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Abstract

This thesis is devoted to the mathematical modelling and numerical solution of prob-

lems related to the valuation of financial options including total value adjustment

(XVA) in a multicurrency setting.

In order to build the models, we assume European options with underlying as-

sets written in di↵erent currencies, stochastic credit spread of the counterparty and,

eventually, stochastic foreign exchange rates. Depending on the choice of the mark-

to-market value, nonlinear or linear partial di↵erential equations (PDEs) are derived.

We also make use of the nonlinear and linear Feynman-Kac theorems to deduce the

equivalent models in terms of expectations.

For each derived model, we propose numerical methods. When the number of

stochastic factors is no greater than two, we propose a Lagrange-Galerkin scheme

(based on the method of characteristics and the finite element method) for solving the

PDEs, eventually combined with fixed point techniques for the nonlinear problems.

For problems that include more than two underlying assets and/or stochastic FX

rates, we propose the use of Monte Carlo simulations applied to the formulations based

on expectations, combined with a Picard method and the more e�cient multilevel

Picard iteration (MPI) scheme for the nonlinear cases.

We apply these techniques to di↵erent options of European type that validate the

performance of the models as well as the proposed numerical methods.
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Resumen

Esta tesis está dedicada al modelado matemático y simulación numérica de problemas

de valoración de opciones financieras que incluyen ajuste de valoración total (XVA)

en un marco multi-divisa.

Con el fin de construir los modelos, suponemos opciones europeas sobre sub-

yacentes escritos en diferentes monedas, un diferencial crediticio de la contraparte

estocástico y, eventualmente, tasas de cambio también estocásticas. Dependiendo de

la elección del valor de mercado del derivado en caso de incumplimiento (mark to

market), deducimos ecuaciones en derivadas parciales lineales y no lineales. También

hacemos uso de los teoremas (lineal y no lineal) de Feynman-Kac para deducir los

modelos equivalentes en términos de esperanzas.

Para los modelos deducidos proponemos su resolución mediante distintos métodos

numéricos. Cuando el número de variables estocásticas es inferior o igual a dos

proponemos un esquema de Lagrange-Galerkin (basado en el método de las carac-

teŕısticas y el método de elementos finitos), eventualmente combinado con una técnica

de punto fijo para los problemas no lineales. Para los casos que involucran más de

dos subyacentes y/o tasas de cambio estocásticas, proponemos simulaciones basadas

en el método de Monte Carlo, combinadas con un método de Picard o el más eficiente

esquema de iteración de Picard multinivel para los problemas no lineales.

Aplicamos todas estas técnicas para valorar diferentes opciones europeas, habiendo

obtenido buenos resultados que validan tanto los modelos como los métodos numéricos

propuestos.
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Resumo

Esta tese está dedicada ao modelado matemático e simulación numérica de problemas

de valoración de opcións financeiras que inclúen axuste de valoración total (XVA) nun

marco multi-divisa.

Co fin de constrúır os modelos, supomos opcións europeas sobre subxacentes es-

critos en diferentes moedas, un diferencial crediticio da contraparte estocástico e,

eventualmente, taxas de cambio tamén estocásticas. Dependendo da elección do

valor de mercado do derivado en caso de incumprimento (mark to market), deduci-

mos ecuacións en derivadas parciais lineais e non lineais. Tamén facemos uso dos

teoremas (lineal e non lineal) de Feynman-Kac para deducir os modelos equivalentes

en termos de esperanzas.

Para os modelos deducidos propomos a súa resolución mediante distintos métodos

numéricos. Cando o número de variables estocásticas é inferior ou igual a dous propo-

mos un esquema de Lagrange-Galerkin (baseado no método das caracteŕısticas e o

método de elementos finitos), eventualmente combinado cunha técnica de punto fixo

para os problemas non lineais. Para os casos que involucran máis de dous subxac-

entes e/ou taxas de cambio estocásticas, propomos simulacións baseadas no método

de Monte Carlo, combinadas cun método de Picard ou o máis eficiente esquema de

iteración de Picard multinivel para os problemas non lineais.

Aplicamos todas estas técnicas para valorar diferentes opcións europeas, obtendo

bos resultados que validan tanto os modelos como os métodos numéricos propostos.
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Introduction

After the financial crisis started in 2007, it became clear that any pricing framework

should take into account the possibility of default of any counterparty involved in the

trade [28, 61], as well as aspects related to collateral posting, liquidity risk or funding

costs [52, 85]. Therefore, di↵erent valuation adjustments due to these factors must be

considered when pricing a derivative. The set of these adjustments is globally referred

to as Total Value Adjustment or XVA, where “X” stands for the di↵erent letters that

appear in the value adjustments associated to credit (CVA), debit (DVA), funding

(FVA), collateral (CollVA), capital (KVA) or margin (MVA), for example. The initial

and more classical adjustments were motivated by counterparty risks related to credit,

funding and collateral. Later on, the adjustments related to capital and margin have

been added. Among the classical and more general references on the topic, we address

the readers to the books [21, 28, 52] and the references therein.

Most of the literature has addressed the modelling and computation of the di↵er-

ent adjustments or the total value adjustment for a single currency setting. In this

framework, three main methodologies have been developed. A first approach, fol-

lowing the seminal papers by Piterbarg [82] and Burgard and Kjaer [22] that obtain

PDE formulations by hedging arguments on suitable portfolios and the application

of Itô’s lemma for jump-di↵usion processes. This approach in terms of PDEs for-

mulation has been followed in [43], where the problem is also equivalently written

in terms of expectations. Moreover, it has been also addressed in [4] and [3], where

PDE models with one and two stochastic factors have been mathematically analysed
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and numerically solved for pricing European options with one and two stochastic fac-

tors. A second approach follows the initial ideas in [18] to obtain the CVA by means

of formulations based on expectations, next extended to the collateralized, close-out

and funding costs in [78]. Also this approach has been addressed in [5, 2] for Amer-

ican options and in [15] for Levy dynamics. A third approach is based on backward

stochastic di↵erential equations and it has been introduced in [26] and [27].

Recently, attention has been given to the extension of valuation adjustments from

the single currency to the multi-currency setting [44]. Indeed, nowadays financial

institutions may operate in di↵erent currencies, for example making investments on

derivatives with underlying assets denominated in domestic currencies, and funding or

posting collateral in foreign currencies. The three previously indicated methodologies

that have been developed can be extended to the multi-currency setting.

In this thesis we mainly follow [8, 89], where we have focused on the formulations

based on PDEs and expectations, and add some improvements. Therefore, we start

building a multi-currency framework, following the ideas in [44], where the joint

consideration of CVA, FVA, CollVA and repo adjustments are taken into account.

For the additional inclusion of KVA or MVA in the XVA, the ideas in [51, 50] in the

single currency case could be considered.

More precisely, in this work we address the European options pricing problem

in a multi-currency setting when taking into account the valuation adjustments as-

sociated to counterparty risk. For this purpose, stochastic intensities of default are

assumed and underlying assets denominated in di↵erent currencies are involved. Our

approach is based on the same framework and assumptions as in [43], although ex-

tended to a multi-currency environment and with the additional hypothesis of a zero

default intensity for the hedger. In particular, we take into consideration the following

assumptions:

The counterparty can default, but the hedger is default-free.

Prices of the involved underlying assets are modelled by correlated di↵usion

processes.

2



The events of investor default do not a↵ect the evolution of the prices of the

involved underlying assets.

The stochastic credit spread of the counterparty is modelled as a positive mean

reverting process, which is correlated with the processes followed by the prices

of the underlying assets and, eventually, with the processes followed by the

foreign exchange (FX) rates.

Following [44], we first obtain formulations of the XVA pricing problem in terms

of partial di↵erential equations (PDEs). For this purpose, we employ hedging, no

arbitrage and self-financing arguments jointly with a choice for the mark-to-market

value of the derivative at default. This choice leads either to a linear problem, if the

mark-to-market value is equal to the price of the derivative when counterparty risk is

not taken into account (risk-free derivative), or to a nonlinear problem if it is equal

to the price of the derivative including the counterparty risk (risky derivative).

Note that the consideration of several stochastic underlying assets, of the stochas-

tic counterparty’s credit spread and, eventually, of the stochastic foreign exchange

rates implies that the number of stochastic factors increases significantly, so that

the so-called curse of dimensionality comes into place when deterministic numeri-

cal methods (as finite di↵erences or finite element methods) are considered for the

solution of the corresponding linear and nonlinear high dimensional PDEs models.

Actually, these deterministic numerical methods involve an exponentially increasing

computational cost in the dimension of the PDE.

Thus, we address the solution of the linear and nonlinear PDEs only in the case

of a derivative written on two underlying assets in di↵erent currencies, with constant

foreign exchange rates and deterministic time-dependent counterparty’s credit spread.

More precisely, we employ a semi-Lagrangian (also known as characteristics) method

for the time discretization combined with the Finite Element Method (FEM) for the

discretization of the spatial variables which are associated to the stochastic factors.

The joint consideration of semi-Lagrangian methods with finite element methods is

usually referred to as Lagrange-Galerkin methods. These techniques are specially
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useful for the discretization of the so called convection dominated PDE problems,

where the terms containing first order derivatives (convection terms) dominate the

ones containing the second order derivatives (di↵usion terms). In this setting, the

proposed techniques avoid the presence of spurious oscillations that appear when

more conventional time discretization techniques are considered. Additional fixed

point techniques are used when nonlinear PDEs are involved.

Probabilistic methods based on Feynman-Kac formula to obtain an equivalent

formulation of the PDE problems in terms of expectations seem an appropriate alter-

native to avoid the curse of dimensionality, that arises when using other numerical

approaches to solve multidimensional PDE problems. Therefore, in a second step, we

deduce the corresponding formulations of the pricing problem in terms of expecta-

tions with the goal of applying a Monte Carlo method for computing the total value

adjustment.

In the nonlinear case, a general nonlinear Feynman-Kac formula has been proposed

in the seminal work [79]. Among the possible probabilistic methods, the most naive

comes from the consideration of the so called “Monte Carlo of Monte Carlo” (also

known as nested Monte Carlo simulation or straight-forward Monte Carlo method),

which would give rise to an at least exponentially growing computational cost of the

approximation method in the inverse of the prescribed approximation accuracy. In

the nonlinear case, among the recent advanced nonlinear Monte Carlo techniques

to solve the semilinear PDEs formulations, we point out three of them: branching

di↵usion methods (see, for example, [72, 57, 58]), deep learning based methods (see,

for example, [54, 1, 64]) and multilevel Picard iterations (see, for example, [37, 62, 38]).

Picard iteration techniques are approximation methods for solving a fixed-point

equation. These methods can be applied to solve nonlinear models formulated in

terms of expectations that have been obtained from the corresponding nonlinear PDEs

by means of a nonlinear Feynman-Kac formula. Once the Picard iteration method has

been posed, it must be discretized by means of quadrature formulae. In this article,

we propose Picard iteration methods to solve the nonlinear formulations arising in
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XVA computation by using rectangular and trapezoidal quadrature formulae.

Recently, in [37], [62], and [38], the authors propose a family of multilevel Picard

iteration methods, which mainly combine the multilevel Monte Carlo techniques from

[55, 56] and [46] with Picard iteration methods. More precisely, in [38] the authors

develop the theoretical analysis under suitable smoothness conditions while in [37]

they address simulation studies including applications to financial pricing problems.

As indicated in [37], the computational complexity increases at most linearly in the

dimension of the PDE and quartically in the inverse of the prescribed accuracy. In

this thesis, in the nonlinear problem case we also apply the numerical multilevel Pi-

card iteration methods proposed in [37].

Finally, it is important to point out that this thesis has been developed in the frame

of the European Industrial Doctorate ABC-EU-XVA, which involves a research stay

in an industrial partner, in this case the insurance company Unipol Gruppo S.p.A.

During the stay, the author of this thesis has carried out a relevant research work

related to the development of a new stochastic Asset Liability Management (ALM)

model for a life insurance company, dealing with both an asset portfolio and a liability

portfolio.

The developments and achievements of this research work appear in the article

[35] and are also contained in the Annexe of the thesis.

The outline of this thesis is as follows.

In Chapter 1 we model the price of a European option written on di↵erent under-

lying assets denominated in foreign currencies under the assumption of deterministic

foreign exchange rates. Also, we assume that the derivative is partially collateralized

in cash in a foreign currency and that the counterparty has a stochastic intensity of

default. By using a hedging strategy to build a self-financing portfolio, we derive

either nonlinear or linear PDE models for the price of the derivative and for the total
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value adjustment. Then, we use the Feynmam-Kac theorem to write the XVA as

an expectation. From the numerical point of view, we address the solution of the

pricing PDE using a Finite Element Method under the assumption that the credit

spread is a deterministic time-dependent function and the derivative depends on two

stochastic underlying assets so that we consider a two-dimensional problem. Instead,

the formulation based on expectations allows the use of Monte Carlo techniques to

approximate the total value adjustment in a higher dimensional setting. In the case

of nonlinear problems, the Monte Carlo method requires the Picard iteration or mul-

tilevel Picard iteration techniques.

In Chapter 2 we follow the same methodologies as in the previous chapter and

extend the deterministic exchange rates model to the case of stochastic foreign ex-

change rates. Moreover, we assume the collateral is made up of bonds in a foreign

currency. New models are formulated both in terms of linear and nonlinear PDEs

and expectations, the hedging arguments requiring the additional consideration of

the exposure to foreign exchange risk. In this high-dimensional setting, we do not

address the solution of the pricing PDEs, but focus on the expectation formulation of

the total value adjustment and, therefore, on the Monte Carlo approximation. In the

numerical results section, we present some examples to illustrate the performance of

the proposed numerical techniques. In particular, we analyse the impact of introduc-

ing stochasticity in the foreign exchange rates dynamics and of using the collateral

made up of bonds instead of cash.

In Appendix A we build a stochastic Asset Liability Management (ALM) model

for a life insurance company, dealing with both an asset portfolio, made up of bonds,

equity and cash, and a liability portfolio, comprising with-profit life insurance poli-

cies. We define a mortality model and a surrender model, as well as a new production

model. First, with the purpose of ensuring the solvency of the company and the
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achievement of a competitive return, in the interest of both shareholders and policy-

holders, the insurer’s portfolio is periodically rebalanced according to the solution of a

nonlinearly constrained optimization problem, that aims to match asset and liability

durations, subject to the attainment of a target return. In addition, several real world

constraints are imposed. When computing the company balance sheet projections,

we consider not only future maturity and death payments, but also future surrender

payments and all the cash flows due to new production, in order to obtain estimates

that are as reliable as possible. The estimation of the timing and of the numbers

of future surrenders and of future new policyholders requires the approximation of

conditional expectations: to this end, we employ the Least Squares Monte Carlo tech-

nique. Secondly, for each bonds asset class and for equity asset class we propose a

sectorial optimization problem with the aim of maximizing the expected value of a

chosen utility function, subject to the results obtained from the first stage of portfolio

rebalancing. Finally, we analyse a case study.
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Chapter 1

Total Value Adjustment in a

multi-currency setting with

deterministic FX rates

1.1 Introduction

In this first chapter, we address the European options pricing problem in a multi-

currency setting when taking into account the valuation adjustments associated to

counterparty risk. In particular, we consider a derivative written on di↵erent under-

lying assets that are denominated in di↵erent currencies. We also assume that the

derivative is partially collateralized in cash in a foreign currency. First, we assume

foreign exchange (FX) rates are time dependent deterministic processes, whereas the

model with stochastic FX rates will be posed in Chapter 2. We consider a zero default

intensity for the hedger and a stochastic default intensity for the counterparty, which

is equivalent to stochastic credit spread of the counterparty.

Note that in our previous closely related work [8] we have chosen a Gaussian

dynamics for the credit spread of the counterparty, but this approach su↵ers from

the possibility of reaching negative credit spread values with positive probability.

9



Therefore, in this thesis we want to consider a more realistic assumption on the

credit spread dynamics given by choosing a positive mean-reversion process.

We follow an approach based on hedging arguments and, by applying Itô’s formula

for jump di↵usion processes, we obtain partial di↵erential equation (PDE) formula-

tions of the derivative pricing problem. In order to pose the PDE formulation for

the XVA price, we note that the risky derivative value is obtained by summing the

total value adjustment to the derivative risk-free value, i.e., the value that the deriva-

tive would have in absence of counterparty risk. Therefore, the XVA can be seen as

the di↵erence between the risky derivative value and the risk-free derivative value,

that satisfies the classical multidimensional Black-Scholes equation. This allows to

obtain a PDE problem for the total value adjustment. Depending on the choice of

the mark-to-market value of the derivative at default, di↵erent kinds of XVA pricing

PDEs arise: if the mark-to-market value is equal to the risky derivative value, then

a nonlinear PDE is obtained; if the mark-to-market value is equal to the risk-free

derivative value, then a linear PDE that involves the risk-free value of the derivative

is obtained.

The presence of many stochastic factors makes the deterministic numerical meth-

ods commonly used to solve PDEs to be a↵ected by the curse of dimensionality, so we

address the solution of the pricing PDEs for both assumptions on the mark-to-market

value at default in the case where the derivative only depends on two underlying assets

and the counterparty’s credit spread is a deterministic function of time. In particular,

we address the solution of the PDEs problems by using a Lagrange-Galerkin method.

In order to avoid the curse of dimensionality when considering the general case

with more than two underlying assets and with stochastic counterparty’s credit spread,

the Feynman-Kac formula can be applied to formulate the XVA problems in terms

of expectations, so that Monte Carlo method can be employed. In particular, in

the nonlinear case Picard iteration methods are needed to compute the value adjust-

ment. We use both the simple fixed-point method and the multilevel Picard iteration

method proposed in [37] and also recalled in this thesis. The results obtained with the
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formulation in terms of expectations of the XVA pricing problems are compared with

the results obtained with a Lagrange-Galerkin method for the PDEs discretization.

The chapter is structured as follows. In Section 1.2 we obtain the mathematical

model for XVA based either on nonlinear or linear PDEs. In Section 1.3 we write

the problem in terms of expectations with the purpose of applying Monte Carlo

techniques. In Section 1.4 we describe the proposed numerical methods to compute

the total value adjustment. In particular, in Subsection 1.4.1 we describe the proposed

Lagrange-Galerkin method to solve both the nonlinear and the linear PDEs when the

counterparty’s credit spread is a deterministic function of time; in Subsection 1.4.2 we

describe the Monte Carlo method and the quadrature formulae used to approximate

the integral in the XVA formulae; in Subsection 1.4.3 we introduce the multilevel

Picard iteration method. In Section 1.5 we present and analyse the numerical results

related to some examples for di↵erent choices of the derivative payo↵. More precisely,

we consider a spread option, an exchange option and a sum of call options. Finally,

in Section 1.6 we point out several main conclusions.

1.2 Formulation in terms of partial di↵erential equa-

tions

In this section, following [43, 44] the value of a derivative is modelled by taking into

account the valuation adjustments that have to be considered in case of a possible

default of the counterparties involved in the deal.

We consider a trade between a non-defaultable hedger and a defaultable coun-

terparty in a multi-currency framework, where a domestic currency D and foreign

currencies C0, . . . , CN are involved. For j = 0, . . . , N , let X
D,Cj

t be the FX rate be-

tween currencies D and Cj at time t, namely the domestic price at time t of one unit

of the foreign currency Cj.

We denote by QD the risk neutral probability measure of the domestic market. In
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the next chapter we will show that the dynamics of X
D,Cj

t under QD is described by

dX
D,Cj

t = (rD � rCj)X
D,Cj

t dt+ �X
j
X

D,Cj

t dWX
j
, j = 0, . . . , N ,

where rD and rCj are the short-term rates in the domestic market and in the j�foreign

market, respectively. Moreover, �X
j
is the volatility of X

D,Cj

t and WX
j
is a QD-

Brownian motion. Nevertheless, throughout this chapter we consider �X
j
= 0 in

order to have deterministic FX rates:

dX
D,Cj

t = (rD � rCj)X
D,Cj

t dt, j = 0, . . . , N ,

while the consideration of stochastic rates will be addressed in the next chapter.

Furthermore, in the numerical examples we consider constant values for X
D,Cj

t , so

that subindex t will be removed in that part of the present chapter.

We denote by St = (S1
t
, . . . , SN

t
) the vector of the prices of the underlying assets

Si at time t, each one of them being denominated in its corresponding currency Ci,

and by ht the counterparty’s credit spread at time t. The credit spread of an entity is

typically calculated as the di↵erence between the rate of return on a bond issued by

the risky entity and the risk-free rate. Therefore, the credit spread gives an indication

of the market’s view of the riskiness of that bond and of the probability of default of

an entity. In fact, the intensity of default � can be modelled [43] as

� ⇡ h

1�RC

,

where RC is the entity’s recovery rate.

We assume that under the real world measure P the evolution of the prices of

the underlying assets in each currency and of the counterparty’s credit spread are

governed by the following SDEs:

dSi

t
=µS

i
Si

t
dt+ �S

i
Si

t
dW S

i
,P

t , for i = 1, . . . , N , (1.1)

dht =µh,P (t, ht) dt+ �h,P (t, ht) dW
h,P

t , (1.2)

where µS
i
and µh,P are the real world drifts of the processes Si

t
and ht, respectively.

Moreover, �S
i
and �h,P are their respective volatility functions, while W S

i
,P andW h,P

12



are Brownian motions under the real world measure P . Moreover, we assume that

the assets prices and spread processes in (1.1) and (1.2) are correlated. Thus, we

consider the (N + 1)⇥(N + 1) correlation matrix given by

corr(S1, . . . , SN , h) =

0

BBBBBBBB@

1 ⇢S
1
S
2 · · · ⇢S

1
S
N

⇢S
1
h

⇢S
1
S
2

1 · · · ⇢S
2
S
N

⇢S
2
h

...
...

. . .
...

...

⇢S
1
S
N

⇢S
2
S
N · · · 1 ⇢S

N
h

⇢S
1
h ⇢S

2
h · · · ⇢S

N
h 1

1

CCCCCCCCA

, (1.3)

where the N⇥N submatrix contains the correlations between assets (⇢S
i
S
j
) and the

last row (column) contains the correlations between each asset and the spread (⇢S
i
h).

We consider constant values for correlations.

By changing the probability measure from P to the risk-neutral measure in the

domestic currency, QD, in (1.1) we have that the dynamics of Si, for i = 1, . . . , N , is

given by

dSi

t
= (ri � qi)Si

t
dt+ �S

i
Si

t
dW S

i
,Q

D

t , (1.4)

where ri and qi represent the short-term rate in currency Ci and the dividend paid

by Si, respectively, and W S
i
,Q

D
is a standard Brownian motion under QD. Although

in the numerical examples we consider constant values for ri, qi and for the volatility

�i, time dependent functions can be assumed in all the developments.

By changing the probability measure from P to QD in (1.2), the drift of h is given

by µh,P �Mh�h,P , where Mh is the counterparty’s market price of credit risk.

As indicated in [19], the study of historical credit spreads time series suggests that

credit spreads exhibit mean reverting and fat tails properties. Therefore, under the

risk-neutral measure QD, we model the counterparty’s credit spread by an exponential

Vasicek process, i.e., we assume that the logarithm of h follows a Vasicek dynamics.

More precisely, we denote by h̃ the logarithm of h and assume

dh̃t = ↵ (✓ � h̃t) dt+ �h dW h,Q
D
,

13



where ↵, ✓ and �h are positive constant and W h,Q
D
is a Brownian motion under the

risk-neutral measure QD. In particular, ↵ is the mean reversion rate, ✓ is the mean

reversion level and �h is the volatility of the mean reversion process. Therefore, by

applying Itô’s formula (see, for example, [81]) to ht = exp(h̃), we get

dht = ↵ ht (m� log(ht)) dt+ �h ht dW
h,Q , with m = ✓ +

(�h)2

2↵
. (1.5)

The exponential transformation of the Vasicek model ensures the positivity of h.

However, in the literature the credit spread is often assumed to follow a Cox-

Ingersoll-Ross (CIR) process, so that the dynamics of h is given by the following

mean reverting SDE:

dht = ↵ (✓ � ht) dt+ �h
p
ht dW

h,Q
D
, (1.6)

where ↵, ✓ and �h are positive constants and if the Feller condition is fulfilled, i.e.,

2↵ ✓ > (�h)2, then h remains strictly positive. In Section 1.5, where numerical

results are presented, we also report results with CIR dynamics for the credit spread.

However, in the development of the thesis we only show the mathematical models

obtained with exponential Vasicek dynamics, since it would be redundant to repeat

the same steps with only a di↵erent dynamics for the credit spread. Note that in

[8] we have considered a Normal dynamics for the counterparty’s credit spread, but

we now consider a more realistic hypothesis by assuming it is modelled by a positive

mean-reversion process.

Next, we denote by Jt the counterparty’s default state at time t, that is to say:
8
><

>:

Jt = 1 , if the counterparty defaults before or at time t ,

Jt = 0 , otherwise.
(1.7)

The derivative value in the domestic currency D at time t is given by V D

t
=

V D(t, St, ht, Jt). The price in currency D of the same derivative traded between two

non-defaultable counterparties is referred to as risk-free derivative price and it is

denoted by WD

t
= WD(t, St). We assume the derivative is partially collateralized in

14



cash in the foreign currency C0. We denote by CC0
t the collateral account value at

time t in currency C0.

The close-out procedure in case of default event is described in ISDA (Interna-

tional Swaps and Derivatives Association) documentation: if the surviving party is

a net debtor, then she must pay the whole close-out value to the defaulting party;

if the surviving party is a net creditor, then she is able to recover only a fraction

of her credits. We assume that the derivative is traded under the presence of a col-

lateral account. Collateralized contracts are regulated by the Credit Support Annex

(CSA) to the ISDA Master Agreement. Therefore, taking into account the presence

of the collateral, that has the role to reduce the exposure, the expression of the risky

derivative value at default is given by:

V D(t, St, ht, 1) = CD(t) +RC

⇣
MD(t, St, ht)� CD(t)

⌘+

+
⇣
MD(t, St, ht)� CD(t)

⌘�
,

(1.8)

with MD(t, St, ht) representing the mark-to-market derivative price and CD(t) denot-

ing the collateral account value in domestic currency D. Moreover, we have used the

notation x+ = max(x, 0) and x� = min(x, 0). Equation (1.8) means that, in case of

counterparty’s default:

if the hedger is a net debtor, i.e., MD � CD  0, then the hedger has to pay

the whole mark-to-market derivative value to the counterparty;

if the hedger is a net creditor, i.e., MD � CD > 0, then the hedger is able to

recover a fraction of her credits, given by CD +RC(MD � CD).

Note that, since the recovery rate RC is between 0 and 1, the default payment CD +

RC(MD�CD) is always greater than the default payment it would happen in absence

of collateral, that is just given by RCMD. Therefore, the collateralization improves

the recovery in case of counterparty’s default.

By using Equation (1.8), we can define the variation of V D at default as:

�V D = CD +RC(M
D � CD)+ + (MD � CD)� � V D , (1.9)
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where we have suppressed the dependence on time t, on the underlying assets St and

on the counterparty’s credit spread ht to ease the notation.

1.2.1 Replicating portfolio

In order to price the derivative, we consider a self-financing portfolio ⇧ that hedges

all the risk factors, which are:

the market risk due to changes in S1, S2, . . . , SN ;

the counterparty’s spread risk due to changes in h;

the counterparty’s default risk.

More precisely:

the market risk due to changes in Si, for i = 1, . . . , N , is hedged by trading

in fully cash collateralized derivatives on the same underlying assets. For i =

1, . . . , N , the net present value in currency Ci of the derivative written on the

underlying asset Si is denoted by H i, so that H i,D = H iXD,Ci represents the

net present value of H i in the currency D;

in order to hedge the spread risk due to changes in counterparty’s credit spread

h and the counterparty’s default risk, the hedger has to trade in two credit

default swaps with di↵erent maturities written on the counterparty:

– a short term credit default swap, CDSD(t, t+dt), that is an overnight credit

default swap with unit notional. The protection buyer pays a premium at

time t equal to htdt and receives (1�RC) at time t+dt if the counterparty

defaults between t and t+dt. We assume that htdt is such that CDSD(t, t+

dt) = 0;

– a long term credit default swap, CDSD(t, T ), that is a cash collateralized

credit default swap maturing on T . In general, CDSD(t, T ) is not null.
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We now assume that the hedger buys the derivative from the counterparty, with

V D

t
> 0, and we describe the operations she would enact in a generic small time

interval [t, t + dt] with the treasury and the FX market to fund the trade. The

transactions are represented in Figure 1.1.

At time t, the hedger borrows V D

t
cash from her bank treasury to buy the

derivative from the counterparty and receives the collateral amount CC0
t in

currency C0.

The hedger exchanges the cash CC0
t in the FX spot market, obtaining CD

t
=

CC0
t XD,C0

t , that she gives to the treasury. Therefore, the outstanding debt to

the treasury is V D

t
� CD

t
, that will grow at the borrowing rate in currency D,

denoted by fB,D

t .

At time t+ dt, the hedger has to pay back the collateral plus interest, given by

the OIS rate in currency C0, denoted by rC0
t . So, according to a forward contract

agreed at time t, she sells forward the amount CC0
t (1 + rC0dt) in currency C0

multiplied by the forward FX rate XD,C0
t

1+r
D
dt

1+(rC0+bC0,D)dt
and receives CC0

t (1 +

rC0dt) in currency C0. The rate rD is the OIS rate in the domestic currency D,

whereas bC0,D denotes the short term cross-currency basis between currencies

C0 and D, which is an adjustment that needs to be made in the C0 rate. The

hedger pays the amount CC0
t (1 + rC0dt) to the counterparty.

At time t+ dt the debt to treasury is
⇣
V D

t
� CD

t

⌘⇣
1 + fD

t
dt
⌘
+ CD

t

⇣
1 + (rD + bD,C0)dt

⌘
.

Note that in the case Vt < 0, the trades would be right the opposite.

We denote by BD

t
the value of the funding account in the domestic currency D

at time t and by ⌦t the number of shares of the funding account at time t. Thus, in

order to ensure that the self financing condition holds, we have the following funding

constraint condition:

⌦tB
D

t
= �

⇣
V D

t
� CC0

t XD,C0
t

⌘
. (1.10)
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Counterparty Hedger FX market

Treasury

V
D
t

C
C0
t

C
C0
t (1+r

C0dt)

C
C0
t

C
D
t

C
D
t (1+(rD+b

D,C0 )dt)

C
C0
t (1+r

C0dt)

V
D
tC

D
t

C
D t
(1
+
(r

D
+
b
D

,C
0
)d
t
)

Figure 1.1: Transactions occurring with the treasury and the FX market to fund the
trade. Straight lines refer to initial transactions, that take place at time t, while
curved lines to final transactions taking place at time t + dt. Blue lines indicate
amounts denominated in currency D, whereas red ones represent cash denominated
in currency C0.

Note that if ⌦t > 0, then the hedger has to finance her position by borrowing from the

treasury and she will pay an interest rate fD,C

t , where C stands for cost. Vice versa,

if the hedger’s position is positive, she will invest money by lending to the treasury

and earning at the rate fD,B

t , where B stands for benefit. Therefore, if we define the

funding rate in currency D as

fD

t
= fD,C

t 1⌦t>0 + fD,B

t 1⌦t<0 , (1.11)

we have that

BD

t
= exp

 Z
t

0

fD

t
ds

!
. (1.12)

Hence, we consider a replicating portfolio ⇧ that is an extension to the multi-

currency framework of the portfolio in [3] and such that:

↵i

t
is the weight of the fully collateralized derivative H i

t
, for i = 1, . . . , N , in the

portfolio composition at time t;

�t and ✏t are the weights of the long term CDS and short term CDS, respectively,

in the portfolio composition at time t;
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⌦t represents the number of shares of the funding account at time t;

�D

t
denotes the cash in the collateral accounts of the portfolio at time t.

Thus, the portfolio at time t is given by:

⇧t =
NX

i=1

↵i

t
H i,D

t + �tCDSD(t, T ) + ✏tCDSD(t, t+ dt) + ⌦tB
D

t
+ �D

t
. (1.13)

The composition of the collateral account �D is given by

�D

t
= �

NX

i=1

↵i

t
H i,D

t � �tCDSD(t, T )� CC0
t XD,C0

t .

In order to infer the variation of the collateral account in the time interval [t, t+

dt], we analyse the transactions occurring when trading a generic fully collateralized

derivative in a foreign currency F . We denoted the value of the foreign derivative by

HF and we again assume the hedger buys the derivative, with HF

t
> 0.

At time t, the hedger borrows HD

t
= HF

t
XD,F cash from her bank treasury,

that exchanges in the FX market receiving HF

t
in currency F . Thus, the hedger

buys the derivative.

The hedger receives the collateral with value HF

t
and exchanges this amount in

the FX market, getting HD

t
, that she gives back to the treasury.

At time t + dt the hedger has to give back the collateral plus interest, given

by the OIS rate in currency F , rF
t
. Therefore, at time t the hedger agrees to

exchange forward in the FX market the amount HF

t
(1 + rFdt) in currency F

multiplied by the forward FX rate XD,F

t

1+r
D
dt

1+(rF+bF,D)dt , where bF,D is the cross-

currency basis between currency F and currency D, and receives HF

t
(1 + rFdt)

in currency F . The hedger pays this amount to the counterparty. The variation

in the collateral account is given by

HD

t

⇣
1 + (rD + bD,F )dt

⌘
.
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Counterparty Hedger FX market

Treasury

H
F
t
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F
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F
t

H
F
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F
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F
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D
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D
t (1+(rD+b
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F
t (1+r

F
dt)

H
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tH

D
t

H
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+
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+
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D

,F
)d
t
)

Figure 1.2: Transactions occurring when trading a fully collateralized foreign deriva-
tive. Straight lines refer to initial transactions, that take place at time t, while curved
lines to final transactions taking place at time t+ dt. Blue lines indicate amounts de-
nominated in the domestic currency D, whereas red ones represent cash denominated
in the foreign currency F .

Therefore, from Figure 1.1 and Figure 1.2 we infer that the variation of the col-

lateral account in the time interval [t, t+ dt] is given by:

d�̄D

t
=

2

4�
NX

i=1

↵i

t
(rD + bD,Cj)H i,D

t � �tr
DCDSD(t, T )�

⇣
rD + bD,C0

⌘
CC0

t XD,C0
t

3

5 dt ,

where bD,Cj , for j = 0, . . . , N , is the cross-currency basis between the domestic cur-

rency D and the foreign currency Cj.

1.2.2 Pricing partial di↵erential equations

Once we have built our replicating portfolio, we consider the no arbitrage and the

self-financing conditions to infer the pricing PDEs. Therefore, we have

⇧(t) + V D(t, St, ht, Jt) = 0,
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thus:

�dV D

t
= d⇧t

=
NX

i=1

↵i

t
dH i,D

t + �tdCDSD(t, T ) + ✏tdCDSD(t, t+ dt)

+ ⌦tdB
D + d�̄D

t
.

(1.14)

As V D

t
= V D(t, St, ht, Jt) depends on di↵usion and jump processes, we apply Itô’s

formula for jump-di↵usion processes [81] to obtain that the variation of V D in the

time interval [t, t+ dt] is given by:

dV D

t
=

@V D

@t
dt+

NX

i=1

@V D

@Si
dSi

t
+

@V D

@h
dht +�V D

t
dJt

+


1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
Si

t
Sk

t

@2V D

@Si@Sk

+
1

2
(�hht)

2@
2V D

@h
+

NX

i=1

⇢S
i
h�S

i
�hSi

t
ht

@2V D

@Si@h

�
dt ,

where �V D

t
= V D(t, St, ht, 1) � V D(t, St, ht, 0) represents the jump of V D

t
in case of

default at time t, which is given by (1.9).

The dynamics of the short term credit default swap, CDSD(t, t+ dt), and of the

funding account, BD

t
, are respectively given by:

dCDSD(t, t+ dt) = ht dt� (1�RC) dJt , (1.15)

dBD

t
= fDBD

t
dt . (1.16)

From the funding condition on our strategy, stated in (1.10), we obtain

⌦t = �V D

t
� CD

t

BD

t

.

21



Thus, the change in ⇧t from t to t+ dt is given by:

d⇧t =
NX

i=1

↵i

t
dH i,D

t + �tdCDSD(t, T ) + ✏tdCDSD(t, t+ dt)

� V D

t
� CC0

t XD,C0
t

BD

t

dBD

t
+ d�̄D

t

=
NX

i=1

↵i

t

✓
@H i,D

@t
dt+

@H i,D

@Si
dSi

t
+

1

2
(�S

i
Si

t
)2
@2H i,D

@(Si)2
dt

◆

+ �t

"
@CDSD(t, T )

@t
dt+

@CDSD(t, T )

@h
dht +

1

2
(�hh)2

@2CDSD(t, T )

@h2
dt

#

+ �t�CDSD(t, T )dJt + ✏t
⇥
htdt� (1�RC)dJt

⇤
� (V D � CC0

t XD,C0
t )fDdt

�
NX

i=1

↵i

t
(rD + bD,Ci)H i

t
dt� rDCDSD(t, T )dt� (rD + bD,C0)CC0

t XD,C0
t dt .

In order to hedge the risk of the portfolio ⇧, we choose:

↵i

t
= � @V D/@Si

@H i,D/@Si
, for i = 1, . . . , N,

�t = � @V D/@h

@CDSD(t, T )/@h
,

✏t =
1

1�RC

⇣
�t�CDSD(t, T ) +�V D

⌘
.

Next, we take into account the Black-Scholes equations that modelH i and CDSD(t, T ),

namely

@H i,D

@t
+

1

2
(�S

i
Si)2

@2H i,D

@(Si)2
+ (ri � qi)Si

@H i,D

@Si
= (rD + bD,Ci)H i,D,

@CDSD(t, T )

@t
+

1

2
(�hh)2

@CDSD(t, T )

@h2
+ (µh,P �Mh�h,P )

@CDSD(t, T )

@h

+
h

1�RC

�CDSD(t, T ) = rDCDSD(t, T ) .
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Thus, (1.14) turns into:

@V D

@t
+

NX

i=1

@V D

@Si
(ri � qi)Si +

@V D

@h
(µh �Mh�h)

+
1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
SiSk

@2V D

@Si@Sk
+

1

2
(�hh)2

@2V D

@h2
+

NX

i=1

⇢S
i
h�S

i
�hSi

@2V D

@Si@h

= � h

1�RC

�V D + fDV D + (rD + bD,C0 � fD)CC0XD,C0 .

Therefore, we obtain the following pricing PDE:

@V D

@t
+ LShV

D � fDV D +
h

1�RC

�V D = (rD + bD,C0 � fD)CC0XD,C0 , (1.17)

where the second order di↵erential operator LSh is given by

LSh =
1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
SiSk

@2

@Si@Sk
+

1

2
(�hh)2

@2

@h2

+
NX

i=1

⇢S
i
h�S

i
�hSi

@2

@Si@h
+

NX

i=1

(ri � qi)Si
@

@Si
+ (µh �Mh�h)

@

@h
.

(1.18)

Finally, we use the Q-drift of h given in (1.5) to write the di↵erential operator

(1.18) as follows:

LSh =
1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
SiSk

@2

@Si@Sk
+

1

2
(�hh)2

@2

@h2

+
NX

i=1

⇢S
i
h�S

i
�hSi

@2

@Si@h
+

NX

i=1

(ri � qi)Si
@

@Si
+ ↵h(m� log(h))

@

@h
.

(1.19)

In the pricing equation (1.17) the variation of V D upon default is involved and is

given by (see (1.9)):

�V D

t
= CD

t
+RC(M

D

t
� CD

t
)+ + (MD

t
� CD

t
)� � V D

t
.

