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Abstract
The increase in the size of data repositories has forced the design of new comput-
ing paradigms to be able to process large volumes of data in a reasonable amount
of time. One of them is in-memory computing, which advocates storing all the
data in main memory to avoid the disk I/O bottleneck. Compression is one of
the key technologies for this approach. For raster data, a compact data struc-
ture, called k2-raster, have been recently been proposed. It compresses raster
maps while still supporting fast retrieval of a given datum or a portion of the
data directly from the compressed data. k2-raster’s original work introduced sev-
eral queries in which it was superior to competitors. However, to be used as the
basis of an in-memory system for raster data, it is mandatory to demonstrate its
efficiency when performing more complex operations such as the map algebra
operators. In this work, we present the algorithms to run a set of these operators
directly on k2-raster without a decompression procedure.
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1 INTRODUCTION

In this work, we focus on spatial information represented with a raster model. Raster datasets represent geographic infor-
mation by dividing space into a finite grid of cells and assigning a value to each cell. This includes images -such as remotely
sensed imagery-, engineering, modeling, representations of parameters of the land such as pollution levels, atmospheric
pressure, rain precipitations, land elevation, vegetation indices and so forth. The widespread use of different types of
devices in many different scenarios causes the amount of information in raster format to increase rapidly. For example,
only considering the family of satellites Sentinel, 20 TB of data are being generated each day, and the remote sensing
repositories have reached the Peta Byte/Zetta Byte (PB/ZB) scale.1

Abbreviations: BRWT, Binary Relation Wavelet Tree; DACs, Directly Addressable Codes; DTM, Digital Terrain Model; GIS, Geographical
information Systems; LOUDS, Level-Ordered Unary Degree Sequence; NetCDF, Network Common Data Form; OGC, Open Geospatial
Consortium; SGI, Spanish Geographic Institute.
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The traditional way to process spatial data consists in using special data structures and algorithms to bring data from
disk to main memory. These data structures and algorithms exploit the location of data in disk and, together with loading
techniques, anticipate the loading of pages or disk blocks (pre-fetching) in a buffer in order to process the typical spatial
queries (such as the range query). However, this computing paradigm is reaching its limits, and therefore new approaches
are needed. One alternative is distributed computing, such as SpatialHadoop2 or SpatialSpark.3 A different approach
is in-memory computing,4 which implies to load all the data in main memory to avoid the bottleneck of the disk I/O.
However, loading all the data into main memory can be difficult and, thus, compression is used to alleviate the space
consumption.5-7

Several data compression methods for raster data have been designed.8,9 Real systems capable of managing raster
data, like Rasdaman, Grass, or even R, as well as raster representation formats such as NetCDF (standard format of
the OGC*) and GeoTiff,10 provide compressed storage based on traditional compression methods such as run-length
encoding, Lempel-Ziv-Welch, or Deflate.11 However, classical compression methods have an important drawback: if one
wants to access a given datum or portion of the data, the complete dataset, or a large portion of it, must be decompressed.

A recent research field, called compact data structures,12 searches for data structures that make it possible to decom-
press only the requested data, and therefore they are very suitable for in-memory computing. Moreover, most compact
data structures include indexes within the same compressed space, and thus access times over the compressed data are
comparable or better than the classical methods over uncompressed data.

Compact data structures have been used for representing several data types. As an illustration, compact data struc-
tures have been used to represent graphs of the World Wide Web,13-15 represent documents in the context of information
retrieval,16-19 and also to improve query efficiency in geographical information systems (GIS).20-24

The k2-raster23,25 has been shown to be superior to other compact data structures for raster data and a serious competi-
tor of NetCDF. In empirical experiments, k2-raster reached improvements up to 60% in space consumption with respect
to other compact data structures, whereas it obtains compression power comparable to that of NetCDF. k2-raster is up to
9 times faster than other compact data structures to obtain a cell value or 40 times faster when retrieving the cells in a
region with values in a range. Compared to NetCDF, k2-raster is orders of magnitude faster when running range queries.
These results back the hypothesis of using k2-raster in an in-memory computing scenario. However, k2-raster’s original
work only showed four queries: get the value of an individual cell, get the values of the cells in a window region, get the
cell positions in a window region with values in a range, and get the cell positions and values in a window region with
values in a range. Later, it was shown that complex operations like a spatial join are also more efficient using k2-raster.26

However, there are other operations that must be studied.Map Algebra27,28 has become the de facto standard opera-
tions on raster maps in real GIS. The map algebra defines a set of primitive operations and functions that have rasters as
input. They make it possible to perform analysis on the data. Examples of real systems including map algebra can be the
ArcGis Pro of ESRI29 and GRASS.30 Map algebra opens a wide variety of data analysis, such as, from a digital elevation
terrain raster, “highlight the land surface below 30 meters,” “obtain the residential areas where the terrain has a slope
greater than 15%,” or, in a city council GIS, “show the total number of crimes in each neighborhood.”

Therefore, to demonstrate the feasibility of using the k2-raster as the basis of an in-memory system, we have to show
the efficiency of k2-rasterwhen performingmap algebra operations. Algorithms for executingmap algebra operations over
compressed data using another compact data structure for rasters, called k2-acc,21,22 have been previously presented.31
However, as explained, k2-raster has been shown to be superior in all aspects to k2-acc. Moreover, k2-acc has serious
difficulties in datasets with already a moderate number of different values in the raster map, as shown in k2-raster’s
original work, where the k2-acc was not able to run in several experiments.

In this article, we propose and evaluate a map algebra implementation where the raster data is represented using
k2-raster.

2 MAP ALGEBRA ON RASTER DATASETS

Map algebra defines a set of operators and functions to be applied to one or two input raster datasets to obtain a new
output raster dataset.27,28 Together with variables, which in map algebra represent entire raster datasets, it allows the
construction of expressions or equations.

*https://www.opengeospatial.org/standards/netcdf
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Using the sequential application of these operators, it is possible to perform complex data analysis on raster datasets.32
The analysis procedures are categorized as those applied to an entire raster dataset (e.g., spatial autocorrelation) and those
concentrated on specific locations: cell, neighborhood, or zones.

Depending on the neighborhood cells involved in computing the operator or function, there are four types of operators
and functions33-35:

(a) Local. The value in each cell of the output raster only depends on the values of the cells at the same location of the
input datasets. Local operators are arithmetic, logical, and statistical functions (e.g., minimum,maximum, ormean).

(b) Focal. In this case, the value of each output cell is computed taking into account the values of the cells at the same
location of the input rasters and their neighboring cells in a specific range. Examples of focal functions include
the computation of typical statistical functions (e.g., mean, mode, minimum, and maximum) corresponding to
the neighborhood of a cell. Other processing such as convolution, kernel and moving windows also uses focal
operations.

(c) Zonal. In this type of operation, two input rasters are needed. The first one is used to divide the space into zones;
then, the values of the output cells within a zone are computed processing the cells of the second input raster within
that zone.

(d) Global. This is the application of a bulk change to all cells. For example, adding a scalar value to all cells.

In the present study, we present the following operations. As a local operation, we show the point-wise arithmetic
operation, see Figure 1A. In the case of global operations, we present two operations: thresholding obtains a binary raster
where each cell of the output raster has a 1 if the value of the cell at the same position of the input raster is greater or equal
than a given scalar value and a 0 otherwise (see Figure 1B), and scalar operation, where the output raster is the result of
applying the same operation over all cells, such as adding a scalar value to all cells of the input raster (see Figure 1C).
Finally, we present one zonal operation, zonal sum, which requires two input rasters, the zonal matrix and input matrix.
The zonal matrix defines zones, which are formed by all cells having the same value. For each zone, the algorithm
sums the cells of the input matrix, and then, the output is the zonal matrix, changing the original value by the sum,
see Figure 1D.

3 RELATED WORK

3.1 Storage methods for rasters

A variety of formats and tools are available for the storage of raster data. Observe that a raster dataset can be easily
stored as amatrix of values in generic matrix-processing tools, or even using raster-based image file formats. For example,
GeoTIFF, a file format specifically designed for storing rasters, relies on the classical image file format TIFF enhanced
with metadata to store geographical attributes of the raster.

Next, we will introduce NetCDF, possibly the most widely-used file format for the representation of raster data.

3.1.1 NetCDF

NetworkCommonDataForm (NetCDF)36 is anOpenGeospatial Consortiumstandard for creating, accessing, and sharing
array-oriented scientific data, that is, rasters datasets.

The data format is coupled with a set of software libraries that provide the ability to query the data. It is supported by
most GIS software tools that handle raster data.

