27% 40% 7% 27% 0.422 (71) 0.735 (28) 0.596 (8) 0.379
DIGICOD, 2y shift, top 30 z-score 43% 30% 10% 17% 0.468 (82) 0.643 (45) 0.597 (16) 0.292
DIGICOD, 3y shift, top 30 sum 50% 37% 10% 3% 0.596 (77) 0.680 (28) 0.353 (43) 0.113
PROCOAC, 2y shift, top 30 z-score 23% 30% 27% 20% 0.510 (79) 0.695 (12) 0.592 (11) 0.438
PROCOAC, 3y shift, top 30 sum 40% 47% 7% 7% 0.626 (75) 0.677 (72) 0.392 (35) 0.200
PROCOAC, 5y shift, top 30 sum 50% 40% 7% 3% 0.615 (77) 0.679 (35) 0.476 (19) 0.128
CHECK, 2y shift, top 150 z-score 35% 31% 21% 14% 0.507 (59) 0.697 (20) 0.621 (2) 0.449
screening model, top 150 z-score 29% 30% 18% 23% 0.544 (47) 0.667 (60) 0.617 (36) 0.537
uninformed selection 63% 12% 20% 5% — — — —
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3.2. Harmonisation and model confidence

To ensure that models trained on harmonised data do not return
vastly different predictions compared to those trained with all CHECK
attributes, we compared the probability distributions returned by the
models (see eFig. 18 in the Supplement). The differences were more
prominent for pain but minor overall.

We performed a similar comparison for selection models using
different time shifts. We found a decline in model confidence with the
increased time shift (see eFig. 19 and further analysis of joint distribu-
tions in eFigs. 20–33 in the Supplement).

3.3. Screening model trustworthiness

To understand the decision-making mechanism of the screening
model we analysed the relative importance of each attribute as estimated
by the Random Forest algorithm. The output of the model with respect to
pain was influenced the most by the WOMAC scores (total score and the
three sub-scores) and NRS pain, and with respect to structure by mini-
mum JSW. and to a lesser degree by femoral-tibial angle, mean JSW, the
eminence height, and the osteophytes area in the medial tibia region. For
a detailed ranking (also for other models) see eFigs. 34–39 in the
Supplement.

3.4. Screened patients

Table 3 provides an insight into the characteristics of patients who
went through the screening visit. The group is far from being uniform but
with almost no differences between men and women (except the slightly
higher reported pain).

3.5. Ranking and enrolment decisions

The flexible, threshold-free approach to enrolment decision, allowed
us to balance the recruitment at each centre, and at the same time
achieve the global target of �25% rejections (see eTable 4 in the Sup-
plement for exact numbers). It was facilitated by the development of an
online decision support tool (see Fig. 4), that allowed us to monitor the
Table 3
Characteristics of patients who completed the screening visit. Median, 1st and 3rd qu

Age BMI JSW Min

Women 68 [62–72] 26.7 [24.0–30.3] 2.49 [1.63–3.16]
Men 69 [62–72] 26.5 [24.2–30.2] 2.74 [1.65–3.43]
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state of recruitment, and preview the impact of decisions before making
them.

Supplementary Video 1 shows a time lapse of the state of the ranking
and the results of all the recruitment decisions. Each enrolment decision
had to be made within a fixed 9-week window between the screening and
the baseline visit. Typically, there was a 1–2 weeks wait to complete the
image assessment before the screening model could rank a patient, and
with 2–3 weeks needed for visit scheduling, this resulted in 4–6 weeks to
decide who to enrol/reject. That decision window was useful in case of
“borderline” patients, as it was possible to wait for more patient data
(more context) and make better informed decisions.

The supplementary video can be found online at https://doi.org/10
.1016/j.ocarto.2023.100406.
3.6. Recruitment validation

The actual progression observed at the 24-month follow-up visit was
used to evaluate the quality of the screening model ranking. Fig. 5A shows
the exact positions of progressive patients in the ranking. The P þ S pa-
tients, on whom we focused the recruitment, had over two times higher
median rank than non-progressive patients. Specifically, the ranks of pro-
gressors were higher than non-progressors for Pþ S patients (median rank
65 vs. 143, U¼ 323, ES¼ 0.489, P¼ 0.004),P patients (median rank 77 vs.
143, U¼ 2200, ES¼ 0.429, P< 0.001), and S patients (median rank107 vs.
143, U¼ 1483, ES ¼ 0.140, P ¼ 0.112). Overall, over 75% of Pþ S and P
patients were ranked higher than the median non-progressive patient.