Following the seminal article [22], in the literature two possible values for the

mark-to-market at default, MD, can be chosen: either equal to the risky value or to

the risk-free value of the derivative. Thus, we derive the following PDEs for both

cases.
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If MD = V D, the variation of V D upon default is given by:

�V D = CD +RC(V
D � CD)+ + (V D � CD)� � V D

= �(1�RC)(V
D

t
� CD

t
)+ ,

thus Equation (1.17) turns into

@V D

@t
+ LShV

D � fDV D = h(V D � CD)+ + (cD + bD,C0 � fD)CD . (1.20)

If MD = WD, the variation of V D upon default is given by:

�V D = CD +RC(W
D � CD)+ + (WD � CD)� � V D

= WD � V D � (1�RC)(W
D � CD)+ ,

so that Equation (1.17) becomes

@V D

@t
+ LShV

D �
✓

h

1�RC

+ fD

◆
V D

=h(WD � CD)+ � h

1�RC

WD + (rD + bD,C0 � fD)CD .

(1.21)

Next, in order to pose the PDEs formulation for the XVA price, the risky derivative

value can be split up into V D = WD + U , where WD and U represent the risk-free

derivative price and the XVA price, respectively.

Note that the risk-free derivative price WD satisfies the classical multidimensional

Black-Scholes equation:
8
><

>:

@tWD + LSWD � fDWD = 0 ,

WD(T, S) = G(S) ,
(1.22)

where G = G(S) is the payo↵ function and

LS =
1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
SiSk

@2

@Si@Sk
+

NX

i=1

(ri � qi)Si
@

@Si
. (1.23)

Moreover, since the final conditions for V D and for WD coincide, i.e.,

WD(T, S) = V D(T, S, h) = G(S) ,
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the final condition for U is given by U(T, S, h) = 0.

Therefore, depending on the choice of the mark-to-market value at default we

obtain two possible PDE problems satisfied by the XVA.

Nonlinear final value problem (case M = V D):
8
>>>>><

>>>>>:

@U

@t
+ LShU � fDU

= h(WD + U � CD)+ + (rD + bD,C0 � fD)CD ,

U(T, S, h) = 0 .

(1.24)

Linear final value problem (case M = WD):
8
>>>>><

>>>>>:

@U

@t
+ LShU �

⇣
h

1�RC
+ fD

⌘
U

= h(WD � CD)+ + (rD + bD,C0 � fD)CD ,

U(T, S, h) = 0 .

(1.25)

In both cases, (t, S, h) 2 [0, T )⇥(0,+1)N⇥(0,+1).

Note that the spatial dimension of problems (1.24) and (1.25) depends on the

number of underlying assets, so that the PDE easily becomes high dimensional in

space and the numerical solution requires specific discretization techniques to over-

come the curse of dimensionality (see [70] or [69], as examples using sparse grids with

recombination technique for solving high-dimensional PDEs for derivatives pricing).

Therefore, alternative formulations in terms of expectations are obtained in the next

section, so that appropriate numerical Monte Carlo techniques could be e�ciently

applied.

1.3 Formulation in terms of expectations

In order to compute the total value adjustment when more than two stochastic factors

are involved, a first approach could be made by using the Monte Carlo method,
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which is suitable to approximate expectations in a multidimensional framework, thus

allowing to manage problems that involve more than two stochastic factors.

First, in order to compute the values of U by using the Monte Carlo method

in the nonlinear model (1.24), we apply the nonlinear Feynman-Kac theorem, that

relates the solution of nonlinear PDEs with the solution of BSDEs. The statement

of the nonlinear Feynman-Kac theorem dates back from the seminal paper [80]. As

the nonlinear term in (1.24) appears in the unknown U and not in the first order

derivatives, Theorem 1.1 in the recent work by Beck et al. [14] can be applied to

formulate the nonlinear problem (1.24) in terms of a nonlinear integral equation.

Note that in [14] a large number of previous references on the nonlinear Feynman-

Kac theorem are indicated, probably the here treated nonlinear PDE could be framed

in many of them. Secondly, the linear Feynman-Kac theorem (see [81], for example)

can be applied to the linear problem (1.25).

If MD = V D, the total value adjustment at time t satisfies the equation

U(t, St, ht) = EQ
D

t

"
�
Z

T

t

e�f
D(u�t) ·

✓
hu

⇣
WD(u, Su) + U(u, Su, hu)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
. (1.26)

Note that (1.26) is an integral equation as the unknown U appears also at the

right hand side in the integral. We are interested in the XVA at the current

time t = 0, when the derivative is priced, that is to say

U(0, S0, h0) = EQ
D

0

"
�
Z

T

0

e�f
D
u ·

✓
hu

⇣
WD(u, Su) + U(u, Su, hu)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
. (1.27)

26



If MD = WD, the total value adjustment at time t is given by

U(t, St, ht) = EQ
D

t

"
�
Z

T

t

exp

 
�
Z

u

t

✓
hr

1�RC

+ fD

◆
dr

!

·
✓
hu

⇣
WD(u, Su)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
.

(1.28)

Note that (1.28) gives an explicit formula for XVA. In particular, at time t = 0

we have

U(0, S0, h0) = EQ
D

0

"
�
Z

T

0

exp

 
�
Z

u

0

✓
hr

1�RC

+ fD

◆
dr

!

·
✓
hu

⇣
WD(u, Su)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
.

(1.29)

1.4 Numerical methods

In the previous section, two multidimensional problems for pricing the total valuation

adjustment have been posed either in the event that MD = WD (linear case) or in the

event that MD = V D (nonlinear case). In this section, we propose di↵erent numerical

methods to compute the total value adjustment in both cases.

1.4.1 Lagrange-Galerkin method

Problems governed by partial di↵erential equations can be numerically solved by

classical finite di↵erences or finite element methods when the number of spatial-like

variables is less or equal to three. Otherwise, these deterministic numerical methods

based on geometrical discretizations become highly computational demanding to solve

the problems and we have to make use of other methodologies.
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In this work we will consider the solution of PDEs problems for obtaining the XVA

where only two spatial variables are involved. We will compare the results obtained

with the proposed methods to solve these PDEs problems with alternative techniques

we propose for the case of a higher number of stochastic factors.

Therefore, we first assume that the derivative is written on two underlying assets

and the credit spread is a time dependent deterministic function. Moreover, we

build this deterministic function as an approximation of the case with stochastic

credit spread, indeed it results to be a particular limit of the corresponding stochastic

models.

Thus, we set �h = 0 both in the case of the exponential Vasicek dynamics (1.5)

and of the CIR dynamics (1.6). In the first case, the credit spread is the solution of

the following deterministic Initial Value Problem (IVP)

8
><

>:

dh(t) = ↵h(t)
⇣
✓ � log

�
h(t)

�⌘
dt ,

h(0) = h0 ,
(1.30)

so that

h(t) = exp
⇣
✓ � e�↵t+log(✓�log(h0))

⌘
. (1.31)

In the case of CIR dynamics, the deterministic credit spread h is the solution of the

following IVP 8
><

>:

dh(t) = ↵h(t)
�
✓ � h(t)

�
dt ,

h(0) = h0 ,
(1.32)

so that

h(t) = ✓ � (✓ � h0) e
↵t . (1.33)

In this framework, we propose a semi-Lagrangian time discretization technique

combined with a finite element method for the spatial-like variables. This combination

is usually referred to as Lagrange-Galerkin (LG) technique.

This discretization technique (as those based on finite di↵erence methods) needs

the truncation of the possibly unbounded spatial domain to a bounded domain and the
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imposition of appropriate boundary conditions at certain boundaries of the bounded

domain.

First of all, in order to pose more classical initial value problems instead of final

value problems, we introduce the time-to-maturity, ⌧ = T � t. In this way, the

problem (1.22) satisfied by the risk-free derivative, can be written as

8
><

>:

@⌧WD � LSWD + fDWD = 0 ,

WD(0, S) = G(S) .
(1.34)

Moreover, the nonlinear XVA problem (1.24) can be written as the following initial

value problem:

8
>>>><

>>>>:

@⌧U � LSU + fDU

= �h
�
WD + U � CD

�+ �
�
rD + bD,C0 � fD

�
CD ,

U(0, S1, S2) = 0 ,

(1.35)

whereas the linear problem (1.25) is given by

8
>>>>><

>>>>>:

@⌧U � LSU +

✓
h

1�RC

+ fD

◆
U

= �h
�
WD � CD

�+ �
�
rD + bD,C0 � fD

�
CD ,

U(0, S1, S2) = 0 ,

(1.36)

where ⌧ 2 (0, T ) and (S1, S2) 2 (0, S1
1⇥(0, S2

1). Moreover, S1
1 and S2

1 are large

enough numbers so that the value at the financial region of interest is not a↵ected

by the choice of the boundary conditions at the truncated domain. Typically, this

truncation argument is used in most PDEs models arising in financial problems.

Taking into account that the problem (1.34) for the risk free derivative price, the

nonlinear problem (1.35) for the XVA and the linear problem (1.36) for the XVA

involve the same di↵erential operator LS, the partial di↵erential equations of the
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three problems can be equivalently written as:

@⌧W
D � div (ArWD) + b ·rWD + fDWD = 0 , (1.37)

@⌧U
D � div (ArUD) + b ·rUD + fDU = g1(U

D,WD) , (1.38)

@⌧U
D � div (ArUD) + b ·rUD +

✓
h

1�RC

+ fD

◆
U = g2(W

D) , (1.39)

respectively, where the matrix A and the vector b are given by

A =
1

2

0

BB@

(�S
1
)2(S1)2 �S

1
�S

2
⇢S

1
S
2
S1S2

�S
1
�S

2
⇢S

1
S
2
S1S2 (�S

2
)2(S2)2

1

CCA ,

b =

0

BBB@

✓
(�S

1
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r1 + q1

◆
S1

✓
(�S

2
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r2 + q2

◆
S2

1

CCCA
, (1.40)

while g1 and g2 denote the right hand side term of the nonlinear and the linear

problems for the XVA, respectively.

In the following, we will focus on the linear risky problem, since the risk-free

and nonlinear risky problems can be treated in a similar way. We will also omit

the superscript D in the variables, as all of them are always written in the domestic

currency.

Time discretization with semi-Lagrangian method

For the time discretization we use the semi-Lagrangian method. For this purpose, we

introduce the material derivative of U given by

DU

D⌧
=

@U

@⌧
+ b ·rU =

@U

@⌧
+ b1

@U

@S1
+ b2

@U

@S2
,

which represents the derivative along the characteristic curves associated to the vector

field b. In terms of the material derivative, the XVA linear equation in (1.39) turns

into
DU

D⌧
� div (ArU) +

✓
h

1�RC

+ fD

◆
U = g2(W

D) . (1.41)
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For the time discretization we consider a uniform mesh with a constant time step,

�⌧ = T/NT > 0, and the time mesh points ⌧n = n�⌧ , for n = 0, 1, . . . , NT , with

NT > 1 being a natural number, so that we have NT +1 time mesh points in the time

interval [0, T ].

At each time mesh point ⌧n+1, we approximate the material derivative by the

upwinded finite di↵erences scheme along the characteristics:

DU

D⌧
(⌧n+1, .) ⇡ Un+1 � Un � �n

�⌧
, (1.42)

where �n(S1, S2) = �((S1, S2), ⌧n+1; ⌧n), with � being the solution of the ODE prob-

lem associated to the characteristic curve:8
>><

>>:

d�1

d⌧
= b1(�1) =

✓
(�S

1
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r1 + q1

◆
�1 ,

�1(⌧n+1) = S1 ,
8
>><

>>:

d�2

d⌧
= b2(�2) =

✓
(�S

2
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r2 + q2

◆
�2 ,

�2(⌧n+1) = S2 .

Note that �(⌧) = �((S1, S2), ⌧n+1; ⌧) represents the characteristic curve associated to

the velocity field b passing through (S1, S2) at instant ⌧n+1.

In the method of characteristics (also known as semi-Lagrangian method) that

we propose for the time discretization, we approximate the material derivative by

expression (1.42) and replace it in (1.41) to pose the semi-discretized in time problem:
8
>><

>>:

Un+1 � Un � �n

�⌧
� div (ArUn+1) +

✓
h

1�RC

+ fD

◆
Un+1 = g2(W n+1)

U0(S1, S2) = 0 ,

where Un ⇡ U(⌧n, ·). It is easy to check that the components of �n are given by:

�n

1 = S1 exp

 
�
✓
(�S

1
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r1 + q1

◆
�⌧

!
,

�n

2 = S2 exp

 
�
✓
(�S

2
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r2 + q2

◆
�⌧

!
.
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Analysis of boundary conditions

In order to apply the finite element method to approximate the total value adjustment,

we need to truncate the unbounded domain and we consider the bounded domain

⌦⇤ = (0, T )⇥(0, S1
1)⇥(0, S2

1). We will follow Fichera’s theory [41, 76] to determine

which boundaries of the domain need an imposed condition.

Let us consider points (x0, x1, x2) = (⌧, S1, S2) 2 ⌦⇤ = (0, T )⇥(0, S1
1)⇥(0, S2

1),

and introduce the notation

�⇤,�
i

=
�
(x0, x1, x2) 2 @⌦⇤ / xi = 0

 
,

�⇤,+
i

=
�
(x0, x1, x2) 2 @⌦⇤ / xi = x1

i

 
.

We now introduce the matrix function A⇤ and the vector function b
⇤ such that

A⇤ =
1

2

0

BBBBB@

0 0 0

0 (�S
1
)2x2

1 ⇢S
1
S
2
�S

1
�S

2
x1x2

0 ⇢S
1
S
2
�S

1
�S

2
x1x2 (�S

2
)2x2

2

1

CCCCCA
, b

⇤ =

0

BBBBB@

�1

(r1 � q1)x1

(r2 � q2)x2

1

CCCCCA
,

and the scalar function c⇤ = �fD, so that equation (1.36) can be written as:

2X

i,j=0

a⇤
ij

@2U

@xi@xj

+
2X

i=0

b⇤
i

@U

@xi

+ c⇤U = 0 .

Following [76], we introduce the following subsets of @⌦⇤ in terms of the vector

m, orthogonal to the boundary and pointing inwards ⌦⇤:

⌃0 =

8
<

:x 2 @⌦⇤ :
2X

i,j=0

a⇤
ij
mimj = 0

9
=

; ,

⌃1 = @⌦⇤ � ⌃0 ,

⌃2 =

8
<

:x 2 ⌃0 :
2X

i=0

0

@b⇤
i
�

2X

j=0

@a⇤
ij

@xj

1

Ami < 0

9
=

; .

We need to impose boundary conditions on ⌃1 [ ⌃2.
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��
0 �+

0

m (1, 0, 0) (�1, 0, 0)
a⇤00m0m0 0 0
a⇤01m0m1 0 0
a⇤02m0m2 0 0
a⇤10m1m0 0 0
a⇤11m1m1 0 0
a⇤12m1m2 0 0
a⇤20m2m0 0 0
a⇤21m2m1 0 0
a⇤22m2m2 0 0
1P

i,j=0
a⇤
ij
mimj 0 0

a⇤00,0 0 0
a⇤01,1 0 0
a⇤02,2 0 0
a⇤10,0 0 0
a⇤11,1 (�S

1
)2x1 (�S

1
)2x1

a⇤12,2
1
2⇢

S
1
S
2
�S

1
�S

2
x1

1
2⇢

S
1
S
2
�S

1
�S

2
x1

a⇤20,0 0 0
a⇤21,1

1
2⇢

S
1
S
2
�S

1
�S

2
x2

1
2⇢

S
1
S
2
�S

1
�S

2
x2

a⇤22,2 (�S
2
)2x2 (�S

2
)2x2

b⇤0 �1 �1
b⇤1 (r1 � q1)x1 (r1 � q1)x1

b⇤2 (r2 � q2)x2 (r2 � q2)x2

(b⇤0 � a⇤0j,j)m0 �1 1
(b⇤1 � a⇤1j,j)m1 0 0
(b⇤2 � a⇤2j,j)m2 0 0
2P

i=0
(b⇤

i
� a⇤

ij,j
)mi �1 1

Table 1.1: Analysis of boundary conditions [41]
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��
1 �+

1 ��
2 �+

2

m (0, 1, 0) (0,�1, 0) (0, 0, 1) (0, 0,�1)
a⇤00m0m0 0 0 0 0
a⇤01m0m1 0 0 0 0
a⇤02m0m2 0 0 0 0
a⇤10m1m0 0 0 0 0

a⇤11m1m1 0 1
2 (�

S1

)2(x1
1 )2 0 0

a⇤12m1m2 0 0 0 0
a⇤20m2m0 0 0 0 0
a⇤21m2m1 0 0 0 0

a⇤22m2m2 0 0 0 1
2 (�

S2

)2(x1
2 )2

1P
i,j=0

a⇤ijmimj 0 1
2 (�

S1

)2(x1
1 )2 0 1

2 (�
S2

)2(x1
2 )2

a⇤00,0 0 0 0 0
a⇤01,1 0 0 0 0
a⇤02,2 0 0 0 0
a⇤10,0 0 0 0 0

a⇤11,1 0 (�S1

)2x1
1 (�S1

)2x1 (�S1

)2x1

a⇤12,2 0 1
2⇢

S1S2

�S1

�S2

x1
1

1
2⇢

S1S2

�S1

�S2

x1
1
2⇢

S1S2

�S1

�S2

x1

a⇤20,0 0 0 0 0

a⇤21,1
1
2⇢

S1S2

�S1

�S2

x2
1
2⇢

S1S2

�S1

�S2

x2 0 1
2⇢

S1S2

�S1

�S2

x1
2

a⇤22,2 (�S2

)2x2 (�S2

)2x2 0 (�S2

)2x1
2

b⇤0 �1 �1 �1 �1
b⇤1 0 (r1 � q1)x1

1 (r1 � q1)x1 (r1 � q1)x1

b⇤2 (r2 � q2)x2 (r2 � q2)x2 0 (r2 � q2)x1
2

(b⇤0 � a⇤0j,j)m0 0 0 0 0
(b⇤1 � a⇤1j,j)m1 0 z1 0 0
(b⇤2 � a⇤2j,j)m2 0 0 0 z2
2P

i=0
(b⇤i � a⇤ij,j)mi 0 z1 0 z2

z1 = ((�S1

)2 � r1 + q1 + 1
2⇢

S1S2

�S1

�S2

)x1
1

z2 = ((�S2

)2 � r2 + q2 + 1
2⇢

S1S2

�S1

�S2

)x1
2

Table 1.2: Analysis of boundary conditions [41]
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Tables 1.1 and 1.2 summarize the values we need to identify the sets ⌃0, ⌃1 and

⌃2. Note that y,j denotes a partial derivative of y with respect to xj and Euler

summation on repeated indices is used. We will assume ri � qi > 0 for i = 1, 2. We

deduce:

⌃0 = ��
0 [ �+

0 [ ��
1 [ ��

2 , ⌃1 = �+
1 [ �+

2 , ⌃2 = ��
0 ,

and, following [41, 76], we have to impose conditions on ⌃1 [ ⌃2 = ��
0 [ �+

1 [ �+
2 .

According to the stated notation, x0 = ⌧ and ��
0 corresponds to the initial condition;

thus, we need to impose boundary conditions on the right (S1 = S1
1) and upper

(S2 = S2
1) boundaries of ⌦.

Proposed boundary conditions on S1
= S1

1. In order to deduce the conditions

to impose on the right boundary of the domain, we make use of a previous method-

ology [33, 24, 6]. We consider equation (1.36), divide by (S1)2 and make S1 tend to

infinity, thus obtaining
1

2
(�S

1
)2

@2U

@(S1)2
= 0 ,

so that we can write U as:

U(⌧, S1, S2) = H0(⌧) +H1(⌧)S
1 +H2(⌧)S

2 +H3(⌧)S
1S2 +H4(⌧)(S

2)2 .

Equation (1.36) can be written, in this particular case, as

@⌧U � div ( bArU) + bb ·rU +

✓
h

1�RC

+ fD

◆
U = g2(W ) ,

where

bA =
1

2

0

BB@

0 �S
1
�S

2
⇢S

1
S
2
S1S2

�S
1
�S

2
⇢S

1
S
2
S1S2 (�S

2
)2(S2)2

1

CCA ,

and the time discretization by the characteristics method leads to

Un+1 ��⌧ div ( bArUn+1) +

✓
h

1�RC

+ fD

◆
�⌧ Un+1 = �⌧ g2(W

n+1) + Un � b�n ,
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where b�n (related to the velocity field bb) is given by
8
>>>><

>>>>:

b�n

1 (S
1, S2) = S1 exp

 
�
✓
1

2
�S

1
�S

2
⇢S

1
S
2 � r1 + q1

◆
�⌧

!
,

b�n

2 (S
1, S2) = S2 exp

 
�
✓
(�S

2
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r2 + q2

◆
�⌧

!
.

Thus,
 
1 +

✓
h

1�RC

+ fD

◆
�⌧

!
Un+1 ��⌧ div ( bArUn+1) = �⌧ g2(W

n+1) + Un � b�n

or, equivalently,
 
1 +

✓
h

1�RC

+ fD

◆
�⌧

!
⇥
H0(⌧) +H1(⌧)S

1 +H2(⌧)S
2 +H3(⌧)S

1S2 +H4(⌧)(S
2)2

⇤

� �⌧

2

@

@S1

h
0 + �S

1
�S

2
⇢S

1
S
2
S1S2

⇣
H2(⌧) +H3(⌧)S

1 + 2H4(⌧)S
2
⌘i

� �⌧

2

@

@S2

h
�S

1
�S

2
⇢S

1
S
2
S1S2

⇣
H1(⌧) +H3(⌧)S

2
⌘

+ (�S
2
)2(S2)2

�
H2(⌧) +H3(⌧)S

1 + 2H4(⌧)S
2
� i

= �⌧ g2(W
n+1) + Un � b�n .

If we choose H1(⌧) = H2(⌧) = H3(⌧) = H4(⌧) = 0, then

Un+1(S1
1, S2) = Hn+1

0 =
�⌧ g2(W n+1) + Un � b�n

1 +

✓
h

1�RC

+ fD

◆
�⌧

.

Thus, a non homogeneous Dirichlet boundary condition is derived on the right bound-

ary of the truncated domain.

In the risk-free problem, the derived Dirichlet boundary condition is given by:

Un+1(S1
1, S2) =

Un � b�n

1 + fD�⌧
,

while the analogous condition in the nonlinear risky problem is

Un+1(S1
1, S2) =

�⌧ g1(Un,W n+1) + Un � b�n

1 + fD�⌧
.
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Proposed boundary conditions on S2
= S2

1. Similarly to what we did in the

previous paragraph, on the upper boundary we can deduce an analogous Dirichlet

boundary condition:

Un+1(S1, S2
1) = fH0

n+1
=

�⌧ g2(W n+1) + Un � e⇠n

1 +

✓
h

1�RC

+ fD

◆
�⌧

,

where e⇠n is given by:
8
>>>><

>>>>:

e⇠n1 (S1, S2) = S1 exp

 
�
✓
(�S

1
)2 +

1

2
�S

1
�S

2
⇢S

1
S
2 � r1 + q1

◆
�⌧

!

e⇠n2 (S1, S2) = S2 exp

 
�
✓
1

2
�S

1
�S

2
⇢S

1
S
2 � r2 + q2

◆
�⌧

!
.

In the risk-free problem, the Dirichlet boundary condition is

Un+1(S1, S2
1) =

Un � e⇠n

1 + fD�⌧
,

while in the nonlinear problem it is given by

Un+1(S1, S2
1) =

�⌧ g1(Un,W n+1) + Un � e⇠n

1 + fD�⌧
.

Finite element method

We now consider a triangular mesh of the domain and the finite element space of

piecewise linear Lagrange polynomials. At each time step, ⌧n, we can use Green’s

formula and pose the variational formulation corresponding to the risky linear prob-

lem:

Find Un+1 2
⇢
' 2 H1(⌦)/' = Hn+1

5 on �+
1 ,' = fH5

n+1
on �+

2

�
such that

Z

⌦

Un+1' dS1 dS2 +�⌧

Z

⌦

ArUn+1r' dS1 dS2

+�⌧

 
h(T � ⌧n+1)

1�RC

+ fD

!Z

⌦

Un+1' dS1 dS2

=

Z

⌦

(Un � �n)' dS1 dS2 +�⌧

Z

⌦

g2(U
n)' dS1 dS2 , 8' 2 H1

⇤ (⌦) ,
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where H1
⇤ (⌦) =

�
' 2 H1(⌦) /' = 0 on �+

1 [ ��
2

 
.

Next, for fixed natural numbers M > 0 and L > 0, we consider a uniform mesh

of the computational domain ⌦, the nodes of which are (S1
i
, S2

j
), with:

S1
i
= i�S1 (i = 0, 1, . . . ,M + 1) , �S1 =

S1
1

M + 1
,

S2
j
= j�S2 (j = 0, 1, . . . , L+ 1) , �S2 =

S2
1

L+ 1
.

Let us remark that a non uniform mesh can also be considered. We introduce the

finite element spaces

Yh =
�
'h 2 C(⌦) /'h|Tk

2 P1 , 8Tk 2 T
 

Y ⇤
h
=
�
'h 2 Yh /'h = 0 on �1 [ �2

 

and search Un+1
h

satisfying the boundary conditions and such that
Z

⌦

Un+1
h

'h dS
1 dS2 +�⌧

Z

⌦

ArUn+1
h

r'h dS
1 dS2 (1.43)

+�⌧

 
h(T � ⌧n+1)

1�RC

+ fD

!Z

⌦

Un+1
h

'h dS
1 dS2

=

Z

⌦

(Un

h
� �n)' dS1 dS2 +�⌧

Z

⌦

g2(U
n

h
)'h dS

1 dS2 , 8'h 2 Y ⇤
h
. (1.44)

The di↵erent integrals that take part in (1.44) are approximated by adequate quadra-

ture formulae, and the system of linear equations is solved by a LU factorization

method.

The risk-free problem is solved in a similar way; the di↵erences with respect

to the described risky linear problem concern the right hand side member and the

coe�cient of the unknown, W , in the PDE. Thus, the risk-free price is the solution

of the following variational problem:

Find Wh such that:

⇣
1 +�⌧ fD

⌘Z

⌦

W n+1
h

'h dS
1 dS2 +�⌧

Z

⌦

ArW n+1
h

r'h dS
1 dS2

=

Z

⌦

(W n

h
� �n)' dS1 dS2 , 8'h 2 Y ⇤

h
.
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Fixed point iteration

In the nonlinear problem (1.35), an additional fixed point iteration method is imple-

mented to approximate the solution. The scheme, in terms of the strong formulation,

is described in Algorithm 1.

Algorithm 1 Fixed-point algorithm

1: Let N > 1, n = 0, " > 0, U0 = 0

2: while n  N do

3: Let Un+1,0 = Un, ` = 0, e = "+ 1

4: while e � " do

5: Find Un+1,`+1 solution of

Un+1,`+1 ��⌧ div (ArUn+1,`+1) + fD�⌧ Un+1,`+1

= �⌧ g1(U
n+1,`,W n+1) + Un � �n

6: e =
kU`+1�U

`k
kU`k

7: ` = `+ 1

8: end while

9: n = n+ 1

10: end while

1.4.2 Monte Carlo method

In the numerical examples in Section 1.5 we assume constant FX rates. We need

a time discretization in order to discretize the dynamics of the underlying assets Si

(i = 1, . . . , N) and of the credit spread h by using Euler-Maruyama scheme [65]. Thus,

we choose a uniform mesh with Z nodes, 0 = t0 < t1 < · · · < tZ�1 = T , and we denote

by �t = tz � tz�1 the distance between two consecutive nodes. Hence, we denote by

Si

z
= Si(tz), h̃z = h̃(tz) = log(h(tz)) and hz = h(tz), and by �W S

i

z
= W S

i

z
�W S

i

z�1, for

i = 1, . . . , N , and �W h

z
= W h

z
�W h

z�1 correlated Brownian increments, according to
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the correlation matrix (1.3). Thus, these correlated Brownian motions can be built

by Cholesky factorization. Therefore, for the underlying assets S1, . . . , SN we have

Si

z+1 = Si

z
+ (ri � qi)Si

z
�t+ �S

i
Si

z
�W S

i

z

and for the credit spread in the case of the exponential Vasicek dynamics we have

hz+1 = eh̃z+1 , with h̃z+1 = h̃z + ↵(✓ � h̃z)�t+ �h�W h

z
.

In the case of the CIR model for the credit spread, the Euler-Maruyama scheme

hz+1 = hz + ↵(✓ � hz)�t+ �h
p
hz�W h

z

can lead to negative values since the Gaussian increment is not bounded from below,

even if the Feller condition is satisfied and, thus, the continuous version of the process

is positive. Therefore, we use the ”full truncation” scheme proposed in [30], given by

hz+1 = hz + ↵(✓ � h+
z
)�t+ �h

p
h+
z
�W h

z
.

Nonlinear case (M = V D
)

When M = V D, a fixed-point method, or Picard iteration method, is implemented

to compute the XVA price, given by the integral equation (1.27). More precisely, we

start from U0 = 0 and recursively compute:

U `+1(0, S, h) =EQ
D

0

"
�
Z

T

0

e�f
D
u

✓
hu

⇣
WD(u, Su) + U `(u, Su, hu)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

�����S0 = S, h0 = h

#
(1.45)

for ` = 0, 1, 2, . . . until convergence is attained.

At each iteration (1.45) of the fixed-point algorithm of the nonlinear model the

computation of an integral term is required. We consider either a simple rectangular

or simple trapezoidal quadrature formula. Therefore, if we denote by INL,` the integral
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in the right hand side of (1.45), thus

INL,` =

Z
T

0

e�f
D
u

✓
hu

⇣
WD(u, Su) + U `(u, Su, hu)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du ,

(1.46)

then we approximate the integral as follows:

INL,` ' T


hu

⇣
WD(0, S0) + U `(0, S0, h0)� CD(0)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(0)

�
(1.47)

or

INL,` ' T

2


e�f

D
T

✓
hT

⇣
WD(T, ST )� CD(T )

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(T )

◆

+

✓
h0

⇣
WD(0, S0) + U `(0, S0, h0)� CD(0)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(0)

◆�
. (1.48)

In the nonlinear case we use only simple quadrature formulae, because we just know

the final value of U , that is UT = 0, while composite formulae require to know the

values of U at internal nodes of our time discretization. One could approximate the

value of U at each node going backwards from the last node, although in this way

a nested Monte Carlo problem arises. However, in order to improve our estimates

we also implement the multilevel Picard iterations method proposed in [37] and [62],

and recalled in the Subsection 1.4.3, that allows to consider the values at the internal

nodes of our time discretization.

Linear case (M = WD
)

When M = WD, Equation (1.29) gives an explicit expression for the XVA price

that is computed with the help of numerical formulae for the approximation of the

integral that use the time discretization stated above. As in the case of the nonlinear

41



model, we use either a rectangular or a trapezoidal formula, but in the linear case also

composite formulae can be implemented. Therefore, if we denote by IL the integral

in the right hand side of (1.29), thus

IL =

Z
T

0

exp

 
�
Z

u

0

✓
hr

1�RC

+ fD

◆
dr

!

·
✓
hu

⇣
WD(u, Su)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du ,

(1.49)

then we approximate the integral either with a simple rectangular or a simple trape-

zoidal formula, respectively given by

IL 'T


exp

✓
� T

✓
hT

1�RC

+ f

◆◆

·
✓
hT

⇣
WD(T, ST )� CD(T )

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(T )

◆� (1.50)

and

IL 'T

2


exp

 
�T

2

✓
hT + h0

1�RC

+ 2fD

◆!

·
✓
hT

⇣
WD(T, ST )� CD(T )

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(T )

◆

+

✓
h0

⇣
WD(0, S0)� CD(0)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(0)

◆�
.

(1.51)

Moreover, we approximate the integral (1.49) with the rectangular and the trape-

zoidal composite formulae given by

IL '�t
Z�2X

z1=0

exp

✓
��t

z1�1X

z2=0

✓
htz2

1�RC

+ f

◆◆

·
✓
hz1

⇣
WD(tz1 , Sz1)� CD(tz1)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(tz1)

◆ (1.52)
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and

IL ' �t

2

Z�2X

z1=0


exp

✓
��t

2

z1�1X

z2=0

✓
htz2

+ htz2+1

1�RC

+ 2fD

◆◆

·
✓
hz1

⇣
WD(tz1 , Sz1)� CD(tz1)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(tz1)

◆

+ exp

✓
��t

2

z1X

z2=0

✓
htz2

+ htz2+1

1�RC

+ 2fD

◆◆

·
✓
hz1+1

⇣
WD(tz1+1, Sz1+1)� CD(tz1+1)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(tz1+1)

◆�
. (1.53)

1.4.3 Multilevel Picard iteration

In this subsection we briefly describe the main idea in the Multilevel Picard Iteration

(MPI) method. For further details about the method, we address the reader to [37],

for example.

The multilevel Picard iteration method is based in the adaptation of the multilevel

Monte Carlo approach of Heinrich [55, 56] and Giles [46] to the Picard approximation

method. The multilevel Monte Carlo path simulations are based on the multigrid

ideas, that facilitates the reduction of the computational complexity when estimating

an expected value derived from a stochastic di↵erential equation via Monte Carlo

path simulations.

In order to apply the multilevel Picard iteration, we define a function � as

�
�(u)

�
(s, x) = EQ

s


�
Z

T

s

e�f
D(t�s)

✓
ht

⇣
WD(t, St) + u� CD(t)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(t)

◆
dt
��� x = (Ss, hs)

�
(1.54)

and a sequence of Picard approximations (un)n2N0 such that un+1 = �(un) for all

n 2 N0. By using the Banach fixed-point theorem, it can be proved that the sequence
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(un)n2N0 converges at least exponentially fast to the solution of u = �(u). Therefore,

for all su�ciently large n 2 N, we have

u ⇡ un = u1 +
n�1X

l=1

(ul+1 � ul) = �(u0) +
n�1X

l=1

(�(ul)� �(ul�1))

⇡  n,⇢(u0) +
n�1X

l=1

( n�l,⇢(ul)� n�l,⇢(ul�1)),

(1.55)

where  n,⇢(ul) is a discrete approximation of �(ul) with mn,l,⇢ Monte Carlo paths.

More precisely,

�
 n,⇢ (ul)

�
(s, x) = � 1

mn,l,⇢

mn,l,⇢X

i=1

X

t2]s,T ]

qn,l,⇢
s

(t)

· e�f
D(t�s)

 
hi,n,x

t

⇣
WD(t, Si,n,x

t ) + ul � CD(t)
⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(t)

!
,

(1.56)

where (qn,l,⇢)n,l,⇢2N0,l<n denotes the family of quadrature rules for the approximation

of the integral and the superscripts i, n, x refer to the i-th Monte Carlo path with

initial point x in the n-th Picard iteration. In particular, in our numerical examples

we have chosen mn,l,⇢ = ⇢n�l, as also proposed in [37].

Note that the quadrature rules qn,l,⇢ are just functions on [0, T ] which have non-

zero values only on a finite subset of [0, T ]. In our numerical examples, we have chosen

the left-rectangle rule with ⇢n�l rectangles, so that, for s 2]0, T ],

qn,l,⇢
s

=
T � s

⇢n�l
1
s+i

T�s
⇢n�l ,i2N0

(t), t 2]s, T ]. (1.57)

Since the XVA price in (1.27) can be seen as solution of u = �(u), from (1.55) we

obtain our multilevel Picard iteration scheme:
8
>>><

>>>:

U0,⇢ = u0,

Un,⇢ =  n,⇢

�
U0,⇢

�
+

n�1X

l=1

⇣
 n�l,⇢

�
Ul,⇢

�
� n�l,⇢

�
Ul�1,⇢

�⌘
.

(1.58)
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This recursive approximation scheme keeps the computational cost moderate com-

pared to the desired approximation precision (see, for example, [37]).

Note that in the original multilevel Monte Carlo approach the di↵erent levels cor-

respond to approximations with di↵erent step sizes in time or space, while in the

multilevel Picard iterations method di↵erent levels correspond to di↵erent stages of

the Picard iteration. Therefore, the approximations (1.58) are “full history recur-

sive” in the sense that for every n, ⇢ 2 N the “full history” of approximations, i.e.,

U0,⇢, U1,⇢, . . . , Un�1,⇢, needs to be computed recursively in order to compute Un,⇢.

Relative Approximation Increments

In Section 1.5 and Section 2.5 the empirical convergence of the algorithm is tested.

More precisely, we compute

U i

⇢,⇢
, for (⇢, i) 2 {1, . . . , ⇢max}⇥{1, . . . , Nruns}, (1.59)

for fixed values of maximum ⇢, ⇢max and number of runs, Nruns. Then, we define the

Relative Approximation Increments (RAI) of parameters ⇢max and Nruns as

RAI (⇢; ⇢max, Nruns) =

1

Nruns

10X

i=1

���U i

⇢+1,⇢+1 � U i

⇢,⇢

���

1

Nruns

10X

i=1

���U i

⇢max,⇢max

���

, (1.60)

for ⇢ = 1, . . . , ⇢max � 1. The empirical convergence is shown by plotting the Relative

Approximation Increments RAI (⇢; ⇢max, Nruns), for ⇢ = 1, . . . , ⇢max � 1, against ⇢.

In particular, in our numerical tests we have chosen ⇢max = 5 and Nruns = 10, as in

one of the examples proposed in [37].

1.5 Numerical results

In this section we report some tests that illustrate the behaviour of the previously de-

scribe numerical methods when they are used for the evaluation of di↵erent multiasset

options [83] in the presence of counterparty risk.
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r = (0.05, 0.03) fD = 0.06 RC = 0.30
q = (0.03, 0.02) rD = 0.04
�S = (0.30, 0.20) bD,C0 = 0.01

Table 1.3: Financial data

Exp Vasicek h0 = 200 ↵ = 4.97 ✓ = 3.83 �h = 1.41
CIR h0 = 200 ↵ = 1.29 ✓ = 51.79 �h = 4.50

Table 1.4: Counterparty’s credit spread data. Values are in basis points (bps)

Our aim is to analyse how the choice of the mark-to-market, the initial values of

the underlying assets and of the counterparty’s credit spread, as well as its dynam-

ics, a↵ect the total valuation adjustment and, therefore, the price of the financial

derivative.

In all examples we consider constant FX rates, so that we have dropped subindex

t to use the notation XD,Cj instead of X
D,Cj

t throughout this section.

The elapsed computational time depends on the number of the underlying assets

and on the value assigned to the mark-to-market value MD, as well as on the choice

of the parameters associated to the numerical methods (such as, NP , Z and those

involved in the discretization of PDEs).

Unless otherwise stated, we have used data listed in Table 1.3 and Table 1.4. We

have denoted by r = (r1, r2) the vector of the short-term rates in the foreign markets,

q = (q1, q2) the vector of the dividends paid by the corresponding underlying assets

and �S = (�S
1
, �S

2
) the vector of the assets volatilities.

It is important to point out that the parameters for the dynamics of the credit

spread are borrowed from [19], where the credit spread is calibrated on market data.

So, they are calibrated parameters.

Moreover, the maturities of the options are set to T = 1 year. Finally, we have

chosen the collateral account CD to be a percentage C% = 0.25 of the risk-free

derivative value.

Concerning the parameters of the numerical methods, for the Monte Carlo method
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we have used NP = 104 paths and Z = 252 time nodes. For the Lagrange-Galerkin

method, di↵erent meshes have been used and the number of nodes are indicated in

the di↵erent tables containing the results. Moreover, for the fixed point iteration

methods that have been additionally applied in the nonlinear PDEs, the tolerance

of the stopping test in the error between two consecutive iterations has been set to

10�16.