The file format arranges the cells of the raster in simple N-dimensional arrays. NetCDF provides a compressed or
uncompressed representation of the data. Compression is based on Deflate,37 which provides ten compression levels,
ranging from level 0 (no compression) to level 9 (maximum compression). The main novelty of NetCDF is that even
when compression is used, the data can be transparently accessed without performing an explicit decompression, that is,
the access procedure is the same whether the data is compressed or not. Therefore, a trade-off arises between time and
space depending on the used compression level; the more compression is chosen, the slower the querying process and
vice versa.
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(A)

(B)

(C)

(D)

F IGURE 1 Map algebra operations. (A) Point-wise sum; (B) thresholding with threshold = 5; (C) scalar sum, adding 2; (D) zonal sum.

Moreover, queries over compressed data are efficient due to the use of a technique called chunking: data is compressed
in blocks so that when a specific region of the data is demanded, only the relevant chunks need to be decompressed.

3.2 Compact data structures for raster data

3.2.1 Rank and select

Most of the compact data structures use two basic operations over bitmaps: rankb(B, p) counts the number of occurrences
of bit b in bitmap B until position p and selectb(B,n) returns the position of the nth occurrence of bit b in B.

These operations can be efficiently solved in constant time38 using n + o(n) bits of total space. In practice, only rank is
solved in constant time whereas select is solved inO(log logn) time39 with approximately 5% extra space over the original
bitmap.

3.2.2 Representing rasters with k2-trees: k2-acc and k3-tree

The k2-tree was initially designed to store and query web graphs.15 However, actually, it is a region quadtree40 for binary
matrices built with the latest developments in the field of compact data structures.
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Given a binary matrixM of size n × n, and a parameter k,M is represented with a tree. To build that tree,M is divided
into k2 submatrices of size n∕k × n∕k. A child node is added to the root node for each of those submatrices. Each node is
labeled with one bit. A 0 indicates that the submatrix is full of 0-bits and a 1 means that the submatrix contains at least
one 1-bit. Next, for each of the nodes labeled with a 1-bit, the process continues recursively.

To save space, the resulting tree is stored with two bitmaps without pointers, by following a level-wise traversal of the
tree nodes: L is a bitmap formed by the bits corresponding to the last level of the tree, and T is a bitmap that contains the
rest.

The k2-tree is limited to binary matrices. Thus, one way to represent rasters having values in the range v1 < v2 < · · · <
vt is to use a k2-tree for each value. The representation is formed by t k2-trees K1,K2, … ,Kt, where each Ki has a value 1
in the cells whose value is v ≤ vi in the original raster. This approach is the k2-acc.21,22

Another way to represent a raster is to add a third dimension to the k2-tree. The k3-tree21,22 stores points ⟨x, y, z⟩, where
the first two values represent the position in the 2D space, and the third component is the value stored in that cell.

3.2.3 k2-raster

While the k2-acc and the k3-tree obtained better results both in space and search performance than other ways of repre-
senting rasters, such as those based on compressing GeoTIFF images, the k2-raster23,25 has been proven superior to them,
obtaining better results both in space and query times.

The k2-raster follows the same quadtree-like building process of the k2-tree. Given amatrixM of integers of size n × n,†
it builds a tree as follows. Given a parameter k, it divides M in k2 submatrices of size n∕k × n∕k. Each submatrix adds
a child to the root node of the tree storing the maximum and minimum values in the corresponding submatrix. If the
maximum and theminimum values are equal, then the node becomes a leaf; otherwise, the process continues recursively
on that submatrix.

Again, this tree is compactly represented using binary bitmaps. In addition, we also have sequences of integers
corresponding to the maximum and minimum values, which will be also compressed.

We show in Figure 2 an example of k2-raster. In the upper part, we can see the matrix and its recursive subdivision.
Just below, we can see the corresponding conceptual tree. The root represents the complete 8 × 8matrix, and, as seen, the
root contains the maximum and minimum values in that matrix. Under the label “Step 2,” we can see the first division
into four matrices of size 4 × 4, each producing a child of the root node. We highlight the maximum andminimum values
in each submatrix, which are stored at the children of the root of the tree. The process continues until finding a submatrix
filled with the same value or until we reach individual cells, which produce nodes with only the value of the cell (last
level of the tree).

To reduce the magnitude of the numbers stored at the nodes, and thus open the possibility of representing them with
fewer bits, the values at the nodes are stored as the difference with the same value at the parent. This is illustrated in the
tree at center-bottom of Figure 2.

The topology of the tree is represented with a bitmap. Each node with children is represented with a 1-bit,
whereas the leaves in levels before the last one are represented with a 0-bit. Thus, the bitmap is the simple level-wise
traversal of the conceptual tree. Indeed, this is a simplified variant of LOUDS (level-ordered unary degree sequence)
tree representation,41 which is a compact representation for trees. In Figure 2, we can see this bitmap labeled
as “Tree (T).”

Using T, we can simulate the tree navigation with rank and select operations. More precisely, given a 1-bit at
position p in T, that is, a node with children, these children are sequentially located from position children(p) =
rank1(T, p) × k2 of T, unless the children are individual cells, which are not represented in T. The parent of a
node at position p of T is computed as parent(p) = select1(T, ⌊p∕k2⌋). Due to the fast response time of rank and
select, it is possible to efficiently access the value of a single cell, retrieve entire row/columns, or solve spatial range
queries.

The values at the nodes are stored as arrays, following the same level-wise order of the tree. We need two arrays Lmax
for maximum values and Lmin for the minimum. These arrays are compressed withDirectly Addressable Codes (DACs),19
a compression scheme for integer sequences that provides the ability to direct access to any given position. We use the

†If the matrix is not a square, we can fill it with “empty cells” until it becomes a square. This does not impact the space requirements of the final
representation, as the k2-raster is very efficient representing regions with the same value.
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SILVA-COIRA et al. 1367

DACs version that calculates the optimal number of bits at each level. DACs exploit the fact that encoded differences tend
to be small. This is shown at the bottom of Figure 2, as part of the final representation.

As explained, the k2-raster obtains a very compressed representation of the raster matrix and, at the same time, it
indexes the data, enabling fast queries over the raster matrix. It has proven to be superior to the rest of the state-of-the-art
techniques both in compression power and query performance, except in the case of NetCDF’s compression power, since
they are almost on par.23

Compared to k2-acc, the technique used in the previous proposal of map algebra using compact data structures,31 the
k2-raster not only obtains less space consumption and query times, but it also scales better when increasing the size of
the input data or the number of different values. In fact, when the number of different values is moderate, the current
implementation of k2-acc does not work, and any possible implementation will have problems to deal with that situation
since it requires a complete k2-tree for each different cell value present in the raster. Moreover, except in rasters with a

F IGURE 2 k2-raster example. Example of integer raster matrix (top), conceptual tree of the k2-raster (center-top), conceptual tree
using differential encoding (center-bottom), and final representation of the raster matrix using compact data structures (bottom). rMax and
rMin denote the maximum and minimum values of the root node. Lmax and Lmin contain the maximum and minimum values of each node,
following a level-wise order and using differential encoding. This example uses k = 2.
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1368 SILVA-COIRA et al.

very low number of different values in the raster, k2-acc obtains between 2.5 and 8.75 times worse compression. In query
times, in most queries, k2-raster is faster than k2-acc, up to one order of magnitude.

3.3 Quadtrees

k2-acc, k3-tree, and k2-raster use a quadtree as the basic data structure (octree in the case of k3-tree), which is then
enhanced with several other components. Quadtrees were originally introduced to compress images.42,43 However, since
then, many different variants have appeared. We can roughly classify them in those focused on indexing data44-46 and
those focused on compressing images or 3D meshes.47-53

As indexes, typically, data are stored in an array-like data structure and a quadtree is used as an auxiliary index,44,54
whereas, in the case of compression, no indexation is applied. However, k2-acc, k3-tree, and k2-raster combine in the
same data structure two indexes and the storage of the data. A similar fusion has been proposedmore recently,55 however
this system only indexes the space, whereas k2-acc, k3-tree, and k2-raster, in addition to the spatial index (quadtree), are
equipped with an index on the values at cells.

Focusing on compression, the basic idea of the quadtree is to take advantage of the intrinsic data smoothness, by
representing parts of the image with only one value or, at least, represent parts of image with less information than the
original by taking advance of the redundancy between close parts of the image. k2-raster uses the same idea, but adding
some other compression mechanisms.