The differences in rank distribution become even more clear when
four patient categories are reduced to a binary choice: all P (P[P þ S) vs.
not P (N[S) shown in Fig. 5B (median rank 52 vs. 149, U ¼ 1618, ES ¼
0.714, P < 0.001), or all S (S[P þ S) vs. not S (N[P) shown in Fig. 5C
(median rank 92 vs. 115, U ¼ 2890, ES ¼ 0.225, P ¼ 0.012).

The distribution of categories amongst the recruited patients was:
51.57% N, 30.4% P, 13.45% S, and 4.93% P þ S. In the top half of the
ranking, the proportion of non-progressors decreases to 36.04% and all
the progressive categories are enriched: 43.24% P, 14.41% S, and 6.31%
P þ S. The opposite happens in the bottom half, the proportion of non-
progressors increases to 66.96% and all the progressive categories get
smaller: 16.96% P, 12.50% S, and 3.57% P þ S. Comparing the two
artile are reported (except the last column).

JSW Mean WOMAC Pain Pain Now Count

5.36 [4.71–6.02] 25 [10–45.0] 3 [1–5] 76.5%
6.05 [5.37–6.67] 25 [10–37.5] 2 [1–5] 23.5%

https://doi.org/10.1016/j.ocarto.2023.100406
https://doi.org/10.1016/j.ocarto.2023.100406


Fig. 4. Screenshot of the web-based tool used to make the enrolment decisions. Patients screened so far in all recruitment centres (RC) are listed in the ranking score
order. Patients without decision are in white rows, enrolled are in green, and rejected are in red rows. The choice column shows a decision being made with a tick or a
cross. The plots on the right show number of screened and enrolled patients per RC, and the balance between enrolled and rejected patients (total and per RC).
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halves, the top one had almost two times more P þ S patients, and over
2.5 times less non-progressors. We can estimate how an unenriched
population would look like from the class distribution in the CHECK
cohort (our training set) and observe that it would have ~20%more non-
progressors, 50% less P patients, but ~30% more S patients and ~20%
more P þ S patients.

The actual classification performance of the screening model was at
the same level or higher than what was estimated with cross-validation
on CHECK data: F1 score of 0.60 [95% CI, 0.53–0.67] (vs. 0.54),
AUC(P) of 0.86 [95% CI, 0.81–0.90] (vs. 0.67), AUC(S) of 0.61 [95% CI,
0.52–0.70] (vs. 0.62). Further statistical analysis of the observed pro-
gression has been published elsewhere [26].

4. Discussion

Due to inherent diversity in underlying aetiology and disease pro-
gression among patients, enriching OA clinical trials for participants
likely to benefit from a treatment is a complex problem with several
practical constraints. A straightforward application of machine learning
was not possible and several pragmatic adjustments to the recruitment
process had to be made to address data limitations, lower accuracy of the
models, and visit scheduling constraints.

The observed enrichment at 2-year follow-up was smaller than in the
simulated recruitment, despite that (1) the screening model classification
performance was better than estimated with cross-validation, and (2) a
significant difference between the ranks of progressors and non-
progressors was found. This is likely a result of conservative rejection
rate (25% only). In a recent large OA clinical trial (NCT03595618), 3.5
times more patients were screened than enrolled (rejection rate >75%).
That is equivalent to rejection of the bottom 50% of our ranking, which
would result in only 36% of non-progressors (vs. estimated 29% for the
screening model). However, a small number of enrolled P þ S patients
(6% vs. estimated 23%) reveals scope for further improvement. With
broader and more precise data now collected in a uniformmanner for the
IMI-APPROACH cohort (serum/urine markers, MRI/CT imaging, motion
sensors, a broad range of questionnaires), further research is needed to
develop the next iteration of the selection strategy, targeting more
6

sensitive outcomes (e.g. loss of cartilage thickness) or focusing more on
e.g. functional limitations rather than pain, and possibly directly esti-
mating the outcomes future values (i.e. moving from classification to a
regression problem).