In the following, we present and analyse numerical results related to a spread op-

tion, an exchange option and a sum of call options. Other examples can be found in

[7]. For each product, we first assume the counterparty credit spread is a time depen-

dent deterministic function and the derivative is written on two stochastic underlying

assets. In this case, we compare the Lagrange-Galerkin results with the Monte Carlo

99% confidence intervals. In the nonlinear case, we also show that the Multilevel

Picard Iteration values are in agreement with the ones obtained with the Lagrange-

Galerkin method. In a more general case, when the credit spread is stochastic and,

eventually, the derivative depends on more than two stochastic underlying assets, we

do not address the solution of the PDE formulation.

In all tables we use LG for the results obtained with the proposed Lagrange-

Galerkin method for PDEs and MPI for the computed results with the Multilevel

Picard Iteration method.

All tests corresponding to Monte Carlo and MPI methods have been performed

by using Matlab on an Intel(R) Core(TM) i7-8550U, 1.99 GHz, 16 GB (RAM), x64-

based processor. The tests corresponding to Lagrange-Galerkin method have been

developed by using C++ on an AMD Ryzen7(R) 5700X, 64GB (RAM) processor.

1.5.1 Spread option

We first assume the hedger buys from a counterparty a spread option, written on two

underlying assets, each of them being denominated in a di↵erent currency. The payo↵

function is given by

G(t, S1, S2) =
⇣
XD,C2S2 �XD,C1S1 �K

⌘+

, (1.61)
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where K is the strike value in the domestic currency D.

In our numerical tests, we have set the value of the strike to K = 15 and we have

selected nodes that are in the proximity of the at the money line, i.e., XD,C2S2 �
XD,C1S1 �K = 0.

Test 1: Risk-free value.

We first compute the risk-free price of the spread option for di↵erent initial values of

the underlying assets both with the Monte Carlo and the Lagrange-Galerkin methods.

Note that the risk-free value obviously depends only on two stochastic factors, that

are the two underlying assets, being independent of the credit spread.

Table 1.5 shows the computed risk-free prices. The table header indicates the

used method and the number of nodes (in both directions) and time steps in the

Lagrange-Galerkin method. We use the notation Si,D = XD,CiSi, for i = 1, 2, so

that we can display all the prices in the same currency D. For each considered initial

point (S1,D, S2,D), the risk-free value computed with Lagrange-Galerkin falls inside

the Monte Carlo 99% confidence intervals, also in the case of the coarser mesh.

Test 2: Nonlinear problem, deterministic time dependent credit spread.

We now consider the deterministic exponential Vasicek (1.31) and CIR (1.33) dynam-

ics for the credit spread and compute the total value adjustment in the nonlinear case,

when the PDE formulation is given by (1.24) and the formulation in terms of expecta-

tion is reported in (1.27). Note that in the case of deterministic counterparty’s credit

spread, only two stochastic factors are considered when pricing a spread option.

Table 1.6 and Table 1.7 show the computed total value adjustment. The tables

headers indicate the used quadrature formulae in Monte Carlo simulations, the value

of parameter ⇢ in the multilevel Picard iteration method, and the number of nodes and

time steps in the Lagrange-Galerkin method. From both tables we can deduce that

the multilevel Picard iteration and the Lagrange-Galerkin results are in agreement

and they are closer to each other when setting ⇢ = 5 in the MPI method and taking
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a finer mesh in the LG one. However, MPI and LG values do not belong to the

confidence intervals computed with Monte Carlo method, the results with trapezoidal

formula being the closest ones to the MPI and LG results, especially in the case of

CIR dynamics that are shown in Table 1.7.

The convergence of the multilevel Picard iteration method has been tested by

computing the Relative Approximation Increments (RAI) defined in Subsection 1.4.3.

We recall that in (1.60) we have set ⇢max = 5, Nruns = 10, and we have computed

RAI(⇢, ⇢max, Nruns) for ⇢ = 1, . . . , 4. Figure 1.3 shows the empirical convergence of

the method.

Test 3: Linear problem, deterministic time dependent credit spread.

Still considering the deterministic exponential Vasicek and CIR dynamics for the

credit spread, we compute the XVA in the linear case, when the PDE formulation is

given by (2.32) and the formulation in terms of expectation is reported in (2.36).

Table 1.8 and Table 1.9 show the Monte Carlo confidence intervals computed with

Risk-free value

Monte Carlo LG
(S1,D, S2,D) 21⇥21, 100 41⇥41, 200

(9, 21) [0.7784, 0.8782] 0.7899 0.8122
(9, 24) [2.0457, 2.2119] 2.0893 2.1063
(9, 27) [3.9481, 4.1775] 4.0258 4.0434
(12, 24) [1.0582, 1.1827] 1.0933 1.1058
(12, 27) [2.3745, 2.5654] 2.4400 2.4494
(12, 30) [4.2351, 4.4894] 4.3342 4.3451
(15, 27) [1.3606, 1.5105] 1.4168 1.4214
(15, 30) [2.7155, 2.9316] 2.8016 2.8041
(15, 33) [4.5435, 4.8233] 4.6633 4.6678
(18, 30) [1.6789, 1.8546] 1.7536 1.7521
(18, 33) [3.0645, 3.3064] 3.1684 3.1655
(18, 36) [4.8677, 5.1733] 5.0042 5.0030
(21, 33) [2.0091, 2.2111] 2.0997 2.0933
(21, 36) [3.4188, 3.6868] 3.5380 3.5302
(21, 39) [5.2017, 5.5334] 5.3507 5.3440

Table 1.5: Spread option. Comparison of Monte Carlo method and Lagrange-Galerkin
(LG). Risk-free value (Test 1)
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the composite rectangular and trapezoidal quadrature formulae and the Lagrange-

Galerkin method values. The Monte Carlo confidence intervals coincide in the three

or four decimal figures when using both composite formulae. We have also used simple

quadrature formulae to deduce the confidence intervals, although we do not report

these results, because they do not agree with the confidence intervals computed with

the composite quadrature formulae and the XVA values computed with the Lagrange-

Galerkin method. Instead, from tables 1.8 and 1.9 we can see that the LG results

belong to the reported Monte Carlo confidence intervals.

We also show in Table 1.10 the risky price of the spread option with an exponential

Vasicek credit spread. Again, we can see that the results computed with the Lagrange-

Galerkin method belong to the Monte Carlo 99% confidence intervals obtained with

composite quadrature formulae.

Total value adjustment

Monte Carlo MPI LG
(S1,D

, S
2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(9, 21) [�0.0109,�0.0097] [�0.0059,�0.0052] �0.0019 �0.0020 �0.0021 �0.0021
(9, 24) [�0.0274,�0.0253] [�0.0148,�0.0137] �0.0049 �0.0053 �0.0054 �0.0053
(9, 27) [�0.0515,�0.0487] [�0.0280,�0.0264] �0.0100 �0.0102 �0.0103 �0.0102
(12, 24) [�0.0147,�0.0131] [�0.0080,�0.0071] �0.0026 �0.0028 �0.0028 �0.0028
(12, 27) [�0.0318,�0.0294] [�0.0172,�0.0159] �0.0059 �0.0062 �0.0063 �0.0062
(12, 30) [�0.0554,�0.0522] [�0.0301,�0.0284] �0.0106 �0.0109 �0.0111 �0.0110
(15, 27) [�0.0188,�0.0169] [�0.0102,�0.0091] �0.0035 �0.0036 �0.0037 �0.0036
(15, 30) [�0.0363,�0.0336] [�0.0197,�0.0182] �0.0069 �0.0070 �0.0072 �0.0071
(15, 33) [�0.0595,�0.0560] [�0.0323,�0.0304] �0.0113 �0.0117 �0.0120 �0.0118
(18, 30) [�0.0230,�0.0208] [�0.0125,�0.0113] �0.0045 �0.0043 �0.0045 �0.0045
(18, 33) [�0.0409,�0.0379] [�0.0222,�0.0206] �0.0076 �0.0079 �0.0081 �0.0080
(18, 36) [�0.0639,�0.0601] [�0.0347,�0.0326] �0.0124 �0.0126 �0.0128 �0.0127
(21, 33) [�0.0274,�0.0249] [�0.0149,�0.0135] �0.0052 �0.0052 �0.0054 �0.0053
(21, 36) [�0.0456,�0.0423] [�0.0247,�0.0229] �0.0087 �0.0088 �0.0091 �0.0090
(21, 39) [�0.0683,�0.0642] [�0.0371,�0.0349] �0.0132 �0.0135 �0.0137 �0.0135

Table 1.6: Spread option, nonlinear problem and deterministic exponential Vasicek
credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and
trapezoidal (SimpT) quadrature formulae), multilevel Picard iteration (MPI) and
Lagrange-Galerkin (LG) methods. Total value adjustment (Test 2)
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Total value adjustment

Monte Carlo MPI LG
(S1,D

, S
2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(9, 21) [�0.0109,�0.0097] [�0.0074,�0.0066] �0.0057 �0.0062 �0.0061 �0.0062
(9, 24) [�0.0274,�0.0253] [�0.0186,�0.0172] �0.0152 �0.0161 �0.0160 �0.0160
(9, 27) [�0.0515,�0.0487] [�0.0351,�0.0332] �0.0309 �0.0310 �0.0308 �0.0308
(12, 24) [�0.0147,�0.0131] [�0.0100,�0.0089] �0.0081 �0.0084 �0.0084 �0.0084
(12, 27) [�0.0318,�0.0294] [�0.0216,�0.0200] �0.0180 �0.0188 �0.0187 �0.0187
(12, 30) [�0.0554,�0.0522] [�0.0378,�0.0356] �0.0325 �0.0332 �0.0331 �0.0331
(15, 27) [�0.0188,�0.0169] [�0.0127,�0.0115] �0.0107 �0.0108 �0.0109 �0.0108
(15, 30) [�0.0363,�0.0336] [�0.0247,�0.0229] �0.0214 �0.0214 �0.0214 �0.0214
(15, 33) [�0.0595,�0.0560] [�0.0406,�0.0382] �0.0346 �0.0356 �0.0356 �0.0355
(18, 30) [�0.0230,�0.0208] [�0.0156,�0.0142] �0.0138 �0.0134 �0.0135 �0.0134
(18, 33) [�0.0409,�0.0379] [�0.0279,�0.0258] �0.0233 �0.0239 �0.0242 �0.0241
(18, 36) [�0.0639,�0.0601] [�0.0435,�0.0409] �0.0383 �0.0381 �0.0382 �0.0381
(21, 33) [�0.0274,�0.0249] [�0.0187,�0.0169] �0.0161 �0.0158 �0.0161 �0.0160
(21, 36) [�0.0456,�0.0423] [�0.0311,�0.0288] �0.0268 �0.0269 �0.0271 �0.0269
(21, 39) [�0.0683,�0.0642] [�0.0466,�0.0438] �0.0405 �0.0409 �0.0409 �0.0407

Table 1.7: Spread option, nonlinear problem and deterministic CIR credit spread.
Comparison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal
(SimpT) quadrature formulae), multilevel Picard iteration (MPI) and Lagrange
Galerkin (LG) methods. Total value adjustment (Test 2)
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Figure 1.3: Spread option with deterministic credit spread. Convergence of MPI with
exponential Vasicek dynamics for credit spread on the left and CIR dynamics on the
right (Test 2)
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Total value adjustment

Monte Carlo LG
(S1,D

, S
2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(9, 21) [�0.0022,�0.0020] [�0.0022,�0.0019] �0.0021 �0.0021
(9, 24) [�0.0055,�0.0051] [�0.0055,�0.0051] �0.0054 �0.0053
(9, 27) [�0.0105,�0.0099] [�0.0104,�0.0098] �0.0103 �0.0102
(12, 24) [�0.0030,�0.0027] [�0.0029,�0.0026] �0.0028 �0.0028
(12, 27) [�0.0064,�0.0060] [�0.0064,�0.0059] �0.0063 �0.0062
(12, 30) [�0.0113,�0.0106] [�0.0112,�0.0105] �0.0111 �0.0110
(15, 27) [�0.0038,�0.0034] [�0.0038,�0.0034] �0.0037 �0.0036
(15, 30) [�0.0074,�0.0068] [�0.0073,�0.0067] �0.0072 �0.0071
(15, 33) [�0.0121,�0.0114] [�0.0120,�0.0113] �0.0120 �0.0118
(18, 30) [�0.0047,�0.0042] [�0.0046,�0.0042] �0.0045 �0.0044
(18, 33) [�0.0083,�0.0077] [�0.0082,�0.0076] �0.0081 �0.0080
(18, 36) [�0.0130,�0.0122] [�0.0129,�0.0121] �0.0128 �0.0127
(21, 33) [�0.0055,�0.0050] [�0.0055,�0.0050] �0.0054 �0.0053
(21, 36) [�0.0092,�0.0086] [�0.0092,�0.0085] �0.0091 �0.0089
(21, 39) [�0.0139,�0.0130] [�0.0137,�0.0129] �0.0137 �0.0135

Table 1.8: Spread option, linear problem and deterministic exponential Vasicek credit
spread. Comparison of Monte Carlo (with composite rectangular (CompR) and trape-
zoidal (CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods. Total
value adjustment (Test 3)

Total value adjustment

Monte Carlo LG
(S1,D

, S
2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(9, 21) [�0.0066,�0.0059] [�0.0066,�0.0059] �0.0061 �0.0062
(9, 24) [�0.0167,�0.0155] [�0.0167,�0.0154] �0.0160 �0.0160
(9, 27) [�0.0316,�0.0299] [�0.0315,�0.0298] �0.0307 �0.0307
(12, 24) [�0.0089,�0.0080] [�0.0089,�0.0080] �0.0084 �0.0084
(12, 27) [�0.0194,�0.0180] [�0.0194,�0.0179] �0.0186 �0.0186
(12, 30) [�0.0340,�0.0320] [�0.0339,�0.0320] �0.0330 �0.0330
(15, 27) [�0.0114,�0.0103] [�0.0114,�0.0103] �0.0109 �0.0108
(15, 30) [�0.0222,�0.0205] [�0.0221,�0.0205] �0.0214 �0.0213
(15, 33) [�0.0365,�0.0344] [�0.0364,�0.0343] �0.0355 �0.0354
(18, 30) [�0.0140,�0.0127] [�0.0140,�0.0127] �0.0134 �0.0133
(18, 33) [�0.0250,�0.0232] [�0.0250,�0.0231] �0.0242 �0.0240
(18, 36) [�0.0391,�0.0368] [�0.0391,�0.0368] �0.0381 �0.0380
(21, 33) [�0.0167,�0.0152] [�0.0167,�0.0152] �0.0161 �0.0159
(21, 36) [�0.0279,�0.0259] [�0.0278,�0.0258] �0.0270 �0.0268
(21, 39) [�0.0419,�0.0394] [�0.0418,�0.0393] �0.0408 �0.0406

Table 1.9: Spread option, linear problem and deterministic CIR credit spread.
Comparison of Monte Carlo (with composite rectangular (CompR) and trapezoidal
(CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods. Total value
adjustment (Test 3)
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Risky value

Monte Carlo LG
(S1,D

, S
2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(9, 21) [0.7784, 0.8782] [0.7784, 0.8782] 0.7879 0.8101
(9, 24) [2.0457, 2.2119] [2.0457, 2.2119] 2.0839 2.1009
(9, 27) [3.9481, 4.1775] [3.9481, 4.1775] 4.0155 4.0332
(12, 24) [1.0582, 1.1827] [1.0582, 1.1827] 1.0905 1.1029
(12, 27) [2.3745, 2.5654] [2.3745, 2.5654] 2.4337 2.4432
(12, 30) [4.2351, 4.4894] [4.2351, 4.4894] 4.3231 4.3341
(15, 27) [1.3606, 1.5105] [1.3606, 1.5105] 1.4132 1.4178
(15, 30) [2.7155, 2.9316] [2.7155, 2.9316] 2.7944 2.7970
(15, 33) [4.5435, 4.8233] [4.5435, 4.8233] 4.6514 4.6560
(18, 30) [1.6789, 1.8546] [1.6789, 1.8546] 1.7491 1.7476
(18, 33) [3.0645, 3.3064] [3.0645, 3.3064] 3.1603 3.1575
(18, 36) [4.8677, 5.1733] [4.8677, 5.1733] 4.9914 4.9904
(21, 33) [2.0091, 2.2111] [2.0091, 2.2111] 2.0943 2.0880
(21, 36) [3.4188, 3.6868] [3.4188, 3.6868] 3.5289 3.5213
(21, 39) [5.2017, 5.5334] [5.2017, 5.5334] 5.3369 5.3304

Table 1.10: Spread option, linear problem and deterministic exponential Vasicek
credit spread. Comparison of Monte Carlo (with composite rectangular (CompR) and
trapezoidal (CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods.
Risky value (Test 3)

Test 4: Nonlinear problem, stochastic credit spread.

We now consider the more general case when the credit spread is a stochastic process

following either an exponential Vasicek (1.5) or a CIR (1.6) dynamics and the mark-

to-market value is equal to the risky derivative value (nonlinear case). Note that in

the case of stochastic credit spread of the counterparty, three stochastic factors are

involved in the pricing of the spread option.

Table 1.11 and Table 1.12 illustrate the computed XVA for some fixed initial

values of the underlying assets. For each fixed value of S1,D we analyse three di↵erent

possibilities: out of the money option, at the money option and in the money option,

respectively. When considering a stochastic credit spread, we do not address the

solution of the XVA pricing PDE with Lagrange-Galerkin method and we take MPI

values as reference values. Indeed, we have seen in the case of the deterministic time

dependent credit spread that MPI and LG results are very close, but not inside the

Monte Carlo confidence intervals. The multilevel Picard iteration method is tested

either with ⇢ = 4 or with ⇢ = 5. Moreover, we have tested the convergence of the MPI

53



Total value adjustment

Monte Carlo MPI
(S1,D

, S
2,D) SimpR SimpT ⇢ = 4 ⇢ = 5

(9, 21) [�0.0109,�0.0097] [�0.0058,�0.0051] �0.0018 �0.0019
(9, 24) [�0.0274,�0.0253] [�0.0147,�0.0136] �0.0050 �0.0051
(9, 27) [�0.0515,�0.0487] [�0.0279,�0.0263] �0.0105 �0.0104
(12, 24) [�0.0147,�0.0131] [�0.0078,�0.0070] �0.0025 �0.0025
(12, 27) [�0.0318,�0.0294] [�0.0170,�0.0157] �0.0056 �0.0060
(12, 30) [�0.0554,�0.0522] [�0.0299,�0.0282] �0.0110 �0.0109
(15, 27) [�0.0188,�0.0169] [�0.0099,�0.0089] �0.0035 �0.0033
(15, 30) [�0.0363,�0.0336] [�0.0194,�0.0180] �0.0066 �0.0067
(15, 33) [�0.0595,�0.0560] [�0.0321,�0.0302] �0.0116 �0.0116
(18, 30) [�0.0230,�0.0208] [�0.0122,�0.0110] �0.0039 �0.0040
(18, 33) [�0.0409,�0.0379] [�0.0218,�0.0202] �0.0074 �0.0076
(18, 36) [�0.0639,�0.0601] [�0.0343,�0.0323] �0.0121 �0.0124
(21, 33) [�0.0274,�0.0249] [�0.0145,�0.0132] �0.0046 �0.0048
(21, 36) [�0.0456,�0.0423] [�0.0243,�0.0226] �0.0082 �0.0084
(21, 39) [�0.0683,�0.0642] [�0.0367,�0.0345] �0.0131 �0.0132

Table 1.11: Spread option, nonlinear problem and stochastic exponential Vasicek
credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and
trapezoidal (SimpT) quadrature formulae) and multilevel Picard iteration (MPI).
Total value adjustment (Test 4)

method for all the initial underlying assets values considered in the tables by plotting

the relative approximation increments in Figure 1.4. As for the deterministic credit

spread case, the Monte Carlo confidence intervals, obtained with a simple Picard

iteration, do not contain the multilevel Picard iteration results. As expected, the

total value adjustment is negative because, when buying the derivative, the hedger

will ask the counterparty for a reduction in the price due to the possibility of the

counterparty’s default. Also, we can see that the total value adjustment becomes

more negative when the option is in the money and less negative when it is out

of the money, indeed in the former case the hedger would be worst a↵ected by the

counterparty’s default, because the option is more valuable.

Figure 1.5 shows the total value adjustment for di↵erent underlying assets initial

values computed with the multilevel Picard iteration method. In particular, each

point of the plot shows the average MPI value on Nruns = 10 runs with the parameter

⇢ fixed to 4. The choice of the ⇢ value is due to the fact that from Table 1.11 and

Table 1.12 we infer that results with ⇢ = 4 and ⇢ = 5 are very close to each others

and it is not worth to produce plots by using ⇢ = 5, that is more time consuming. In
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Total value adjustment

Monte Carlo MPI
(S1,D

, S
2,D) SimpR SimpT ⇢ = 4 ⇢ = 5

(9, 21) [�0.0109,�0.0097] [�0.0069,�0.0061] �0.0055 �0.0055
(9, 24) [�0.0274,�0.0253] [�0.0175,�0.0162] �0.0142 �0.0146
(9, 27) [�0.0515,�0.0487] [�0.0335,�0.0317] �0.0291 �0.0290
(12, 24) [�0.0147,�0.0131] [�0.0092,�0.0083] �0.0076 �0.0075
(12, 27) [�0.0318,�0.0294] [�0.0203,�0.0188] �0.0164 �0.0171
(12, 30) [�0.0554,�0.0522] [�0.0359,�0.0339] �0.0311 �0.0378
(15, 27) [�0.0188,�0.0169] [�0.0118,�0.0106] �0.0102 �0.0197
(15, 30) [�0.0363,�0.0336] [�0.0231,�0.0214] �0.0192 �0.0193
(15, 33) [�0.0595,�0.0560] [�0.0384,�0.0362] �0.0330 �0.0328
(18, 30) [�0.0230,�0.0208] [�0.0145,�0.0131] �0.0115 �0.0117
(18, 33) [�0.0409,�0.0379] [�0.0260,�0.0242] �0.0215 �0.0219
(18, 36) [�0.0639,�0.0601] [�0.0411,�0.0387] �0.0347 �0.0352
(21, 33) [�0.0274,�0.0249] [�0.0172,�0.0157] �0.0137 �0.0141
(21, 36) [�0.0456,�0.0423] [�0.0290,�0.0269] �0.0239 �0.0243
(21, 39) [�0.0683,�0.0642] [�0.0439,�0.0413] �0.0374 �0.0377

Table 1.12: Spread option, nonlinear problem and stochastic CIR credit spread. Com-
parison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal (SimpT)
quadrature formulae) and multilevel Picard iteration (MPI). Total value adjustment
(Test 4)
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Figure 1.4: Spread option with stochastic credit spread. Convergence of MPI with
exponential Vasicek dynamics for credit spread on the left and CIR dynamics on the
right (Test 4)
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Figure 1.5: Spread option in the nonlinear case. Total value adjustment with ex-
ponential Vasicek credit spread on the left and with CIR credit spread on the right
(Test 4)

fact, one run of MPI with ⇢ = 4 takes slightly more than 1 second, but with ⇢ = 5 it

takes about 340 seconds. From the figure it is evident that the XVA is more negative

under the assumption of CIR credit spread than under the assumption of exponential

Vasicek credit spread.

Test 5: Linear problem, stochastic credit spread.

We move to the linear problem with stochastic credit spread.

Table 1.13 and Table 1.14 show the Monte Carlo confidence intervals for the total

value adjustment with exponential Vasicek and CIR credit spread, respectively. The

confidence intervals coincide in the three or four decimal figures when using both

composite formulae, that we take as reference values, while the simple formulae give

results that are a bit far from the composite formulae results.

Figure 1.6 shows the risky price and the total value adjustment. For each point

of the plots we consider the average Monte Carlo value obtained by approximating

the integral in the XVA formula with composite trapezoidal formula. As for the

nonlinear case, the XVA is more negative when the credit spread is modelled as a

CIR process. However, the di↵erence between the plotted risky prices under the two
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Total value adjustment

Monte Carlo
(S1,D

, S
2,D) SimpR SimpT CompR CompT

(9, 21) [�0.0007,�0.0006] [�0.0058,�0.0052] [�0.0021,�0.0018] [�0.0021,�0.0018]
(9, 24) [�0.0020,�0.0017] [�0.0148,�0.0137] [�0.0055,�0.0050] [�0.0054,�0.0050]
(9, 27) [�0.0042,�0.0037] [�0.0281,�0.0266] [�0.0108,�0.0101] [�0.0107,�0.0100]
(12, 24) [�0.0010,�0.0007] [�0.0078,�0.0070] [�0.0028,�0.0025] [�0.0028,�0.0025]
(12, 27) [�0.0023,�0.0019] [�0.0171,�0.0158] [�0.0063,�0.0058] [�0.0062,�0.0057]
(12, 30) [�0.0044,�0.0038] [�0.0301,�0.0284] [�0.0114,�0.0107] [�0.0113,�0.0106]
(15, 27) [�0.0012,�0.0010] [�0.0100,�0.0090] [�0.0036,�0.0032] [�0.0035,�0.0031]
(15, 30) [�0.0026,�0.0022] [�0.0195,�0.0181] [�0.0072,�0.0066] [�0.0071,�0.0065]
(15, 33) [�0.0046,�0.0040] [�0.0323,�0.0305] [�0.0122,�0.0114] [�0.0120,�0.0113]
(18, 30) [�0.0015,�0.0012] [�0.0123,�0.0111] [�0.0044,�0.0039] [�0.0043,�0.0039]
(18, 33) [�0.0029,�0.0024] [�0.0220,�0.0204] [�0.0080,�0.0074] [�0.0080,�0.0073]
(18, 36) [�0.0048,�0.0042] [�0.0346,�0.0326] [�0.0129,�0.0121] [�0.0128,�0.0120]
(21, 33) [�0.0018,�0.0014] [�0.0146,�0.0133] [�0.0052,�0.0047] [�0.0051,�0.0046]
(21, 36) [�0.0032,�0.0027] [�0.0246,�0.0228] [�0.0089,�0.0082] [�0.0088,�0.0082]
(21, 39) [�0.0051,�0.0044] [�0.0370,�0.0348] [�0.0138,�0.0129] [�0.0136,�0.0128]

Table 1.13: Spread option, linear problem and stochastic exponential Vasicek credit
spread. Comparison of Monte Carlo with simple rectangular (SimpR), simple trape-
zoidal (SimT), composite rectangular (CompR) and trapezoidal (CompT) quadrature
formulae. Total value adjustment (Test 5)

Total value adjustment

Monte Carlo
(S1,D

, S
2,D) SimpR SimpT CompR CompT

(9, 21) [�0.0029,�0.0025] [�0.0069,�0.0061] [�0.0060,�0.0053] [�0.0060,�0.0053]
(9, 24) [�0.0077,�0.0071] [�0.0176,�0.0163] [�0.0154,�0.0142] [�0.0154,�0.0142]
(9, 27) [�0.0153,�0.0144] [�0.0337,�0.0318] [�0.0296,�0.0280] [�0.0296,�0.0279]
(12, 24) [�0.0038,�0.0034] [�0.0093,�0.0083] [�0.0080,�0.0072] [�0.0080,�0.0072]
(12, 27) [�0.0088,�0.0081] [�0.0204,�0.0189] [�0.0178,�0.0165] [�0.0177,�0.0164]
(12, 30) [�0.0162,�0.0152] [�0.0361,�0.0340] [�0.0316,�0.0298] [�0.0316,�0.0298]
(15, 27) [�0.0049,�0.0043] [�0.0118,�0.0107] [�0.0103,�0.0092] [�0.0102,�0.0092]
(15, 30) [�0.0100,�0.0092] [�0.0233,�0.0216] [�0.0203,�0.0188] [�0.0202,�0.0187]
(15, 33) [�0.0172,�0.0161] [�0.0386,�0.0364] [�0.0338,�0.0319] [�0.0338,�0.0318]
(18, 30) [�0.0060,�0.0054] [�0.0145,�0.0132] [�0.0126,�0.0114] [�0.0125,�0.0113]
(18, 33) [�0.0112,�0.0103] [�0.0262,�0.0243] [�0.0228,�0.0211] [�0.0227,�0.0211]
(18, 36) [�0.0183,�0.0170] [�0.0413,�0.0389] [�0.0362,�0.0340] [�0.0361,�0.0339]
(21, 33) [�0.0071,�0.0064] [�0.0173,�0.0158] [�0.0150,�0.0136] [�0.0150,�0.0136]
(21, 36) [�0.0124,�0.0114] [�0.0292,�0.0271] [�0.0254,�0.0235] [�0.0253,�0.0235]
(21, 39) [�0.0194,�0.0181] [�0.0442,�0.0415] [�0.0386,�0.0363] [�0.0385,�0.0362]

Table 1.14: Spread option, linear problem and stochastic CIR credit spread. Com-
parison of Monte Carlo with simple rectangular (SimpR), simple trapezoidal (SimT),
composite rectangular (CompR) and trapezoidal (CompT) quadrature formulae. To-
tal value adjustment (Test 5)
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Figure 1.6: Spread option in the linear case. Exponential Vasicek credit spread on
the top and CIR credit spread on the bottom. Risky value on the left and XVA on
the right (Test 5)

alternative assumptions for the dynamics of the credit spread is not evident, because

the di↵erence between the total value adjustments is negligible with respect to the

derivative prices.

From Table 1.13 and Table 1.14 and from Figure 1.6 we can take out the same

conclusions to those drawn in the nonlinear case: the XVA becomes more negative

when the price of the asset S2 increases, namely when the option is in the money and

the XVA approaches to zero when the S2 price decreases, namely when the option is

out of the money.
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1.5.2 Exchange option

In this subsection, we assume that the default-free hedger buys from the defaultable

counterparty an exchange option, written on an underlying asset S1, denominated in

the domestic currency, and an underlying asset S2, denominated in a foreign currency

C2. Hence, the payo↵ function of the option is given by

G(t, S1, S2) = (S1 �XD,C2S2)+. (1.62)

Test 6: Nonlinear problem, deterministic time dependent credit spread.

First, we compare the XVA computed with di↵erent numerical methods in the case

of the nonlinear problem with a deterministic credit spread. Note that in the setting

of deterministic credit spread of the counterparty, only two stochastic factors are

involved in the pricing of exchange options.

The points where we show the di↵erent values are close to the at the money line,

S1 �XD,C2S2 = 0.

Table 1.15 and Table 1.16 show the results for the XVA. The multilevel Picard

iteration and the Lagrange-Galerkin methods values are quite far from the Monte

Carlo confidence intervals obtained with a fixed-point method and simple quadrature

formulae for the approximation of the integral in the XVA expression in (2.34). The

MPI and the LG results are closer to each other if we take ⇢ = 5 in the MPI method

and a mesh of 41⇥41 nodes with 200 time steps in the LG method, except for the last

two points when we assume an exponential Vasicek dynamics for the credit spread

and in the last three points under the assumption of a CIR credit spread. This is due

to the fact that the Lagrange-Galerkin results are not reliable near the fixed right

and upper boundaries of the computational domain, in our case located at S1
1 = 60

and S2
1 = 60, respectively.

We show the empirical convergence of the multilevel Picard iteration method by

plotting the relative approximations increments in Figure 1.7.
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Total value adjustment

Monte Carlo MPI LG
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0410,�0.0389] [�0.0222,�0.0211] �0.0078 �0.0081 �0.0084 �0.0083
(12, 12) [�0.0200,�0.0184] [�0.0108,�0.0099] �0.0037 �0.0039 �0.0041 �0.0040
(12, 15) [�0.0087,�0.0076] [�0.0047,�0.0041] �0.0015 �0.0016 �0.0017 �0.0017
(21, 18) [�0.0537,�0.0503] [�0.0290,�0.0272] �0.0103 �0.0105 �0.0109 �0.0107
(21, 21) [�0.0350,�0.0322] [�0.0189,�0.0174] �0.0065 �0.0068 �0.0071 �0.0069
(21, 24) [�0.0220,�0.0197] [�0.0118,�0.0106] �0.0040 �0.0042 �0.0044 �0.0043
(30, 27) [�0.0677,�0.0632] [�0.0366,�0.0342] �0.0134 �0.0133 �0.0137 �0.0134
(30, 30) [�0.0500,�0.0460] [�0.0270,�0.0248] �0.0093 �0.0096 �0.0100 �0.0098
(30, 33) [�0.0362,�0.0327] [�0.0195,�0.0176] �0.0067 �0.0069 �0.0072 �0.0070
(42, 39) [�0.0871,�0.0810] [�0.0471,�0.0437] �0.0170 �0.0169 �0.0172 �0.0169
(42, 42) [�0.0700,�0.0644] [�0.0377,�0.0347] �0.0131 �0.0134 �0.0135 �0.0132
(42, 45) [�0.0557,�0.0506] [�0.0300,�0.0273] �0.0103 �0.0107 �0.0103 �0.0101

Table 1.15: Exchange option, nonlinear problem and deterministic exponential Va-
sicek credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR)
and trapezoidal (SimpT) quadrature formulae), multilevel Picard iteration (MPI) and
Lagrange-Galerkin (LG) methods. Total value adjustment (Test 6)

Total value adjustment

Monte Carlo MPI LG
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0410,�0.0389] [�0.0279,�0.0265] �0.0241 �0.0247 �0.0250 �0.0248
(12, 12) [�0.0200,�0.0184] [�0.0135,�0.0125] �0.0115 �0.0118 �0.0121 �0.0119
(12, 15) [�0.0087,�0.0076] [�0.0058,�0.0051] �0.0045 �0.0048 �0.0051 �0.0051
(21, 18) [�0.0537,�0.0503] [�0.0364,�0.0342] �0.0318 �0.0320 �0.0325 �0.0321
(21, 21) [�0.0350,�0.0322] [�0.0237,�0.0218] �0.0199 �0.0207 �0.0210 �0.0207
(21, 24) [�0.0220,�0.0197] [�0.0148,�0.0133] �0.0124 �0.0127 �0.0131 �0.0129
(30, 27) [�0.0677,�0.0632] [�0.0460,�0.0429] �0.0411 �0.0405 �0.0407 �0.0403
(30, 30) [�0.0500,�0.0460] [�0.0338,�0.0311] �0.0288 �0.0292 �0.0299 �0.0295
(30, 33) [�0.0362,�0.0327] [�0.0245,�0.0221] �0.0206 �0.0209 �0.0215 �0.0212
(42, 39) [�0.0871,�0.0810] [�0.0591,�0.0549] �0.0525 �0.0515 �0.0512 �0.0506
(42, 42) [�0.0700,�0.0644] [�0.0474,�0.0436] �0.0404 �0.0407 �0.0401 �0.0397
(42, 45) [�0.0557,�0.0506] [�0.0376,�0.0342] �0.0317 �0.0324 �0.0307 �0.0303

Table 1.16: Exchange option, nonlinear problem and deterministic CIR credit spread.
Comparison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal
(SimpT) quadrature formulae), multilevel Picard iteration (MPI) and Lagrange-
Galerkin (LG) methods. Total value adjustment (Test 6)
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Figure 1.7: Exchange option with deterministic credit spread. Convergence of the
MPI with exponential Vasicek dynamics for credit spread on the left and CIR dy-
namics on the right.

Test 7: Linear problem, deterministic time dependent credit spread.

The results in the linear case with deterministic credit spread are reported in Table

1.17 and in Table 1.18.

The Lagrange-Galerkin method values with the finer mesh of 41⇥41 nodes and 200

time steps are not inside the Monte Carlo confidence intervals obtained with simple

formulae, that are not reported, but are inside the confidence intervals obtained with

composite formulae, except for the last considered point. In particular, the LG value

in the last point, i.e., when S1,D = 42 and S2,D = 45, is slightly outside the Monte

Carlo confidence interval with composite rectangular quadrature formula in the case

of the exponential Vasicek credit spread, and is not in both confidence intervals in the

case of the CIR credit spread. As pointed out when discussing about the results in

the nonlinear case, this is due to the fact that the last point is too close to the spatial

boundaries chosen in the LG method. Also, we can observe that each LG value is

very close to the lower bound of the corresponding Monte Carlo confidence interval

and that by refining the spatial and time meshes in the LG method the values become

less negative. Therefore, we can expect that by using a finer mesh in the Lagrange-

Galerkin method we can obtain values that are closer to the centres of the Monte
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Total value adjustment

Monte Carlo LG
(S1,D, S2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0084,�0.0079] [�0.0083,�0.0079] �0.0084 �0.0083
(12, 12) [�0.0040,�0.0037] [�0.0040,�0.0037] �0.0041 �0.0040
(12, 15) [�0.0017,�0.0015] [�0.0017,�0.0015] �0.0017 �0.0017
(21, 18) [�0.0109,�0.0102] [�0.0108,�0.0101] �0.0109 �0.0107
(21, 21) [�0.0071,�0.0065] [�0.0070,�0.0065] �0.0071 �0.0069
(21, 24) [�0.0044,�0.0040] [�0.0044,�0.0039] �0.0044 �0.0043
(30, 27) [�0.0137,�0.0128] [�0.0136,�0.0127] �0.0137 �0.0134
(30, 30) [�0.0101,�0.0093] [�0.0100,�0.0092] �0.0100 �0.0098
(30, 33) [�0.0073,�0.0066] [�0.0072,�0.0066] �0.0072 �0.0070
(42, 39) [�0.0177,�0.0164] [�0.0175,�0.0163] �0.0172 �0.0168
(42, 42) [�0.0142,�0.0130] [�0.0140,�0.0129] �0.0135 �0.0132
(42, 45) [�0.0113,�0.0102] [�0.0112,�0.0101] �0.0103 �0.0101

Table 1.17: Exchange option, linear problem and deterministic exponential Vasicek
credit spread. Comparison of Monte Carlo (with composite rectangular (CompR) and
trapezoidal (CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods.
Total value adjustment (Test 7)

Carlo confidence intervals.

Test 8: Nonlinear problem, stochastic credit spread.

We now consider the nonlinear case with stochastic credit spread and analyse how

di↵erent initial values of the counterparty’s credit spread a↵ect the total value adjust-

ment. In the case of stochastic spread of the counterparty, three stochastic factors

are involved in the pricing of exchange options.

We fix the initial value of the first underlying asset to S1,D = 30 and choose the

values of S2,D equal to 27, 30, 33, so that to consider the in the money, at the money

and out of the money cases, respectively. The results are shown in Table 1.19 for

the exponential Vasicek credit spread and in Table 1.20 for the CIR credit spread.