3.4 Operations over rasters using compact data structures

Brisaboa et al.56 proposed algorithms to efficiently perform Boolean operations over binary raster datasets represented
using k2-trees. They included algorithms for computing the union, intersection, difference, and complement of binary
rasters using two different variants of the k2-tree representation for binary relations. Thus, it is related to our work as
they propose algorithms for computing some local operations over raster datasets, but it differs from us in the sense that
their work is focused on binary rasters, whereas we extend the applicability of these types of map algebra operators for
rasters of any nature. Later, Quijada-Fuentes et al.57 presented algorithms for solving set operations over k2-tree and over
another compact data structure called binary relation wavelet tree (BRWT); however, again, this work only considers
binary rasters.

The closest work to ours is the development of map algebra operations on rasters represented using k2-acc.31 They
presented algorithms for the following operations: thresholding, sum and multiplication by a scalar, point-wise sum, and
zonal sum. However, as explained, k2-acc has poor performance in comparison with k2-raster, especially when the raster
has a moderate or high number of different values, which is the most common situation.

4 OUR PROPOSAL

First of all, let us introduce the following notation. Let pM1 be a pointer to a node of the k
2-raster M1. With ∗ (pM1), we

access the pointed node. That is, ∗ (pM1).min and ∗ (pM1).max return the minimum and maximum values, respectively,
stored at the pointed node.

4.1 Global operations: Arithmetic operation by a scalar value

This operation performs the addition, subtraction, division, ormultiplication of a scalar value to all cells of thematrix. It is
performed differently depending on whether the operation is addition/subtraction or division/multiplication. However,
in both cases, it is simple.

In the case of addition or subtraction, we only have to sum or subtract the input scalar to the values maximum and
minimum at the root node, that is, the fields rMax and rMin of the Figure 2. Observe that, independently of the size of
the raster, this implies just two operations.
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SILVA-COIRA et al. 1369

In the case of division and multiplication, the algorithm requires applying the operation to all nodes of the tree. This
implies applying the operation to rMax and rMin and to all the values in Lmax and Lmin. However, the structure of the
tree does not change; thus, the operations over Lmax and Lmin can be done sequentially without traversing the tree.

4.2 Local operations: Point-wise

In this case, the value of each cell of the output matrix Mo(i, j) is computed as the operation over the cells at the same
location of the two input matrices, that is,Mo(i, j) = M1(i, j)ΘM2(i, j), being Θ an arithmetic operation (+, −, *, or /).

Algorithm 1 shows the pseudocode of the operation. At any given step of the algorithm, it manages two point-
ers. Initially, both pointers point to the root node of the two input k2-rasters. The algorithm traverses downwards both
input trees until reaching quadrants of size 1 × 1, that is, individual cells, or a uniform quadrant. It is invoked as
Point-wise(Θ,n, 1, pM1 , pM2). The first parameter is the operation, n is the (possibly extended) raster matrix size, the third
parameter is the current level, and pM1 and pM2 are pointers to the current node of each input k

2-raster. In the initial call,
both point to the root node of the corresponding k2-raster.

k, T𝓁 , Vmax𝓁 , and Vmin𝓁 are global variables. k is the k value of the trees. T𝓁 , Vmax𝓁 , and Vmin𝓁 are lists, initially
empty; there are T𝓁 , Vmax𝓁 , and Vmin𝓁 lists for each level 𝓁 of the output tree. In addition, the global variables pmax𝓁
and pmin𝓁 indicate the last written position of Vmax𝓁 and Vmin𝓁 , respectively.

After running the algorithm, all T𝓁 sequences must be joined to make up T. The same must be done with Vmax𝓁 and
Vmin𝓁 to obtain Vmax and Vmin, which, in turn, must be converted into Lmax and Lmin by computing the differences
and then encoded using DACs. Observe that the algorithm returns the maximum and minimum values of the resulting
matrix, that is, rMax and rMin.

Each call to Point-wise processes one quadrant (let us say qp) of both inputmatrices, initially the whole raster, to obtain
the same quadrant of the result.

If the two input pointers correspond to uniform quadrants, that is, all cells have the same value, then lines 4 and 5
obtain the value that will have the output raster in all cells of the processed quadrant. Line 6 performs the operation and
introduces the resulting value in bothmaxval andminval (the answer of the call). When at least one of the nodes is not a
leaf, for each non-leaf node, the fors of lines 8 and 9 process its k2 children, with lines 10–17 obtaining the pointers to those
children. In the case of leaf node, the pointer remains pointing to the current processed node qp. For each subquadrant
of the processed node, line 18 performs a recursive call to process it.

After the recursive call, line 19 adds the returned maximum value to Vmax𝓁 . Line 20 checks if the returned values are
different. In that case, it appends the minimum value to Vmin𝓁 and sets up a 1 in the T𝓁 of that level. If the maximum and
minimum values are equal, it sets up a 0 in T𝓁 , provided that we are not returning from a recursive call that processed an
individual cell. Lines 28–30 keep track of the minimum and maximum values found so far during the computation of qp
of the target raster.

After processing the k2 children (qp1, qp2, … , qpk2 ), line 34 checks whether the maximum and minimum values of
all children are equal, which indicates that all the children contain the same value. Thus, the algorithm must undo
the last operations, as these nodes will not have a representation in the data structure. This can be easily done by
removing the last k2 positions of T𝓁 and Vmax𝓁 , or just moving the pointer that indicates their last written posi-
tion, k2 positions backwards (line 35). Finally, the algorithm returns the maximum and minimum values to its parent
call.

Figure 3 shows two rasters, the output of their point-wise sum and their conceptual k2-rasters. We are going to
use them to illustrate how Algorithm 1 works. The first level division of the rasters is depicted with thick lines.
The second level division is drawn with thin lines. First level division produces four quadrants labeled as q1, q2, q3,
and q4.

In order to distinguish between the two input rasters, we will use qi(M1) to refer to the quadrant qi of the first input
raster and qi(M2) for the other. To refer the corresponding node of quadrant qi(Mj), we will use ni(Mj). Equally, where a
pointer is required, by ni(Mj) also stands as the pointer to that node in the k2-raster.

The process begins with the call Point-wise(+, 4, 1, proot(M1), proot(M2)), where proot(M1) and proot(M2) are pointers to
the root ofM1 andM2, respectively. Since n > 1, the loops of lines 8 and 9 start with i = 0 and j = 0, whichmeans that this
iteration processes the quadrant q1 of both input rasters. Given that n1(M1) and n1(M2) have different min-max values,
then lines 11 and 15 obtain the new pointers p𝓁M1 , pointing to n1(M1), and p𝓁M2 , pointing to n1(M2).
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1370 SILVA-COIRA et al.

Algorithm 1. Point-wise(Θ,n,𝓁, pM1 , pM2) computes T, Vmax and Vmin and returns (rMax, rMin) of the k
2-raster rep-

resentation resulting from performing the operation Θ having as input two rasters, where pM1 and pM2 are pointers to the
root node of those k2-rasters

1: minval ← ∞;
2: maxval ← 0;
3: if (IsLeaf(pM1 ) and IsLeaf(pM2 ) then /*Both input quadrants are uniform, that is, leaves*/
4: M1 ←∗ (pM1).max
5: M2 ←∗ (pM2).max
6: maxval,minval ← M1 ΘM2
7: else
8: for i ← 0… k − 1 do
9: for j ← 0… k − 1 do
10: if ∗ (pM1).min<> ∗ (pM1).max then /*Check whether the node has children or not*/
11: p𝓁M1 ← Child(pM1 , i ⋅ k + j) /*Obtains the child*/
12: else∼ p𝓁M1 ← pM1 /*The pointer remains in the current node since it is a

leaf*/
13: end if
14: if ∗ (pM2).min<> ∗ (pM2).max then /*Check whether the node has children or not*/
15: p𝓁M2 ← Child(pM2 , i ⋅ k + j) /*Obtains the child*/
16: else∼ p𝓁M2 ← pM2 /*The pointer remains in the current node since it is a

leaf*/
17: end if
18: (childmax, childmin) ← Point −wise(Θ,n∕k,𝓁 + 1, p𝓁M1 , p𝓁M2);
19: Vmax𝓁[pmax𝓁] ← childmax;
20: if childmax<>childmin then /*The created node has children*/
21: Vmin𝓁[pmin𝓁] ← childmin
22: pmin𝓁 ← pmin𝓁 + 1
23: T𝓁[pmax𝓁] ← 1
24: else if n>k then /*If it is not the last level*/
25: T𝓁[pmax𝓁] ← 0 /*The created node does not have children*/
26: end if
27: pmax𝓁 ← pmax𝓁 + 1
28: if minval>childmin thenminval ← childmin
29: end if
30: if maxval<childmax thenmaxval ← childmax
31: end if
32: end for
33: end for
34: if minval = maxval then /*All children have the same value in all cells*/
35: pmax𝓁 ← pmax𝓁 − k2 /*Remove all the children nodes*/
36: end if
37: end if
38: return(maxval,minval)

Then a recursive call Point-wise(+, 2, 2,n1(M1),n1(M2)) is issued (see step 2 of Table 1). Observe that n1(M1) is the
node containing 1-1 inM1 and n1(M2) is the one containing 4-4 inM2. Therefore, both are leaves, their values are 1 and
4 respectively, and then lines 4–6 store the result of their sum, 5, in themaxval andminval of the output for this quadrant.