4.1. Flexibility

The proposed recruitment process not only targets the clinically
relevant patients more accurately, but also is more flexible than the
conventional inclusion criteria. Namely, it can (1) predict the progression
in a specific time-window, matching the duration of a trial, (2) use the
predictions to rank patients in order of clinical preference, (3) use the
ranking to balance the enrolment across multiple recruitment centres,
and (4) achieve assumed inclusion targets without sacrificing the rejec-
tion ratio.

4.2. Effort

The implementation of the recruitment strategy required a lot of
effort. Starting from data harmonisation, through training and evaluation
of multiple machine learning models, to maintaining efficient data
transfers for each round of the enrolment decisions. However, in a gen-
eral case much less effort might be necessary. For example, time shifted
models would not be needed, if the source cohorts had recent visits.
Similarly, a single selection model would be enough if the cohort's pro-
tocols were more aligned (e.g., had the same primary joint) and har-
monisation into a single dataset was possible. Furthermore, the screening
stage could have been omitted with the screening model applied directly
to the cohort data if these were complete and recently collected.

4.3. Limitations

The differences between the cohort protocols limited the harmo-
nisation options, and forced a non-direct approach to model training,
with the CHECK cohort as a proxy. This resulted in selection models
trained on a different population than the one the predictions were made
for. Although in simulated recruitment the proxy effect on model



Fig. 5. Distribution of the actual progressors in the screening model ranking (based on 2-year follow-up). Patient categories are represented with colours. Subfigure A
compares four categories: no progression (N), only pain-related progression (P), only structure-related progression (S), and combined progression (P þ S). Subfigures B
and C compare two categories: all pain-related progression (P[P þ S) vs. others (N[S), and all structure-related progression (S[P þ S) vs. others (N[P). The top
(highest) rank is 1. The distribution of ranks within each category is summarised with a box plot. The box edges mark lower and upper quartiles, with median shown in
the middle, and whiskers indicate the minimum and maximum rank.
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performance was smaller than the effect of the time shift, better results (a
higher ranking score) for cohorts other than CHECK could be expected, if
a direct training is possible.

Similarly, the screening model was trained on the CHECK cohort, but
applied to patients from all five cohorts. That makes it by definition more
tuned to correctly rank the CHECK-like patients. If it could have been
trained on mixed-cohort data, it would have adjusted better to the
inherent differences in patient demographics.

Given that for a large time shift the model performance was only
slightly better than a random choice, the importance of the selection
stage could be questioned. Better results could be obtained by screening
more patients, as the prediction on up-to-date data was more confident.

Additionally, some of the selection stage models has focused on pa-
tients with higher age and BMI (see eFig. 39 in the Supplement), who
might not be the ones responding well to new treatments. This could be
avoided if the screening model was used alone.

The standard measures we based the progression on (WOMAC, JSW),
are rather insensitive and require a long observation window [2,27]. To
shorten the clinical trial time more precise and less error-prone measures
of progression are needed.

4.4. Relation to previous research

Multiple aspects of patient recruitment have been studied before.
From patient engagement and retention [28] (including the use of
advertising to accelerate recruitment, or methods to predict whether a
7

patient will accept an invitation to a trial), through modelling of the
recruitment rates and timelines [29], prediction of the recruitment centre
performances [30], prediction of treatment outcomes based on past
clinical trials [31], to finally, the clinical trial matching platforms helping
patients to find ongoing trials in which they could take part, and trial
recruitment support systems (CTRSS) that allow searching for eligible
patients in databases of medical records [32]. When such databases do
not exist, natural language processing systems have been used to cate-
gorise clinical notes directly [33].

However, patient selection considering the disease progression and
its pace has been understudied. This work represents the first attempt to
design and implement in clinical practice a ML-supported strategy to
select fast progressing OA patients, which could be applied in future
interventional trials to increase their efficiency. Although the strategy
was discussed in context of OA, it could generalise to trials in other
diseases where retrospective data is available.