The Monte Carlo method with simple quadrature formulae does not approximate

well enough the total value adjustment, overestimating, in absolute terms, the XVA

with respect the multilevel Picard iterations results, that we take as reference values.
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Total value adjustment

Monte Carlo LG
(S1,D, S2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0252,�0.0239] [�0.0252,�0.0239] �0.0249 �0.0248
(12, 12) [�0.0122,�0.0112] [�0.0122,�0.0112] �0.0121 �0.0119
(12, 15) [�0.0053,�0.0046] [�0.0053,�0.0046] �0.0051 �0.0051
(21, 18) [�0.0329,�0.0309] [�0.0328,�0.0308] �0.0324 �0.0321
(21, 21) [�0.0214,�0.0197] [�0.0213,�0.0196] �0.0210 �0.0207
(21, 24) [�0.0134,�0.0120] [�0.0133,�0.0120] �0.0131 �0.0128
(30, 27) [�0.0415,�0.0387] [�0.0414,�0.0386] �0.0406 �0.0402
(30, 30) [�0.0305,�0.0281] [�0.0305,�0.0280] �0.0298 �0.0294
(30, 33) [�0.0221,�0.0200] [�0.0220,�0.0199] �0.0214 �0.0211
(42, 39) [�0.0533,�0.0496] [�0.0532,�0.0495] �0.0510 �0.0505
(42, 42) [�0.0428,�0.0393] [�0.0427,�0.0393] �0.0400 �0.0396
(42, 45) [�0.0340,�0.0309] [�0.0339,�0.0308] �0.0306 �0.0302

Table 1.18: Exchange option, linear problem and deterministic CIR credit spread.
Comparison of Monte Carlo (with composite rectangular (CompR) and trapezoidal
(CompT) quadrature formulae) and Lagrange Galerkin (LG) methods. Total value
adjustment (Test 7)

As expected, the XVA is a↵ected by the increasing of the probability of the counter-

party’s default: it becomes more negative when it is more likely that the counterparty

defaults. Also, we can see that the total value adjustment is more negative under the

assumption of a CIR credit spread. This is evident also in Figure 1.8 especially for

low initial values of S2,D and large values of the counterparty’s intensity of default.

Test 9: Linear problem, stochastic credit spread.

When considering the linear problem (results in Table 1.21 for the exponential Vasicek

credit spread and in Table 1.22 for the CIR credit spread) we can draw the same

conclusions as for the nonlinear problem.

Figure 1.9 shows the risky price and the XVA. Under the assumption of a CIR

credit spread, it can be seen that when the option is out of the money the total

value adjustment remains small, even increasing the probability of the counterparty’s

default, although when the option is in the money the total value adjustment decays

quickly when increasing the counterparty’s credit spread h. This is less clear in the
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case of an exponential Vasicek credit spread, because XVA is smaller, in absolute

terms.

1.5.3 Sum of call options

Finally, we assume the hedger buys from the counterparty a portfolio of European

call options in di↵erent currencies, so that the portfolio payo↵ function is the sum of

the payo↵ functions of the involved call options, i.e.

G(t, S1, . . . , SN) =
NX

i=1

(XD,CiSi �Ki)+ , (1.63)

where S1, . . . , SN are the N assets respectively denominated in currencies C1, . . . , CN ,

and K1, . . . , KN are the strike values given in the domestic currency D.

In our numerical tests we first assume the derivative is written on two underlying

assets, i.e. N = 2, and we use data reported listed in Table 1.3. The strike values are

set to K1 = 15 and K2 = 12. When considering more than two underlying assets,

the values of Si

0, r
i, qi, �S

i
, Ki, for i = 1, . . . , N , are taken form Table 1.27.

Total value adjustment

Monte Carlo MPI
(S2,D, h) SimpR SimpT ⇢ = 4 ⇢ = 5

(27, 0.010) [�0.0273,�0.0254] [�0.0191,�0.0176] �0.0130 �0.0133
(27, 0.015) [�0.0476,�0.0444] [�0.0292,�0.0272] �0.0160 �0.0166
(27, 0.020) [�0.0677,�0.0632] [�0.0393,�0.0366] �0.0183 �0.0185
(27, 0.025) [�0.0878,�0.0819] [�0.0494,�0.0460] �0.0222 �0.0209
(30, 0.010) [�0.0201,�0.0185] [�0.0142,�0.0130] �0.0103 �0.0103
(30, 0.015) [�0.0351,�0.0323] [�0.0217,�0.0199] �0.0113 �0.0123
(30, 0.020) [�0.0500,�0.0460] [�0.0292,�0.0268] �0.0141 �0.0142
(30, 0.025) [�0.0648,�0.0596] [�0.0366,�0.0336] �0.0155 �0.0156
(33, 0.010) [�0.0145,�0.0131] [�0.0104,�0.0094] �0.0072 �0.0075
(33, 0.015) [�0.0254,�0.0230] [�0.0159,�0.0143] �0.0090 �0.0090
(33, 0.020) [�0.0362,�0.0327] [�0.0212,�0.0191] �0.0101 �0.0102
(33, 0.025) [�0.0470,�0.0425] [�0.0266,�0.0240] �0.0117 �0.0116

Table 1.19: Exchange option, nonlinear problem and stochastic exponential Vasicek
credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and
trapezoidal (SimpT) quadrature formulae) and multilevel Picard iteration (MPI)
methods. Total value adjustment (Test 8)
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Total value adjustment

Monte Carlo MPI
(S̄2, h) SimpR SimpT ⇢ = 4 ⇢ = 5

(27, 0.010) [�0.0273,�0.0254] [�0.0227,�0.0211] �0.0206 �0.0210
(27, 0.015) [�0.0476,�0.0444] [�0.0361,�0.0335] �0.0324 �0.0332
(27, 0.020) [�0.0677,�0.0632] [�0.0493,�0.0458] �0.0439 �0.0439
(27, 0.025) [�0.0878,�0.0819] [�0.0624,�0.0581] �0.0584 �0.0558
(30, 0.010) [�0.0201,�0.0185] [�0.0170,�0.0156] �0.0160 �0.0160
(30, 0.015) [�0.0351,�0.0323] [�0.0269,�0.0246] �0.0227 �0.0245
(30, 0.020) [�0.0500,�0.0460] [�0.0366,�0.0336] �0.0333 �0.0331
(30, 0.025) [�0.0648,�0.0596] [�0.0463,�0.0425] �0.0410 �0.0411
(33, 0.010) [�0.0145,�0.0131] [�0.0125,�0.0112] �0.0112 �0.0115
(33, 0.015) [�0.0254,�0.0230] [�0.0197,�0.0177] �0.0176 �0.0177
(33, 0.020) [�0.0362,�0.0327] [�0.0267,�0.0241] �0.0234 �0.0236
(33, 0.025) [�0.0470,�0.0425] [�0.0338,�0.0304] �0.0303 �0.0301

Table 1.20: Exchange option, nonlinear problem and stochastic CIR credit spread.
Comparison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal
(SimpT) quadrature formulae) and multilevel Picard iteration (MPI) methods. Total
value adjustment (Test 8)

Figure 1.8: Exchange option in the nonlinear case. Total value adjustment with both
exponential Vasicek credit spread (on the left) and CIR credit spread (on the right)
(Test 8)
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Total value adjustment

Monte Carlo
(S2,D, h) SimpR SimpT CompR CompT

(27, 0.010) [�0.0109,�0.0096] [�0.0191,�0.0177] [�0.0140,�0.0129] [�0.0140,�0.0128]
(27, 0.015) [�0.0109,�0.0097] [�0.0294,�0.0273] [�0.0170,�0.0156] [�0.0169,�0.0156]
(27, 0.020) [�0.0110,�0.0097] [�0.0396,�0.0369] [�0.0196,�0.0180] [�0.0195,�0.0179]
(27, 0.025) [�0.0110,�0.0097] [�0.0499,�0.0465] [�0.0219,�0.0202] [�0.0217,�0.0201]
(30, 0.010) [�0.0084,�0.0073] [�0.0142,�0.0130] [�0.0107,�0.0096] [�0.0107,�0.0096]
(30, 0.015) [�0.0085,�0.0074] [�0.0218,�0.0200] [�0.0129,�0.0117] [�0.0128,�0.0116]
(30, 0.020) [�0.0085,�0.0074] [�0.0294,�0.0269] [�0.0148,�0.0134] [�0.0147,�0.0133]
(30, 0.025) [�0.0085,�0.0074] [�0.0369,�0.0339] [�0.0165,�0.0150] [�0.0164,�0.0149]
(33, 0.010) [�0.0064,�0.0054] [�0.0104,�0.0094] [�0.0080,�0.0071] [�0.0079,�0.0070]
(33, 0.015) [�0.0064,�0.0055] [�0.0159,�0.0143] [�0.0096,�0.0085] [�0.0095,�0.0085]
(33, 0.020) [�0.0065,�0.0055] [�0.0214,�0.0193] [�0.0110,�0.0098] [�0.0109,�0.0097]
(33, 0.025) [�0.0065,�0.0055] [�0.0269,�0.0242] [�0.0122,�0.0109] [�0.0121,�0.0108]

Table 1.21: Exchange option, linear problem and stochastic exponential Vasicek credit
spread. Comparison of Monte Carlo with simple rectangular (SimpR), simple trape-
zoidal (SimpT), composite rectangular (CompR) and trapezoidal (CompT) quadra-
ture formulae. Total value adjustment (Test 9)

Total value adjustment

Monte Carlo
(S2,D, h) SimpR SimpT CompR CompT

(27, 0.010) [�0.0181,�0.0165] [�0.0227,�0.0211] [�0.0220,�0.0203] [�0.0220,�0.0203]
(27, 0.015) [�0.0244,�0.0224] [�0.0361,�0.0336] [�0.0340,�0.0315] [�0.0339,�0.0315]
(27, 0.020) [�0.0306,�0.0281] [�0.0494,�0.0460] [�0.0459,�0.0426] [�0.0458,�0.0425]
(27, 0.025) [�0.0366,�0.0337] [�0.0627,�0.0583] [�0.0576,�0.0536] [�0.0575,�0.0535]
(30, 0.010) [�0.0139,�0.0125] [�0.0170,�0.0155] [�0.0165,�0.0151] [�0.0165,�0.0150]
(30, 0.015) [�0.0186,�0.0168] [�0.0269,�0.0246] [�0.0254,�0.0232] [�0.0254,�0.0232]
(30, 0.020) [�0.0232,�0.0210] [�0.0367,�0.0337] [�0.0342,�0.0313] [�0.0342,�0.0313]
(30, 0.025) [�0.0277,�0.0252] [�0.0465,�0.0427] [�0.0429,�0.0393] [�0.0429,�0.0392]
(33, 0.010) [�0.0105,�0.0092] [�0.0125,�0.0112] [�0.0122,�0.0109] [�0.0122,�0.0109]
(33, 0.015) [�0.0139,�0.0123] [�0.0197,�0.0177] [�0.0187,�0.0168] [�0.0186,�0.0167]
(33, 0.020) [�0.0173,�0.0154] [�0.0268,�0.0242] [�0.0251,�0.0225] [�0.0250,�0.0225]
(33, 0.025) [�0.0206,�0.0184] [�0.0339,�0.0306] [�0.0314,�0.0282] [�0.0313,�0.0282]

Table 1.22: Exchange option, linear problem and stochastic CIR credit spread. Com-
parison of Monte Carlo with simple rectangular (SimpR), simple trapezoidal (SimpT),
composite rectangular (CompR) and trapezoidal (CompT) quadrature formulae. To-
tal value adjustment (Test 9)
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Figure 1.9: Exchange option in the linear case. Exponential Vasicek credit spread on
the top and CIR credit spread on the bottom. Risky value on the left and XVA on
the right (Test 9)
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Total value adjustment

Monte Carlo MPI LG
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0087,�0.0076] [�0.0047,�0.0041] �0.0015 �0.0016 �0.0016 �0.0017
(12, 12) [�0.0206,�0.0191] [�0.0111,�0.0103] �0.0037 �0.0040 �0.0042 �0.0042
(12, 15) [�0.0480,�0.0459] [�0.0261,�0.0250] �0.0095 �0.0095 �0.0099 �0.0098
(15, 9) [�0.0251,�0.0231] [�0.0135,�0.0125] �0.0050 �0.0048 �0.0050 �0.0050
(15, 12) [�0.0368,�0.0345] [�0.0200,�0.0187] �0.0071 �0.0073 �0.0077 �0.0075
(15, 15) [�0.0642,�0.0614] [�0.0349,�0.0334] �0.0125 �0.0128 �0.0134 �0.0131
(18, 9) [�0.0503,�0.0474] [�0.0273,�0.0257] �0.0098 �0.0099 �0.0102 �0.0101
(18, 12) [�0.0620,�0.0588] [�0.0337,�0.0319] �0.0121 �0.0122 �0.0128 �0.0126
(18, 15) [�0.0893,�0.0857] [�0.0486,�0.0467] �0.0175 �0.0179 �0.0185 �0.0182

Table 1.23: Sum of call options, nonlinear problem and deterministic exponential
Vasicek credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR)
and trapezoidal (SimpT) quadrature formulae), multilevel Picard iteration (MPI) and
Lagrange-Galerkin (LG) methods. Total value adjustment (Test 10)

As in the previous examples, we assume that the counterparty is defaultable, while

the hedger is default-free. Hence, only the hedger will charge the counterparty an

adjustment on the trade, thus reducing the value of the derivative with respect to the

risk-free setting.

Test 10: Nonlinear problem, deterministic time dependent credit spread.

We first consider a sum of two call options in the nonlinear case with the deterministic

time dependent credit spread and show the numerical results in Table 1.23 and in

Table 1.24, whereas the convergence of the multilevel Picard iteration method is shown

in Figure 1.10. We have chosen the initial value of the underlying assets so that for

each of the two call options we consider the in the money, the at the money and the

out of the money cases and test all the possible combinations. As in the previously

analysed products, we can see that multilevel Picard iteration method results are

close to the ones obtained with Lagrange-Galerkin method, especially when taking

⇢ = 5 in the MPI and a finer mesh in the LG.
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Total value adjustment

Monte Carlo MPI LG
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0087,�0.0076] [�0.0059,�0.0051] �0.0047 �0.0049 �0.0048 �0.0051
(12, 12) [�0.0206,�0.0191] [�0.0140,�0.0129] �0.0114 �0.0121 �0.0125 �0.0126
(12, 15) [�0.0480,�0.0459] [�0.0328,�0.0314] �0.0292 �0.0290 �0.0295 �0.0294
(15, 9) [�0.0251,�0.0231] [�0.0170,�0.0156] �0.0155 �0.0147 �0.0150 �0.0151
(15, 12) [�0.0368,�0.0345] [�0.0251,�0.0235] �0.0219 �0.0221 �0.0228 �0.0225
(15, 15) [�0.0642,�0.0614] [�0.0438,�0.0419] �0.0385 �0.0390 �0.0398 �0.0393
(18, 9) [�0.0503,�0.0474] [�0.0342,�0.0322] �0.0301 �0.0302 �0.0303 �0.0303
(18, 12) [�0.0620,�0.0588] [�0.0422,�0.0401] �0.0371 �0.0372 �0.0382 �0.0378
(18, 15) [�0.0893,�0.0857] [�0.0610,�0.0586] �0.0540 �0.0544 �0.0551 �0.0546

Table 1.24: Sum of call options, nonlinear problem and deterministic CIR credit
spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and trape-
zoidal (SimpT) quadrature formulae), multilevel Picard iteration (MPI) and Lagrange
Galerkin (LG) methods. Total value adjustment (Test 10)
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Figure 1.10: Sum of call options with deterministic credit spread. Convergence of
the MPI with exponential Vasicek dynamics for credit spread on the left and CIR
dynamics on the right.
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Test 11: Linear problem, deterministic time dependent credit spread.

For the linear case with deterministic credit spread, XVA numerical results are shown

in Table 1.25 for the exponential Vasicek dynamics and in Table 1.26 for the CIR dy-

namics. In the first case, when taking a mesh of 21⇥21 nodes and 100 time steps in the

Lagrange-Galerkin method, there are some values outside the corresponding Monte

Carlo confidence intervals. However, when taking a finer mesh, the resulting XVA

values are inside or on the lower bound of Monte Carlo confidence intervals obtained

with the rectangular composite formula. When considering the trapezoidal composite

formula, there are some LG values that are slightly outside the corresponding Monte

Carlo confidence intervals. As already pointed out in the case of the exchange op-

tion, the use of an even more refined mesh probably makes the Lagrange-Galerkin

values less negative and, therefore, closer to the centres of the confidence intervals.

In the case of the CIR dynamics, the Lagrange-Galerkin results with both the con-

sidered discretization meshes are inside the Monte Carlo confidence intervals, except

for the point (S1,D, S1,D) = (15, 15), where the XVA obtained with the coarser mesh

is slightly outside the confidence intervals.

We now consider the sum of call options on di↵erent numbers N of assets in their

corresponding currencies. Table 1.27 shows data for the case of N = 32 assets. Note

that when considering a number of assets lower than 32, we use the data of rows

i = 1, . . . , N appearing in Table 1.27 (i.e., for the case of 2 assets we consider the

rows i = 1, 2, and so on for 4, 8, 16 and 32 assets).

Table 1.28 shows the risk-free prices, that are obviously independent of the coun-

terparty’s credit spread and of the choice of the mark-to-market value. With the

chosen data, the risk-free price increases by increasing the number of the underlying

assets, so we expect that the XVA becomes more negative. The total value adjust-

ment is analysed in the next two tests both in the nonlinear case and in the linear

case.
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Total value adjustment

Monte Carlo LG
(S1,D, S2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0018,�0.0015] [�0.0017,�0.0015] �0.0016 �0.0017
(12, 12) [�0.0042,�0.0039] [�0.0041,�0.0038] �0.0042 �0.0042
(12, 15) [�0.0098,�0.0094] [�0.0097,�0.0093] �0.0099 �0.0098
(15, 9) [�0.0051,�0.0047] [�0.0050,�0.0046] �0.0050 �0.0050
(15, 12) [�0.0075,�0.0070] [�0.0074,�0.0070] �0.0077 �0.0075
(15, 15) [�0.0131,�0.0125] [�0.0130,�0.0124] �0.0133 �0.0131
(18, 9) [�0.0102,�0.0096] [�0.0101,�0.0096] �0.0102 �0.0101
(18, 12) [�0.0126,�0.0120] [�0.0125,�0.0119] �0.0128 �0.0126
(18, 15) [�0.0182,�0.0175] [�0.0181,�0.0174] �0.0185 �0.0182

Table 1.25: Sum of call options, linear problem and deterministic exponential Vasicek
credit spread. Comparison of Monte Carlo (with composite rectangular (CompR) and
trapezoidal (CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods.
Total value adjustment (Test 11)

Total value adjustment

Monte Carlo LG
(S1,D, S2,D) CompR CompT 21⇥21, 100 41⇥41, 200

(12, 9) [�0.0053,�0.0046] [�0.0053,�0.0046] �0.0047 �0.0051
(12, 12) [�0.0126,�0.0117] [�0.0126,�0.0117] �0.0125 �0.0125
(12, 15) [�0.0296,�0.0283] [�0.0295,�0.0282] �0.0294 �0.0293
(15, 9) [�0.0153,�0.0141] [�0.0153,�0.0141] �0.0149 �0.0150
(15, 12) [�0.0226,�0.0212] [�0.0226,�0.0212] �0.0227 �0.0225
(15, 15) [�0.0396,�0.0379] [�0.0395,�0.0378] �0.0397 �0.0392
(18, 9) [�0.0309,�0.0291] [�0.0308,�0.0290] �0.0302 �0.0302
(18, 12) [�0.0381,�0.0362] [�0.0381,�0.0361] �0.0380 �0.0377
(18, 15) [�0.0551,�0.0529] [�0.0549,�0.0528] �0.0550 �0.0545

Table 1.26: Sum of call options, linear problem and deterministic CIR credit spread.
Comparison of Monte Carlo (with composite rectangular (CompR) and trapezoidal
(CompT) quadrature formulae) and Lagrange-Galerkin (LG) methods. Total value
adjustment (Test 11)
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i Si,D ri qi �S
i

Ki i Si,D ri qi �S
i

Ki

1 11 0.020 0.030 0.300 15 17 11 0.018 0.025 0.324 10
2 13 0.020 0.010 0.200 12 18 13 0.006 0.032 0.288 11
3 13 0.037 0.011 0.289 15 19 15 0.001 0.035 0.306 13
4 14 0.026 0.024 0.299 10 20 14 0.017 0.033 0.277 13
5 14 0.024 0.024 0.277 13 21 10 0.026 0.011 0.325 13
6 11 0.008 0.033 0.271 13 22 13 0.014 0.020 0.308 11
7 10 0.002 0.032 0.201 10 23 12 0.018 0.013 0.330 15
8 13 0.014 0.016 0.210 10 24 10 0.015 0.035 0.230 15
9 10 0.017 0.022 0.265 13 25 15 0.018 0.014 0.245 12
10 14 0.021 0.017 0.265 15 26 15 0.023 0.013 0.271 14
11 13 0.006 0.034 0.228 10 27 11 0.010 0.021 0.274 14
12 15 0.011 0.029 0.279 12 28 13 0.022 0.012 0.291 12
13 15 0.029 0.012 0.290 15 29 12 0.008 0.030 0.323 11
14 11 0.013 0.028 0.308 12 30 12 0.003 0.045 0.279 11
15 15 0.008 0.037 0.246 12 31 13 0.002 0.035 0.341 11
16 14 0.033 0.011 0.261 11 32 13 0.026 0.024 0.309 12

Table 1.27: Data for the sum of call options. For N = 2, 4, 8, 16, 32 we respectively
consider the rows of the table from 1 to 2, 4, 8, 16, 32.

Risk-free value

N Monte Carlo

2 [1.9330, 2.0468]
4 [7.1207, 7.3713]
8 [13.5861, 13.9660]
16 [30.8413, 31.4230]
32 [60.2779, 61.1494]

Table 1.28: Sum of call options. Monte Carlo confidence intervals. Risk-free value
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Total value adjustment

MPI
N ⇢ = 4 ⇢ = 5

2 �0.0057 �0.0058
4 �0.0216 �0.0215
8 �0.0400 �0.0409
16 �0.0912 �0.0913
32 �0.1778 �0.1795

Elapsed time

MPI
N ⇢ = 4 ⇢ = 5

2 11.1905 3816.6932
4 16.7175 4775.5968
8 26.4006 7375.3050
16 42.3238 12573.8821
32 75.8329 22500.3082

Table 1.29: Sum of call options, nonlinear problem and stochastic exponential Vasicek
credit spread. Multilevel Picard iteration (MPI) results. Total value adjustment and
elapsed time in seconds (Test 12)

Test 12: Nonlinear problem, stochastic credit spread.

We assume the counterparty’s credit spread is stochastic and that the mark-to-market

value is equal to the risky derivative value (nonlinear case).

Table 1.29 and Table 1.30 show the total value adjustment for di↵erent numbers

of underlying assets. In particular, we show the average value of XVA on Nruns = 10

runs of the multilevel Picard iteration method. Also, the tables report the elapsed

computational time for Nruns = 10 runs of the MPI. The elapsed computational

time does not depend on the dynamics chosen for the credit spread, but increases

by increasing the value of the parameter ⇢. In fact, we recall that the number of

simulations is fixed to mn,l,⇢ = ⇢n�l and the number of rectangles is chosen to be

⇢n�l, so that larger values of ⇢ correspond to larger numbers of simulations and of

discretization nodes.

Figure 1.11 shows that the empirical convergence of the multilevel Picard iteration

for di↵erent numbers of assets.

Test 13: Linear problem, stochastic credit spread.

Finally, we consider the sum of up to N = 32 call options in the linear case and

report the computed total value adjustment and the elapsed time in Table 1.31 and

in Table 1.32. Results are obtained by using the Monte Carlo method with composite
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Total value adjustment

MPI
N ⇢ = 4 ⇢ = 5

2 �0.0150 �0.0151
4 �0.0561 �0.0556
8 �0.1048 �0.1059
16 �0.2391 �0.2379
32 �0.4649 �0.4661

Elapsed time

MPI
N ⇢ = 4 ⇢ = 5

2 12.1386 3596.6193
4 15.8039 4988.5962
8 27.1096 7512.3959
16 41.6914 12348.0835
32 75.2775 21826.0707

Table 1.30: Sum of call options, nonlinear problem and stochastic CIR credit spread.
Multilevel Picard iteration (MPI) results. Total value adjustment and elapsed time
in seconds (Test 12)
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Figure 1.11: Sum of call options with stochastic credit spread. Convergence of the
MPI with exponential Vasicek dynamics for credit spread on the left and CIR dy-
namics on the right.
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Total value adjustment

Monte Carlo
N CompR CompT

2 [�0.0061,�0.0057] [�0.0060,�0.0056]
4 [�0.0222,�0.0212] [�0.0220,�0.0211]
8 [�0.0415,�0.0399] [�0.0411,�0.0396]
16 [�0.0922,�0.0896] [�0.0915,�0.0889]
32 [�0.1809,�0.1762] [�0.1796,�0.1748]

Elapsed time

Monte Carlo
N CompR CompT

2 0.5384 0.5389
4 0.6200 0.6814
8 0.8646 0.8936
16 2.6761 2.6853
32 3.4442 3.5099

Table 1.31: Sum of call options, linear problem and stochastic exponential Vasicek
credit spread. Monte Carlo with composite rectangular (CompR) and trapezoidal
(CompT) quadrature formulae results. Total value adjustment and elapsed time
(Test 13)

Total value adjustment

Monte Carlo
N CompR CompT

2 [�0.0156,�0.0147] [�0.0155,�0.0146]
4 [�0.0564,�0.0544] [�0.0563,�0.0542]
8 [�0.1063,�0.1031] [�0.1061,�0.1029]
16 [�0.2380,�0.2328] [�0.2375,�0.2323]
32 [�0.4647,�0.4562] [�0.4637,�0.4552]

Elapsed time

Monte Carlo
N CompR CompT

2 0.5177 0.5528
4 0.6640 0.6759
8 0.8809 0.9064
16 2.5279 2.5478
32 3.7823 3.7983

Table 1.32: Sum of call options, linear problem and stochastic CIR credit spread.
Monte Carlo with composite rectangular (CompR) and trapezoidal (CompT) quadra-
ture formulae results. Total value adjustment and elapsed time (Test 13)

quadrature formulae and the 99% confidence intervals are reported. As in the non-

linear case, the XVA is more negative for larger values of N . The elapsed time does

not depend on the choice of the credit spread dynamics and the trapezoidal formula

is a little more time-consuming than the rectangular formula.

1.6 Conclusions

In this chapter, we have addressed the modelling and the computation of the total

value adjustment in a multi-currency setting by considering a derivative written on
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assets denominated in foreign currencies. We have assumed that the foreign exchange

rates are deterministic, the derivative is collateralized in cash in a foreign currency

and the counterparty’s intensity of default is an exponential Vasicek or a CIR process.

The portfolio replication and the dynamic hedging methodologies have provided

the formulation of the total value adjustment pricing problem in terms of nonlinear

and linear PDEs. Then, the use of Feynman-Kac formulae has provided the equivalent

formulations in terms of expectations that allow to apply Monte Carlo simulation

techniques to the corresponding nonlinear and linear models.

First, we have numerically solved the total value adjustment pricing PDEs by

applying the Lagrange-Galerkin method under the assumption that the counterparty’s

credit spread is a deterministic function of time and the derivative is written on

two underlying assets. Then, from the comparison with Lagrange-Galerkin method

results, we have deduced that in the nonlinear case the multilevel Picard iteration

method results can be taken as reference values, whereas in the linear case we can

consider the Monte Carlo confidence intervals obtained by using composite quadrature

formulae for the approximation of the integral in the total value adjustment formulae.

Briefly, we have seen that the total value adjustment is more negative when the

derivative is more valuable and that it becomes more and more negative by increasing

the counterparty’s probability of default.

In the next chapter, we extend the model and the methodologies proposed in this

chapter to the more realistic and complex setting of stochastic foreign exchange rates.
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Chapter 2

Total Value Adjustment in a

multi-currency setting with

stochastic FX rates

2.1 Introduction

In Chapter 1 we have addressed the computation of the XVA in a multicurrency set-

ting for di↵erent European vanilla options by means of appropriate proposed models

that are formulated in terms of expectations. Moreover, the XVA pricing problem has

been also formulated in terms of nonlinear and linear PDEs, although their numeri-

cal solution has been addressed in the particular case of deterministic counterparty’s

credit spread with a Lagrange-Galerkin method. The statement of the models in the

multicurrency setting has been obtained by means of appropriate replicating portfolios

and it was assumed that the foreign exchange rates between the involved currencies

are constant.

The main objective objective of this chapter is the extension of the methodology

developed in Chapter 1 to the more realistic and complex modelling approach that

considers stochastic foreign exchange rates. For this purpose, we mainly follow the
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ideas developed in [89].

First, this extension requires the introduction of appropriate stochastic dynamics

for FX rates and for the underlying assets prices.

As a first approach, we will consider that the stochastic dynamics of each FX

rate follows a geometric Brownian motion process, although in the future other more

general dynamics could be considered.

Also, in this chapter we assume that the derivative is partially collateralized and

the collateral is a portfolio of bonds denominated in a foreign currency, which is a

di↵erence with respect to [89].

As in Chapter 1, we assume a positive mean-reversion dynamics for the credit

spread, a more realistic assumption with respect to the Gaussian process used in [89].

The chapter is organized as follows. In Section 2.2 we deduce mathematical models

for XVA formulated in terms of nonlinear or linear PDEs problems, depending on

the choice of the mark-to-market derivative value. In Section 2.3 we formulate the

problems in terms of expectations. In Section 2.4 we introduce the proposed numerical

methods to approximate XVA price. In particular, Subsection 2.4.1 and Subsection

2.4.2 deal with Monte Carlo and multilevel Picard iteration methods, respectively.

In Section 2.5 we show and discuss numerical results that correspond to di↵erent

examples of European options: spread option, option on the maximum, best of put/put

option, basket option. Finally, in Section 2.6 we summarize the main conclusions.

2.2 Formulation in terms of partial di↵erential equa-

tions

In this section, we deduce a PDE formulation for the value of a derivative which

is traded between a default-free hedger and a defaultable counterparty in a multi-

currency setting. Therefore, we take into account the valuation adjustment due to the

fact that the counterparty may default (counterparty risk). More precisely, we extend

the models in Chapter 1 by assuming that the FX rates have stochastic dynamics.
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We denote by D the domestic currency and by C0, . . . , CN the foreign currencies.

For j = 0, . . . , N , let X
D,Cj

t be the FX rate between currencies D and Cj at time t,

i.e., the value in domestic currency D of one unit of the foreign currency Cj at time

t. The dynamics of the stochastic FX rate X
D,Cj

t under the real world measure P is

described by the SDEs:

dX
D,Cj

t = µX
j
X

D,Cj

t dt+ �X
j
X

D,Cj

t dWX
j
,P

t , (2.1)

where µX
j
and �X

j
are respectively the real world drift and the volatility of XD,Cj ,

while WX
j
,P is a standard P -Brownian process. Obviously, if Cj = D for a certain j,

then X
D,Cj

t = 1 at any time t. We denote by Xt = (XD,C0
t , . . . , XD,CN

t ) the vector of

the FX rates values at time t and by X̄t = (XD,C1
t , . . . , XD,CN

t ) the vector of the FX

rates values, except the value of XD,C0 , at time t. Indeed, this notation will be useful

in the following, since we will consider derivatives written on N underlying assets

denominated in currencies C1, . . . , CN , respectively, while C0 will be the currency of

the collateral account.

Alternative more complex models to the geometric Brownian motion defined by

(2.1) are proposed in the literature (see [67, 49], for example). The additional con-

sideration of local, stochastic or local/stochastic volatilities leads to increasing the

complexity and the number of stochastic factors, although the same methodology

could be applied.

For i = 1, . . . , N , let Si

t
denote the price of a foreign asset in units of the foreign

currency Ci at time t and let St = (S1
t
, . . . , SN

t
) be the vector of the assets prices at

time t. Moreover, let ht be the counterparty’s credit spread at time t. We assume

that under the real world measure P the evolution of the prices of the foreign assets

and of the counterparty’s credit spread are respectively governed by the SDEs:

dSi

t
=µS

i
Si

t
dt+ �S

i
Si

t
dW S

i
,P

t , for i = 1, . . . , N , (2.2)

dht =µh,P (t, ht) dt+ �h,P (t, ht) dW
h,P

t , (2.3)

where µS
i
,P and µh,P are the real world drifts of the processes, while �Si and �h,P are
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their volatilities. Moreover, W S
i
,P and W h,P are Brownian processes under the real

world measure P .

We assume that all the processes are correlated with constant correlations. The

correlation matrix is given by:

corr(S,X, h) =

2
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(2.4)

In order to infer the dynamics of XD,Cj , for j = 0, . . . , N , under the risk neutral

probability measure of the domestic market, denoted by QD, we consider two bonds

with maturity T in the domestic market and in the j-th foreign market, for j =

0, . . . , N , the prices of which at time t are denoted by BD

t
and B

Cj

t , respectively.

By using equation (2.1), the discounted price of the foreign bond in the domestic

currency D is given by

B̂j,D

t = (BD

t
)�1B

Cj

t X
D,Cj

t

= B̂j,D

0 exp

✓✓
rj � rD + µX

j � (�X
j
)2

2

◆
t+ �X

j
WX

j
,P

t

◆
,

(2.5)

where rD and rj, j = 0, . . . , N , are the short-term rates in the domestic market and

in the j-th foreign market, respectively. Thus, we are assuming that interest rates

rD and rj are constant. Note that the consideration of stochastic evolution of these

interest rates would increase the number of stochastic factors in a significant way.

The idea is to address this step in a future work.
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Thus, the dynamics of B̂j,D

t under the real measure P is given by

dB̂j,D

t = (µX
j
+ rj � rD)B̂j,D

t dt+ �X
j
B̂j,D

t dWX
j
,P

t . (2.6)

From Girsanov’s Theorem [47], there exists an equivalent measure QD, such that we

can build a Brownian motion WX
j
,Q

D
under the measure QD, which is defined as:

WX
j
,Q

D

t = WX
j
,P

t +

Z
t

0

mj

s
ds,

or equivalently, WX
j
,Q

D
satisfies the relation dWX

j
,Q

D

t = dWX
j
,P

t +mj

tdt, where mt

is the process associated to the change of measure.

Therefore, the dynamics of B̂j,D

t under the measure QD is given by

dB̂j,D

t = (µX
j
+ rj � rD �mj

t �
X

j
)B̂j,D

t dt+ �X
j
B̂j,D

t dWX
j
,Q

D

t . (2.7)

Since B̂j,D

t must be a martingale under QD, we get

rD � rj = µX
j �mj

t �
X

j
, (2.8)

that leads to

X
D,Cj

t = X
D,Cj

0 exp

✓✓
rD � rj � (�X

j
)2

2

◆
t+ �X

j
WX

j
,Q

D

t

◆
, (2.9)

or equivalently,

dX
D,Cj

t = (rD � rj)X
D,Cj

t dt+ �X
j
X

D,Cj

t dWX
j
,Q

D

t . (2.10)

Also, we need to infer the dynamics of Si

t
under the risk neutral measure of the

domestic market QD. For this purpose, we assume that the dynamics of Si

t
under the

risk neutral measure of the domestic market and under the risk neutral measure of

the foreign market, denoted by QCi , are respectively given by the SDEs:

dSi

t
= µS

i
,Q

D
Si

t
dt+ �S

i
Si

t
dW S

i
,Q

D

t , (2.11)

dSi

t
= (ri � qi)Si

t
dt+ �S

i
Si

t
dW S

i
,Q

Ci

t , (2.12)
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where µS
i
,Q

D
is the drift of Si

t
under the measure QD, �S

i
is its volatility, ri is the

short-term rate of the i-th foreign market and qi is the continuous dividend yield paid

by Si

t
. Moreover,W S

i
,Q

D

t andW S
i
,Q

Ci

t are aQD-Brownian motion and aQCi-Brownian

motion, respectively.

We denote by Si,D

t the price of the foreign underlying asset Si in the domestic

currency D, that is to say, Si,D

t = Si

t
XD,Ci

t . From (2.10) and (2.11), by applying the

classical Itô’s formula we obtain that the dynamics of Si,D follows the SDE:

dSi,D

t = d(Si

t
XD,Ci

t )

= (rD � ri + µS
i
,Q

D
+ ⇢S

i
X

i
�S

i
�X

i
)Si

t
XD,Ci

t dt

+ (�S
i
dW S

i
,Q

D
+ �X

i
dWX

i
,Q

D
)Si

t
XD,Ci

t .

(2.13)

Since the drift of Si,D under the risk neutral measure of the domestic market is

given by (rD � qi), we obtain

µS
i
,Q

D
= ri � qi � ⇢S

i
X

i
�S

i
�X

i
.

Therefore, from (2.11) we get that the dynamics of Si

t
under the risk neutral measure

of the domestic market follows the SDE:

dSi

t
= (ri � qi � ⇢S

i
X

i
�S

i
�X

i
)Si

t
dt+ �S

i
Si

t
dW S

i
,Q

D

t . (2.14)

As in Chapter 1, we assume that under the risk-neutral measure QD, the coun-

terparty’s credit spread follows an exponential Vasicek process, so that

dht = ↵ ht (m� log(ht)) dt+ �h ht dW
h,Q , with m = ✓ +

(�h)2

2↵
, (2.15)

where ↵, ✓ and �h are positive constant and W h,Q
D
is a Brownian motion under the

risk-neutral measure QD. In Section 2.5, where we report numerical examples, we

also show results obtained with the assumption of the CIR dynamics for the credit

spread.

Finally, the derivative value in the domestic currency D at time t is given by

V D

t
= V D(t, St, Xt, ht, Jt), where Jt is the counterparty’s default state at time t,
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i.e., Jt = 1 in case of default before or at time t, otherwise Jt = 0, and the risk-free

derivative value in currency D is denoted by WD

t
= WD(t, St, Xt). In this chapter, we

assume the derivative is traded under a collateralization agreement and the collateral

is composed of a portfolio of bonds denominated in currency C0. We denote by

CC0
t and CD

t
the values of the collateral account at time t in currencies C0 and D,

respectively, i.e., CD

t
= CC0

t XD,C0 .

2.2.1 Replicating portfolio

Once we have deduced the dynamics of the processes involved in the model under

the domestic risk neutral measure QD, in order to compute the derivative value, we

implement a self-financing strategy by building a portfolio ⇧ which hedges all the risk

factors, which are:

the market risk due to changes in Si, for i = 1, . . . , N ;

the FX risk due to changes in XD,Cj , for j = 0, . . . , N ;

the counterparty’s spread risk due to changes in h;

the counterparty’s default risk.

More precisely, we extend the portfolio in Chapter 1, where FX rates were supposed

to be deterministic, in order to take into account also the exposure to the FX risk

due to changes in the FX rates. The FX risk is hedged by trading in N + 1 fully

collateralized FX derivatives: for j = 0, . . . , N , Ej denotes the net present value in

currency D of the derivative written on the FX rate XD,Cj .

As in Chapter 1, we assume the hedger buys the derivative from the counterparty

and we describe the transactions occurring with her treasury, the FX market and the

REPO market. This transactions are represented in Figure 2.1.

At time t, the hedger borrows V D

t
cash from her treasury to buy the deriva-

tive and receives bonds denominated in currency C0 from the counterparty as

collateral.
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The hedger sells the bonds got as collateral in the repo market and receives the

cash amount, in currency C0, corresponding to the bonds spot price CC0
t .

The hedger exchanges the cash received from the repo market in the FX market,

obtaining CD

t
= CC0

t XD,C0
t in the domestic currency D, that she gives to the

treasury. Therefore, the outstanding debt to the treasury is V D

t
�CD

t
, that will

grow at the funding rate fD

t
.

At time t + dt the repo position has to be closed. The hedger buys back the

bonds, that she gives to the counterparty, by paying the cash CC0
t plus interest

CC0
t rR

t
, where rR is the instantaneous repo rate. In order to pay the repo market,

according to a forward contract agreed at time t, the hedger sells forward the

amount CC0
t (1 + rR

t
dt) multiplied by the forward FX rate XD,C0

t

1+r
D
dt

1+(rC0+bC0,D)dt

and receives CC0
t (1 + rR

t
dt) in currency C0.