At the returning of the call, Vmax1[1] receives the 5 and line 25 sets T1[1] to 0 indicating that it is a leaf node (see step
3 of Table 1). Lines 28 and 30 set minval and maxval to 5, since that is the minimum and maximum values found so far
in the children of the root.

We returned to the call of step 1, and now the for of line 10 sets j to 1, and this implies that the subquadrant 2 must be
processed, and thus, the recursive call Point-wise(+, 2, 2,n2(M1),n2(M2)) is issued (see step 4 of Table 1). Since q2 is not
uniform in both input trees, the flow reaches line 8, and then the k2 subquadrants of q2 must be processed with recursive
calls. Steps 5–12 of Table 1 show the k2 recursive calls for processing the subquadrants.
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SILVA-COIRA et al. 1371

F I GURE 3 The k2-rasters involved in the point-wise sum operation.

TABLE 1 Trace of the point-wise sum of the example of Figure 3.

Step Call Actions Rec call Actions Rec call

1 4,1,proot(M1), proot(M2)

2 2,2,n1(M1),n1(M2)

3 Vmax1(5) T1(0)

4 2,2,n2(M1),n2(M2)

5 1,3,n11(M1),n11(M2)

6 Vmax2(9)

7 1,3,n12(M1),n12(M2)

8 Vmax2(9,12)

9 1,3,n13(M1),n13(M2)

10 Vmax2(9,12,11)

11 1,3,n14(M1),n14(M2)

12 Vmax2(9,12,11,8)

13 Vmax1(5,12) Vmin1(8) T1(0,1)

14 2,2,n3(M1),n3(M2)

15 Vmax1(5,12,6) T1(0,1,0)

16 2,2,n4(M1),n4(M2)

17 1,3,n4(M1),n41(M2)

18 Vmax2(9,12,11,8,12)

19 1,3,n4(M1),n42(M2)

20 Vmax2(9,12,11,8,12,13)

21 1,3,n4(M1),n43(M2)

22 Vmax2(9,12,11,8,12,13,19)

23 1,3,n4(M1),n44(M2)

24 Vmax2(9,12,11,8,12,13,19,11)

25 Vmax1(5,12,6,19) Vmin1(8,11) T1(0,1,0,1)
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1372 SILVA-COIRA et al.

Step 5 shows the call Point-wise(+, 1, 3,n11(M1),n11(M2)). n11 is an individual cell, with value 2 inM1 and 7 inM2,
therefore lines 4–6 setmaxval andminval to 9. After the recursive call, when the flow returns to the call of step 4, line 19
adds the 9 to Vmax2 (see step 6). Neither Vmin2 nor T2 are updated since we are at the last level (individual cells). Until
step 12, the same procedure is applied to the rest of the children of n2.

After processing all children of n2, the flow returns to the call of step 1 in line 19. The call
Point-wise(+, 2, 2,n2(M1),n2(M2)) returns (12,8), and thus 12 is attached to Vmax1 and 8 to Vmin1. Finally, a 1 is
attached to T1 since n2 in the output tree has children.

Next, the call of step 1 processes q3 issuing Point-wise(+, 2, 2,n3(M1),n3(M2)), but since n3 is a leaf in both input
trees, that call returns (6, 6), resulting in the updates of step 15.

Finally, the process of q4 is similar to the process of q2 since, although inM1 that node is a leaf, it is not in the case of
M2 (see steps 16–25).

4.3 Global operations: Thresholding

Algorithm 2 shows the thresholding operation. It is also a recursive procedure that starts at the root but, in this case, it
only traverses one tree. It is invoked asThresholdin(n,𝓁, pM , t). The first parameter is n the raster matrix size, the second
parameter is the current level, pM is a pointer to the current node of the input k2-raster, and t is the threshold. In the initial
call, it points to the root node. The global variables are the same as in the case of the Algorithm 1.

The main difference is the recursion stop condition. As in the case of the point-wise operation, when we reach a leaf,
recursion stops, but now returning 0 or 1 in bothmaxval andminval depending onwhether the value at the node is greater
or lower than the threshold.

There are two additional cases where recursion stops. If the maximum value at the processed node is smaller than
the threshold, then it is sure that all values of that subquadrant are smaller than the threshold, so the recursion stops
returning a 0 in both maxval and minval. Observe that, since we store the same value in both maxval and minval, then
at the returning point of the recursion lines 18–35 will create a leaf node. The other case is when the minimum value of
the processed node is greater than the threshold, which results in returning a 1 in both maxval and minval. Otherwise,
recursion continues performing a call for each of the k2 children of the processed node (lines 14–17), and after returning
from that call, the output tree is built (lines 18–34).

Note that this operation takes advantage of the k2-raster index capability provided by the min–max values at nodes,
which avoids processing tree branches that can be solved at the upper levels of the tree.

4.4 Zonal operations: Zonal sum

Observe that the point-wise and thresholding operations use recursive algorithms that start at the root of the input trees,
and process them downwards until they reach the leaves. Then, when returning from the recursive calls, they build
the output tree from the leaves until the root. Therefore, basically, the process involves a downward and an upward
traversal.

In this operation, this approach cannot be used, because we have to sum all values in the input matrix overlapping
any given value of the zonal matrix. Therefore, until processing completely both input matrices, we cannot start the
construction of the output tree.

Zonal sum will be solved with two traversals as well, the first one traverses the input trees downwards and the second
one builds the output tree upwards. However, the first traversal must finish completely before the second one starts. This
prevents the use of a recursive procedure that mixes the two traversals. The first traversal to obtain the zonal sum of each
value of the zonal matrix uses a recursive algorithm. The second traversal is a sequential process of the levels of the zonal
matrix from the leaves until the root to build the output tree.

Note that the output tree is basically the zonal tree, except that some non-uniform submatrices (non-leaf nodes) of
the zonal tree may become uniform, and thus leaves, in the output tree. Therefore, during the first downward traver-
sal, in addition to obtaining the zones, the algorithm records the structure of the zonal tree using node lists. Each list
contains the nodes of one level from left to right. Then, the upward traversal of the zonal matrix is performed using
those lists.
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SILVA-COIRA et al. 1373

Algorithm 2. Thresholding(n,𝓁, pM , t) computes T, Vmax and Vmin and returns (rMax, rMin) of the k2-raster
representation resulting from performing the thresholding having as input one raster and a threshold value

1: minval ← ∞;
2: maxval ← 0;
3: if IsLeaf(pM) then /*The input quadrant is uniform, that is, leaf*/
4: if ∗ (pM).max<t then
5: maxval,minval ← 0
6: else
7: maxval,minval ← 1
8: end if
9: else if ∗ (pM).max<t then
10: maxval,minval ← 0 /*All values in the quadrant are below t*/
11: else if ∗ (pM).min>t then
12: maxval,minval ← 1 /*All values in the quadrant are above t*/
13: else
14: for i ← 0… k − 1 do
15: for j ← 0… k − 1 do
16: p𝓁M ← Child(pM , i ⋅ k + j) /*Obtains the child*/
17: (childmax, childmin) ← Thresholding(n∕k,𝓁 + 1, p𝓁M , t);
18: Vmax𝓁[pmax𝓁] ← childmax;
19: if childmax<>childmin then /*The created node has children*/
20: Vmin𝓁[pmin𝓁] ← childmin
21: pmin𝓁 ← pmin𝓁 + 1
22: T𝓁[pmax𝓁] ← 1
23: else if n>k then /*If it is not the last level*/
24: T𝓁[pmax𝓁] ← 0 /*The created node does not have children*/
25: end if
26: pmax𝓁 ← pmax𝓁 + 1
27: if minval>childmin thenminval ← childmin
28: end if
29: if maxval<childmax thenmaxval ← childmax
30: end if
31: end for
32: end for
33: if minval = maxval then /*All children have the same value in all cells*/
34: pmax𝓁 ← pmax𝓁 − k2 /*Remove all the children nodes*/
35: end if
36: end if
37: return(maxval,minval)

As explained, the upward traversal replicates the zonal tree, and only when the algorithm finds that a
non-uniform quadrant of the zonal matrix becomes uniform in the output, then it changes the output accordingly.
To detect those situations, the lists, in addition to informing about the structure of the zonal tree, are also used
as an auxiliary structure during the computation of the output to store the min-max values of the nodes of the
output tree.