Author contributions

Conceptualisation: Bacardit, Bay-Jensen, Berenbaum, Blanco, Hau-
gen, Kloppenburg, Ladel, Lafeber, Lalande, Larkin, Loughlin, Marijnissen,
Mobasheri, Weinans, Welsing, Widera — Methodology: Bacardit, Wels-
ing, Widera — Software: Danso, Widera — Formal analysis: Widera —

Investigation: Danso, Berenbaum, Blanco, Haugen, van Helvoort, Klop-
penburg, Loef, Magalh~aes, Marijnissen, Welsing, Widera — Resources:
Bacardit, Bay-Jensen, Berenbaum, Blanco, Haugen, Kloppenburg, Ladel,



P. Widera et al. Osteoarthritis and Cartilage Open 5 (2023) 100406
Lafeber, Lalande, Larkin, Loughlin, Marijnissen, Mobasheri, Weinans —
Data curation: Danso, Peelen — Writing – Original Draft: Widera —

Writing - Review & Editing: all authors — Visualisation: Widera —

Supervision: Bacardit, Ladel, Lafeber, Lalande, Loughlin — Project
Administration: Bacardit, Ladel, Lafeber, Lalande, Larkin, Loughlin,
Weinans — Funding Acquisition: Bacardit, Bay-Jensen, Ladel, Lafeber,
Lalande, Larkin, Loughlin, Mobasheri, Weinans.

Role of funding

The research leading to these results has received support from the
Innovative Medicines Initiative Joint Undertaking under Grant Agree-
ment no.115770, resources of which are composed of financial contri-
bution from the European Union's Seventh Framework Programme (FP7/
2007-2013) and EFPIA companies' in kind contribution. See www.imi.
europa.eu and www.approachproject.eu. This communication reflects
the views of the authors and neither IMI nor the European Union and
EFPIA are liable for any use that may be made of the information con-
tained herein.

The funder of the study had no role in study design, data collection,
data analysis, data interpretation, or writing of the article.

Data sharing

Data are available on reasonable request. Access to de-identified
participant data and other documents (study protocol, consent form,
statistical analysis plan) can be requested from the IMI-APPROACH
Steering Committee.

Ethical approval information

The study is being conducted in compliance with the protocol, Good
Clinical Practice (GCP), the Declaration of Helsinki, and applicable
ethical and legal regulatory requirements (for all countries involved), and
is registered under clinicaltrials. gov no. NCT03883568. All participants
have received oral and written information, and provided written
informed consent.
Declaration of competing interest

A. Bay-Jensen is a full-time employee and shareholder of Nordic
Bioscience. C. Ladel was an employee of Merck KGaA at the project start.
A. Lalande is employed by Institut de Recherches Internationales Servier.
J. Larkin is employed by, and shareholder in GlaxoSmithKline. I.K.
Haugen consults for Novartis and has received funding from Pfizer. M.
Kloppenburg receives consulting fees from Abbvie, Pfizer, Levicept,
GlaxoSmithKline, Merck-Serono, Kiniksa, Flexion, Galapagos, Jansen,
CHDR, Novartis, and UCB. F. Berenbaum reports personal fees from
AstraZeneca, Boehringer, Bone Therapeutics, CellProthera, Expan-
science, Galapagos, Gilead, Grunenthal, GSK, Eli Lilly, Merck Sereno,
MSD, Nordic, Nordic Bioscience, Novartis, Pfizer, Roche, Sandoz, Sanofi,
Servier, UCB, Peptinov, 4 P Pharma, 4 Moving Biotech and grants from
TRB Chemedica, outside the submitted work. F.J. Blanco has received
consulting fees or other remuneration from AbbVie, Pfizer, UCB, Bristol-
Myers Squibb, Roche, Servier, Bioiberica, Sanofi, Grünenthal, Glax-
oSmithKline, Lilly, Janssen, Regeneron, Amgen, and TRB Chemedica,
outside the submitted work. A. Mobasheri receives fees/funding from
Merck KGaA, Kolon TissueGene, Pfizer, Galapagos-Servier, Image Anal-
ysis Group (IAG), Artialis, Ach�e Laborat�orios Farmacêuticos, AbbVie,
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