At time t+ dt the debt to the treasury is

⇣
V D

t
� CD

t

⌘⇣
1 + fD

t
dt
⌘
+ CD

t

✓
1 +

⇣
rD + rR � rC0 � bC0,D

⌘
dt

◆

=
⇣
V D

t
� CD

t

⌘⇣
1 + fD

t
dt
⌘
+ CD

t

✓
1 +

⇣
rD + rR + sbD,C0

⌘
dt

◆
,

(2.16)

where sbD,C0 = bD,C0 � rC0 is the cross currency basis spread.

As in Chapter 1, we denote by BD

t
and ⌦t the value in currency D and the number

of shares of the funding account at time t. Thus, according to the self-financing

condition of the replicating strategy:

⌦tB
D

t
= �

⇣
V D

t
� CC0

t XD,C0
t

⌘
, (2.17)

so that the number of shares of the funding account in the portfolio ⇧t at time t is

given by:

⌦t = �V D

t
� CC0

t XD,C0
t

BD

t

. (2.18)

84



Counterparty Hedger FX market

Treasury

REPO market

V
D
t

C
C0
t

C
C0
t+dt

C
C0
t

C
D
t

C
D
t (1+(rD+r

R+sb
D,C0 )dt)

C
C0
t (1+r

C0dt)

V
D
tC

D
t

C
D t
(1
+
(r

D
+
r
R
+
s
b
D

,C
0
)d
t
)

C
C0
tC

C0
tC

C0
t+dt C

C0
t (1+r

R
dt)

Figure 2.1: Transactions occurring with the treasury, the FX market and the REPO
market to fund the trade. Straight lines refer to initial transactions, that take place at
time t, while curved lines to final transactions taking place at time t+dt. Continuous
lines represent cash transactions whereas dashed ones represent asset transactions.
Blue lines indicate amounts denominated in currency D, whereas red ones represent
cash of asset transactions denominated in currency C0.
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Therefore, the replicating portfolio ⇧t at time t is made as follows:

⇧t =
NX

i=1

↵i

t
H i,D

t +
NX

j=0

⌘jtE
j

t + �tCDSD(t, T ) + ✏tCDSD(t, t+ dt)

+ ⌦tB
D

t
+ �D

t
,

(2.19)

where

↵i

t
represents the weight of the derivative H i,D

t , for i = 1, . . . , N , in the portfolio

composition at time t;

⌘jt denotes the weight of the derivative Ej

t , for j = 0, . . . , N , in the portfolio

composition at time t;

�t and ✏t are the units of the long term credit default swap and of the short

term credit default swap, respectively, in the portfolio composition at time t;

⌦t represents the number of shares of the funding account in the portfolio com-

position at time t;

�D

t
denotes the amount of cash in the collateral account at time t, which is

composed of

�D

t
= �

NX

i=1

↵i

t
H i,D

t �
NX

j=0

⌘jtE
j

t � �tCDSD(t, T ) + CC0
t XD,C0

t . (2.20)

The variation of the collateral account in the time interval from t to t+dt is given

by

d�̄D

t
=�

"
NX

i=1

↵i

t
(rD + bD,Cj)H i,D

t +
NX

j=0

⌘jt r
DEj

t + �tr
DCDSD(t, T )

�
⇣
rD + rR + sbD,C0

⌘
CC0

t XD,C0
t

#
dt .

(2.21)
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2.2.2 Pricing partial di↵erential equations

Next, we deduce the pricing PDEs. As a consequence of the no arbitrage condition,

we have

⇧t(t, St, Xt, ht, Jt) + V D(t, St, Xt, ht, Jt) = 0,

so that the self-financing condition leads to �dV D

t
= d⇧t, thus

�dV D

t
=

NX

i=1

↵i

t
dH i,D

t +
NX

j=0

⌘jtdE
j

t + �tdCDSD(t, T ) + ✏tdCDSD(t, t+ dt)

+ ⌦tdBt + d�̄D

t
.

(2.22)

From Itô’s formula for jump-di↵usion processes [81] we obtain the variation of V D

from t to t+ dt:

dV D

t
=

@V D

@t
dt+

NX

i=1

@V D

@Si
dSi

t
+

NX

j=0

@V D

@Xj
dXj

t +
@V D

@h
dht +�V DdJt

+


1

2

NX

i,k=1

⇢S
i
S
k
�S

i
�S

k
Si

t
Sk

t

@2V D

@SiSk
+

1

2

NX

j,l=0

⇢X
j
X

l
�X

j
�X

l
Xj

tX
l

t

@2V D

@XjX l

+
1

2
(�hht)

2@
2V D

@h2
+

NX

i=1

NX

j=0

⇢S
i
X

j
�S

i
�X

j
Si

t
Xj

t

@2V D

@Si@Xj

+
NX

i=1

⇢S
i
h�S

i
�hSi

t
ht

@2V D

@Si@h
+

NX

j=0

⇢X
j
h�X

j
�hXj

t ht

@2V D

@Xj@h

�
dt,

where �V D is the variation of V D

t
at default, defined as

�V D = V D(t, St, Xt, ht, 1)� V D(t, St, Xt, ht, 0). (2.23)

Note that if the counterparty defaults at time t the value of the risky derivative at

time t is given by

V D(t, St, Xt, ht, 1) = CC0(t)XD,C0
t +RC

⇣
MD(t, St, Xt, ht)� CC0(t)XD,C0

t

⌘+

+
⇣
MD(t, St, Xt, ht)� CC0(t)XD,C0

t

⌘�
,

(2.24)
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where M(t, St, Xt, ht) denotes the mark-to-market price and RC the counterparty’s

recovery rate. Therefore, the variation of V D at default can be written as

�V D = CC0XD,C0 +RC(M
D � CC0XD,C0)+ (2.25)

+ (MD � CC0XD,C0)� � V D.

Thus, by also taking into account the dynamics of the short term CDS in (1.15) and

of the funding account in (1.16), we obtain that the change in ⇧t in the infinitesimal

interval [t, t+ dt] is given by

d⇧t =
NX

i=1

↵i

t

✓
@H i,D

@t
+ (ri � qi � ⇢S

i
X
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�S

i
�X

i
)Si

t
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@Si
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t

@H i,D

@X i

+
1

2
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t
�S
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+
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@(X i)2

+ ⇢S
i
X
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Therefore, in order to hedge the risks in the portfolio ⇧, we choose:
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Next, we take into account the equations satisfied by H i,D, Ej and CDSD(t, T ),

which are respectively given by:
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Finally, from the previous arguments, equation (2.22) turns into
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(2.26)
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where the di↵erential operator LSXh is given by
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(2.27)

As in Chapter 1, we choose two possible values for the mark-to-market value MD

in (2.25), either equal to the risky derivative value or equal to the value of the risky-

free derivative in terms of counterparty risk. Therefore, from these two possibilities,

we get two alternative PDEs models.

If MD = V D, the PDE (2.26) turns into:
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(2.28)

If MD = WD, the PDE (2.26) turns into:
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(2.29)

Note that the value of the risk-free derivative, WD, satisfies the PDE:
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where
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(2.30)

As both the risky derivative and the risk-free derivative at time T are equal to

the payo↵ G, i.e.,

WD(T, S, X̄) = V D(T, S,X, h) = G(S,X),

then the total value adjustment U at maturity T is zero.

Therefore, by taking into account the equations satisfied by the risky and risk-free

derivatives, we obtain the following alternative PDE problems satisfied by the total

value adjustment.

If MD = V D the XVA is the solution of the nonlinear PDE problem:
8
>>>>>>>><

>>>>>>>>:

@U

@t
+ LSXhU � fDU

= h(WD + U � CC0XD,C0)+

+(rD + rR + sbD,C0 � fD)CC0XD,C0 ,

U(T, S,X, h) = 0.

(2.31)

If MD = WD the XVA is the solution of the linear PDE problem:
8
>>>>>>>><

>>>>>>>>:
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⇣
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(2.32)
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In both cases, the PDEs are posed in the unbounded domain

D = {(t, S,X, h) 2 [0, T )⇥ (0,+1)N ⇥ (0,+1)(N+1) ⇥ (0,+1)}.

Note that the PDE model inferred in this section has the same structure as the

one in Chapter 1. The di↵erence between the two models lies in the fact that here

we have N + 1 extra stochastic factors, namely XD,C0 , XD,C1 , . . . , XD,CN , which are

assumed to be constant in Chapter 1. Thus, the new model that incorporates the more

realistic approach by considering stochastic foreign exchange rates also involves much

higher spatial dimension in the PDEs problems. Therefore, when trying to solve these

PDEs formulations by means of standard finite di↵erences or finite element methods,

the curse of dimensionality comes into place in a more relevant way. Thus, in the

next section, we formulate the XVA problems in terms of expectations and then apply

Monte Carlo techniques to approximate the XVA. In the nonlinear case we use Picard

iteration or multilevel Picard iteration methods.

2.3 Formulation in terms of expectations

In order to apply Picard iteration methods based on Monte Carlo simulation tech-

niques, we follow the same approach as in Chapter 1 and we first apply appropriate

Feynman-Kac formulae for the nonlinear [14] and linear [81] PDEs to obtain their

equivalent formulations in terms of expectations.

Thus, after applying the previously indicated Feynman-Kac formulae, we get two

alternative integral equations.

If MD = V D, the total value adjustment at time t is given by:
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,

(2.33)
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so that the XVA value at time t = 0 (also referred to as XVA price), is:
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If MD = WD, the total value adjustment at time t is given by:
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Therefore, the XVA price is:
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(2.36)

2.4 Numerical methods

In this section, we introduce the numerical methods proposed to compute the total

value adjustment both in the nonlinear and in the linear case. In particular, we adapt

the Monte Carlo and multilevel Picard iteration methodologies introduced in Chapter

1 to the model with stochastic FX rates.

2.4.1 Monte Carlo method

In order to numerically approximate the XVA value in both the nonlinear case (2.34)

and the linear case (2.36), we first introduce a time discretization based on a uniform
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mesh with Z time nodes tZ = z�t, z = 0, . . . , Z � 1, the constant �t = T/(Z � 1)

being the time step.

Taking into account the previous time mesh, we can discretize the dynamics of

the underlying assets Si (for i = 1, . . . , N), the FX rates Xj (for j = 0, . . . , N) and

the investor’s credit spread h by using the Euler-Maruyama scheme [65]. Thus, for

z = 0, . . . , Z � 2, we consider the iterative procedure:

Si
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z
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z
+ (rD � rj)Xj

z
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j
Xj

z
�WX

j

z+1 .

As already stated in Chapter 1, in the case of the exponential Vasicek dynamics the

credit spread dynamics is approximated by the Euler-Maruyama scheme given by

hz+1 = eh̃z+1 , with h̃z+1 = h̃z + ↵(✓ � h̃z)�t+ �h�W h

z
,

whereas in the case of the CIR model the credit spread is approximated by the “full

truncation” scheme proposed in [30] and given by

hz+1 = hz + ↵(✓ � h+
z
)�t+ �h

p
h+
z
�W h

z
.

The quantities �W S
i
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i

z
, for i = 1, . . . , N , �WX
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j

z+1 � WX
j

z
,

for j = 0, . . . , N , and �W h

z+1 = W h

z+1 � W h

z
are increments of the corresponding

Brownian motions, which are correlated according to the correlation matrix (2.4).

In both cases (2.34) and (2.36), the computation of XVA value requires integral

approximation techniques by numerical quadrature formulae. In next paragraphs we

describe the di↵erent methods we have used in the nonlinear and linear cases.

Nonlinear case (MD = V D
)

We denote by INL the integral in the right hand side of (2.34), i.e.,
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We will approximate the integral by using the simple rectangular formula, as follows:
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(2.38)

or the simple trapezoidal formula:
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(2.39)

Since (2.34) is an integral equation, the implementation of a fixed-point method

(Picard iteration method) is required to compute the XVA price. Thus, starting from

U0 = 0, both in the case of the simple rectangular formula or the simple trapezoidal

formula we respectively consider the iteration procedure:
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or
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(2.41)

for l = 0, 1, 2, . . ., until a convergence test with a prescribed tolerance is fulfilled.
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Note that in the nonlinear case we consider only simple rectangular and simple

trapezoidal formulae due to the fact that the use of composite formulae requires to

know the values of U at intermediate time nodes, but we only know the final value

of U , that is, U is null at the final node tZ�1 = T . Therefore, one could approximate

the value of U at each node going backwards from the last node, although in this way

a nested Monte Carlo problem arises.

Besides the previously described Picard iteration methods for the nonlinear model,

we have also coded and applied to the nonlinear case the multilevel Picard iteration

method proposed in [37] and recalled in Subsection 2.4.2. Note that this method is

also applied in [37] to a special case of the model in [22] to obtain the CVA in a single

currency setting. In Section 2.5 we will include the comparison between the results of

the previously described Picard iteration methods and the multilevel Picard iteration.

Linear case (MD = WD
)

In this case, we denote by IL the integral in the right hand side of (2.36), i.e.,
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(2.42)

and approximate the integral by using either the rectangular or the trapezoidal for-

mulae. The simple and the composite rectangular formulae are respectively given

by:
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and

IL ' �t
Z�2X

z1=0

exp

✓
��t

z1�1X

z2=0

✓
htz2

1�R
+ fD

◆◆

·
✓
htz1

⇣
WD

tz1
� CC0

tz1
XD,C0

tz1

⌘+

+
⇣
rD + rR + sbD,C0 � fD

⌘
CC0

tz1
XD,C0

tz1

◆
.

(2.44)

Instead, the simple and the composite trapezoidal formulae are respectively given by:
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(2.46)

2.4.2 Multilevel Picard iteration

As in Chapter 1, we use multilevel Picard iteration method (MPI) to approximate

the solution of the nonlinear model. Therefore, we extend the approach in Section

1.4.3 to the case of the model with stochastic FX rates, so that the function � is now

97



given by
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Accordingly, the discrete approximation of �(ul) with mn,l,⇢ Monte Carlo paths is

given by
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(2.48)

where (qn,l,⇢)n,l,⇢2N0,l<n denotes the family of quadrature rules for the approximation

of the integral and the superscripts i, n, x refer to the i-th Monte Carlo path with

initial point x in the n-th Picard iteration. In particular, in our numerical examples

we have chosen mn,l,⇢ = ⇢n�l with ⇢max = 4 or ⇢max = 5 and we show the mean over

Nruns = 10.

2.5 Numerical results

In this section we present some results obtained by using the Monte Carlo and mul-

tilevel Picard iteration techniques. More precisely, we consider the pricing of some

multiasset derivatives written on underlying assets denominated in di↵erent currencies

[83], taking into account counterparty risk. Moreover, we obtain the corresponding

total valuation adjustment (XVA) associated to the derivatives.

In particular, when applying the Monte Carlo method, we use di↵erent quadrature

formulae to approximate integrals involved in the expressions of XVA price (2.34) and
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(2.36) and analyse how this a↵ects the 99% confidence intervals for the total value

adjustment, as well as the elapsed computational time. Moreover, we are interested

in how di↵erent choices of the initial values of the underlying assets, of the mark-to-

market value MD, and of the FX rates volatilities, a↵ect both the risky derivative

and the XVA prices. Also, we choose the collateral value to be a percentage C% of

the risk-free derivative value and analyse how the choice of the value of C% a↵ects the

risky derivative and the XVA prices. Unless otherwise specified, we set C% = 0.25.

As regards to the Monte Carlo method, for the linear case and the nonlinear case

with Picard iteration method we have set the number of simulations equal to 104 and

the number of time nodes in the discretized dynamics of the involved processes to

Z = 252.

We have also applied to all forthcoming numerical examples the multilevel Picard

iteration method to solve the nonlinear model. More precisely, for the numerical

solution with multilevel Picard iteration we have considered the Picard parameter ⇢

either equal to 4 or 5 and the number of Picard iterations k = ⇢. At each Picard iter-

ation l, we consider a composite rectangular quadrature formula with ⇢k�l rectangles

and a number of Monte Carlo paths mk,l,⇢ = ⇢k�l, for l = 1, . . . , k. Moreover, as also

suggested in [37], we consider 10 runs of the multilevel Picard iteration method with

the previous configuration to obtain the mean values we report in the corresponding

tables for each numerical example.

In all forthcoming numerical examples, we have fixed the maturity T to 1 year.

Unless otherwise stated, we have used data listed in Table 2.1 and in Table 2.2. We

have denoted by r = (r0, r1, r2) the vector of the short-term rates in the foreign mar-

kets, q = (q1, q2) the vector of the dividends paid by the corresponding underlying as-

sets, �S = (�S
1
, �S

2
) the vector of the assets volatilities, X0 = (XD,C0

0 , XD,C1
0 , XD,C2

0 )

the vector of initial FX rates values, and �X = (�X
0
, �X

1
, �X

2
) the vector of the

FX rates volatilities. In all forthcoming tables and plots we use the notation Si,D =

XD,CiSi, for i = 1, 2, so that we can consider all the prices in the same currency D.

All the described numerical methods for the examples have been implemented
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r = (0.035, 0.05, 0.03) X0 = (0.13, 0.89, 1.12) fD = 0.060 RC = 0.30
q = (0.03, 0.02) �X = (0.38, 0.40, 0.35) bD,C0 = 0.010
�S = (0.30, 0.20) rD = 0.040

rR = 0.042

Table 2.1: Financial data

Exp Vasicek h0 = 200 ↵ = 4.97 ✓ = 3.83 �h = 1.41
CIR h0 = 200 ↵ = 1.29 ✓ = 51.79 �h = 4.50

Table 2.2: Counterparty’s credit spread data. Values are in basis points (bps)

from scratch in Matlab codes on an Intel(R) Core(TM) i7-8550U, 1.99 GHz, 16 GB

(RAM), x64-based processor.

2.5.1 Spread option

First, we consider the spread option as in Section 1.5 to analyse how the introduction

of stochasticity in the FX rates a↵ects the total value adjustment. In particular, we

consider:

the model in the Chapter 1 with constant FX rates and the collateral in cash

in a foreign currency C0;

the extension of the model in Chapter 1 to stochastic FX rates, keeping the

collateral in cash;

the model in this chapter, where the FX rates are stochastic and the collateral

is made up of bonds in currency C0.

Test 1: Comparison between constant and stochastic FX rates models.

Tables 2.3 and 2.4 report the comparison between the di↵erent models for the non-

linear case, whereas tables 2.5 and 2.6 show the confidence intervals for the linear

case.
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Total value adjustment

MPI with ⇢ = 4
FX rates constant stochastic stochastic
Collateral cash cash bonds

(S1,D
, S

2,D)

(9, 21) �0.0018 �0.0078 �0.0127
(9, 24) �0.0050 �0.0124 �0.0202
(9, 27) �0.0105 �0.0176 �0.0287
(12, 24) �0.0025 �0.0102 �0.0166
(12, 27) �0.0056 �0.0139 �0.0227
(12, 30) �0.0110 �0.0199 �0.0323
(15, 27) �0.0035 �0.0117 �0.0192
(15, 30) �0.0066 �0.0167 �0.0274
(15, 33) �0.0116 �0.0226 �0.0367
(18, 30) �0.0039 �0.0133 �0.0216
(18, 33) �0.0074 �0.0174 �0.0286
(18, 36) �0.0121 �0.0237 �0.0385
(21, 33) �0.0046 �0.0153 �0.0248
(21, 36) �0.0082 �0.0205 �0.0332
(21, 39) �0.0131 �0.0246 �0.0402

Table 2.3: Spread option, nonlinear problem and exponential Vasicek credit spread.
Multilevel Picard iteration (MPI) results. Total value adjustment (Test 1)

In particular, for the nonlinear case we report the multilevel Picard iteration

values with ⇢ = 4 and for the linear case we consider the 99% Monte Carlo confidence

intervals with the composite trapezoidal quadrature formula.

As expected and observed in tables 2.3 to 2.4, when assuming constant FX rates

(therefore, neglecting FX risk), the pricing models underestimates the total value

adjustment with respect to the model with the more realistic assumption of stochastic

FX rates, both in the nonlinear and in the linear cases.

Moreover, in this setting, we can see that the choice of the collateral made up

of bonds makes the XVA more negative with respect to the alternative choice of the

collateral in cash.

2.5.2 Option on the maximum

We now assume that the default-free hedger buys from the defaultable counterparty

an option on the maximum of two underlying assets: the price of the first one, S1,

is denominated in the foreign currency C1, while the price of the second one, S2, is
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Total value adjustment

MPI with ⇢ = 4
FX rates constant stochastic stochastic
Collateral cash cash bonds

(S1,D
, S

2,D)

(9, 21) �0.0055 �0.0209 �0.0257
(9, 24) �0.0142 �0.0332 �0.0410
(9, 27) �0.0291 �0.0474 �0.0585
(12, 24) �0.0076 �0.0273 �0.0336
(12, 27) �0.0164 �0.0373 �0.0461
(12, 30) �0.0311 �0.0535 �0.0659
(15, 27) �0.0102 �0.0316 �0.0390
(15, 30) �0.0192 �0.0452 �0.0559
(15, 33) �0.0330 �0.0601 �0.0741
(18, 30) �0.0115 �0.0355 �0.0437
(18, 33) �0.0215 �0.0474 �0.0586
(18, 36) �0.0347 �0.0633 �0.0780
(21, 33) �0.0137 �0.0408 �0.0503
(21, 36) �0.0239 �0.0546 �0.0672
(21, 39) �0.0374 �0.0664 �0.0820

Table 2.4: Spread option, nonlinear problem and CIR credit spread. Multilevel Picard
iteration (MPI) results. Total value adjustment (Test 1)

Total value adjustment

Monte Carlo with CompT
FX rates constant stochastic stochastic
Collateral cash cash bonds

(S1,D
, S

2,D)

(9, 21) [�0.0021,�0.0018] [�0.0083,�0.0074] [�0.0135,�0.0121]
(9, 24) [�0.0054,�0.0050] [�0.0130,�0.0118] [�0.0211,�0.0192]
(9, 27) [�0.0107,�0.0100] [�0.0186,�0.0171] [�0.0301,�0.0278]
(12, 24) [�0.0028,�0.0025] [�0.0102,�0.0091] [�0.0166,�0.0149]
(12, 27) [�0.0062,�0.0057] [�0.0150,�0.0136] [�0.0243,�0.0222]
(12, 30) [�0.0113,�0.0106] [�0.0205,�0.0188] [�0.0333,�0.0307]
(15, 27) [�0.0035,�0.0031] [�0.0122,�0.0109] [�0.0197,�0.0178]
(15, 30) [�0.0071,�0.0065] [�0.0170,�0.0155] [�0.0276,�0.0252]
(15, 33) [�0.0120,�0.0113] [�0.0225,�0.0207] [�0.0365,�0.0337]
(18, 30) [�0.0043,�0.0039] [�0.0142,�0.0127] [�0.0230,�0.0208]
(18, 33) [�0.0080,�0.0073] [�0.0191,�0.0174] [�0.0310,�0.0283]
(18, 36) [�0.0128,�0.0120] [�0.0246,�0.0226] [�0.0398,�0.0367]
(21, 33) [�0.0051,�0.0046] [�0.0162,�0.0146] [�0.0263,�0.0238]
(21, 36) [�0.0088,�0.0082] [�0.0212,�0.0193] [�0.0344,�0.0314]
(21, 39) [�0.0136,�0.0128] [�0.0267,�0.0245] [�0.0432,�0.0398]

Table 2.5: Spread option, linear problem and exponential Vasicek credit spread.
Monte Carlo with composite trapezoidal quadrature formula results. Total value
adjustment (Test 1)
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Total value adjustment

Monte Carlo with CompT
FX rates constant stochastic stochastic
Collateral cash cash bonds

(S1,D
, S

2,D)

(9, 21) [�0.0069,�0.0061] [�0.0221,�0.0197] [�0.0272,�0.0244]
(9, 24) [�0.0175,�0.0162] [�0.0345,�0.0315] [�0.0426,�0.0389]
(9, 27) [�0.0335,�0.0317] [�0.0492,�0.0454] [�0.0607,�0.0560]
(12, 24) [�0.0092,�0.0083] [�0.0271,�0.0243] [�0.0334,�0.0300]
(12, 27) [�0.0203,�0.0188] [�0.0397,�0.0363] [�0.0490,�0.0448]
(12, 30) [�0.0359,�0.0339] [�0.0543,�0.0501] [�0.0670,�0.0619]
(15, 27) [�0.0118,�0.0106] [�0.0322,�0.0291] [�0.0398,�0.0359]
(15, 30) [�0.0231,�0.0214] [�0.0451,�0.0412] [�0.0557,�0.0509]
(15, 33) [�0.0384,�0.0362] [�0.0596,�0.0550] [�0.0735,�0.0679]
(18, 30) [�0.0145,�0.0131] [�0.0375,�0.0340] [�0.0463,�0.0419]
(18, 33) [�0.0260,�0.0242] [�0.0506,�0.0463] [�0.0624,�0.0571]
(18, 36) [�0.0411,�0.0387] [�0.0650,�0.0600] [�0.0802,�0.0741]
(21, 33) [�0.0172,�0.0157] [�0.0430,�0.0390] [�0.0530,�0.0481]
(21, 36) [�0.0290,�0.0269] [�0.0561,�0.0514] [�0.0692,�0.0634]
(21, 39) [�0.0439,�0.0413] [�0.0705,�0.0651] [�0.0870,�0.0803]

Table 2.6: Spread option, linear problem and CIR credit spread. Monte Carlo with
composite trapezoidal quadrature formula results. Total value adjustment (Test 1)

denominated in the foreign currency C2. The payo↵ function is given by:

G
⇣
t, S1

t
, S2

t
, XD,C1

t , XD,C2
t

⌘
=

✓
max

⇣
S1
t
XD,C1

t , S2
t
XD,C2

t

⌘
�K

◆+

, (2.49)

where K denotes the strike value in domestic currency D, which is set to K = 15 in

the numerical tests.

First, we consider the risk-free value that is independent of the choice of the

mark-to-market value and of the credit spread dynamics.

For a fixed initial value of the first underlying asset, namely S1,D = 20, we choose

di↵erent initial values for the second one. Table 2.7 shows the 99% Monte Carlo

confidence intervals for the risk-free value, which increases by increasing S2,D.

Test 2: Nonlinear problem.

As regard to the nonlinear case with both exponential Vasicek and CIR dynamics

for the credit spread, results are respectively reported in Table 2.8 and Table 2.9.

We show the 99% Monte Carlo confidence intervals with simple quadrature formulae

for the approximation of the integral in the XVA formula (2.34) and the multilevel

103



1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Relative Approximation Increments

S
0
=[20,10]

S
0
=[20,15]

S
0
=[20,20]

S
0
=[20,25]

S
0
=[20,30]

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
Relative Approximation Increments

S
0
=[20,10]

S
0
=[20,15]

S
0
=[20,20]

S
0
=[20,25]

S
0
=[20,30]

Figure 2.2: Option on the maximum. Convergence of the MPI with exponential
Vasicek dynamics for credit spread on the left and CIR dynamics on the right.

Picard iteration values with ⇢ = 4 and ⇢ = 5, that we take as reference values. The

relative approximation increments RAI(⇢, ⇢max, Nruns), for ⇢ = 1, . . . , 4 and ⇢max = 5,

are plotted in Figure 2.2. As already observed in the numerical results reported in

Chapter 1, the simple quadrature formulae lead to an overestimation, in absolute

terms, of the total value adjustment. Under both assumptions for the credit spread

dynamics, we obviously obtain the same trend: the total value adjustment becomes

more and more negative by increasing the initial price of S2.

Figure 2.3 represents the total value adjustment with the exponential Vasicek and

CIR dynamics for the credit spread for di↵erent initial values of the two underlying

assets. Independently from the assets initial values, the XVA is negative, because the

counterparty may default and, therefore, owes the hedger a reduction in the derivative

price. Also, we can notice that under the assumption that the credit spread follows

a CIR process the XVA is more negative.

Test 3: Linear problem.

We now assume the mark-to-market value is equal to the risk-free derivative value

(linear problem).

Table 2.10 and Table 2.11 respectively show the Monte Carlo confidence intervals
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Risk-free value

(S1,D, S2,D) Monte Carlo

(20, 10) [6.5341, 7.0290]
(20, 15) [7.7317, 8.2306]
(20, 20) [10.0689, 10.6005]
(20, 25) [13.2448, 13.8434]
(20, 30) [16.9727, 17.6632]

Table 2.7: Option on the maximum. Monte Carlo confidence intervals. Risk-free
value

Total value adjustment

Monte Carlo MPI
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5

(20, 10) [�0.0989,�0.0919] [�0.0603,�0.0560] �0.0314 �0.0310
(20, 15) [�0.1156,�0.1085] [�0.0706,�0.0663] �0.0378 �0.0363
(20, 20) [�0.1486,�0.1410] [�0.0908,�0.0862] �0.0464 �0.0476
(20, 25) [�0.1938,�0.1853] [�0.1186,�0.1134] �0.0614 �0.0618
(20, 30) [�0.2471,�0.2372] [�0.1513,�0.1453] �0.0781 �0.0800

Table 2.8: Option on the maximum, nonlinear problem and exponential Vasicek
credit spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and
trapezoidal (SimpT) quadrature formulae) and multilevel Picard iteration (MPI).
Total value adjustment (Test 2)

Total value adjustment

Monte Carlo MPI
(S1,D, S2,D) SimpR SimpT ⇢ = 4 ⇢ = 5

(20, 10) [�0.0989,�0.0919] [�0.0708,�0.0658] �0.0638 �0.0624
(20, 15) [�0.1156,�0.1085] [�0.0828,�0.0778] �0.0765 �0.0730
(20, 20) [�0.1486,�0.1410] [�0.1066,�0.1012] �0.0939 �0.0960
(20, 25) [�0.1938,�0.1853] [�0.1391,�0.1331] �0.1242 �0.1245
(20, 30) [�0.2471,�0.2372] [�0.1775,�0.1706] �0.1583 �0.1611

Table 2.9: Option on the maximum, nonlinear problem and CIR credit spread. Com-
parison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal (SimpT)
quadrature formulae) and multilevel Picard iteration (MPI). Total value adjustment
(Test 2)
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Figure 2.3: Option on the maximum in the nonlinear case. Total value adjustment
with exponential Vasicek credit spread on the left and with CIR credit spread on the
right (Test 2)

for the total value adjustment in case of exponential Vasicek and CIR credit spread.

Again, the simple quadrature formulae do not approximate well the XVA compared

to the composite ones. The composite rectangular and trapezoidal formulae provide

closer results.

We also plot the risky price and the total value adjustment in Figure 2.4. We can

see that the XVA tends to more negative values when increasing the initial values of

one or both the underlying assets, namely when the option on the maximum is more

valuable.

2.5.3 Best of put/put option

In this example, we assume that the hedger buys from the counterparty a best of

put/put option, the payo↵ of which is given by:

G
⇣
t, S1

t
, S2

t
, XD,C1

t , XD,C2
t

⌘
= max

✓⇣
K1 � S1

t
XD,C1

t

⌘+

,
⇣
K2 � S2

t
XD,C2

t

⌘+
◆
,

(2.50)

where S1
t
and S2

t
are the prices of the two underlying assets denominated in their

respective foreign currencies C1 and C2. Moreover, we denote by K = (K1, K2) the
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Total value adjustment

Monte Carlo
(S1,D, S2,D) SimpR SimpT CompR CompT

(20, 10) [�0.0216,�0.0198] [�0.0607,�0.0564] [�0.0324,�0.0301] [�0.0323,�0.0299]
(20, 15) [�0.0252,�0.0233] [�0.0710,�0.0667] [�0.0379,�0.0355] [�0.0377,�0.0353]
(20, 20) [�0.0323,�0.0302] [�0.0914,�0.0868] [�0.0487,�0.0462] [�0.0485,�0.0460]
(20, 25) [�0.0421,�0.0397] [�0.1193,�0.1141] [�0.0636,�0.0607] [�0.0633,�0.0604]
(20, 30) [�0.0537,�0.0508] [�0.1523,�0.1463] [�0.0812,�0.0779] [�0.0808,�0.0775]

Table 2.10: Option on the maximum, linear problem and exponential Vasicek credit
spread. Comparison of Monte Carlo with simple rectangular (SimpR), simple trape-
zoidal (SimT), composite rectangular (CompR) and trapezoidal (CompT) quadrature
formulae. Total value adjustment (Test 3)

Total value adjustment

Monte Carlo
(S1,D, S2,D) SimpR SimpT CompR CompT

(20, 10) [�0.0424,�0.0392] [�0.0711,�0.0661] [�0.0649,�0.0602] [�0.0647,�0.0601]
(20, 15) [�0.0494,�0.0461] [�0.0831,�0.0781] [�0.0758,�0.0712] [�0.0757,�0.0710]
(20, 20) [�0.0634,�0.0599] [�0.1070,�0.1016] [�0.0976,�0.0926] [�0.0974,�0.0924]
(20, 25) [�0.0828,�0.0788] [�0.1396,�0.1336] [�0.1274,�0.1218] [�0.1272,�0.1216]
(20, 30) [�0.1056,�0.1010] [�0.1782,�0.1712] [�0.1626,�0.1561] [�0.1623,�0.1558]

Table 2.11: Option on the maximum, linear problem and CIR credit spread. Com-
parison of Monte Carlo with simple rectangular (SimpR), simple trapezoidal (SimT),
composite rectangular (CompR) and trapezoidal (CompT) quadrature formulae. To-
tal value adjustment (Test 3)

107



Figure 2.4: Option on the maximum in the linear case. Exponential Vasicek credit
spread (top) and CIR credit spread (bottom). Risky value (left) and XVA (right)
(Test 3)
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vector of the strike values in the domestic currency D for the involved put options.

In our numerical examples we have taken S0 = (12, 15) and K = (12, 15).

We investigate how di↵erent values of the FX rates volatilities a↵ect the XVA price

and we analyse how the total value adjustment changes by increasing the collateral

value, which is assumed to be a percentage C% of the risk-free value.

Test 4: Nonlinear problem.

First, we keep fixed the volatility of XD,C0 , say �X
0
= 0.275, while for the volatilities

ofXD,C1 andXD,C2 we choose either a high volatility value, say 0.50, or a low volatility

value, say 0.05. Moreover, we also consider the case of null FX rates volatilities, so

that FX rates are deterministic time-dependent functions. In fact, by considering

�X
j ⌘ 0 in (2.10), we obtain dX

D,Cj

t = (rD � rj)X
D,Cj

t dt, so that

X
D,Cj

t = X
D,Cj

0 exp

✓⇣
rD � rj

⌘
t

◆
. (2.51)

Furthermore, we also consider the case of constant FX rates with X
D,Cj

t = X
D,Cj

0 .

In tables 2.12 and 2.13 we show, for the nonlinear case, the total value adjustment

confidence intervals and the multilevel Picard iteration values, that we take as refer-

ence values. Figure 2.5 shows that the multilevel Picard iteration method converges

for all choices of �X
0
. With reference to the cases with no null FX rates volatili-

ties, XVA is, as expected, more negative when both XD,C1 and XD,C2 have higher

volatility values, increases when only one of the two FX rates has a high volatility,

and is greater when both the FX rates have lower volatility values. Indeed, higher

volatilities correspond to higher levels of risk, therefore, in that case XVA becomes

more negative, thus making the risky derivative price lower.

Note that when all volatilities are null we are considering time dependent deter-

ministic FX rates that decrease with time from their initial value X
D,Cj

0 , according to

expression (2.51). In this case the XVA is less negative than any stochastic FX rates

case.

In order to compare with the case of constant FX rates, we show in the last row
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Total value adjustment

Monte Carlo MPI
�X SimpR SimpT ⇢ = 4 ⇢ = 5

(0.275, 0.05, 0.05) [�0.0252,�0.0239] [�0.0155,�0.0147] �0.0082 �0.0083
(0.275, 0.05, 0.50) [�0.0529,�0.0506] [�0.0326,�0.0312] �0.0175 �0.0176
(0.275, 0.50, 0.05) [�0.0436,�0.0416] [�0.0267,�0.0255] �0.0138 �0.0142
(0.275, 0.50, 0.50) [�0.0649,�0.0626] [�0.0399,�0.0385] �0.0214 �0.0214
(0.000, 0.00, 0.00) [�0.0232,�0.0219] [�0.0143,�0.0135] �0.0075 �0.0076

XD,Cj ⌘ X
D,Cj

0 [�0.0231,�0.0219] [�0.0142,�0.0135] �0.0075 �0.0076

Table 2.12: Best of put/put option, nonlinear problem and exponential Vasicek credit
spread. Comparison of Monte Carlo (with simple rectangular (SimpR) and trape-
zoidal (SimpT) quadrature formulae) and multilevel Picard iteration (MPI). Total
value adjustment (Test 4)

Total value adjustment

Monte Carlo MPI
�X SimpR SimpT ⇢ = 4 ⇢ = 5

(0.275, 0.05, 0.05) [�0.0252,�0.0239] [�0.0184,�0.0174] �0.0165 �0.0165
(0.275, 0.05, 0.50) [�0.0529,�0.0506] [�0.0385,�0.0369] �0.0351 �0.0349
(0.275, 0.50, 0.05) [�0.0436,�0.0416] [�0.0315,�0.0300] �0.0278 �0.0284
(0.275, 0.50, 0.50) [�0.0649,�0.0626] [�0.0471,�0.0454] �0.0429 �0.0426
(0.000, 0.00, 0.00) [�0.0232,�0.0219] [�0.0169,�0.0160] �0.0149 �0.0151

XD,Cj ⌘ X
D,Cj

0 [�0.0231,�0.0219] [�0.0169,�0.0160] �0.0150 �0.0152

Table 2.13: Best of put/put option, nonlinear problem and CIR credit spread. Com-
parison of Monte Carlo (with simple rectangular (SimpR) and trapezoidal (SimpT)
quadrature formulae) and multilevel Picard iteration (MPI). Total value adjustment
(Test 4)

of both tables the results for XD,Cj ⌘ X
D,Cj

0 . These results coincide in the four

decimal figures with the values of the deterministic time dependent case when the

credit spread follows an exponential Vasicek dynamics and are a bit more negative

than the deterministic case (where the FX rates values decrease with time) when

assuming a CIR credit spread. Anyway, under the assumption of constant FX rates,

the XVA is less neagative than in the stochastic FX rates case when certain level of

volatility is assumed. The Monte Carlo confidence intervals seem to follow the same

trend, but they underestimate the XVA.

110



1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2
Relative Approximation Increments

X=[0.275,0.05,0.05]
X=[0.275,0.05,0.50]
X=[0.275,0.50,0.05]
X=[0.275,0.50,0.50]

determnistic FX rates

constant FX rates

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2
Relative Approximation Increments

X=[0.275,0.05,0.05]
X=[0.275,0.05,0.50]
X=[0.275,0.50,0.05]
X=[0.275,0.50,0.50]

determnistic FX rates

constant FX rates

Figure 2.5: Best of put/put option. Convergence of the MPI with exponential Vasicek
dynamics for credit spread on the left and CIR dynamics on the right.

Test 5: Linear problem.

In tables 2.14 and 2.15 we show the total value adjustment confidence intervals for the

linear case with di↵erent values of the FX rates volatilities. We take the composite

quadrature formulae results as reference values. We can draw conclusions similar to

the previous nonlinear case.

Test 6: Collateralization.

In order to analyse the e↵ect of collateralization, we now consider the data in Table

2.1 and Table 2.2 with S1,D = K1 = 12 and S2,D = K2 = 15, and let C% assume

increasing values. Note that if C% = 0, the derivative is not collateralized, whereas

if C% = 1, the derivative is fully collateralized.