Algorithm 3 shows the pseudocode. The hash table Hash has all its entries initialized to 0. Vmax2 is the Vmax array
of the zonal matrix M2, and it is a global variable. The lists L1,L2, … , and P1,P2, … are also global variables. As in the
previous algorithm, T𝓁 , Vmax𝓁 , and Vmin𝓁 are lists, initially empty; there are T𝓁 , Vmax𝓁 , and Vmin𝓁 lists for each level
𝓁 of the output tree. Again, after running the algorithm, all T𝓁 sequences must be joined to make up T and Vmax𝓁 and
Vmin𝓁 must be processed to obtain Lmax and Lmin.
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1374 SILVA-COIRA et al.

Algorithm 3. ZonalSum(n, #𝓁, pM1 , pM2)

1: Hash← Sum(n, 1, pM1 , pM2) /*Obtains for each value in M2 its sum*/
2: Add(L1, ⟨0,−1,−1⟩);
3: 𝓁 ← #𝓁
4: while 𝓁>1 do /*Processes all levels from the leaves upwards*/
5: pmax𝓁 ← pmin𝓁 ← i ← 0
6: minval ← ∞
7: maxval ← 0
8: while L𝓁[i] is not null do /*Traverses L𝓁*/
9: if L𝓁[i].max = −1 then /* It was a leaf already in M2*/
10: Vmax𝓁[pmax𝓁] ← min ← Hash[Vmax2[L𝓁[i].ptr]]
11: else/* It is a parent, the max and min values were updated when its children

were processed*/
12: Vmax𝓁[pmax𝓁] ← min ← L𝓁[i].max
13: if L𝓁[i].max<>L𝓁[i].min then
14: Vmin𝓁[pmin𝓁] ← min ← L𝓁[i].min
15: pmin𝓁 ← pmin𝓁 + 1
16: end if
17: end if
18: if 𝓁<#𝓁 then/* The nodes in the last level are not represented in T*/
19: if L𝓁[i].max = L𝓁[i].min thenT𝓁[pmax𝓁] ← 0 /*The submatrix is uniform, then it is

represented by a leaf node*/
20: else T𝓁[pmax𝓁] ← 1 /*The submatrix is not uniform, then its node has

children*/
21: end if
22: end if
23: if maxval<Vmax𝓁[pmax𝓁] thenmaxval ← Vmax𝓁[pmax𝓁]
24: end if
25: if minval>min thenminval ← min
26: end if
27: if (i + 1) mod k2 = 0 then /*The parent must be updated*/
28: if minval = maxval then /*All children have the same value in all cells*/
29: pmax𝓁 ← pmax𝓁 − k2 /*Remove all the children nodes*/
30: end if
31: #parent ← (i∕k2) /*We are processing the children of the #parentth of level

𝓁 − 1*/
32: pp𝓁−1 ← P𝓁−1[#parent] /*Obtains the position in level 𝓁 − 1 from the array of

parents*/
33: L𝓁−1[pp𝓁−1].max ← maxval
34: L𝓁−1[pp𝓁−1].min ← minval
35: minval ← ∞
36: maxval ← 0
37: end if
38: pmax𝓁 ← pmax𝓁 + 1
39: i ← i + 1
40: end while
41: 𝓁 ← 𝓁 − 1
42: end while
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SILVA-COIRA et al. 1375

Algorithm 4. Sum(n,𝓁, pM1 , pM2)

1: if IsLeaf(pM1 ) and IsLeaf(pM2 ) then /*Both input quadrants are uniform, that is, leaves*/
2: M1 ←∗ (pM1).max
3: M2 ←∗ (pM2).max
4: Hash[M2] ← Hash[M2] + (M1 × n2) /*Adds to the value M2 of the zonal matrix the

values of the input raster matrix*/
5: else
6: for i ← 0… k − 1 do
7: for j ← 0… k − 1 do
8: if ∗ (pM1).min<> ∗ (pM1).max then /*Check whether the node has children or not*/
9: p𝓁+1M1 ← Child(pM1 , i ⋅ k + j) /*Obtains the child*/
10: else∼ p𝓁+1M1 ← pM1 /*The pointer remains in the current node since it is a

leaf*/
11: end if
12: if ∗ (pM2).min<> ∗ (pM2).max then /*Check whether the node has children or not*/
13: p𝓁+1M2 ← Child(pM2 , i ⋅ k + j) /*Obtains the child*/
14: if ∗ (p𝓁+1M2).min<> ∗ (p𝓁+1M2).max then
15: Add(P𝓁+1,sizeOf (L𝓁+1)); /*Stores in the array of parents the position in

level 𝓁 + 1 of this node*/
16: end if
17: Add(L𝓁+1, ⟨p𝓁+1M2 ,−1,−1⟩); /*Adds the node to L𝓁+1*/
18: else∼ p𝓁+1M2 ← pM2 /*The pointer remains in the current node since it is a

leaf*/
19: end if
20: Sum(n∕k,𝓁 + 1, p𝓁+1M1 , p𝓁+1M2);
21: end for
22: end for
23: end if
24: return Hash

Each entry of the lists L1,L2, … is a triplet ⟨pointer,min,max⟩, where pointer is a pointer to a position in Vmax2 (the
maximumvalues of the zonalmatrixM2),min andmax are theminimumandmaximumvalues at the node corresponding
to the position pointed to by pointer, but at the output tree.

The algorithm is called as ZonalSum(n, #𝓁, pM1 , pM2). The first parameter is the raster matrix size, #𝓁 is the number
of levels of the zonal tree (M2). pM1 and pM2 are pointers to the root node of both input k

2-rasters.
Line 1 performs the call to the recursive process that adds the values of the input matrix for each different value in

the zonal matrix. The returned hash table Hash contains the sum for each value of the zonal matrix.
Algorithm4 shows the pseudocode of this process. It is basically the same recursive process of the point-wise operation,

excluding the construction of the answer. The differences are two. First, in line 4, when the recursive process reaches a
leaf in both trees, the hash entry of the value of the zonalmatrix accumulates the values of the inputmatrix. Second, when
a node of the zonal matrix is accessed, line 17 adds it as an entry of the list of nodes L𝓁+1. The entry contains a pointer to
that node and minimum and maximum values set to -1, and lines 14 and 15 add the position of the node within its level
(from left to right), if it is a parent node. This list of parent positions is required during the construction process of the
output.

After that call, returning to Algorithm 3, the while of line 4 processes the levels of the zonal matrix from the last level
until level 2 (that of the children of the root). Variables pmax𝓁 and pmin𝓁 are the positions of Vmax𝓁 and Vmin𝓁 where a
new element must be written. The while of line 8 processes sequentially the entries of L𝓁 .

If the processed entry of L𝓁 has a -1 in themax field, then that means that it is a leaf in the zonal matrix; otherwise,
its children would have been processed during the level 𝓁 + 1 traversal, and this would update themax andmin fields of
the processed entry. Therefore, in line 10, the corresponding position in Vmax𝓁 is filled with the sum associated with the
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1376 SILVA-COIRA et al.

value of the zonal matrix. Otherwise, the maximum and minimum values are already at the entry, and thus, Vmax𝓁 and
Vmin𝓁 are updated accordingly (lines 12–16).

Next, in lines 18–22, T is updated. Lines 23–26 keep track of the maximum and minimum values of the children of
the current parent node.

Line 27 checks when the traversal reaches the last child of a parent node. In that case, we have to update theminimum
and maximum values at the entry of the parent node in the upper level. Before that, if we find that the maximum and
minimum values of the children are the same, line 29 moves the pointer pmax𝓁 k2 positions backwards to erase the
children of the output tree, since the parent node will be a leaf.

Lines 31 and 32 obtain the position in level 𝓁 − 1 of the parent of the processed children using the list where we stored
the position in each level of the parent nodes. Lines 33 and 34 update the maximum and minimum values at the parent
node.