In Figure 2.6 we plot the di↵erence between the prices of the best of put/put

option for di↵erent levels C% of collateralization and the price of the corresponding

uncollateralized derivative. We consider both the nonlinear problem with exponential

Vasicek credit spread (NL ExpVas) and with CIR credit spread (NL CIR) and the

linear problem with exponential Vasicek credit spread (L ExpVas) and with CIR

credit spread (L CIR).
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Total value adjustment

Monte Carlo
�X SimpR SimpT CompR CompT

(0.275, 0.05, 0.05) [�0.0058,�0.0054] [�0.0156,�0.0148] [�0.0086,�0.0081] [�0.0086,�0.0081]
(0.275, 0.05, 0.50) [�0.0121,�0.0114] [�0.0328,�0.0314] [�0.0180,�0.0172] [�0.0179,�0.0171]
(0.275, 0.50, 0.05) [�0.0097,�0.0091] [�0.0269,�0.0256] [�0.0146,�0.0139] [�0.0145,�0.0138]
(0.275, 0.50, 0.50) [�0.0146,�0.0138] [�0.0402,�0.0387] [�0.0219,�0.0210] [�0.0218,�0.0209]
(0.000, 0.00, 0.00) [�0.0053,�0.0050] [�0.0144,�0.0136] [�0.0079,�0.0075] [�0.0079,�0.0075]

XD,Cj ⌘ X
D,Cj

0 [�0.0053,�0.0049] [�0.0143,�0.0136] [�0.0079,�0.0075] [�0.0079,�0.0074]

Table 2.14: Best of put/put option, linear problem and exponential Vasicek credit
spread. Comparison of Monte Carlo with simple rectangular (SimpR), simple trape-
zoidal (SimT), composite rectangular (CompR) and trapezoidal (CompT) quadrature
formulae. Total value adjustment (Test 5)

Total value adjustment

Monte Carlo
�X SimpR SimpT CompR CompT

(0.275, 0.05, 0.05) [�0.0114,�0.0107] [�0.0184,�0.0175] [�0.0170,�0.0161] [�0.0170,�0.0161]
(0.275, 0.05, 0.50) [�0.0238,�0.0227] [�0.0387,�0.0370] [�0.0356,�0.0340] [�0.0356,�0.0340]
(0.275, 0.50, 0.05) [�0.0191,�0.0182] [�0.0316,�0.0301] [�0.0290,�0.0276] [�0.0290,�0.0276]
(0.275, 0.50, 0.50) [�0.0288,�0.0276] [�0.0473,�0.0456] [�0.0434,�0.0418] [�0.0434,�0.0418]
(0.000, 0.00, 0.00) [�0.0105,�0.0099] [�0.0170,�0.0160] [�0.0157,�0.0148] [�0.0156,�0.0148]

XD,Cj ⌘ X
D,Cj

0 [�0.0105,�0.0099] [�0.0169,�0.0160] [�0.0156,�0.0148] [�0.0156,�0.0147]

Table 2.15: Best of put/put option, linear problem and CIR credit spread. Com-
parison of Monte Carlo with simple rectangular (SimpR), simple trapezoidal (SimT),
composite rectangular (CompR) and trapezoidal (CompT) quadrature formulae. To-
tal value adjustment (Test 5)
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Figure 2.6: Best of put/put option. Price di↵erence between the collateralized deriva-
tive and the uncollateralized derivative (C% = 0).

First, note that the plotted di↵erence is positive, because the presence of collateral

improves the recovery in case of the counterparty’s default, thus increasing the price

of the derivative with respect to the uncollateralized setting.

The additional amount that has to be paid for the presence of the collateral rises

for larger values of the collateral, which leads to a lower exposure to counterparty’s

default.

Moreover, we can notice that the di↵erence between nonlinear and linear cases

is negligible in terms of price di↵erence over the uncollateralized derivative. Finally,

we can see that this di↵erence is larger under the assumption of CIR credit spread,

namely when the total value adjustment is more negative.

2.5.4 Basket option

Finally, in order to investigate how the elapsed computational time changes for the

di↵erent mehods when increasing the number of the underlying assets, in this example

we assume that the hedger buys from the counterparty a basket call option written
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↵

i Si,D
0 ri qi �Si

XD,Ci
0 �Xi

N = 2 N = 4 N = 8 N = 16
0 - 0.028 - - 0.34 0.24
1 14 0.047 0.046 0.315 0.18 0.27 0.46214 0.37471 0.10346 0.07302
2 12 0.050 0.023 0.341 0.62 0.29 0.53786 0.24501 0.10656 0.072656
3 16 0.046 0.017 0.248 0.62 0.29 0.12104 0.092846 0.062172
4 12 0.036 0.011 0.265 0.32 0.31 0.25924 0.14503 0.065838
5 11 0.027 0.026 0.240 0.74 0.33 0.14496 0.064
6 15 0.020 0.011 0.320 0.82 0.30 0.13598 0.074488
7 11 0.033 0.017 0.296 0.97 0.35 0.13061 0.063967
8 18 0.032 0.011 0.210 0.47 0.32 0.14056 0.046908
9 20 0.036 0.015 0.291 0.58 0.26 0.059024
10 20 0.034 0.019 0.320 1.09 0.31 0.056254
11 14 0.037 0.034 0.204 0.81 0.30 0.083855
12 16 0.036 0.018 0.268 0.95 0.33 0.065552
13 17 0.043 0.042 0.319 0.71 0.33 0.057539
14 15 0.042 0.010 0.349 1.10 0.27 0.060637
15 15 0.039 0.020 0.288 0.97 0.25 0.049381
16 10 0.033 0.018 0.205 1.14 0.31 0.04471

Table 2.16: Data for the basket option. For N = 2, 4, 8, 16 we respectively consider
the first 3, 5, 9, 17 rows of the table on the left and the corresponding column of the
table on the right for the vector of weights ↵.

on N underlying assets S1, . . . , SN with weights ↵1, . . . ,↵N . Therefore, the payo↵

function is given by:

G
⇣
t, S1

t
, S2

t
, XD,C1

t , XD,C2
t

⌘
=

 
NX

i=1

↵iSi

t
XD,C

i

t �K

!+

. (2.52)

In the numerical tests we have chosen K = 5, which represents the strike value in the

domestic currency D.

In particular, we choose N = 2, 4, 8, 16 and for any chosen value of N we consider

data in the first N + 1 rows of the left part in Table 2.16 and the corresponding

column of the right part of the same table, where we have denoted by ↵ the vector

of the underlying assets weights, i.e., ↵ = (↵i, . . . ,↵N).

Table 2.17 shows the Monte Carlo confidence intervals for the risk-free value,

which rises when increasing the number of the underlying assets, so that the total

value adjustment will decrease.
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Risk-free value

N Monte Carlo

2 [7.4747, 7.6580]
4 [7.8330, 7.9872]
8 [8.2733, 8.3823]
16 [9.3117, 9.3842]

Table 2.17: Basket option. Monte Carlo confidence intervals. Risk-free value

Total value adjustment

MPI
N ⇢ = 4 ⇢ = 5

2 �0.0348 �0.0349
4 �0.0367 �0.0369
8 �0.0389 �0.0392
16 �0.0433 �0.0438

Elapsed time

MPI
N ⇢ = 4 ⇢ = 5

2 18.3053 5881.6020
4 27.3082 7665.0191
8 40.1646 11255.5800
16 62.2783 18503.2328

Table 2.18: Basket option, nonlinear problem and exponential Vasicek credit spread.
Multilevel Picard iteration (MPI) results. Total value adjustment and elapsed time
in seconds (Test 7)

Test 7: Nonlinear problem.

Table 2.18 and Table 2.19 show the total value adjustment in the nonlinear case. In

particular, we report the average value of XVA and the elapsed time of Nruns = 10

runs of the multilevel Picard iteration method. Obviously, the elapsed time depends

on the number of the underlying assets and on the value of the parameter ⇢, that

a↵ects the number of simulations and of time nodes. However, the elapsed time is

independent of the dynamics of the credit spread.

As shown in Figure 2.7, the multilevel Picard iteration method converges inde-

pendently of the number of stochastic factors.
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Total value adjustment

MPI
N ⇢ = 4 ⇢ = 5

2 �0.0705 �0.0702
4 �0.0740 �0.0740
8 �0.0781 �0.0784
16 �0.0873 �0.0877

Elapsed time

MPI
N ⇢ = 4 ⇢ = 5

2 15.1060 5819.0015
4 25.7580 7755.2037
8 37.9215 11271.4253
16 61.9828 18643.6873

Table 2.19: Basket option, nonlinear problem and CIR credit spread. Multilevel
Picard iteration (MPI) results. Total value adjustment and elapsed time in seconds
(Test 7)
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Figure 2.7: Basket option. Convergence of the MPI with exponential Vasicek dynam-
ics for credit spread on the left and CIR dynamics on the right.
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Total value adjustment

Monte Carlo
N CompR CompT

2 [�0.0355,�0.0346] [�0.0354,�0.0344]
4 [�0.0373,�0.0365] [�0.0372,�0.0363]
8 [�0.0395,�0.0387] [�0.0393,�0.0385]
16 [�0.0441,�0.0434] [�0.0439,�0.0432]

Elapsed time

Monte Carlo
N CompR CompT

2 0.7369 0.7858
4 1.6829 2.0044
8 2.1968 2.2207
16 3.5992 3.6574

Table 2.20: Basket option, linear problem and exponential Vasicek credit spread.
Monte Carlo with composite rectangular (CompR) and trapezoidal (CompT) quadra-
ture formulae results. Total value adjustment and elapsed time (Test 8)

Total value adjustment

Monte Carlo
N CompR CompT

2 [�0.0709,�0.0692] [�0.0708,�0.0690]
4 [�0.0742,�0.0726] [�0.0741,�0.0725]
8 [�0.0784,�0.0771] [�0.0782,�0.0769]
16 [�0.0875,�0.0865] [�0.0874,�0.0864]

Elapsed time

Monte Carlo
N CompR CompT

2 0.6807 0.7052
4 0.9841 0.9904
8 2.8884 2.9298
16 3.1174 3.4354

Table 2.21: Basket option, linear problem and CIR credit spread. Monte Carlo
with composite rectangular (CompR) and trapezoidal (CompT) quadrature formulae
results. Total value adjustment and elapsed time (Test 8)

Test 8: Linear problem.

Table 2.20 and Table 2.21 show the total value adjustment and the elapsed computa-

tion time in the linear case. The composite trapezoidal quadrature formula is slightly

more time-consuming than the composite rectangular one, but the di↵erence is neg-

ligible. Finally, in the linear case the computation of the total value adjustment with

composite quadrature formulae is much less time-consuming than in the nonlinear

case, where the use of composite quadrature formulae requires to apply the multilevel

Picard iteration method.
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2.6 Conclusions

In the previous chapter, the models and computations of the XVA for a multi-currency

setting have been developed when deterministic exchange rates between the di↵erent

currencies are considered. In order to pose a more realistic modelling approach, the

main objective of the present chapter has been to extend the previous work to the

consideration of stochastic models for the evolution of foreign exchange rates. Note

that the consideration of stochastic exchange rates significantly increases the number

of underlying risk factors. Thus, after proposing suitable dynamics for exchange

rates evolution, the portfolio replication and the dynamic hedging methodologies

have provided the formulation of the XVA pricing problem in terms of nonlinear and

linear PDEs with larger dimensions than in the case of deterministic exchange rates.

As in the previous chapter, we have applied Feynman-Kac formulae to obtain the

expectations-based formulations of the total value adjustment problems.

In view of the comparison with the Lagrange-Galerkin method results reported

in the previous chapter, in the nonlinear case we take as reference values for the

total value adjustment the results obtained by using the multilevel Picard iteration

method, whereas in the linear case we consider the confidence intervals obtained with

Monte Carlo techniques and composite quadrature formulae for the approximation of

the integrals involved in the total value adjustment formulae.

In this chapter, we have seen that the assumption of deterministic or constant

foreign exchange rates causes an underestimation of the total value adjustment with

respect to the more realistic assumption of stochastic foreign exchange rates. Also, the

total value adjustment is more negative when the foreign exchange rates have higher

levels of volatility with respect to when they have lower volatility values. Finally, we

have noticed that the total value adjustment is more negative when the option price

is higher, but becomes less negative when increasing the collateral value.
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Conclusions

The objective of this work has been to contribute to the modelling and the computa-

tion of the total value adjustment in a multi-currency setting. Indeed, nowadays the

consideration of the XVA when pricing a derivative has become relevant for financial

institutions so that, in the literature, a lot of work has been recently developed in

the framework of a single currency. Moreover, financial institutions may operate in

di↵erent currencies. Therefore, in this thesis, we have extended some of the work in

the single currency case to the multi-currency setting.

For this purpose, we have considered financial derivatives contracts that involve as-

sets that are denominated in di↵erent foreign currencies as well as a stochastic spread

for the counterparty, following either an exponential Vasicek or a CIR dynamics.

Moreover, we have assumed the existence of a collateral account, also denominated in

a foreign currency. In a first step, we have considered deterministic foreign exchange

rates, and then we have assumed they follow stochastic Geometric Brownian motion

dynamics. We have seen that the less realistic assumption of deterministic foreign

exchange rates leads to an underestimation of the total value adjustment.

In this setting, an appropriate extension of the replicating portfolio to the mul-

ticurrency setting can be obtained. Thus, following analogous methodologies to the

single currency case, we have built a self-financing portfolio, that hedges all the risk

factors, including the foreign exchange risk when the foreign exchange rates are as-

sumed to be stochastic. First, we have obtained a formulation based on nonlinear

or linear PDEs, according to the choice of the mark–to–market value, for the price

of di↵erent European options when including the total value adjustments. Secondly,
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by using the Feynman-Kac theorem we have obtained formulations based on expec-

tations that allow to approximate the total value adjustment by applying suitable

Monte Carlo techniques, that are not a↵ected by the curse of dimensionality arising

when using deterministic numerical methods to solve high dimensional PDEs.

As regards the numerical approximation of the total value adjustment, we have

first assumed that the foreign exchange rates are constant, the counterparty’s credit

spread is a deterministic time dependent function and the derivative depends on two

underlying assets. Under these assumptions, we have proposed a Lagrange-Galerkin

method, i.e., a semi-Lagrangian scheme for the time discretization combined with

suitable finite element schemes for the spatial discretization, to solve the resulting

two-dimensional pricing PDE. For the solution of the nonlinear PDE, a fixed point

iteration is applied. In the linear case, the Lagrange-Galerkin method results have

been compared to the results obtained with Monte Carlo techniques combined with

suitable quadrature formulae for the approximation of the integral in the total value

adjustment formula. In the linear case, Lagrange-Galerkin results are in agreement

with Monte Carlo confidence intervals when composite quadrature formulae are em-

ployed.

In the nonlinear case, a Picard iteration is also needed when using the Monte

Carlo method. From the comparison with the Lagrange-Galerkin method results, we

conclude that simple quadrature formulae are not accurate enough. Therefore, we

have introduced the multilevel Picard iteration method that allows to use composite

quadrature formulae in an e�cient way, by recursively computing the values of the

unknown variable at intermediate nodes of the time discretization.

Therefore, when considering more than two stochastic factors, we have taken as

reference values the multilevel Picard iteration method values in the nonlinear case

and the Monte Carlo results with composite formulae in the linear one. Moreover,

the computation of the total value adjustment in the nonlinear case is more time

consuming than in the linear case, especially when considering a large number of

underlying assets.
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Overall, we have seen that the total value adjustment is more negative when the

option is more valuable. Moreover, it becomes more negative when increasing the

counterparty’s intensity of default, namely when it is more likely the counterparty

defaults. Also, the choice of larger values of volatilities for the foreign exchange

rates makes the total value adjustment greater, in absolute terms. Moreover, we

have noticed that the total value adjustment becomes less negative by increasing the

collateral value. Finally, the assumption of a CIR dynamics for the credit spread leads

to a more negative total value adjustment with respect to the alternative assumption

of an exponential Vasicek credit spread.

As possible future extensions of the present work, a first step could be the exten-

sion of our methodologies for the incorporation of other valuation adjustments, such

as capital value adjustment (KVA) and margin value adjustment (MVA). Moreover,

we could consider more sophisticated models for the stochastic evolution of FX rates,

by incorporating local, stochastic or local/stochastic volatility. Another extension

could be the consideration of stochastic dynamics for the interest rates operating in

each market in a multi-currency setting, thus additionally increasing the number of

stochastic factors.

Concerning the type of options, for example the consideration of American options

could be addressed in future works. As it happens in the single currency case, final-

boundary value problems are replaced by complementarity problems associated to

partial di↵erential equations when addressing American options. In the context of

formulations in terms of expectations, optimal stopping times come into place.
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Appendix A

A stochastic Asset Liability

Management model for life

insurance companies

A.1 Introduction

Many financial decision problems involve the forecasting of future liability cash flows.

For insurance products, the planning horizon extends beyond a decade: for example,

pension funds have a planning horizon of more than 30 years. Thus, for an insurance

company operating in life business, it is essential to build a model to forecast the

evolution of cash inflows and outflows over time. All the techniques and the models

used by a company to address financial risk due to the mismatching between assets

and liabilities portfolios are part of the Asset and Liability Management (ALM). The

traditional ALM programs focus on interest rate risk and liquidity risk, but, depending

on the business model of the company, the specific definition of the underlying models

for assets and liabilities may vary.

Historically, the first ALM methods were developed starting from the milestone

works by Macaulay [71], Samuelson [86], Redington [84] and Fisher & Weil [42],
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ordered according to the publication year. In these earlier models, the bond im-

munization, i.e., the matching between bond portfolio interest rate sensitivity and

liability streams interest rate sensitivity, was the unique subject. These models are

single stage models and do not take into account the stochastic evolution of interest

rate since they use only the duration, or at most also the convexity, as risk mea-

sure. Nowadays, these techniques are unsuitable for an insurance company due to

the complexity of both the asset portfolio and the liability portfolio. An insurance

asset portfolio is not composed only of plain vanilla bonds and liquidity, but also of

subordinated bonds which have embedded options (typically call options), structured

bonds, no fixed income products, such as stocks, hedge funds, private equity, and real

asset products (see [91]). However, when dealing with ALM models, the real challenge

lies in the liability side. Due to the presence of surrender options, death benefits and

other random features, an ALM model has to capture the stochastic dynamics and

the uncertain characteristics inherent with insurance policies. The presence of these

options with early exercise and asymmetric distribution makes essential the develop-

ment of a suitable valuation functionality, not only to evaluate the company’s balance

sheet at current date, but also to simulate the firm’s position at future dates.

So, a company needs to develop an ALM tool able to forecast its balance sheet

evolution over time predicting future cash inflows and outflows, in order to ensure

the solvency of the company, i.e., its capability to meet all its financial obligations.

A correct forecasting of the evolution of the balance sheet, including cash flow gen-

eration, and the calculation of duration and convexity mismatching allow to manage

the risk of future unexpected cash flows that could compromise the business of the

firm.

But the aim of an ALM tool does not end here, because the purpose of ALM is to

satisfy the interests of shareholders, policyholders and regulators in a common frame-

work. Therefore, an ALM tool includes the allocation of assets to increase the profit of

the company. The insurer invests in a portfolio the return of which is consistent with

the o↵ering of competitive products, in the shareholders’ and policyholders’ interest,
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while satisfying the regulators. In this sense, ALM stands between risk management

and strategic asset allocation, having the purpose of maximizing the investment re-

turns, while minimizing the reinvestment risks. A complete guide on ALM models

can be found in [92] and [93], and in the references therein.

It is clear that these models have a particular relevance in life insurance industry,

even more after the introduction of the Solvency Capital Requirement computed

under Solvency II Directive (see [87] and [90]), based on the computation of the

99.5% Value-at-Risk over one year of company’s own funds, so that a proper joint

estimation of both assets and liabilities values becomes essential.

The literature of ALM models for life insurance companies is very wide. We refer

to [12], [13], [45] and [74], and the references therein. In the life insurance sector,

the presence of embedded options in policies makes very di�cult to correctly forecast

the cash outflows (the problem of the pricing of embedded options has been widely

treated in literature, see for example [10], [9], [11], [53] and [73]). The need of a more

accurate approximation of the portfolio evolution over time, especially on liabilities

side, jointly with the increase in computational power, makes feasible and suitable for

an insurance firm the development of a stochastic scenario-based ALM model. In fact,

significant resources have been invested into the development of such models, specially

in insurance companies. Naturally, a trade o↵ between complexity and practicality is

always involved.

Starting from the seminal works by Bradley and Crane [16] and by Lane and

Hutchinson [66], dynamic stochastic programming techniques have been applied to

ALM models. In particular, Bradley and Crane were the first to use a dynamic

recourse programming in a portfolio problem restricted to fixed interest securities.

Stochastic programming in the form of a multistage recourse problem is a general

formulation of a multistage ALM model in which the objective function is typically

characterized in terms of the expected value of a linear or nonlinear utility function

of wealth at the horizon (see [31]). This approach has become very popular in fi-

nance both among academics and practitioners. The literature on the application
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of stochastic programming with recourse to ALM models is very wide. An inter-

ested reader could find some of these applications in [23], [25], [29], [32], [48] and

[91]. Recently, Fernández et al in [40] have presented an ALM model for a life in-

surance company together with its numerical simulations performed in a new high

performance computing architectures provided by GPUs technology. They consider

a portfolio comprising with-profit life insurance policies with some innovations with

respect to literature in the modelling of the surrenders of the policyholders. However,

in the estimate of future supposed liabilities cash flows, they take into account neither

possible future surrenders nor the so-called new production, i.e. the cash flows due

to new policyholders which subscribe to the policy at future times.

In this appendix, based on [35], we build a two-stage stochastic ALM model for a

life insurance company’s portfolio. First, we propose a multistep reinvestment strat-

egy using a scenario-based approach in which the assets and the liabilities are jointly

simulated using appropriated stochastic models. On the asset side, we consider a

portfolio composed of bonds, divided in buckets of duration, stocks and cash. On the

liability side, we consider a portfolio comprising with-profit life insurance policies,

such that policyholders’ saving account earns a rate given by the maximum between

a minimum guaranteed rate of return and a percentage, called participation rate, of

the asset portfolio return. In order to keep track of the evolution of the liability port-

folio, we take into account, in addition to the policyholders’ saving account model,

the biometric model and the surrender model. Also, we consider cash flows due to

new production. The question of the issue of new policies has been investigated in

previous works (see, for example, [39], [59] and [77]), but we propose, as far as we

know, an innovative approach to this feature with respect to existing literature. At

each time step k, we jointly simulate all the random variables of the model and, then,

we compute asset duration and liability duration, estimating the projections of all

future cash flows, made up of death, maturity and surrender payments, also related

to new production. To the best of our knowledge, the fact that we consider also cash

flows due to future surrenders and new production when computing balance sheet
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projections constitutes an innovation with respect to literature and allows to better

forecast the evolution of the balance sheet of an insurance company, therefore to

compute more reliable estimates of actuarial reserves and of probabilities of default.

From the technical point of view, it leads to the need to estimate conditional expec-

tations with respect to the information available at time step k, so that we employ a

Least Squares Monte Carlo technique. At each time step k, after having computed

the duration of asset portfolio and of liability portfolio, we perform a rebalancing

of the asset portfolio by solving a nonlinearly constrained optimization problem in

which we minimize the distance between the asset duration and the liability duration,

subject to the achievement of a target return and other constraints that are typical

for an asset allocation problem. Indeed, we consider real world constraints, such as

the so-called budget constraint, constraints that do not allow short sales, constraints

on the upper and on the lower bounds for the size of a single asset class weight or of a

combination of asset classes weights, constraints on single (on one asset class) and on

portfolio turnover. This dynamic portfolio rebalancing strategy allows to simultane-

ously satisfy the interest of shareholders and policyholders. Indeed, the minimization

of the distance between asset duration and liability duration permits to guarantee the

solvency of the company, whereas the achievement of a target return allows to build

a competitive portfolio. Since the decision rules previously described do not build an

optimal dynamic reinvestment strategy, we propose a second stage of portfolio opti-

mization in order to maximize the expected value of a chosen utility function, using

the results obtained from the previous rebalancing strategy as investment constraints.

However, we focus our analysis on the first stage of portfolio rebalancing strategy and

we do not perform any tests on the second stage of the portfolio optimization, that

requires standard stochastic programming techniques (see, for example, [31]), leaving

the choice of a specific utility function and of the final wealth to the investment o�cer

of the firm.

In order to test our ALM model, we firstly present our portfolio rebalancing strat-

egy under certain market hypotheses and initial scenario assumptions. Moreover, we
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focus on the evolution over time of the number of alive policies, that is a↵ected by

the mortality model as well as by the surrender and new production models. Finally,

an analysis of the participation rate sensitivity is conducted by keeping track of the

evolution over time of actuarial reserves, that is to say, the discounted value of all

future cash flows on the liability side, and of own funds, and by investigating default

probability.

The appendix is organized as follows. In Section A.2 we define our asset portfolio

and liability portfolio, and we introduce the general features of our ALM model. In

Section A.3 we focus on the liability model and on the computation of liability dura-

tion, that requires the estimation of future firm’s cash flows, consisting of maturity,

death and surrender payments, also related to new production, and entails the defini-

tion of a mortality model as well as a surrender and new production model. Moreover,

we introduce the interest rate model associated to the term structure of interest rates.

In Section A.4 we deal with the asset model, thus presenting bonds, equity and cash

models. Then, in Section A.5, we introduce the nonlinearly constrained rebalancing

rules to solve in order to dynamically restructure the asset portfolio. We consider

several real world constraints. In Section A.6 we give an overview of the second stage

of the portfolio optimization. In Section A.7 we describe market data and in Section

A.8 we present and analyse some numerical results. Finally, in Section A.9, we point

out the main conclusions.

A.2 The model

We build a stochastic ALM model with dynamic reinvestment strategy for a life

insurance company’s portfolio. Therefore, we deal with both a liability portfolio and

an asset portfolio, that is regularly rebalanced in order to not only obtain a certain

portfolio return, but also to be able to meet future financial obligations. In order

to properly rebalance the company’s portfolio, we need to forecast the balance sheet

evolution over time, computing the joint projections of the future cash flows of both
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liability and asset portfolios.

Assets Liabilities and Shareholder’s Equity

Capital invested in assets Present value of life insurance policies
Equity capital

Table A.1: Simplified life insurance company’s balance sheet

A simplified balance sheet for a life insurance company is summarized in Table A.1.

The last item, equity capital, consists of the surplus which is kept by the company’s

shareholders and is defined by:

Equity capital = Assets� Present value of life insurance policies. (A.1)

On the assets side, we consider a portfolio composed of bonds, divided in buckets

of duration, equity and cash. Bonds, equity and cash are simulated together over

time according to stochastic models. The need of an insurance company to have a

conservative investment strategy, as required by regulators [17], is reinforced in our

model from the fact that in the case of with-profit life policies a more aggressive

investment strategy would represent an advantage for policyholders, but an excessive

risk for shareholders. In fact, policyholders would benefit from high returns and would

not be hit by negative returns, since a minimum rate of return is guaranteed, while

shareholders would be hit by negative returns and would barely benefit from positive

returns, since only a small percentage of returns is kept by the company’s shareholders.

Therefore, the company refrains from following a more aggressive investment strategy.

For these reasons, we hold larger positions in fixed-income assets, and we allocate a

smaller percentage of the total in stocks. Moreover, we consider some real investment

policy constraints on portfolio asset classes weights and on particular combinations

of them.

On the liabilities side, we consider a portfolio only comprising the so-called with-

profit life policies, a type of products that is very popular in life insurance business.

In these contracts, on one hand, the policyholder pays a premium, that can be either

129



single, paid at the beginning of the contract, or periodic, paid with a certain frequency

during the policy life. On the other hand, the insurer receives the premiums and

invests this capital in the financial market. Moreover, the insurer pays both a periodic

variable rate in a policyholder saving account and a benefit, that is disbursed at policy

maturity date, if the policyholder is still alive, or before policy maturity date, if the

contract ends before policy expiration, because the policyholder dies or decides to

exercise the surrender option, if the contract entitles to abandon the policy before

maturity. Our ALM model includes the surrender option. Also, we consider the

possibility that policyholders do not enter into the policy all together, say at time

0, but there is the chance that a policyholder signs the contract in the following

years, thus creating the so-called new production. In summary, we consider the most

important features of a with-profit life policy:

policyholders’ saving account grows at a rate given by the maximum between a

minimum guaranteed rate of return and a fraction of the asset portfolio return;

a mortality model is taken into account to keep track of death occurrences;

policyholders are entitled to surrender the contract at any time before the ma-

turity date;

cash flows due to the so-called new production are included.

In our model, the insurance company has to refund the beneficiaries of policies of

policyholders that die before the maturity date, the policyholders that abandon the

contract before policy expiration, as well as policyholders that are still alive when

their policies expire. Except from the timing of payments due to the maturity of the

policies, the timing of all the other payments is uncertain and depends on the market

evolution and on the stochastic behaviour of policyholders’ biometry. More precisely,

the decision to abandon the contract before policy expiration and new production

strongly depend on stochastic economic variables. Indeed, we infer the probability

that a policyholder cancels the contract before maturity or that a new policyholder
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subscribes to the policy comparing the earnings o↵ered by the policy with the earn-

ings o↵ered by competing products in the market, represented by the return of a

suitable benchmark index chosen from the market. This issue will be fully addressed

in Section A.3.1. In contrast with surrender events and new production, death oc-

currences are actuarial events, that are usually assumed independent of economic

variables. Therefore, in order to infer the number of policyholders that die before

policy expiration, we follow a biometric model, based on a life table in which the

survival probability of a policyholder is only dependent on age and gender. More

details about the mortality model are given in Section A.3.2.

Our ALM model is summarized in Table A.2.

Asset Model Liability Model

Bond with duration n1 model Policyholder account model
Bond with duration n2 model Surrender model
. . . New production model
Equity model Biometric model
Cash model

Table A.2: ALM model

Since the set of contracts could be very copious and, also, each insurance contract

could o↵er a di↵erent guaranteed rate of return, could be signed by policyholders of

di↵erent ages and could expire at di↵erent dates, computing the joint projections of

the future cash flows of both asset and liability portfolios for each contract can lead

to a highly time-consuming task. In order to manage this issue, as in [40], we group

policies with similar characteristics in buckets, called model points, thus reducing the

computational cost of the calculus. More details on how to build the model points

can be found in [63], for instance. Thus, our liability portfolio is given by the set

of model points, I = {mi/mi is a model point}, with cardinality NM := |I|, so that

we will work on a representative set of contracts. More precisely, in order to handle

the heterogeneity of the plethora of di↵erent contracts in the liability portfolio, we

gather together policies with similar minimum guaranteed rate of return, similar age
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of the policyholder and same maturity date. For example, in Section A.8, where some

numerical results are shown, we suppose that all the policies in our liability portfolio

expire in 10 years, and that some of these contracts o↵er a minimum guaranteed rate

of return of 0%, others of 1% and still others of 2%. Moreover, contracts are signed

by policyholders aged from 38 to 67. We split the contracts in model points as shown

in Table A.3.

Minimum guaranteed rate of return
0% 1% 2%

Age

[40, 44] (40, 0%) (40, 1%) (40, 2%)
[45, 49] (45, 0%) (45, 1%) (45, 2%)
[50, 54] (50, 0%) (50, 1%) (50, 2%)
[55, 59] (55, 0%) (55, 1%) (55, 2%)
[60, 64] (60, 0%) (60, 1%) (60, 2%)
[65, 69] (65, 0%) (65, 1%) (65, 2%)

Table A.3: Example of representative contracts (model points) for di↵erent policy-
holders’ ages and di↵erent minimum guaranteed rates of return. All contracts have
the same time-to-maturity, so that a model point is a couple (Ā, g), where Ā and g
are the representative age and the minimum guaranteed rate of return, respectively

In conclusion of the general description of our ALM model, we introduce the pos-

sibility of default of the insurance company. Indeed, if a policyholder dies, abandons

the contract, or is still alive at policy maturity date, the company has to pay a refund

based on the value of the policyholder’s saving account, that, as said before, earns an

interest rate given by the maximum between a minimum guaranteed rate of return

and a percentage of the return on the insurer’s investment portfolio. Therefore, the

company needs to use the capital that comes from new production if portfolio return

is not su�cient to meet its liabilities, and, if there are not enough new policyholders,

the company employs its own funds. If own funds become negative, the company is

declared defaulted.
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A.3 Liability model

In this section we describe how we model the cash flows connected to policyholders’

benefits and premiums. Whereas some cash flows are scheduled, such as cash flows

related to maturity payments, the timing of other cash flows is not known a priori and

can depend either on the market situation, in the case of payments due to surrender

option and in the case of cash inflows due to new production, or on actuarial events,

in the case of payments due to death occurrences.

We consider a time discretization given by a mesh of equispaced time instants, 0 =

t0 < t1 < . . . < tN = T , and we define the period k as [tk, tk+1], for k = 0, . . . , T � 1.

In each period, we assume that premiums are paid at the beginning while benefits

are disbursed at the end. Administrative costs are included in the premium.

At each period, we need to keep track not only of the number of alive policyholders,

but also of the number of policyholders that die or exercise the surrender option, of

the number of policies that expire, as well as of the number of new policyholders that

subscribe to a contract. Therefore, we introduce the following notations:

snk,i is the number of policyholders in the model point mi 2 I that entered into

the contract at time s and are still alive at the end of period k;

nk,i is the total number of alive policyholders in model point mi 2 I at the end

of period k, independently from their starting times, so that

nk,i =
T�1X

s=0

snk,i;

snD

k,i
, snS

k,i
, snM

k,i
are the numbers of policyholders in model point mi 2 I that

started the contract at time s and die, surrender or reach maturity at period k,

respectively;

nD

k,i
, nS

k,i
and nM

k,i
are the vectors defined as:

nX

k,i
= (0n

X

k,i
, 1n

X

k,i
, . . . , k�1n

X

k,i
), X = {D,S,M}; (A.2)
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nP

k,i
is the number of new policyholders in the i-th model point that enter into

the contract at period k.

In the biometric model used to determine the policyholders’ death rate, the distinction

between men and women is taken into account. So, when the previous symbols present

the superscript “M” or “F” they are referred only to the corresponding portion of

male or female policyholders, respectively.

We denote by slDk,i, slSk,i and slMk,i the death, surrender and maturity benefits at

period k for a policyholder in model point mi that signed the contract at time s. They

are the guaranteed payments in case of death of the policyholder, cancellation of the

contract or policy expiration, respectively, and their sizes depend on policyholders’

saving account. The saving account of policyholders in model point mi at period

k grows at a rate given by max(gk,i, �k,iRP

k
), where gk,i and �k,i are the minimum

guaranteed rate of return and the participation rate at period k for the model pointmi,

respectively, and RP

k
is the asset portfolio return at period k. Therefore, we assume

death, surrender and maturity benefits at period k for a policyholder in model point

mi that entered into the contract at time s grow according to the recursive formula:
8
><

>:
slXs,i = lP

s,i
,

slXk,i = slXk�1,i max(gk,i, �k,iRP

k
) + l⇧

k,i
, k > s,

(A.3)

where lP
s,i

is the payment made by the policyholder when entering into the contract at

period s, and l⇧
k,i

denotes the premium payment made by the policyholder at period

k. In (A.3) X can be either D, S, or M .

Note that we have made the assumption that the benefits in case of death, survival

at maturity or surrender evolve over time according to the same recursive formula,

but, in general, they may have di↵erent structures. For example, there can be some

penalties in case of surrender and the minimum guaranteed rate and the participation

rate can depend on X.

Finally, we denote by lD
k,i
, lS

k,i
and lM

k,i
the vectors given by:

lX
k,i

= (0l
X

k,i
, 1l

X

k,i
, . . . , k�1l

X

k,i
), X = {D,S,M}. (A.4)
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After having introduced the previous notations, we are able to list in the following

the quantities we need to take into account to determine the cash flows at period k.

Premium payments, ⇧k. These are the payments made by policyholders at

the beginning of period k, if still alive. At period k premium payments related

to model point mi are given by:

⇧k,i = nk�1,il
⇧
k,i
. (A.5)

Clearly, at period k the total amount of premium payments can be computed

as follows:

⇧k =
NMX

i=1

⇧k,i. (A.6)

New production, Pk. It consists of payments made by new policyholders at

the beginning of period k. New production at period k for the model point mi

is defined as:

Pk,i = nP

k,i
lP
k,i
, (A.7)

and the total amount of new production at period k is given by:

Pk =
NMX

i=1

Pk,i. (A.8)

Death payments, Dk. These are the rewards that the company has to give to

the beneficiaries of policies of policyholders that die before maturity at period

k. Death payments related to model point mi are given by:

Dk,i = nD

k,i
· lD

k,i
. (A.9)

Evidently, the total amount of death payments at period k is obtained as:

Dk =
NMX

i=1

Dk,i. (A.10)
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Surrender payments, �k. They are made up of the refunds that the com-

pany has to give to policyholders that abandon the policy before its contractual

expiration date at period k. For model point mi we have:

�k,i = nS

k,i
· lS

k,i
. (A.11)

The total amount of surrender payments at period k is given by:

�k =
NMX

i=1

�k,i. (A.12)

Maturity payments, Mk. These are the payments that the company has to

make due to policies in model point mi that reach maturity at time k. Maturity

payments at period k for model point mi are defined as:

Mk,i = nM

k,i
· lM

k,i
, (A.13)

and the total amount of maturity payments at period k is obviously computed

as:

Mk =
NMX

i=1

Mk,i. (A.14)

Liability value

On the basis of previous definitions, we can write a formula to describe the evolution

over time of the liability value. The value of liabilities related to model point mi at

time 0 is given by L0,i = ⇧0,i, and, for k = 1, . . . , Ti � 1, it evolves according to:

Lk,i = Lk�1,i(1 + max(gk,i, �k,iR
P

k
)) + ⇧k,i + Pk,i �Dk,i � �k,i. (A.15)

Since Ti denotes the maturity date of policies in model point mi, Lk,i = 0 for k � Ti.

Cash flows

We can write the total amount of cash flows at period k as:

cfk =
NMX

i=1

cfk,i. (A.16)
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In the previous formula, cfk,i denotes the size of cash flows at period k for model

point mi, given by:

cfk,i =

8
>>><

>>>:

�k,i +Dk,i if tk < Ti,

Mk,i +Dk,i if tk = Ti,

0 otherwise,

(A.17)

where Ti denotes the maturity date of policies in the i-th model point.

Liability duration

In the literature of ALMmodels, the most commonly used risk measure is duration. In

order to compute the duration of our liabilities, using the Macaulay duration formula,

we have to estimate the so-called actuarial reserves, that are the present value of the

amount that the insurer needs at future periods to meet obligations associated to the

policies. We denote by vk the actuarial reserves at period k and we have that:

vk =
NMX

i=1

vk,i, (A.18)

where vk,i denotes the reserves at period k connected to the i-th model point and is

given by the sum of the discounted supposed cash flows at future periods j > k, that

is to say:

vk,i =
X

j>k

dj|kcfj,i|k. (A.19)

In the previous formula, we have denoted by dj|k and cfj,i|k the discount factor at

period j and the size of cash flows at period j for the model point mi estimated at

period k, respectively. More precisely, the discount factor dj|k is the price at time k of

a zero-coupon bond with tenor j and is computed after having defined a model for the

term structure of interest rates. Our choice for the interest rate model is described

in Section A.3.4.

Once we have estimated the supposed liabilities cash flows, the liability duration
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at period k, LD

k
, according to the Macaulay formula, is given by:

LD

k
=

X

j>k

jdj|kcfj|k

X

j>k

dj|kcfj|k
. (A.20)

A.3.1 The surrender and new production model

In order to determine the timing and the size of surrender payments, as well as new

production cash flows, we need to build a model for the probability of surrender and

for the probability of new production, that is the probability that a contract is signed

by a new client.

It makes sense that the exercise of surrender option is strongly dependent on

market condition, since we can suppose that a policyholder abandons the policy if he

finds in the market an analogous product which o↵ers a higher rate of return with

respect to the return rate o↵ered by his policy at the same moment. Thus, following

[40], the surrender probability is parametrized on the basis of the spread between

the earnings o↵ered by the insurance company, depending on the insurer’s portfolio

return, and the return o↵ered by an analogous product in the market, represented

by a benchmark index return. In this way, we can model the fact that if competing

products return is greater than the rate of return o↵ered by the policy, a policyholder

is more motivated to surrender his investment.

In particular, for each period k and for each model point mi 2 I, we introduce

the quantity �rS
k,i

as:

�rS
k,i

= (RI

k
�max(gk,i, �k,iR

P

k
))+, (A.21)

where RI

k
is the benchmark index rate of return at period k. For the sake of brevity,

we have used the notation x+ = max(x, 0). Note that �rS
k,i

does not depend on

policyholder’s gender or age, but only on the minimum guaranteed rate of return

o↵ered by the contract.

In order to size �rS
k,i
, we introduce the threshold intervals Iq, for q = 1, . . . , Q.

For example, in our numerical tests we choose Q = 3 and define I1 = [0, 0.01],
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Period
Interval 0 1 2 . . . T � 1

I1 pS10, p
P

10 pS11, p
P

11 pS12, p
P

12 . . . pS1T�1, p
P

1T�1

I2 pS20, p
P

20 pS21, p
P

21 pS22, p
P

22 . . . pS2T�1, p
P

2T�1

...
...

...
... . . . ...

IQ pS
Q0, p

P

Q0 pS
Q1, p

P

Q1 pS
Q2, p

P

Q2 . . . pS
QT�1, p

P

QT�1

Table A.4: Surrender (pS
q,k
) and new production (pP

q,k
) probabilities depending on the

threshold interval Iq and on the period k

I2 = (0.01, 0.03], and I3 = (0.03,+1). We infer the surrender probability at period k

for the model point mi, pSk,i, from Table A.4, where surrender probabilities, depending

only on the threshold interval Iq and on the period k, are denoted by pS
qk
, for q = 1, 2, 3

and k = 0, . . . , T � 1. In particular, if �rS
k,i

falls in the interval Iq, then pS
qk

gives the

surrender probability at period k for policies in model point mi, i.e., pSk,i = pS
qk
.

After having inferred the probability of surrender at each period and for each

model point, we model the number of policyholders that entered into the contract at

period s and cancel it at period k by a Binomial distribution:

sn
S

k,i
⇠ Bin(snk�1,i, p

S

k,i
). (A.22)

Moreover, new production probability at period k for the model point mi, denoted

by pP
k,i
, is deduced in a similar way as the surrender probability, using Table A.4, where

new production probabilities, pP
qk
, for q = 1, 2, 3 and k = 0, . . . , T � 1, depend only

on the threshold interval Iq and on the period k. More precisely, we introduce the

quantity

�rP
k,i

= (max(gk,i, �k,iR
P

k
)�RI

k
)+ (A.23)

and assume that if �rP
k,i

lies in the interval Iq, then new production probability at

time k in the i-th model point is given by pP
qk
, i.e., pP

k,i
= pP

qk
.

Note that pS
qk

and pP
qk

in Table A.4 are chosen taking into account that surrender

probability and new production probability increase with �S
k,i

and �P
k,i
, respectively.
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Once we have deduced the probability of new production from Table A.4 at each

time for each model point, we can model the number of policyholders in the i-th

model point that start the contract at time k, for k > 0, by a Binomial distribution:

nP

k,i
⇠ Bin(nk�1,i, p

P

k,i
). (A.24)

We point out that the use of �rS
k,i

for surrender probability and �rP
k,i

for new

production probability is due to the fact that it is reasonable to assume that only if

competing products in the market, represented by the benchmark return RI , o↵er a

rate of return greater than the rate of return o↵ered by the insurance company, that

is, max(gk,i, �k,iRP

k
), a private investor may be motivated to abandon the policy, so

there may be surrenders, but there are not new policyholders signing the contract,

vice versa, if max(gk,i, �k,iRP

k
) is greater than RI

k
, new clients may be motivated to put

his savings in the policy, but there are not policyholders that exercise the surrender

option.

A.3.2 The mortality model

Since the payments due to deaths of policyholders before maturity are not dependent

on market condition, we use a biometric model in which the death probability is

provided by a specific life table (Table A.5) depending on policyholders’ age and

gender. More precisely, since in numerical examples considered in Section A.8 we

choose a time step of 1 year, that is to say, the distance between time k and time

k + 1 is 1 year, in Table A.5 we report the probabilities that individuals that have

just had a birthday will not celebrate the next birthday.

We denote by pD,M
i

and pD,F
i

the death probabilities for the model point mi for

male and female policyholders, respectively. In particular, we model the number of

male and female policyholders in model point mi, that entered into the contract at

time s and die at period k, sn
D,M
k,i

and sn
D,F
k,i

, by a Binomial distribution, so that:

sn
D,X

k,i
⇠ Bin(sn

X

k�1,i, p
D,X

i
), X = {M,F}. (A.25)
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Age M (%) F (%)

[40, 44] 0.5740 0.3477
[45, 49] 0.8935 0.5512
[50, 54] 1.4243 0.8349
[55, 59] 2.2984 1.3452
[60, 64] 3.7245 2.1283
[65, 69] 6.0787 3.2981

Table A.5: 2019 period life table: death probabilities in percentage for men (M)
and women (F) for given age intervals. Source: ISTAT (Italian National Institute of
Statistics)

Obviously, the total number of deaths at period k for the model point mi, denoted

by nD

k,i
, is computed as:

nD

k,i
=

k�1X

s=0

(sn
D,M
k,i

+ sn
D,F
k,i

). (A.26)

A.3.3 Approximation of future cash flows

In this section we deal with the estimation at period k of the projections of future

cash flows, given by (A.16) and (A.17), at each period j > k, needed to compute

the liability duration, according to (A.20). More precisely, we have to estimate the

timing and the size of future death, surrender and maturity payments, taking into

account that new policyholders can subscribe to a policy at future periods.

Future value of death, surrender and maturity benefits

The size of payments that the company has to make due to death of policyholders,

abandons of the contract and policy contractual expiration depends on death, sur-

render and maturity benefits, that grow according to (A.3). Therefore, in order to

measure the expected size of future payments at period k, we need to estimate:

E[max(gj,i, �j,iR
P

j
)|Fk], for j > k, (A.27)
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where E[·|Fk] denotes the expectation with respect to the information available at

period k, denoted by Fk.

In order to estimate (A.27) we employ the Least Squares Monte Carlo Method

[68]. More precisely, we can write the conditional expectation in (A.27) as linear

combination of W basis functions { w}w=1,...,W as follows:

E[max(gj,i, �j,iR
P

j
)|Fk] '

WX

w=1

b̄w
k,j,i

 w(RP

k
) = b̄T

k,j,i
 (RP

k
). (A.28)

For example, we can choose the Laguerre polynomials as basis functions, being

simple to implement, because they can be defined recursively:

8
>>>><

>>>>:

L0(x) = 1,

L1(x) = 1� x,

Lk(x) =
1
k
((2(k � 1) + 1� x)Lk�1(x)� (k � 1)Lk�2(x)), k � 2.

(A.29)

We search for the regression coe�cients b̄k,j,i that are solution of the following

problem:

b̄⇤
k,j,i

= argmin
b̄k,j,i

Ek

h⇣
 (RP

k
)T b̄k,j,i � Ek[max(gj,i, �j,iR

P

j
)]
⌘2i

,

where we have used the notation Ek[·] = E[·|Fk].

We vanish the derivative with respect to b̄k,j,i of the quantity to minimize and we

get:

Ek

h
 (RP

k
) (RP

k
)T
i
b̄⇤
k,j,i

= Ek

h
 (RP

k
)max(gj,i, �j,iR

P

j
)
i
.

In order to compute the regression coe�cients, we use Monte Carlo techniques.

More precisely, we simulate NP paths of RP

k
, for k = 1, . . . , T , and we denote by RP,n

k

the value at time k in the n-th simulation. After having defined  k,i as the W ⇥W

matrix with coe�cients

( k,i)uv =
1

NP

NPX

n=1

 u(RP,n

k
) v(RP,n

k
),
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and dk,j,i as the W -array with the v-th element given by

(dk,j,i)v =
1

NP

NPX

n=1

 v(RP,n

k
)max(gj,i, �j,iR

P,n

j
),

we reduce the problem of regression coe�cients computation to the problem of solving

the system  k,ib̄k,j,i = dk,j,i.

Once we have obtained regression coe�cients, we are able to compute

E[max(gj,i, �j,iR
P

j
)|Fk] , for j > k ,

simply using (A.28). This means we need to simulate only the current value RP

k
.

Future death payments

Once we have estimated the value of the death benefit at future periods and predicted

the number of policyholders who will die at each future period according to the bio-

metric model described in Section A.3.2, we can compute the size of death payments

according to (A.9) and (A.10).

Future surrender payments

In order to forecast the size and the timing of future surrender payments, we need

to predict the number of policyholders that cancel the contract at each future period

j > k and, so, the probability of surrender at each period j > k. To do that, we

compute:

�RS

i
(j|k) = E[�rS

j,i
|Fk], for j > k. (A.30)

Indeed, the computation of (A.30) allows us to forecast the probability of surrender

at future periods by using Table A.4 and, then, the number of abandons at each

future periods according to (A.22). After having estimated the number of surrenders

at future periods, we can use the estimation of the surrender benefit to compute the

amount the company is expected to pay due to surrenders according to (A.11) and

(A.12).
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From the definition of �rS
j,i

in (A.21), we get:

�RS

i
(j|k) = Ek[(R

I

j
�max(gj,i, �j,iR

P

j
)+], for j > k. (A.31)

Due to the nonlinearity of �rS
j,i

we estimate the conditional expectations in (A.30)

with a Least Squares approach [68], thus following the same procedure we have used

to forecast future returns. Therefore, we write �RS

i
(j|k) as linear combination of

basis functions { w}w=1,...,W :

�RS

i
(j|k) '

WX

w=1

¯̄bw
k,j,i

 w(R̂P

k,i
, RI

k
) = ¯̄bT

k,j,i
 (R̂P

k,i
, RI

k
), (A.32)

where we have used the notation R̂P

k,i
= max(gj,i, �j,iRP

j
).

This time, the basis functions are bidimensional functions. For example, we can

choose the bidimensional Laguerre polynomials, given by the product of couples of

unidimensional Laguerre polynomials, defined above.

We look for the regression coe�cients ¯̄b⇤
k,j,i

such that:

¯̄b⇤
k,j,i

= argmin
¯̄
bk,j,i

Ek

h⇣
 (R̂P

k,i
, RI

k
)T ¯̄bk,j,i � Ek[�rj,i]

⌘2i
,

which leads to:

Ek

h
 (R̂P

k,i
, RI

k
) (R̂P

k,i
, RI

k
)T
i
¯̄b⇤
k,j,i

= Ek

h
 (R̂P

k,i
, RI

k
)�rj,i

i
.

We use again Monte Carlo techniques to compute regression coe�cients. More

precisely, we simulate NP paths of R̂P

k,i
and R̂I

k
, for k = 1, . . . , T , and we denote by

R̂P,n

k,i
, RI,n

k
their respective values at time k in the n-th simulation. This time, we have

to solve the system  k,i
¯̄bk,j,i = dk,j,i, where the W ⇥W matrix  k,i and the W -array

dk,j,i are such that:

( k,i)uv =
1

NP

NPX

n=1

 u(R̂P,n

k,i
, RI,n

k,i
) v(R̂P,n

k,i
, RI,n

k,i
),

(dk,j,i)v =
1

NP

NPX

n=1

 v(R̂P,n

k,i
, RI,n

k
)(RI,n

j
� R̂P,n

j,i
)+.

After having computed regression coe�cients, we obtain RS

i
(j|k), for j > k, from

(A.32), so that we need to simulate only the current values R̂P

k,i
and R̂I

k
.
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Future new production

Following the same procedure used for �RS

i
(j|k) in (A.30), we compute

�RP

i
(j|k) = E[�rP

j,i
|Fk], for j > k, (A.33)

to predict the probability of new production at future periods by using Table A.4

with the aim to forecast the number of new policyholders signing a contract at the

each future periods according to (A.24). New production cash flows are computed by

(A.7) and (A.8).

Future maturity payments

As regard to maturity payments, they can be computed by (A.13) and (A.14), taking

into account the estimation of maturity benefit and that the number of policyholders

that are still alive at policy maturity date is given by the total number of policyholders

that entered into the contract, at any time, minus the number of policyholders that

died or surrendered the contract before policy expiration.

Benchmark index model

In conclusion of the section, we point out that in order to compute (A.30) we need

to define both the dynamics of the benchmark return and the dynamics of the asset

classes in the portfolio, to deduce the portfolio return, also needed to compute (A.27).

To end the section, we describe the model for the benchmark return, whereas the

dynamics of portfolio asset classes are described in Section A.4. We assume that the

benchmark index price follows a geometric Brownian motion. Therefore, the price of

the benchmark index, It, is governed by:

dIt = µIItdt+ �IItdW
I

t
, (A.34)

where the constant parameters µI 2 R and �I > 0 are the drift and the volatility of

the process It, respectively, and W I

t
is a Brownian motion. It is well known that the
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solution of equation (A.34) at time t conditional to Fs, with s < t, is given by

It = Is exp

0

@
 
µI � (�I)2

2

!
(t� s) + �I(W I

t
�W I

s
)

1

A . (A.35)

A.3.4 Interest rate model associated to the term structure

of interest rates

In order to compute the liability duration by using the Macaulay formula (A.20), we

need to calculate the discount factors, that are prices of zero-coupon bonds, so that

we need to evolve the term structure of interest rates. For this reason, we introduce

a short rate model. The convenience in the use of a short rate model is that the term

structure of interest rates is an a�ne term structure in the sense that, at time t, the

zero rate with maturity T is an a�ne function of the instantaneous short rate process

at time t. In particular, we choose the one factor Hull & White model in the version

referred in the literature as G1++ model. For the equivalence between G1++ model

and the original one factor Hull & White model see [20] and [60], for instance. The

advantages in the use of the G1 + + model with respect to its classical counterpart

are well known. For example, the generation of forward paths is numerically more

stable and the analytical formula for bond prices is more tractable.

In the G1 + + model, the dynamics of the instantaneous short rate rt under the

risk neutral measure Q is given by

rt = xt + ft, (A.36)

with initial value r0. We assume that the process xt satisfies the following stochastic

di↵erential equation: 8
><

>:

x0 = 0,

xt = �axxtdt+ �x(t)dW x

t
,

(A.37)

where ax is a positive constant, �x(t) is a positive deterministic function, and W x

t

is a standard Brownian motion. The function f is deterministic and is given by an
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exact fitting to the term structure of discount factors observed in the market. We

choose to employ a piecewise constant functional specification for the volatility of the

process xt. More precisely, the volatility �x(t) is constant in the intervals [0, 1], (1, 3],

(3,+1), so that:

�x(t) =

8
>>>><

>>>>:

�1, if t 2 [0, 1],

�2, if t 2 (1, 3],

�3, if t 2 (3,+1).

(A.38)

The parameters ax and �1, �2, �3 can be calibrated by using market swaption

prices. In fact, [34] and [88], for example, present an approximated swaption pricing

formula, e↵ective in the setting of the G1 ++ model, in the case that the strike is at

the money:

ES(0, T, tk, K,N) = N
V OLp
2⇡

kX

i=1

⌧iP (0, ti) ⌘ N
V OLp
2⇡

P tk
t1
, (A.39)

where ES(0, T, tk, K,N) is the price at time 0 of a European call swaption with

maturity T , strike K, and nominal value N , which gives the holder the right to enter

at time T = t0 into a swap in which the holder pays the fixed rate K and receives

the Libor rate at dates t1, . . . , tk, with t0 < t1 < . . . < tk. In (A.39) ⌧i denotes the

year fraction from ti�1 and ti, P (0, ti) represents the price at time 0 of a zero-coupon

bond with maturity ti years, and

V OL =

sZ
T

0

(�(u)x)2A2e2axudu,

with

A = e�a
x
T
P (0, T )

axP tk
t1

� e�a
x
tk
P (0, tk)

axP tk
t1

� K

ax

kX

i=1

e�a
x
ti⌧i

P (0, ti)

P tk
t1

.

We have calibrated the G1 + + model using the swaption prices observed on

September 30, 2020, and reported in Table A.6, thus obtaining the following param-

eters values: ax = 0.0048, and �1 = 0.0018, �2 = 0.0042, �3 = 0.0065.
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Maturity Tenor Strike Price

1 1 -0.00490 0.00074
2 2 -0.00423 0.00313
3 3 -0.00316 0.00792
5 4 -0.00081 0.01741
5 5 -0.00032 0.02221
7 7 0.00203 0.04046
10 10 0.00278 0.07113

Table A.6: Swaption prices observed on September 30, 2020. Source: Bloomberg

After having calibrated the parameters of the process xt, in order to simulate

the process rt, we use its conditional distribution. More precisely, from (A.36) and

(A.37), for s < t, we have that rt, conditional to Fs, is normally distributed with:

E[rt|Fs] =xse
�a

x(t�s) + ft,

Var[rt|Fs] =(�x(t))2
1� e�2ax(t�s)

2ax
,

where E and Var denote the mean and the variance under the measure Q, respectively.

In the framework of the G1 ++ model, the price of a zero coupon bond at time t

with maturity at time T , P (t, T ), can be computed using the following formula:

P (t, T ) = A(t, T )e�B(t,T )xt , (A.40)

where

A(t, T ) =
PM(0, T )

PM(0, t)
e

1
2 [V (t,T )�V (0,T )+V (0,t)], (A.41)

B(t, T ) =
1� e�a

x(T�t)

ax
, (A.42)

V (t, T ) =
(�x(t))2

(ax)2

 
T � t� 2

1� e�a
x(T�t)

ax
+

1� e�2ax(T�t)

2ax

!
. (A.43)

In (A.41) PM(0, t) denotes the market price of a zero-coupon bond with maturity t

years, observed at time 0, i.e., the initial term structure.
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A.4 Asset model

Our asset portfolio is composed of bonds, equity and cash. We split the bonds into

four classes with di↵erent maturities: a class for bonds with maturity less than 3

years; a class including all the bonds with maturity between 3 and 5 years; a class

comprising bonds with maturity from 5 to 10 years; finally, a class consisting of bonds

with maturity greater than 10 years.

Since an insurance company has a conservative investment strategy, the largest

part of portfolio is composed of bonds. So, in our strategy, we consider a lower bound

for the portion of portfolio invested in bonds. We also consider an upper bound

for the part of portfolio invested in equity. The remaining part is invested in cash.

Section A.5 deals with the question of constraints on portfolio weights with more

details, whereas in the following we describe the stochastic models used to simulate

the returns of portfolio asset classes.

Bonds and equity models

In order to simulate bonds and equity returns, we assume that the underlying indexes

dynamics follow geometric Brownian motions. Therefore, denoting by St the price of

equity index at time t and by B⌧

t
the price at time t of bond index with duration ⌧ ,

we have:

dSt =µSStdt+ �SStdW
S

t
, (A.44)

dB⌧

t
=µB

⌧
B⌧

t
dt+ �B

⌧
B⌧

t
dWB

⌧

t
, (A.45)

where µS, µB
⌧ 2 R are the drifts of the processes St and B⌧

t
, respectively, and �S, �B

⌧

are strictly positive constant parameters representing their volatilities. Moreover, W S

t

and WB
⌧

t
are correlated Brownian motions and, obviously, they are both correlated

with the other sources of randomness in the model, i.e., W I

t
, that appears in (A.35),

and W x

t
, that is involved in (A.37). It is well known that the solutions of equations
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(A.44) and (A.45) at time t conditional to Fs, with s < t, are respectively given by

St =Ss exp

0

@
 
µS � (�S)2

2

!
(t� s) + �S(W S

t
�W S

s
)

1

A , (A.46)

B⌧

t
=B⌧

s
exp

0

@
 
µB

⌧ � (�B
⌧
)2

2

!
(t� s) + �B

⌧
(WB

⌧

t
�WB

⌧

s
)

1

A . (A.47)

We refer to the work by Doherty and Garven [36] as an early paper where the

Geometric Brownian Motion has been used in modelling assets and liabilities. In the

paper a discrete-time option pricing model is used to derive the “fair” rate of return

of an insurance firm.

Cash model

The evolution of the dynamics of cash in the asset portfolio is deduced from the short

rate model described in Section A.3, taking into account that (see [34], for instance):

e
R t
0 r(s)ds =

e
R t
0 x(s)ds

e�
R t
0 f(s)ds

=
e
R t
0 x(s)ds

PM(0, t)e�
1
2V (0,t)

. (A.48)

Note that the dynamics of the process xt is given in (A.37), PM(0, t) denotes the

market price of a zero-coupon bond with maturity t, and the value of V (0, t) can be

computed by (A.43).

We would like to point out that all the processes in the model are simulated

according to their dynamics in the real world measure, P , but cash is simulated from

rt whose dynamics is in the risk neutral measure, Q. Indeed, in the case of cash we

can assume that the dynamics in P coincides with the dynamics in Q, being the risk

premium null.

Asset value

After having described the dynamics of portfolio asset classes, we are able to compute

the asset portfolio return at each period k, RP

k
, so that we can write a formula for
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the evolution of the asset value over time:

Ak = Ak�1(1 +RP

k
) + ⇧k + Pk �Dk � �k �Mk, k > 0, (A.49)

where A0 is given by premiums collected from policyholders at period 0 plus the initial

investment on the part of the company.

A.5 First stage of portfolio rebalancing

In our stochastic ALM model, we consider a dynamic reinvestment strategy in which

the asset portfolio is restructured at each period k according to the evolution of the

liability portfolio. We use a scenario-based simulation approach. For each scenario at

each period k, the investment strategy decides which types of asset class must be sold

or bought in order to guarantee that there is enough money to meet the obligations

with policyholders and company’s shareholders. In particular, for each simulation at

each period k, we compute the duration of liabilities, the duration of asset portfolio

and the asset portfolio return. Then, we rebalance our asset portfolio with the aim

to accomplish two goals:

i. Matching between assets duration and liabilities duration. More precisely, we

aspire to minimize the positive part of the di↵erence between assets duration

and liabilities duration, since liquidity problems can arise when the assets have

a longer duration than liabilities, but not vice versa;

ii. Achievement of a certain target return. In particular, we ask that the portfolio

return is not too much distant from the benchmark return.

In order to rebalance our portfolio composition, for each simulation at each period

k, we solve a nonlinearly constrained optimization problem subject to several real

world constraints. In particular, we consider the so-called budget constraint and

no short selling constraint, and for each asset class we set upper and lower bounds

and we fix a maximum turnover. In addition, we set a maximum portfolio turnover,
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and we impose other linear constraints given by the investment policy. All these

constraints are reasonable for an insurance company and we calibrate them on an

EU-based life insurance company’s portfolio. We summarize all these constraints in

Table A.7, where we have denoted by ↵k = (↵B1
k
,↵B2

k
,↵B3

k
,↵B4

k
,↵E

k
,↵C

k
) the array

of asset classes weights at period k. In particular, ↵Bn

k
, ↵E

k
, ↵C

k
are the weights in

the portfolio composition at period k of the n-th class of bonds, equity and cash,

respectively. We denote by I↵ = {B1, B2, B3, B4, E, C}. In Table A.7 mB denotes

the lower bound for the sum of the bonds weights in portfolio composition, ME the

upper bound for weight of equity, and TO and TOtot are, respectively, the maximum

turnover on each asset class and the maximum portfolio turnover.

Budget constraint
P

i2I↵ ↵
i

k
= 1

No short selling constraint ↵i

k
� 0, 8i 2 I↵

Investment policy constraints

P4
n=1 ↵

Bn

k
� mB

↵E

k
 ME

Turnover constraints

��↵i

k
� ↵i

k�1

��  TO, 8i 2 I↵
P

i2I↵

��↵i

k
� ↵i

k�1

��  TOtot

Table A.7: Constraints imposed in the optimization problem of the first stage of
portfolio rebalancing

At period k the optimization problem consists of finding an optimal array of asset

classes weights ↵k such that:

minimize (AD(↵k)� LD

k
)+;

subject to

8
><

>:

�LRI

k+1  RP

k+1  �URI

k+1, with constant �L, �U ,

constraints in Table A.7.

(A.50)

Note that assets duration, AD, is a combination of durations of bonds in the asset

portfolio.
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In a general framework, we can include transaction costs, that arise when rebal-

ancing the asset portfolio. In the case of no null transaction costs the portfolio return

at period k is given by:

RP

k
= ↵k ·Rk � [cS · (↵k�1 �↵k)

+ + cB · (↵k �↵k�1)
+], (A.51)

where cS and cB are the vectors of asset classes selling and buying costs, respectively,

and Rk is the vector of asset classes returns at time k. In the numerical tests we

assume null transaction costs, because the introduction of transaction costs di↵erent

from zero substantially increases the elapsed computational time, but does not af-

fect results in a significant way, in the sense that results with transaction costs are

comparable to results without them.

A.6 Second stage of portfolio optimization

In the previous section we have chosen a portfolio rebalancing strategy that ensures

the company will be solvable, and shareholders and policyholders will benefit from a

competitive return. But the proposed strategy is not necessarily optimal. For this

reason, we now introduce a second stage of portfolio optimization with the aim of

maximizing the expected value of a chosen utility function, taking into account the

results obtained from the first stage of portfolio rebalancing. Indeed, in the first step of

portfolio rebalancing we consider only six asset classes, and in the second step for each

bonds asset class and for equity asset class, taking into account several sub-sectors,

we run a sectorial optimization problem that maximizes the expected utility function

of terminal wealth over specified horizon (see [25]). We suggest to solve sectorial

optimization problems in the second stage to refrain from managing an excessive

number of asset classes. For instance, for each bond asset class sub-sectors could be

government core and government peripheral bonds, financial and corporate bonds,

financial investment grade and financial sub-investment grade bonds, etc. For equity

asset class sub-sectors could be energy, healthcare, utilities, information technology,

etc.
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More precisely, chosen a utility function U , at each time step k we solve five

sectorial optimization problems, so that we search for the optimal weights vectors

!i

k
= (!i,1

k
, . . . ,!i,Ni

k
), for i 2 I↵ \ {C}, such that:

maximize Ek

2

64max
!̄i

k+1

Ek+1

2

4max
!̄i

k+2

Ek+2

"
. . .max

!̄i
T�1

ET�1

h
U(!i

T�1 ·Ri

T
)
i
. . .

#3

5

3

75 ;

subject to
NiX

j=1

!i,j

k
= ↵i

k
,

(A.52)

where Ri

l
and Ni are the vector of sub-sectors returns at period l and the number of

sub-sectors for asset class i, respectively. In this way, an optimal portfolio strategy is

proposed (see [75]).

However, in numerical results presented in Section A.8 we focus on the first step

of the portfolio rebalancing strategy, because the second step can be performed by

standard techniques of stochastic programming (see, for example, [31]).

A.7 Market data

In our portfolio optimization problem we assume the insurance company can invest in

six specific asset classes, summarized in Table A.8. In order to simulate the dynamics

of bonds and equity log-returns, respectively deduced from (A.44) and (A.45), we use

the historical estimations of annualized mean and standard deviation of representative

indexes daily log-returns, computed considering an annualization factor of 252. We do

the same for the dynamics of log-returns of the benchmark index, used in the surrender

and new production models. The dynamics of the benchmark return is inferred from

(A.34). Indexes and their log-returns statistics are listed in Table A.8. We have

considered daily observations from September 30, 2010 to September 30, 2020, for a

total of 2614 observations. Data have been obtained from Bloomberg. Also, in Table

A.8, for each representative index of the asset classes of the investable portfolio we
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show the index duration, given by the average duration of the index components,

weighted on the basis of their market prices. Finally, since cash log-returns are

simulated by using the short rate model, in Table A.8, we report the representative

index for the short rate, used only as proxy to estimate correlation between the

dynamics of cash and the dynamics of all the other stochastic variables. Indeed,

all the sources of randomness in the model are correlated. When simulating, the

historical correlation of indexes is used as correlation between the Brownian motions

in the model, i.e., W I , involved in the dynamics of the benchmark index (A.34), W x,

included in the dynamics of the short rate (A.37), W S, that is in the dynamics of

equity (A.44), and WB
⌧
, contained in the dynamics of bonds with duration ⌧ (A.45).

Log-returns
Asset class Index Duration Mean Std

B1 bonds, maturity 1-3 EZ1X 1.883087 0.004453 0.006722
B2 bonds, maturity 3-5 EZ2X 3.814414 0.015954 0.016217
B3 bonds, maturity 5-10 EZ6X 6.859975 0.037001 0.033788
B4 bonds, maturity >10 EZ9X 16.48279 0.075430 0.080750
E equity MXEM 0 0.033442 0.183722
r short rate Eur003m - - -
BI benchmark NCV0 - 0.028616 0.039320

Table A.8: Asset classes representative indexes, short rate representative index and
benchmark index. Duration, annualized mean and annualized standard deviation for
daily log-returns are reported

In Table A.9 we report the historical correlations.

Since the aim of an insurance company is not only to meet its financial obligations,

but also to obtain a profit, we are interested in the changes in own funds value.

Therefore, we keep track of the evolution over time of the di↵erence between asset

and liability values, so that we need to make an assumption on the relation between

them at the initial time, say at time 0. In particular, we set the level of liabilities at

the initial time to 90% of the value of the assets at the same time, that is to say, the
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B1 B2 B3 B4 E r BI
B1 1 0.9308 0.7422 0.5675 0.2288 0.0048 0.4078
B2 0.9308 1 0.9145 0.7588 0.1947 -0.0013 0.6187
B3 0.7422 0.9145 1 0.9310 0.1118 -0.0017 0.8263
B4 0.5675 0.7588 0.9310 1 -0.0086 0.0005 0.9121
E 0.2288 0.1947 0.1118 -0.0086 1 -0.0180 -0.1818
r 0.0048 0.0016 -0.0075 -0.0154 -0.0180 1 -0.0124
BI 0.4078 0.6187 0.8263 0.9121 -0.1818 -0.0124 1

Table A.9: Correlation matrix between the asset classes, the short rate and the
benchmark index

following relation is satisfied:

L0 = 0.887A0. (A.53)

Another assumption we need to make concerns the initial portfolio composition,

described in Table A.10. Portfolio is periodically rebalanced observing constraints on

asset classes weights, as fully discussed in Section A.5. In particular, in Table A.7 we

choose mB = 0.70, ME = 0.20, TO = 0.05, and TOtot = 30.

Asset class Weight

B1 bonds, maturity 1-3 21.09%
B2 bonds, maturity 3-5 22.91%
B3 bonds, maturity 5-10 35.79%
B4 bonds, maturity >10 15.38%
E equity 3.74%
C cash 1.09%

Table A.10: Initial portfolio composition in the numerical tests

A.8 Numerical results

In this section some numerical results are presented. In particular, we deduce how

the portfolio has to be rebalanced according to the strategy illustrated in Section A.5.

Also, we focus on the values of actuarial reserves and own funds. Moreover, we are
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interested in the study of the impact of mortality model and of surrender and new

production models on how the number of alive policies changes over time.

We have used 103 simulations for the phase of regression coe�cients computa-

tion in the Least Squares Monte Carlo method and we have generated 104 di↵erent

scenarios for the phase of portfolio composition optimization. All tests have been

performed by using Matlab on an Intel(R) Core(TM) i7-8550U, 1.99 GHz, 16 GB

(RAM), x64-based processor.

In the following, we make the assumptions listed below:

all contracts have the same value, say e10 000, in the moment they are signed;

all policies expire at the same future date, say at time T = 10 years;

the initial number of policyholders in each model point is reported in Table

A.11;

at the initial time policies are equally distributed between male and female

policyholders (gender equality);

portfolio is rebalanced at each time step, that is one year;

policyholders pay a single premium at the beginning of the contract;

the participation rate � is the same for all model points, and is set to 95%,

constant over time, unless otherwise stated.

In Figure A.1 we exhibit how the portfolio composition is rebalanced every year

following the strategy described in Section A.5. In particular, we show the mean value

of portfolio composition weights over all the scenarios. We infer that the weight of

bonds with maturity less than 3 years has to increase significantly over time, while the

weight of equity rises slightly. Moreover, the weights of cash and bonds with maturity

between 3 and 5 years remain nearly constant over time, whereas we have to invest

less and less in bonds with longer maturity. The portfolio composition evolution in

Figure A.1 originates from the fact that all policies expire at time T = 10, so that
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Minimum guarantee
Age 0% 1% 2%

40 50 5 1
45 55 5 3
50 55 10 3
55 60 25 15
60 70 80 23
65 60 100 50

Table A.11: Initial number of policyholders in each model point

liability duration approaches to zero with the passing of time. As a result, in order to

match asset duration and liability duration, we need to invest more and more in asset

classes with short duration, and less and less on asset classes with long duration.

In Figure A.2 we illustrate how much the liability value of each model point weighs

on the total value of liabilities. We consider the interval [0, 9], because at maturity

date, i.e., T = 10, all policyholders have been refunded and the total liability value

is zero. We note that the weights of model points related to younger policyholders

increase over time, while the weights of model points associated with policyholders

aged 60 or more decrease. In fact, young policyholders are less likely to die with

respect to older policyholders (see Table A.5), so that death payments that the com-

pany has to make at each time are due especially to deaths of older policyholders.

This means that the company has to refund before maturity more old policyholders

than young policyholders, thus lightening the weight on the total value of liabilities

of model points related to old policyholders.

As regard to the number of alive contracts, it decreases over time, as shown in Fig-

ure A.3. Evidently, at each time step new production is not enough to counterbalance

deaths and surrenders. However, the evolution of the number of alive policies may

be di↵erent if other assumptions are made on the model or another set of parameters

is chosen. It is even possible that the number of alive contracts increases over time,

since the number of new investors may exceed the number of policyholders who die

or exercise the surrender option. The right plot in Figure A.3 considers separately
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Figure A.1: Portfolio composition rebalancing
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Figure A.2: Model points weights on liabilities value at di↵erent times

male and female policyholders, thus allowing us to evaluate the e↵ect of mortality

model on the changes of the alive policies number. In fact, since the surrender and

the new production models do not depend on gender, the di↵erent rate of decrease
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for men and women is only due to the fact that women mortality rate is lower than

men mortality rate (see Table A.5).
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Figure A.3: Mean number of alive policies at each time. On the left the total number
is plotted; on the right the distinction between males and females is taken into account

In order to better analyse the issue of new production, in Figure A.4 we plot

the mean number over all the scenarios of alive policyholders considering separately

policies with di↵erent starting time. So, on the top we show the number of policies

that started at time 0, on the bottom the numbers of policies that started after

time 0. As expected, the major decrease can be observed in the population that

entered into the contract at time 0, meaning that at each time it is more likely

that a policyholder who started the contract at time 0 dies or abandons the policy

rather than a policyholder who started the contract after time 0. In fact, the set of

policyholders that entered at time 0 is more numerous.

Participation rate sensitivity

So far we have considered a fixed participation rate, but it is interesting to study

how di↵erent values for � influence actuarial reserves and own funds, as well as the

number of abandons and new production.

In Figure A.5 we plot actuarial reserves for di↵erent values of �. As expected, if

� grows, the payments that the company has to make due to policyholders who die,
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Figure A.4: Mean number of alive policies with di↵erent starting time. The plot
on the top displays the evolution of the number of alive contracts that started at
time zero; lines in the plot on the bottom show the evolution of the numbers of alive
policies that started at time 1, 2, . . . , 9, respectively

abandon the contract or reach maturity, are more consistent. Therefore, actuarial

reserves, discounted expectation of future disbursements, increase. Note that we

consider the time interval [0, 9], thus ignoring the maturity date, T = 10, when all

policies have expired and actuarial reserves are zero, because the company has no

more future payments to make.

In Figure A.6 we show the di↵erence between asset value and liability value chang-

ing the participation rate. Evidently, the di↵erence examined in the plot decreases

when increasing the participation rate, in fact:

At � Lt = At�1(1 +RP

t
)�

NMX

i=1

Lt�1,i(1 + max(gi, �R
P

t
)), (A.54)

where the liability term increases if � becomes greater. However, in any case own

funds rise over time.

In addition, Figure A.6 shows that at each time step the mean value of the di↵er-

ence between asset value and liability value is positive. However, in some scenarios
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Figure A.5: Evolution of the average actuarial reserves for di↵erent values of the
participation rate �
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162



own funds become negative and the company is declared defaulted. In Table A.12 we

report the probability of default, defined as the ratio between the number of scenarios

in which the company defaults and the total number of scenarios (10000), for three

di↵erent values of the participation rate �. Obviously, probability of default rises by

increasing �.

� Probability of default

90.0% 1.10%
92.5% 1.31%
95.0% 1.68%

Table A.12: Probability of default for di↵erent values of the participation rate �

Finally, we analyse how the value of the participation rate a↵ects the changes in

the number of alive policies over time, as shown in Figure A.7. On the contrary of

what happens in the right plot in Figure A.3, where the impact of the mortality model

is presented, in Figure A.7 the e↵ect of surrender and new production models can

be observed. In fact, the mortality model does not depend on the participation rate,

while surrender and new production models strongly depend on it (see Section A.3.1).

In particular, the earnings o↵ered by the insurance company rise when increasing �,

so that less policyholders are motivated to abandon the contract, and more investors

subscribe to the policy. As a result, the number of alive policies decreases more slowly

in the case of larger values of the participation rate.

Death probabilities sensitivity

We have also tested our model using 2020 period life table, that is, death probabilities

a↵ected by the COVID-19 pandemic. As expected, 2020 death probabilities, reported

in Table A.13, are larger than 2019 death probabilities, shown in Table A.5.

Obviously, the number of alive policies decreases faster in the case of larger death

probabilities, as shown in Figure A.8.

In Figure A.9 we report the evolution over time of actuarial reserves and own
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Figure A.7: Mean number of alive policies at each time for di↵erent values of the
participation rate �

Age M (%) F (%)

[40, 44] 0.5879 0.3514
[45, 49] 0.9200 0.5625
[50, 54] 1.5864 0.9315
[55, 59] 2.6150 1.4310
[60, 64] 4.4282 2.2973
[65, 69] 7.2543 3.6888

Table A.13: 2020 period life table: death probabilities in percentage for men (M)
and women (F) for given age intervals. Source: ISTAT (Italian National Institute of
Statistics)

funds. In the case of 2020 death probabilities actuarial reserves are lower, because

the company refunds policyholders sooner, therefore the refund is smaller. Moreover,

own funds are larger in the case of larger death probabilities.