Next, we are going to illustrate the Algorithm 3 using the rasters of Figure 4. The algorithm is invoked as
ZonalSum(4, 3, proot(M1), proot(M2)). Line 1 issues Sum(4, 1, proot(M1), proot(M2)). As seen, this is a recursive process that
obtains the hash table with the sum for each value of the zonal matrix, the lists L𝓁 having the structure of the zonal tree
by levels, and the lists P𝓁 of positions in each level having parent nodes. Figure 5 shows these elements for our example.
Observe that the lists L𝓁 store the positions in Vmax2 corresponding to the nodes of the level 𝓁 and that themin andmax
values are set to -1. The list of parents is our example is only available for level 2, and, as seen, it marks only positions 1
and 3 (starting at position 0), since in the k2-tree of the zonal matrix, those positions of level 2 contain parent nodes (the
nodes labeled 9-6 and 18-10).

After that call, returning to Algorithm 3, thewhile of line 4 processes the levels of the zonal tree starting at the last one
(3). The while of line 8 processes L3 from left to right. The first entry is ⟨5,−1,−1⟩; since it has a -1 inmax, the algorithm
obtains from the hash table the sum associated with the zonal value. For this, first, the zonal value is obtained using the
pointer, so the zonal value is Vmax2[5] = 7. Next, the sum associated with 7 is obtained from the hash table, which in our
case is a 2 (see the second entry from the top of tableHash of Figure 5). Finally, that sum is added to Vmax3. Lines 18–22
are not executed since we are at the last level and it is not represented in T (see row with i = 0 and 𝓁 = 3 of Table 2). Next,
maxval andminval, which keep track of themaximum andminimum values of the parent node of the currently processed
node, are set to 2. The next entry is ⟨6,−1,−1⟩, which adds a 3 to Vmax3, and updates maxval to 3. The same process is
carried outwith the following two entries ofL3, thenwhen reaching i = 3, this results inVmax3 = (2, 3, 3, 2) (see rowswith
i = 1, 2, 3 and 𝓁 = 3 of Table 2). However, at that point, that is, when processing the entry ⟨8,−1,−1⟩, we are processing
the last child of the parent node labeled 9-6 in the zonal tree. Therefore, the if of line 27 becomes true. Lines 31 and 32
compute the position in level 2 of the node 9-6 of the zonal tree. Line 31 computes the number of parent (from left to

F IGURE 4 The k2-rasters involved in the zonal sum operation.
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SILVA-COIRA et al. 1377

F I GURE 5 The data structures obtained after the call to Sum function.

TABLE 2 Trace of the zonal sum of the example of Figure 4.

𝓵 i Vmax Additional actions

3 0 2

1 2,3

2 2,3,3

3 2,3,3,2 L2⟨1,−1 − 1⟩, ⟨2, 3, 2⟩, ⟨3,−1,−1⟩, ⟨4,−1,−1⟩

4 2,3,3,2,1

5 2,3,3,2,1,1

6 2,3,3,2,1,1,1

7 2,3,3,2,1,1,1,1 Vmax3(2, 3, 3, 2) L2⟨1,−1 − 1⟩, ⟨2, 3, 2⟩, ⟨3,−1,−1⟩, ⟨4, 1, 1⟩

2 0 12 T2(0)

1 12,3 Vmin2(2) T2(0, 1)

2 12,3,12 T2(0, 1, 0)

3 12,3,12,1 T2(0, 1, 0, 0) L1⟨0, 12, 1⟩

right) in level 2, #parent = 3∕4 = 0, and line 32 computes its global position in level 2, pp2 = P2[0] = 1. Then, finally, the
entry at position 1 of L2 is updated with the maximum value of the last k2 processed values (3) and the minimum (2), see
row with i = 3 and 𝓁 = 3 of Table 2.

See in Table 2 that from i = 4 to i = 7 for 𝓁 = 3, the k2 leaves of the node 18-10 of the zonal tree (which are the
values 11, 12, 18, 10) have a zonal sum of 1, and thus the four 1s are added to Vmax3. When processing the fourth
child, that is when i = 7, then the if of line 27 becomes true;minval = maxval = 1, and thus, pmax𝓁 is moved k2 positions
backwards, thus removing the last four added 1s. In addition, lines 31–34 update the minimum and maximum values of
the last entry of L2, setting both of them to 1.

Next, the flow returns to line 4 to process level 2. The first entry of L2 (⟨1,−1,−1⟩) has a -1 inmax, so it is a leaf. Using
the pointer, we obtain the associated sum (12) from the hash table (see entry with 𝓁 = 2 and i = 0 of Table 2). However,
now we are not at the last level; thus, lines 18–22 are executed, adding in this case a 0 to T2, which indicates that this
node is a leaf. The next entry is ⟨2, 3, 2⟩. Given thatmax is not -1, the node is not a leaf, and then Vmax2 and Vmin2 are
updated with the values stored at the entry, as it can be seen in the row with i = 1 and 𝓁 = 2. In addition, a 1 is added to
T2 indicating that it is not a leaf. The third entry is like the first one. The fourth entry (⟨4, 1, 1⟩) has max different from
-1. In this case, both values are the same (1) and thus only Vmax2 and T2 are updated (see row with i = 3 and 𝓁 = 2
of Table 2).
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1378 SILVA-COIRA et al.

4.5 A note on complexity

In this section, we will analyze the space and time complexity of the proposed algorithms. In the case of the space com-
plexity, we do not include the input/output sizes, but the additional space required to compute themap algebra operations
and build the output.

4.5.1 Global operations: Arithmetic operation by a scalar value

In the case of adding or subtracting a scalar value, both space and time complexities are O(1), as only the fields rMax and
rMin need to be modified.

In the case of multiplication by a scalar value, not only rMax and rMin are modified, by all the values of Lmax and Lmin
arrays. Thus, time complexity is linear to the time required to build these arrays, that is, O(|Lmax| + |Lmin|), where Lmax
and Lmin are the arrays storing the maximum and minimum values of the input k2-raster. Regarding space, it requires an
additional space for building the DACs arrays of the output, as they cannot be created in compact space. Thus, the space
complexity isO(|Loutmax| + |Loutmin|), being L

out
max and Loutmin the arrays storing the maximum andminimum values of the output

k2-raster.

4.5.2 Local operations: Point-wise

The time complexity of the algorithm is linear to the input size, as it just process once each node of the input k2-rasters.
Thus, it is O(|M1| + |M2|), beingM1 andM2 the input k2-rasters.

Regarding space complexity, it just requires the additional space for building the DACs arrays of the output, that is,
O(|Loutmax| + |Loutmin|), being L

out
max and Loutmin the arrays storing the maximum and minimum values of the output k2-raster.

4.5.3 Global operations: Thresholding

The time complexity of the algorithm is linear to the input size, as it just process once each node of the input. Thus, it is
O(|M|), beingM the input k2-raster.

Regarding space complexity, it just requires an additional spaceO(|Loutmax| + |Loutmin|) for building the DACs arrays of the
output, being Loutmax and Loutmin the arrays storing the maximum and minimum values of the output k2-raster.

4.5.4 Zonal operations: Zonal sum

Again, the time complexity of the algorithm is linear to the input size, as it just process once each node of the input.
Thus, it is O(|M1| + |M2|), beingM1 the input k2-raster andM2 the zonal matrix. AssumingM2 is smaller thanM1, time
complexity is O(|M1|).

Regarding space complexity, again it just requires an additional space O(|Loutmax| + |Loutmin|) for building the DACs arrays
of the output, being Loutmax and Loutmin the arrays storing the maximum and minimum values of the output k2-raster.

5 EXPERIMENTAL EVALUATION

We include in this section to three different experiments. In the first one, we compare our algorithms with two baselines:
NetCDF and a naive solution that completely decompresses the input rasters, runs the query over the decompressed data,
and finally compresses the result to obtain a k2-raster. The second experiment compares our method with the algorithms
proposed for the k2-acc.31 The reason of this division is that we use the authors’ implementation of the algorithms on
k2-acc, which do not write the output, that is, they only compute the result in main memory, but they do not write that
result back to disk. SinceNetCDF does that, in order to be fair, we decided to run a second experiment with our algorithms
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SILVA-COIRA et al. 1379

modified to behave in that way. Finally, the third experiment compares the memory consumption of all methods jointly,
since the process of writing to disk does not affect this parameter.

In the case of netCDF, we used the netCDF library‡ (v.4.7.4) with the recommended level 2 of compression, which
obtains a good trade-off between space and access times. For the second experiment, the source code for the algorithms
of the map algebra operations over the k2-acc was provided by their authors.31 It uses k = 2.