164



0 1 2 3 4 5 6 7 8 9 10

Time

500

510

520

530

540

550

560

570

580

590

600

610

620

630

640

650

660

670

680
Mean number of alive policies

2019

2020

0 1 2 3 4 5 6 7 8 9 10

Time

220

230

240

250

260

270

280

290

300

310

320

330

340
Mean number of alive policies

M 2019

F 2019

M 2020

F 2020

Figure A.8: Mean number of alive policies at each time with 2019 period life table
and 2020 period life table
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A.9 Conclusions

In this appendix, we have built a two-stage ALM model for a life insurance company,

including a policyholders’ saving account model, a mortality model and a surrender

model, as well as a new production model, an innovative feature with respect to ex-

isting works in literature, as far as we know. In order to handle the large number

of contracts we have split them into model points, by grouping policies with similar

age of the policyholder, same minimum guaranteed rate of return, and same time-to-

maturity. Since an insurance company has the purpose of both ensuring its solvency

and obtaining a profit, firstly, we have built a strategy for the asset portfolio rebalanc-

ing that aims to match asset duration and liability duration, and to achieve a target

return. Also, we have considered several real world constraints on portfolio compo-

sition weights. From the technical point of view, the portfolio rebalancing strategy

is the result of a nonlinearly constrained optimization problem, that requires the

computation of future cash flows projections. According to our knowledge, we have

proposed an innovation with respect to literature: when computing balance sheets

projections, we have considered, in addition to future death and maturity payments,

also future surrender payments and future cash flows due to new production. Next,

we have proposed a second stage of portfolio rebalancing that includes sectorial op-

timization problems with the aim to maximize the expected value of a chosen utility

function. In this way, we have built an optimal portfolio rebalancing strategy based

on risk-averse decisions.

On the side of numerical tests, we have focused on the first stage of portfolio

rebalancing, and we have shown how the portfolio has to be dynamically rebalanced

and how the liability value associated to each model point weighs on the total value

of liabilities. We have pointed out the e↵ect of the mortality model on the evolution

over time of the number of alive policies by considering separately male policyholders

and female policyholders. We have proposed an analysis of the participation rate

sensitivity, taking account of the evolution of actuarial reserves and of own funds.

As expected, actuarial reserves increase and own funds decrease by increasing the
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participation rate. Moreover, we have focused on the positive result that the mean

value of own funds raises over time for any considered value of the participation rate.

However, there is a small probability, depending on the participation rate, that in

certain scenarios the company defaults, because own funds become negative. Finally,

we have analysed how the number of alive policies varies by changing the value of

the participation rate, thus showing how it depends on surrender and new production

models. Indeed, the participation rate does not a↵ect policyholders’ mortality, so

that the di↵erent rate of decrease in the number of alive policies with di↵erent values

of the participation rate is due only to the di↵erent numbers of surrenders and of new

policyholders.
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Resumen extenso

En este trabajo se proponen y estudian nuevos modelos complejos de valoración de

opciones vanilla europeas en el contexto de varias divisas (multicurrency setting),

cuando se tienen en cuenta los ajustes de valoración debidos al riesgo de contrapartida.

Además de la obtención de los modelos, se proponen diferentes técnicas numéricas

para aproximación de las soluciones de los mismos, ya que no pueden ser obtenidas

de manera anaĺıtica.

El interés de considerar el contexto de varias monedas, o multidivisa, proviene del

hecho de que las instituciones financieras pueden operar en mercados con distintas

monedas, por ejemplo cuando invierten en derivados cuyos activos subyacentes están

en diferentes monedas o, estando en una moneda, la financiación o el colateral están

en otras monedas. La mayor parte de la literatura sobre los ajustes de valoración

asociados al riesgo de contrapartida se ha centrado en el contexto de una moneda.

La motivación de considerar ajustes de valoración asociados al riesgo de contra-

partida en los precios de los derivados financieros surge a partir de la crisis financiera

en 2007. Tras dicha crisis, quedó claro que cualquier marco de fijación de precios de

un contrato financiero debeŕıa tener en cuenta la posibilidad de incumplimiento de

cualquier contraparte involucrada en el mismo [28, 61], aśı como aspectos relaciona-

dos con la entrega de colateral, el riesgo de liquidez o los costos de financiamiento

[52, 85]. Por lo tanto, se deben considerar diferentes ajustes de valoración debido a

estos factores al fijar el precio de un derivado financiero. El conjunto de estos ajustes

se denomina globalmente ajuste de valoración total o XVA (por su expresión en inglés:

(X-Valuation Adjustment), donde “X” representa las diferentes letras que aparecen
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en los ajustes de valor asociados al crédito (CVA), débito (DVA), fondeo (FVA), co-

lateral (CollVA), capital (KVA) o marginal (MVA), por ejemplo. Los ajustes iniciales

y más clásicos estuvieron motivados por los riesgos de contraparte relacionados con

el crédito, la financiación y las garant́ıas. Posteriormente se han añadido los ajustes

relacionados con el capital y el marginal. Entre las referencias clásicas y más generales

sobre el tema, dirigimos a los lectores a los libros [21, 28, 52] y las referencias que se

citan en ellos.

En el marco de productos en una moneda, básicamente se han desarrollado tres

metodoloǵıas principales. Una primera aproximación, siguiendo los art́ıculos iniciales

de Piterbarg [82] y Burgard y Kjaer [22], que obtienen formulaciones de EDPs me-

diante argumentos de cobertura sobre carteras adecuadas y la aplicación del lema de

Itô para procesos de salto-difusión. Este enfoque en términos de formulación de EDP

se ha seguido en [43], donde el problema también se escribe de manera equivalente

en términos de esperanzas. Además, también se ha abordado en [4] y [3], donde

se han analizado matemáticamente y resuelto numéricamente modelos EDPs para

la valoración de opciones europeas con uno y dos factores estocásticos. Un segundo

enfoque sigue las ideas iniciales que aparecen en [18] para obtener el CVA por medio de

formulaciones basadas en esperanzas, y luego se extiende a los costos colateralizados,

de cierre y de financiamiento en [78]. Además, este enfoque se ha abordado en [5, 2]

para las opciones americanas, y en [15] para la dinámica de Levy, por ejemplo. Un

tercer enfoque, basado en ecuaciones diferenciales estocásticas hacia atrás (BSDEs),

se introdujo en [26] y [27].

Recientemente, se ha prestado atención a la extensión de los ajustes de valoración

en mercados de una moneda al contexto de varias monedas [44]. Por lo tanto, comen-

zamos a construir un marco multidivisa, siguiendo las ideas de [44], donde se tienen

en cuenta la consideración conjunta de los ajustes de CVA, FVA, CollVA y repo. Para

la inclusión adicional de KVA o MVA en el XVA, se podŕıan considerar las ideas en

[51, 50] en el caso de la moneda única.

Para ello, se suponen intensidades estocásticas de incumplimiento y se involucran
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activos subyacentes denominados en distintas monedas. Nuestro enfoque se basa en

el mismo marco y supuestos que en [43], aunque extendido a un entorno de múltiples

monedas y con la hipótesis adicional de una intensidad de incumplimiento cero para

la persona que realiza la cobertura (hedger). En particular, tomamos en consideración

las siguientes hipótesis:

La contraparte puede incumplir, pero la persona que hace la cobertura está libre

de incumplimiento.

Los precios de los activos subyacentes involucrados se modelan mediante pro-

cesos de difusión correlacionados.

Los eventos de incumplimiento de los inversores no afectan la evolución de los

precios de los activos subyacentes involucrados.

El diferencial crediticio estocástico de la contraparte se modela como un proceso

positivo con reversión a la media, que se correlaciona con los procesos segui-

dos por los precios de los activos subyacentes y, cuando estos se consideran

estocásticos, con los procesos seguidos por los tipos de cambio (FX rates).

Siguiendo [44], primero deducimos formulaciones de ecuaciones en derivadas par-

ciales (EDP) del problema de fijación de precios de XVA. Para ello, empleamos ar-

gumentos de cobertura, de ausencia de arbitraje y de autofinanciamiento de carteras

junto con una elección del valor de mercado del derivado en caso de incumplimiento

(mark to market), representado por MD. Esta elección conduce a un problema lineal

de EDPs, si el valor de mercado en el momento de incumplimiento es igual al precio

del derivado cuando no se tiene en cuenta el riesgo de contraparte (derivado libre de

riesgo), o a un problema no lineal de EDPs, cuando se considera que en el momento

de incumplimiento se tiene en cuenta el valor con riesgo de contraparte (derivado con

riesgo de contrapartida).

Inicialmente consideramos que los tipos de cambio entre las monedas involucradas

son constantes, y a continuación consideraremos una situación más compleja y realista
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en la que los tipos de cambio evolucionan de manera estocástica, proponiendo procesos

adecuados para modelar esta evolución.

En concreto, en el caso de tipos de cambio constantes considerados inicialmente,

los factores estocásticos son los precios de los activos subyacentes y el diferencial de

crédito de la contraparte (credit spread). En este marco, los modelos de EDPs lineales

y no lineales para obtener el XVA, representado por U , son los siguientes:

Modelo de EDP no lineal (caso MD = V D):
8
><

>:

@U

@t
+ LShU � fDU = h(WD + U � CD)+ + (rD + bD,C0 � fD)CD ,

U(T, S, h) = 0 .

Modelo de EDP lineal (caso MD = WD):
8
><

>:

@U

@t
+ LShU �

⇣
h

1�RC
+ fD

⌘
U = h(WD � CD)+ + (rD + bD,C0 � fD)CD ,

U(T, S, h) = 0 .
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cuando se usa el modelo de Vasicek exponencial para el diferencial de tipo y otro

análogo en el caso de usar el modelo de CIR. Además, el precio del activo sin riesgo

satisface el model clásico de EDPs de Black-Scholes:8
><

>:

@tWD + LSWD � fDWD = 0 ,

WD(T, S) = G(S) ,

donde G = G(S) es la función de pago del derivado de tipo europeo y el operador en

derivadas parciales es:
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El precio del derivado con riesgo de contrapartida viene dado por V D = WD + U .

En cuanto a la resolución numérica de los modelos de EDPs, abordamos la solución

de las EDP lineales y no lineales solo en el caso de un derivado sobre dos activos subya-

centes en monedas diferentes, con tipos de cambio de divisas constantes y diferencial

de crédito de la contraparte dependiente del tiempo de modo determinista. Para ello,

empleamos un método semi-Lagrangiano (también conocido como método de las ca-

racteŕısticas) para la discretización en tiempo, combinado con el método de elementos

finitos de tipo Lagrange constante a trozos para la discretización de las variables es-

paciales asociadas a los factores estocásticos. La consideración conjunta de métodos

semi-Lagrangianos con métodos de elementos finitos se denomina generalmente como

métodos de Lagrange-Galerkin. Estas técnicas son especialmente útiles para la dis-

cretización de los llamados problemas de EDPs de convección dominante, donde los

términos que contienen derivadas de primer orden (términos de convección) dominan

sobre los que contienen las derivadas de segundo orden (términos de difusión). En

este escenario, las técnicas propuestas evitan la presencia de oscilaciones numéricas

espurias que aparecen cuando se consideran técnicas de discretización en tiempo más

convencionales. Adicionalmente, se utilizan ténicas de punto fijo cuando se involucran

EDPs no lineales.

En el caso de alta dimensión, los métodos numéricos deterministas convencionales

conllevan un coste computacional que crece exponencialmente con el número de va-

riables espaciales en la EDP. En ese caso, se ha optado por métodos numéricos prob-

abiĺısticos para resolver las formulaciones equivalentes basadas en esperanzas.

En primer lugar, para obtener la formulación en términos de esperanzas equivalen-

te al anterior modelo no lineal de EDPs, aplicamos el teorema no lineal de Feynman-

Kac, que relaciona la solución de EDPs no lineales con la solución de BSDE. El

enunciado del teorema no lineal de Feynman-Kac se remonta al art́ıculo seminal [80].

Como el término no lineal aparece en la incógnita U y no en las derivadas de primer

orden, el Teorema 1.1 en el trabajo reciente [14] se puede aplicar para formular el

problema no lineal anterior en términos de una ecuación integral no lineal. Por otro
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lado, el teorema lineal de Feynman-Kac (ver [81], por ejemplo) se puede aplicar al

problema lineal.

En consecuencia, se obtienen las siguientes formulaciones en términos de esperan-

zas para calcular el valor de U en el instante inicial.

Si MD = V D, entonces:

U(0, S0, h0) = EQ
D

0

"
�
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0

e�f
D
u ·

✓
hu

⇣
WD(u, Su) + U(u, Su, hu)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
.

Si MD = WD, entonces:

U(0, S0, h0) = EQ
D
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WD(u, Su)� CD(u)

⌘+

+
⇣
rD + bD,C0 � fD

⌘
CD(u)

◆
du

#
.

En la primera formulación (que surge del modelo de EDPs no lineales), la incógnita

U aparece a ambos lados de la igualdad por lo que la componente no lineal se mantiene

y explicaremos su resolución numérica mediante técnicas iterativas de Picard en los

siguientes párrafos. En la segunda formulación (que surge del modelo de EDPs lineal),

la expresión de U es expĺıcita de modo que se aplica un método de Monte Carlo

combinado con las fórmulas de cuadratura adecuadas, siendo las compuestas las que

mejores resultados proporcionan.

Las técnicas de iteración de Picard son métodos de aproximación para resolver

una ecuación de punto fijo. Estos métodos se pueden aplicar para resolver modelos

no lineales formulados en términos de esperanzas que se han obtenido a partir de las

EDP no lineales correspondientes mediante una fórmula no lineal de Feynman-Kac.

Una vez planteado el método de iteración de Picard, se debe discretizar mediante
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fórmulas de cuadratura. En esta tesis, se proponen métodos de iteración de Picard

para resolver las formulaciones no lineales que surgen en el cálculo de XVA mediante

el uso de fórmulas de cuadratura de tipo rectángulo y trapecio simple.

Recientemente, en [37], [62] y [38], los autores proponen una familia de métodos

de iteración Picard multinivel, que combinan principalmente las técnicas de Monte

Carlo multinivel de [55, 56] y [46] con métodos de iteración de Picard. Como se

indica en [37], la complejidad computacional aumenta como máximo linealmente en

la dimensión de la PDE y cuárticamente en el inverso de la precisión prescrita. En

esta tesis, en el caso del problema no lineal también aplicamos los métodos numéricos

de iteración de Picard multinivel propuestos en [37] para resolver las formulaciones

en esperanzas equivalentes a las formulaciones de EDPs no lineales.

El trabajo realizado en el marco de tipos de cambio constante supone una ex-

tensión de lo desarrollado en el art́ıculo [8], al considerar modelos estocásticos para

el diferencial de crédito más adecuados, que incorporan reversión a la media y posi-

tividad, además de tener sus parámetros calibrados a mercado en los ejemplos con-

siderados.

A continuación se ha incorporado la evolución estocástica de tipos de cambio de

divisa, dando lugar a modelos más complejos y realistas. Una vez introducidas las

dinámicas para los tipos de cambio, se han construido las carteras adecuadas para

obtener los modelos de EDPs, que incorporan tantas variables espaciales adicionales

como tipos de cambio con la moneda doméstica se encuentran involucrados.

En el contexto de tipos de cambio de divisa estocásticos, ya no se aborda la

resolución numérica mediante métodos deterministas de las EDPs resultantes debido

al elevado número de variables espaciales incluso en los casos más sencillos.

Para aplicar los métodos numéricos probabiĺısticos, mediante el uso las fórmulas de

Feynman-Kac adecuadas se han obtenido previamente las formulaciones en términos

de esperanzas que se indican a continuación.
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Si MD = V D, entonces el XVA en el instante t = 0 verifica:

U(0, S0, X0, h0) = EQ

0
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Si MD = WD, el valor del XVA es:
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Una vez obtenidas las formulaciones anteriores, para la resolución numérica de la

primera de ellas se han aplicado los mismos métodos de iteraciones de Picard usados

en el caso de tipos de cambios de divisas constantes cuando MD = V D. Para la

resolución numérica de la formulación correspondiente a MD = WD, se han usado

las mismas técnicas de Monte Carlo que la análoga en el caso de tipos de cambio

constantes.

El trabajo realizado en el marco de tipos de cambio estocásticos supone una

extensión de lo desarrollado en el art́ıculo [89], al considerar modelos estocásticos

para el diferencial de crédito más adecuados, que incorporan reversión a la media y

positividad, además de tener sus parámetros calibrados a mercado en los ejemplos

considerados. Por otro lado, se ha incorporado la variante de tener el colateral en

bonos en lugar de efectivo.

También es importante señalar que esta tesis se ha desarrollado en el marco del

Doctorado Industrial Europeo ABC-EU-XVA, que implica una estancia de investi-

gación en un socio industrial, en este caso la compañ́ıa aseguradora Unipol Gruppo

S.p.A. Durante la estancia, la autora de esta tesis ha llevado a cabo un relevante
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trabajo de investigación relacionado con el desarrollo de un nuevo modelo estocástico

de gestión de activos y pasivos (ALM, por su nombre en inglés: Asset Liability Man-

agement) para una compañ́ıa de seguros de vida, tratando tanto con una cartera de

activos y una cartera de pasivos u obligaciones.

Los desarrollos y objetivos alcanzados en este trabajo de investigación aparecen

recogidos en el art́ıculo [35] y también están contenidos en el Anexo de la tesis.

El esquema seguido en el documento de esta tesis doctoral es el siguiente:

En el Caṕıtulo 1 modelamos el precio de un derivado de tipo europeo emitido

sobre diferentes activos subyacentes que están denominados en diferentes di-

visas, suponiendo que los tipos de cambio de divisas son constantes. Además,

asumimos que el derivado está parcialmente colateralizado en efectivo en una

moneda extranjera y que la contraparte tiene una intensidad de incumplimiento

estocástica, lo que se traduce en una diferencial de crédito estocástica. Mediante

el uso de una estrategia de cobertura para construir una cartera autofinanciada,

deducimos modelos EDPs no lineales y lineales para el precio del derivado y para

el ajuste de valor total. A continuación, usamos los teoremas adecuados de

Feynman-Kac para formular el problema de cálculo del XVA en términos de es-

peranzas. Desde el punto de vista numérico, abordamos la solución de las EDPs

que modelan el valor del XVA utilizando un método de Lagrange-Galerkin bajo

el supuesto de que el diferencial de crédito es una función determinista dependi-

ente del tiempo y el derivado depende de dos activos subyacentes estocásticos,

por lo que se modela con EDPs no lineales o lineales en dos variables espaciales.

Por otro lado, la formulación basada en esperanzas permite el uso de técnicas de

Monte Carlo para aproximar el valor del XVA con un mayor número de factores

estocásticos. En el caso de los problemas no lineales, el método de Monte Carlo

requiere el uso de la iteración de Picard o de técnicas de iteración de Picard

multinivel. Al final del caṕıtulo se presentan algunos ejemplos de valoración de

opciones europeas, que requieren el contexto de varias monedas, mediante los

modelos matemáticos y las técnicas numéricas propuestas.
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En el Caṕıtulo 2 seguimos las mismas metodoloǵıas que en el caṕıtulo anterior y

extendemos el modelo de tipos de cambio constante al caso de tipos de cambio

estocásticos. Además, suponemos que el colateral está compuesto por bonos

en moneda extranjera. Los argumentos de cobertura requieren la consideración

adicional de la exposición al riesgo de tipo de cambio. Los nuevos modelos

obtenidos se formulan en términos de EDPs lineales y no lineales con dimensión

superior al caso de tipos de cambio de divisa constantes. También se obtienen

los correspondientes modelos en términos de esperanzas. En este entorno de alta

dimensión, abordamos la resolución numérica de las formulaciones en términos

de esperanzas mediante las mismas técnicas numéricas probabiĺısticas que en el

caṕıtulo anterior. En la sección de resultados numéricos, presentamos algunos

ejemplos para ilustrar el comportamiento de las técnicas numéricas propuestas.

En particular, analizamos el impacto de introducir estocasticidad en la dinámica

de los tipos de cambio y de utilizar la garant́ıa compuesta por bonos en lugar

de efectivo.

En el Apéndice A se construye un modelo estocástico de gestión de activos

y pasivos (ALM) para una compañ́ıa de seguros de vida. Se supone que dicha

compañ́ıa tiene una cartera de activos, compuesta por bonos, acciones y efectivo,

conjuntamente con una cartera de pasivos, que comprende pólizas de seguro de

vida con participación en beneficios. Se introduce un modelo de mortalidad y

un modelo de cancelación, aśı como un nuevo modelo de producción. En primer

lugar, con el fin de asegurar la solvencia de la empresa y la consecución de una

rentabilidad competitiva, en interés tanto de los accionistas como de los asegu-

rados, la cartera de la aseguradora se rebanlancea periódicamente de acuerdo

con la solución de un problema de optimización con restricciones no lineales,

que pretende igualar duraciones de activos y pasivos, sujetas a la consecución

de un rendimiento objetivo. Además, se imponen varias restricciones del mundo

real. Al calcular las proyecciones del balance de la empresa, se consideran no

solo los pagos futuros por vencimiento y muerte, sino también los pagos futuros
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por rescate y todos los flujos de efectivo debido a la nueva producción, para

obtener estimaciones que sean lo más confiables posible. La estimación del mo-

mento y del número de futuros rescates, aśı como de futuros nuevos asegurados

requiere la aproximación de esperanzas condicionadas: para ello se emplea una

técnica de Monte Carlo de mı́nimos cuadrados. En segundo lugar, para cada

clase de activo de bonos y para la clase de activo de renta variable, se propone

un problema de optimización sectorial con el objetivo de maximizar el valor

esperado de una función de utilidad elegida, sujeto a los resultados obtenidos

en la primera etapa de rebalanceo de la cartera. Finalmente, se analiza un caso

de estudio.
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Resumo extenso

Neste traballo propóñense e estudan novos modelos complexos de valoración de opcións

vanilla europeas no contexto de varias divisas (multicurrency setting), cando se teñen

en conta os axustes de valoración debidos ao risco de contrapartida. Ademais da

obtención dos modelos, propóñense diferentes técnicas numéricas para aproximación

das solucións dos mesmos, xa que non poden ser obtidas de maneira anaĺıtica.

O interese de considerar o contexto de varias moedas, ou multidivisa, provén

do feito de que as institucións financeiras poden operar en mercados con distintas

moedas, por exemplo cando invisten en derivados cuxos activos subxacentes están en

diferentes moedas ou, estando nunha moeda, o financiamento ou o colateral están

noutras moedas. A maior parte da literatura sobre os axustes de valoración asociados

ao risco de contrapartida centrouse no contexto dunha moeda.

A motivación de considerar axustes de valoración asociados ao risco de contra-

partida nos prezos dos derivados financeiros xorde a partir da crise financeira en

2007. Tras o devandita crise, quedou claro que calquera marco de fixación de prezos

dun contrato financeiro debeŕıa ter en conta a posibilidade de incumprimento de cal-

quera contraparte involucrada no mesmo [28, 61], aśı como aspectos relacionados coa

entrega de colateral, o risco de liquidez ou os custos de financiamiento [52, 85]. Por

tanto, débense considerar diferentes axustes de valoración debido a estes factores ao

fixar o prezo dun derivado financeiro. O conxunto destes axustes denomı́nase global-

mente axuste de valoración total ou XVA (pola súa expresión en inglés: (X-Valuation

Adjustment), onde “X” representa as diferentes letras que aparecen nos axustes de

valor asociados ao crédito (CVA), débito (DVA), fondeo (FVA), colateral (CollVA),
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capital (KVA) ou marxinal (MVA), por exemplo. Os axustes iniciais e máis clásicos

estiveron motivados polos riscos de contraparte relacionados co crédito, o financia-

mento e as garant́ıas. Posteriormente engad́ıronse os axustes relacionados co capital

e o marxinal. Entre as referencias clásicas e máis xerais sobre o tema, diriximos aos

lectores aos libros [21, 28, 52] e as referencias que se citan neles.

No marco de produtos nunha moeda, basicamente desenvolvéronse tres metodolox́ıas

principais. Unha primeira aproximación, seguindo os artigos iniciais de Piterbarg [82]

e Burgard e Kjaer [22], que obteñen formulacións de EDPs medianche argumentos de

cobertura sobre carteiras adecuadas e a aplicación do lema de Itô para procesos de

salto-difusión. Este enfoque en termos de formulación de EDP seguiuse en [43], onde o

problema tamén se escribe de maneira equivalente en termos de esperanzas. Ademais,

tamén se abordou en [4] e [3], onde se analizaron matematicamente e resolto numeri-

camente modelos EDPs para a valoración de opcións europeas cun e dous factores

estocásticos. Un segundo enfoque segue as ideas iniciais que aparecen en [18] para

obter o CVA por medio de formulacións baseadas en esperanzas, e logo esténdese aos

custos colateralizados, de peche e de financiamiento en [78]. Ademais, este enfoque

abordouse en [5, 2] para as opcións americanas, e en [15] para a dinámica de Levy,

por exemplo. Un terceiro enfoque, baseado en ecuacións diferenciais estocásticas cara

atrás (BSDEs), introduciuse en [26] e [27].

Recentemente, prestouse atención á extensión dos axustes de valoración en mer-

cados dunha moeda ao contexto de varias moedas [44]. Por tanto, comezamos a

constrúır un marco multidivisa, seguindo as ideas de [44], onde se teñen en conta a

consideración conxunta dos axustes de CVA, FVA, CollVA e repo. Para a inclusión

adicional de KVA ou MVA no XVA, podeŕıanse considerar as ideas en [51, 50] no caso

da moeda única.

Para iso, supóñense intensidades estocásticas de incumprimento e involúcranse

activos subxacentes denominados en distintas moedas. O noso enfoque baséase no

mesmo marco e supostos que en [43], áında que estendido a unha contorna de múltiples

moedas e coa hipótese adicional dunha intensidade de incumprimento cero para a

182



persoa que realiza a cobertura (hedger). En particular, tomamos en consideración as

seguintes hipóteses:

A contraparte pode incumprir, pero a persoa que fai a cobertura está libre de

incumprimento.

Os prezos dos activos subxacentes involucrados se modelan mediante procesos

de difusión correlacionados.

Os eventos de incumprimento dos investidores non afectan a evolución dos pre-

zos dos activos subxacentes involucrados.

O diferencial crediticio estocástico da contraparte se modela como un proceso

positivo con reversión á media, que se correlaciona cos procesos seguidos polos

prezos dos activos subxacentes e, cando estes considéranse estocásticos, cos

procesos seguidos polos tipos de cambio (FX rates).

Seguindo [44], primeiro deducimos formulacións de ecuacións en derivadas parciais

(EDP) do problema de fixación de prezos de XVA. Para iso, empregamos argumentos

de cobertura, de ausencia de arbitraxe e de autofinanciamiento de carteiras xunto

cunha elección do valor de mercado do derivado en caso de incumprimento (mark to

market), representado por MD. Esta elección conduce a un problema lineal de EDPs,

se o valor de mercado no momento de incumprimento é igual ao prezo do derivado

cando non se ten en conta o risco de contraparte (derivado libre de risco), ou a un

problema non lineal de EDPs, cando se considera que no momento de incumprimento

tense en conta o valor con risco de contraparte (derivado con risco de contrapartida).

En concreto, no caso de tipos de cambio constantes considerados inicialmente, os

factores estocásticos son os prezos dos activos subxacentes e o diferencial de crédito

da contraparte (credit spread). Neste marco, os modelos de EDPs lineais e non lineais

para obter o XVA, representado por U , son os seguintes:
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Modelo de EDP non lineal (caso MD = V D):
8
><

>:

@U

@t
+ LShU � fDU = h(WD + U � CD)+ + (rD + bD,C0 � fD)CD ,

U(T, S, h) = 0 .

Modelo de EDP lineal (caso MD = WD):
8
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cando se usa o modelo de Vasicek exponencial para o diferencial de tipo e outro

análogo no caso de usar o modelo de CIR. Ademais, o prezo do activo sen risco

satisfai o modelo clásico de EDPs de Black-Scholes:
8
><

>:

@tWD + LSWD � fDWD = 0 ,

WD(T, S) = G(S) ,

onde G = G(S) é a función de pago do derivado de tipo europeo e o operador en

derivadas parciais é:
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O prezo do derivado con risco de contrapartida vén dado por V D = WD + U .

En canto á resolución numérica dos modelos de EDPs, abordamos a solución das

EDP lineais e non lineais só no caso dun derivado sobre dous activos subxacentes en

moedas diferentes, con tipos de cambio de divisas constantes e diferencial de crédito
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da contraparte dependente do tempo de modo determinista. Para iso, empregamos un

método semi-Lagrangiano (tamén coñecido como método das caracteŕısticas) para a

discretización en tempo, combinado co método de elementos finitos de tipo Lagrange

constante a anacos para a discretización das variables espaciais asociadas aos factores

estocásticos. A consideración conxunta de métodos semi-Lagrangianos con métodos

de elementos finitos denomı́nase xeralmente como métodos de Lagrange-Galerkin.

Estas técnicas son especialmente útiles para a discretización dos chamados proble-

mas de EDPs de convección dominante, onde os termos que conteñen derivadas de

primeira orde (termos de convección) dominan sobre os que conteñen as derivadas de

segunda orde (termos de difusión). Neste escenario, as técnicas propostas evitan a

presenza de oscilacións numéricas espurias que aparecen cando se consideran técnicas

de discretización en tempo máis convencionais. Adicionalmente, utiĺızanse ténicas de

punto fixo cando se involucran EDPs non lineais.

No caso de alta dimensión, os métodos numéricos deterministas convencionais

conlevan un custo computacional que crece exponencialmente co número de variables

espaciais na EDP. Nese caso, optouse por métodos numéricos probabiĺısticos para

resolver as formulacións equivalentes baseadas en esperanzas.

En primeiro lugar, para obter a formulación en termos de esperanzas equivailente o

anterior modelo non lineal de EDPs, aplicamos o teorema non lineal de Feynman-Kac,

que relaciona a solución de EDPs non lineais coa solución de BSDE. O enunciado do

teorema non lineal de Feynman-Kac remóntase ao artigo seminal [80]. Como o termo

non lineal aparece na incógnita U e non nas derivadas de primeira orde, o Teorema 1.1

no traballo recente [14] pódese aplicar para formular o problema non lineal anterior

en termos dunha ecuación integral non lineal. Doutra banda, o teorema lineal de

Feynman-Kac (ver [81], por exemplo) pódese aplicar ao problema lineal.

En consecuencia, obtéñense as seguintes formulacións en termos de esperanzas

para calcular o valor de U no instante inicial.
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Se MD = V D, entón:
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Na primeira formulación (que xorde do modelo de EDPs non lineais), a incógnita

U aparece a ambos os dous lados da igualdade polo que a compoñente non lineal

mantense e explicaremos a súa resolución numérica mediante técnicas iterativas de

Picard nos seguintes parágrafos. Na segunda formulación (que xorde do modelo de

EDPs lineal), a expresión de U é expĺıcita de modo que se aplica un método de Monte

Carlo combinado coas fórmulas de cuadratura adecuadas, sendo as compostas as que

mellores resultados proporcionan.

As técnicas de iteración de Picard son métodos de aproximación para resolver

unha ecuación de punto fixo. Estes métodos pódense aplicar para resolver modelos

non lineais formulados en termos de esperanzas que se obtiveron a partir das EDP

non lineais correspondentes mediante unha fórmula non lineal de Feynman-Kac. Unha

vez exposto o método de iteración de Picard, débese discretizar mediante fórmulas de

cuadratura. Nesta tese, propóñense métodos de iteración de Picard para resolver as

formulacións non lineais que xorden no cálculo de XVA mediante o uso de fórmulas

de cuadratura de tipo rectángulo e trapecio simple.

Recentemente, en [37], [62] e [38], os autores propoñen unha familia de métodos de

iteración Picard multinivel, que combinan principalmente as técnicas de Monte Carlo
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multinivel de [55, 56] e [46] con métodos de iteración de Picard. Como se indica en

[37], a complexidade computacional aumenta como máximo linealmente na dimensión

da PDE e cuárticamente no inverso da precisión prescrita. Nesta tese, no caso do

problema non lineal tamén aplicamos os métodos numéricos de iteración de Picard

multinivel propostos en [37] para resolver as formulacións en esperanzas equivalentes

ás formulacións de EDPs non lineais.

O traballo realizado no marco de tipos de cambio constante supón unha extensión

do desenvolvido no artigo [8], ao considerar modelos estocásticos para o diferencial

de crédito máis adecuados, que incorporan reversión á media e positividade, ademais

de ter os seus parámetros calibrados a mercado nos exemplos considerados.

A continuación incorporouse a evolución estocástica de tipos de cambio de di-

visa, dando lugar a modelos máis complexos e realistas. Unha vez introducidas as

dinámicas para os tipos de cambio, constrúıronse as carteiras adecuadas para obter

os modelos de EDPs, que incorporan tantas variables espaciais adicionais como tipos

de cambio coa moeda doméstica atópanse involucrados.

No contexto de tipos de cambio de divisa estocásticos, xa non se aborda a res-

olución numérica mediante métodos deterministas das EDPs resultantes debido ao

elevado número de variables espaciais mesmo nos casos máis sinxelos.

Para aplicar os métodos numéricos probabiĺısticos, mediante o uso as fórmulas

de Feynman-Kac adecuadas obtivéronse previamente as formulacións en termos de

esperanzas que se indican a continuación.

Se MD = V D, entón o XVA no instante t = 0 verifica:

U(0, S0, X0, h0) = EQ

0


�
Z

T

0

e�f
D
u

·
✓
hu

⇣
WD(u, Su, X̄u) + U(u, Su, Xu, hu)� CC0(u)XD,C0

u

⌘+

+
⇣
rD + rR + sbD,C0 � fD

⌘
CC0(u)XD,C0

u

◆
du

�
.
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Se MD = WD, o valor del XVA é:

U(0, S0, X0, h0) = EQ

0


�
Z

T

0

exp

 
�
Z

u

0

✓
hr

1�R
+ fD

◆
dr

!

·
✓
hu

⇣
WD(u, Su, X̄u)� CC0(u)XD,C0

u

⌘+

+
⇣
rD + rR + sbD,C0 � fD

⌘
CC0(u)XD,C0

u

◆
du

�
.

Unha vez obtidas as formulacións anteriores, para a resolución numérica da primeira

delas aplicáronse os mesmos métodos de iteracións de Picard usados no caso de tipos

de cambios de divisas constantes cando MD = V D. Para a resolución numérica da

formulación correspondente a MD = WD, usáronse as mesmas técnicas de Monte

Carlo que a análoga no caso de tipos de cambio constantes.

O traballo realizado no marco de tipos de cambio estocásticos supón unha ex-

tensión do desenvolvido no artigo [89], ao considerar modelos estocásticos para o

diferencial de crédito máis adecuados, que incorporan reversión á media e positivi-

dade, ademais de ter os seus parámetros calibrados a mercado nos exemplos consid-

erados. Doutra banda, incorporouse a variante de ter o colateral en bonos en lugar

de efectivo.

Tamén é importante sinalar que esta tese desenvolveuse no marco do Doutora-

mento Industrial Europeo ABC-EU-XVA, que implica unha estad́ıa de investigación

nun socio industrial, neste caso a compañ́ıa aseguradora Unipol Gruppo S.p.A. Du-

rante a estad́ıa, a autora desta tese levou a cabo un relevante traballo de investigación

relacionado co desenvolvemento dun novo modelo estocástico de xestión de activos

e pasivos (ALM, polo seu nome en inglés: Asset Liability Management) para unha

compañ́ıa de seguros de vida, tratando tanto cunha carteira de activos e unha carteira

de pasivos ou obrigacións.

Os desenvolvementos e obxectivos alcanzados neste traballo de investigación apare-

cen recollidos no artigo [35] e tamén están contidos no Anexo da tese.

O esquema seguido no documento desta tese doutoral é o seguinte:
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No Caṕıtulo 1 modelamos o prezo dun derivado de tipo europeo emitido so-

bre diferentes activos subxacentes que están denominados en diferentes divisas,

supoñendo que os tipos de cambio de divisas son constantes. Ademais, asum-

imos que o derivado está parcialmente colateralizado en efectivo nunha moeda

estranxeira e que a contraparte ten unha intensidade de incumprimento es-

tocástica, o que se traduce nunha diferencial de crédito estocástica. Mediante

o uso dunha estratexia de cobertura para constrúır unha carteira autofinan-

ciada, deducimos modelos EDPs non lineais e lineais para o prezo do derivado

e para o axuste de valor total. A continuación, usamos os teoremas adecuados

de Feynman-Kac para formular o problema de cálculo o XVA en termos de es-

peranzas. Desde o punto de vista numérico, abordamos a solución das EDPs

que modelan o valor do XVA utilizando un método de Lagrange-Galerkin baixo

o suposto de que o diferencial de crédito é unha función determinista depen-

dente do tempo e a derivada depende de dous activos subxacentes estocásticos,

polo que se modela con EDPs non lineais ou lineais en dúas variables espa-

ciais. Doutra banda, a formulación baseada en esperanzas permite o uso de

técnicas de Monte Carlo para aproximar o valor do XVA cun maior número de

factores estocásticos. No caso dos problemas non lineais, o método de Monte

Carlo require o uso da iteración de Picard ou de técnicas de iteración de Pi-

card multinivel. Ao final do caṕıtulo preséntanse algúns exemplos de valoración

de opcións europeas, que requiren o contexto de varias moedas, mediante os

modelos matemáticos e as técnicas numéricas propostas.

No Caṕıtulo 2 seguimos as mesmas metodolox́ıas que no caṕıtulo anterior e

estendemos o modelo de tipos de cambio constante ao caso de tipos de cam-

bio estocásticos. Ademais, supoñemos que o colateral está composto por bonos

en moeda estranxeira. Os argumentos de cobertura requiren a consideración

adicional da exposición ao risco de tipo de cambio. Os novos modelos obti-

dos formúlanse en termos de EDPs lineais e non lineais con dimensión superior
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ao caso de tipos de cambio de divisa constantes. Tamén se obteñen os corre-

spondentes modelos en termos de esperanzas. Nesta contorna de alta dimensión,

abordamos a resolución numérica das formulacións en termos de esperanzas me-

diante as mesmas técnicas numéricas probabiĺısticas que no caṕıtulo anterior.

Na sección de resultados numéricos, presentamos algúns exemplos para ilustrar

o comportamento das técnicas numéricas propostas. En particular, analizamos

o impacto de introducir estocasticidad na dinámica dos tipos de cambio e de

utilizar a garant́ıa composta por bonos en lugar de efectivo.

No Apéndice A constrúese un modelo estocástico de xestión de activos e pasivos

(ALM) para unha compañ́ıa de seguros de vida. Suponse que dita compañ́ıa

ten unha carteira de activos, composta por bonos, accións e efectivo, conxunta-

mente cunha carteira de pasivos, que comprende pólizas de seguro de vida con

participación en beneficios. Introdúcese un modelo de mortalidade e un modelo

de cancelación, aśı como un novo modelo de produción. En primeiro lugar, co

fin de asegurar a solvencia da empresa e a consecución dunha rendibilidade com-

petitiva, en interese tanto dos accionistas como dos asegurados, a carteira da

aseguradora se rebanlancea periodicamente de acordo con a solución dun prob-

lema de optimización con restricións non lineais, que pretende igualar duracións

de activos e pasivos, suxeitas á consecución dun rendemento obxectivo. Ade-

mais, impóñense varias restricións do mundo real. Ao calcular as proxeccións

do balance da empresa, considéranse non só os pagos futuros por vencemento e

morte, senón tamén os pagos futuros por rescate e todos os fluxos de efectivo

debido á nova produción, para obter estimacións que sexan o máis confiables

posible. A estimación do momento e do número de futuros rescates, aśı como de

futuros novos asegurados require a aproximación de esperanzas condicionadas:

para iso emprégase unha técnica de Monte Carlo de mı́nimos cadrados. En

segundo lugar, para cada clase de activo de bonos e para a clase de activo de

renda variable, proponse un problema de optimización sectorial co obxectivo

de maximizar o valor esperado dunha función de utilidade elixida, suxeito aos
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resultados obtidos na primeira etapa de rebalanceo da carteira. Finalmente,

anaĺızase un caso de estudo.

191



192



Bibliography
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