Our algorithms were implemented in C++ using the SDSL§ library.58 All the experiments were run on a dedicated
Intel® CoreTM i7-3820 CPU @ 3.60GHz (4 cores) with cache sizes 32KB (L1), 256KB (L2), and 10MB (L3), and 64GB
of RAM. The operating system was Debian 9.12 with kernel 4.9.0-9-amd64. The code was compiled with gcc version
6.3.0 with -O3. We measured elapsed time (in seconds) and, in our experiments, all data were initially on disk. For all
experiments, we repeat the map operation 30 times and report average times. Input datasets and values for scalar and
thresholding operators were chosen randomly.

5.1 Datasets

In our experiments, we used real datasets from two sources:

• WorldClim¶ dataset59 provides several layers of global climate information. The surface of the world is divided into
equal-sized tiles. In turn, each tile is a raster with cells covering about 1 square kilometer. In our case, we used the
layer with mean temperature. Whereas in the original dataset it is represented by a real number with one decimal, in
our experiments we transformed it into an integer by multiplying the value by 10. The collections obtained from this
source are denoted clim.

• Spanish Geographic Institute# (SGI) provides a DTM (Digital Terrain Model) of Spain, that is, spatial elevation data of
the terrain. The surface is divided into rectangular equal-spaced tiles with 5 m of spatial resolution. Each cell of a tile
stores a real number of at most three decimal digits.

Since the presence of uniform areas, that is, areas with the same value, may benefit the k2-raster, we considered
two different levels of precision for the datasets from the second source by using different numbers of decimal dig-
its. We generate collection dfm0 by truncating the decimal digits of the raster values, and collection dfm3 by using
the original numbers, but represented as integers, that is, using three decimal digits and multiplying the original value
by 1000.

We have created several collections of rasters. In each collection, all rasters have the same size. We decided to use
collections of several rasters in order to eliminate any bias due to the use of a single matrix. Our collections are of different
sizes to analyze the scalability of the algorithms. In collection labeled as 1x1, each raster is a matrix built using just 1 tile
of the original dataset, 2x2 collections contain matrices built using 2×2 adjacent tiles, and so on. Tables 3 and 4 show the
characteristics of our collections of rasters. The data shown in the tables represent the mean values of all rasters in each
collection. We also include in these tables the space consumption (in MBs) required by each of the three methods used,
that is, k2-raster, NetCDF and k2-acc when representing these collections. We do not include the results of k2-acc for dfm3
collection since it has too many different values and this technique is not able to run over these datasets.

5.2 NetCDF experiment

Figure 6A shows the times of the sum by a scalar. This operation benefits clearly to k2-raster since the algorithm only
implies adding (or subtracting) the scalar to the maximum and minimum values of the root node, which is a constant
time algorithm. However, observe that the slope of the line corresponding to k2-raster slightly increases as the size of the
dataset also increases. This is because our algorithm loads the complete k2-raster into main memory, and thus as the size
of the k2-raster increases, the time for loading and writing from/to disk also increases.

‡https://www.unidata.ucar.edu/software/netcdf/
§https://github.com/simongog/sdsl-lite
¶https://www.worldclim.org/
#https://www.ign.es
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TABLE 3 Properties of dataset clim, obtained fromWorldClim datasets. It includes collections of raster matrices of different sizes.

# different Space consumption

Name Size (MB) #rows #cols values k2-raster NetCDF k2-acc

clim-1×1 49.44 3600 3600 252 2.20 1.96 4.80

clim-2×2 197.75 7200 7200 413 10.49 9.20 21.67

clim-3×3 444.95 10,800 10,800 474 25.61 22.46 50.69

clim-4×4 791.02 14,400 14,400 498 42.03 36.88 86.79

Note: The column #different values shows the average number of different values of the input matrices of each size. The last three columns show the
space consumption (in MBs) of the three methods used in the experiment.

TABLE 4 Properties of datasets dfm0 and dfm3, obtained from DTM datasets. They include raster matrices of different sizes.

# different Space consumption

Name Size (MB) #rows #cols values k2-raster NetCDF k2-acc

dfm0-1×1 91.49 4100 5849 868 12.19 9.66 19.12

dfm0-2×2 369.03 8242 11,737 1201 48.91 37.67 72.82

dfm0-3×3 834.76 12,403 17,643 1503 108.65 83.51 174.30

dfm0-4×4 1488.94 16,564 23,564 1761 197.08 150.79 295.34

dfm3-1×1 91.49 4100 5849 779,405 53.88 39.00 -

dfm3-2×2 369.03 8242 11,737 1,066,043 221.81 154.86 -

dfm3-3×3 834.76 12,403 17,643 1,304,704 502.46 346.96 -

dfm3-4×4 1488.94 16,564 23,564 1,545,248 897.94 619.66 -

Note: The column #different values shows the average number of different values of the input matrices of each size. The last three columns show the
space consumption (in MBs) of the three methods used in the experiments.

Observe as the uniformity of the raster benefits in any case to the k2-raster. Themost uniform collection is clim; thus,
our algorithm is between 2.9 and 17.6 times faster than the naive approach and between 2.9 and 6.9 times faster than
NetCDF. Something similar happens with dfm0, whereas with the least uniform, dfm3, improvements range between
4.1 and 6 times in the case of the naive approach and between 2.5 and 2.7 times in the case of NetCDF. Again, in this
operation, the changes are due to the effect of uniformity in the compression power of k2-raster, as the more uniformity
is found in the original raster, the shorter is the tree and thus more compression is achieved, and, as explained, in this
operation, the main cost for k2-raster is to load and write from/to disk.

Figure 6B shows the results of product by a scalar. In this case, all values in the leaves of the tree must be accessed
and operated. Although the tree is not accessed, and only arrays Lmax and Lmin are sequentially accessed, in this case,
k2-raster is not able to outperform NetCDF in most cases. On the other hand, it achieves better performance and scales
better compared with the naive approach. Our algorithm is between 1.38 and 2.3 times faster than the naive approach,
whereas compared with NetCDF, except in the smallest collection of clim where they are on a par, in the rest, it is
between 1.05 and 1.38 times slower.

In general, when a sequential scan of the whole raster is needed, NetCDF is capable of matching the speed of the
k2-raster and even surpassing it. Several factors explain this:

• k2-raster is an index also carrying the data. However, when all data must be accessed, the advantages provided by the
indexes disappear.

• Once the indexes are useless, we have to pay attention to the speed of the underlying compression method. NetCDF
uses Deflate, which is a fast decompressor, whereas the DACs of the k2-raster are slower. This is expected, as Deflate
does not worry about direct access, since it is an archival method, and NetCDF has to compress by blocks in order to
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(A)

(B)

(C)

(D)

F IGURE 6 Time performance (in seconds) of (A) scalar sum, (B) scalar product, (C) point-wise sum, and (D) thresholding.
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1382 SILVA-COIRA et al.

obtain some sort of direct access. However, DACs are preciselyDirectly Addressable Codes and any individual value can
be decompressed separately.

• The third element that affects speed is that the k2-raster in an in-memory method, which favors k2-raster compared to
NetCDF, a disk-based method.

Figure 6C shows the results of the point-wise sumoperation. This is precisely the best example of the previous explana-
tion. Here, the indexes of the k2-raster are not helpful since the two input rasters must be completely accessed. However,
the in-memory approach of k2-raster balances the comparison, and, at the end, there is no clear winner.

Thresholding is precisely the other side of the coin, as shown in Figure 6D. Here, the indexes are capable of processing
big parts of the input raster in the upper parts of the tree with just one step. That is, if we know that all cells in a subtree are
below the given threshold, the algorithm simply sets them all to zero, without accessing them. Therefore, our algorithm
is between 2.1 and 17.6 times faster than the naive approach and between 1.63 and 6 times faster than NetCDF, since both
have to sequentially process cell by cell the complete input raster.

In zonal sum, the uniformity has even more impact. Recall that, by construction, as the raster is more uniform, the
corresponding k2-raster is smaller. Thus, since operations require a top-down traversal, the time performance improves.
However, in this operation, the uniformity of the zonal raster is evenmore critical since, in addition to the aforementioned
effect, the algorithm produces an output close to that raster, and the second part of the algorithm takes time proportional
to the number of zones.

This can be seen in Figure 7A,B. Figure 7A has a zonal raster with only 10 zones; thus, in themost uniform collections,
dfm0 and clim, our algorithm is able to outperform NetCDF. More concretely, it is between 1.11 and 1.34 times faster
in dfm0 and between 1.87 and 2 times faster in clim. However, in dfm3, our algorithm is between 1.07 and 1.37 times
slower. We can see the impact of increasing the number of zones to 500 in Figure 7B. Now, our algorithm is slower in dfm
collections, between 1.31 and 1.51 times slower, and it is on a par in clim. The effect of the number of zones of the zonal
raster can be seen in Figure 7C, where we show the time versus number of zones with the collections of size 4x4. In all
cases, our algorithm outperforms the naive approach. With respect to NetCDF, again the uniformity is the key factor, and
depending on it, one is better than the other.

5.3 k2-acc experiment

k2-acc implementation has serious limitations to deal with datasets of moderate size, not only in the number of cells, but
also in the number of different values in the dataset. Therefore, we only present results with the dfm0 and clim datasets,
as with dfm3, the k2-acc is not able to run or requires extremely long execution times.

Figure 8A,B show the scalar operations. In these operations the k2-acc can compete with k2-raster. The k2-acc is based
on having one k2-tree per value present in the raster, which marks the cells where that value is present. Therefore, for
each different value, that value and a k2-tree are stored. To solve these operations, only the values are modified, while the
k2-trees remain unchanged. Namely, the arithmetic operation is applied to the values, and thus the cost of the operation
is limited to an arithmetic operation for each different value.

However, in the case of the sum, k2-raster only has to perform two sums, one for the minimum value and another one
for the maximum. This is constant independently of the number of different values in the raster; thus, as seen, k2-raster
is around two-three times faster, except in the smallest dataset.

Nevertheless, in the case of the product, k2-raster has to traverse all the leaves, and thus, k2-acc is between 1.74 and
8.71 times faster.

However, as soon as the k2-trees must be accessed, k2-acc becomes extremely slow. In the case of the point-wise oper-
ations, Table 5 shows the results only for the datasets of size 1 × 1, as with bigger datasets, k2-acc did not run. As seen,
differences are of at least two orders of magnitude.

Thresholding is the other operation where the k2-acc can compete. In fact, it is very easy to solve it, as it only requires
to recover the k2-tree representing the input threshold. Still, k2-raster is faster, as shown in Figure 8C, with the exception
of the smallest datasets. Observe that k2-tree traverses the input tree with the help of the minimum andmaximum values
in the nodes, which allow the fill of large zones of the output tree with 0s or 1s in the upper levels of the tree; thus, the
output tree will probably be a small tree. Still, this impliesmore processing that a simple copy of the k2-tree corresponding
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SILVA-COIRA et al. 1383

to the threshold value. However, the k2-acc is harmed by its poor compression ratios, as seen in Tables 3 and 4, which
implies slower load times in main memory than in the case of k2-raster.

In the case of the zonal sum, we only include experiments with 10 and 100 zones, as the k2-acc requires large running
times. Again, since the values of the cells must be accessed, k2-acc has serious problems. Figure 9A,B show values where
k2-raster can reach improvements of up to two orders of magnitude.

5.4 Memory consumption

In this experiment, we considered resident memory. Formemory consumption, the disk-based classical approach of load-
ing one block at a time is the best scenario for NetCDF. In fact, the in-memory approaches try to avoid this traditional

(A)

(B)

(C)

F IGURE 7 Time performance (in seconds) when performing zonal sum with different configurations. (A) Zonal sum with 10 zones;
(B) zonal sum with 500 zones; (C) varying the number of zones over collections of size 4 × 4.
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(A)

(B)

(C)

F IGURE 8 Time performance (in seconds) of (A) scalar sum, (B) scalar product, and (C) thresholding.
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SILVA-COIRA et al. 1385

TABLE 5 Time performance (in seconds) for point-wise operations over two different collections of size 1 × 1 when using
k2-acc and k2-raster.

Dataset k2-acc k2-raster

dfm0 1x1 3246.6 4.3

clim 1x1 635.8 1.3

(A)

(B)

F IGURE 9 Time performance (in seconds) when performing the map operation zonal sum with different configurations. (A) Zonal
sum with 10 zones; (B) zonal sum with 100 zones.

method derived from the low memory capacity of old computers. The decreasing in price of memories opens the oppor-
tunity of keeping all data in main memory all the time, thus taking advantage of the faster memory times, around 6
orders of magnitude faster. Nevertheless, compression is needed to be able to fit all data in main memory, which lowers
that gap.

The k2-raster’s original paper shows astonishing improvements in query times when its indexes are useful, whereas
in this work, it shows variable results when all data must be sequentially processed and the indexes are useless. However,
as a consequence of the change of approach, regarding memory consumption, see in Figures 10 and 11 that NetCDF is
unbeatable. Still, we show that the algorithms presented here are noticeable better that the naive approach, therefore if
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(A)

(B)

(C)

(D)

F IGURE 10 Memory consumption (in megabytes) of (A) scalar sum, (B) scalar product, (C) point-wise sum, and (D) thresholding.
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(A)

(B)

F IGURE 11 Memory consumption (in megabytes) when performing zonal sum with different configurations. (A) Zonal sum with 10
zones; (B) zonal sum with 100 zones.

one chooses the k2-raster as its storage method, our new algorithms obtain big memory savings when comparing to the
naive ones.

With respect to to the k2-acc, we do not include data from the point wise operation and, in the rest of operations, we
do not include data of the dfm3 dataset due to the problems of k2-acc running that operation and datasets. Unlike time,
where the k2-raster is a landslide winner, in this parameter there is no clear winner.

6 CONCLUSIONS AND FUTURE WORK

With compression power similar to that of NetCDF, k2-raster has been shown clearly superior when issuing the most
common queries, namely, retrieving a region of the space and retrieving the cells in a region of the space with values
in a given range. However, although less common, the capability for efficiently solving map algebra operations must be
investigated to back the hypothesis of using the k2-raster as the method for representing rasters all the time, and more
precisely in in-memory environments.

In this work, we have proposed efficient algorithms for performing map algebra operations over the compressed
representation of the input rasters using k2-raster, and proved, in the experimental evaluation, that our algorithms are
preferable to the naive approach of completely decompressing the rasters, running the operation with the uncompressed
rasters, and then compressing the result, which is the key of an in-memory system. In addition, to complete the experi-
mental evaluation, we have also included the classical method to store rasters, that is, NetCDF and a previous compact
data structure for storing rasters, k2-acc.

In the case of NetCDF, there is no overall winner, as there are operations where k2-raster obtains the best performance,
and there are other operations for which NetCDF outperforms the proposed algorithms using k2-rasters.
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The proposed algorithmsusing k2-rasters obtain the best performance for summing/subtracting by a scalar and thresh-
olding. In the first case, the k2-raster benefits from its structural properties and how it compactly represents the data,
solving that operation in constant time. In the second case, the k2-raster takes advantages of its indexes. However, the
proposed algorithms are not capable of clearly overcome NetCDF when the rasters must be processed sequentially, such
as for the point-wise operation of zonal sum. In those cases, the algorithms do not use the indexes of the k2-rasters; thus,
traversing their tree shape is less efficient than processing the array-like structure of the NetCDF, and only the in-memory
approach of k2-raster is able to balance the times.

In the case of k2-acc, k2-raster is the clear winner in time. With much better compression power, it only loses in one
operation, the product by a scalar, but in those operationswhere the k2-acc has to determine the value of the cells, k2-raster
is orders of magnitude faster.

We did not include focal operations, as these operations can be solved with the window query shown in the k2-raster’s
original paper. When the focal operation only affects to one cell, such as computing the slope of the terrain around a cell,
that operation will be very efficient, since the k2-raster is very fast extracting a portion of the data (window query) given
that it is in essence a quadtree, that is, a spatial index. However, when the operation affects to all cells of the raster, such as
computing the maximum, minimum, average and so forth of all cells within an area around each cell, the best alternative
is to apply the window query to the complete raster, as it does not make any sense to issue a different window query for
each cell. This is precisely the naive baseline presented in our experiments, which can be used in any operation, as those
cases where a native k2-raster algorithm would be inefficient.

As a summary, putting in a balance the pros and the cons, k2-raster remains as a better choice: it obtains almost
the same compression performance as NetCDF and it is much better when issuing common queries,23,25 other complex
operations,26 and, as proved in this work, also some of the map algebra operations, and when it is not the clear winner,
the performance is similar to that of NetCDF. As future work, we plan to analyze the parallelization of the proposed map
algebra implementation, as many of these algorithms are clearly parallelizable.
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