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Abstract
Neurodynamic techniques have yielded good clinical results in the treatment of vari-
ous pathologies. The objective of this study is to examine the short-term effects of 
neurodynamic techniques of the sciatic nerve on hip ROM (range of motion) and 
on the amplitude and latency of the soleus H-reflex and M-waves, in young asymp-
tomatic subjects. In a double-blind controlled trial design, 60 young asymptomatic 
participants were randomly assigned into six groups with different levels of manipu-
lation of the sciatic nerve. The passive straight leg raise test was used to evaluate the 
hip ROM amplitude. All evaluations were performed before, 1 min after, and 30 min 
after intervention. For each time-point, spinal and muscle excitability were also 
tested. ROM increased in all groups, but none of the treatment groups had superior 
effects than the group with no treatment. This means that ROM testing maneuvers 
increased ROM amplitude, with no add-on effect of the proposed neurodynamic 
techniques. Neurophysiological responses changed similarly in all groups, showing 
that the aftereffects were not intervention-specific. We observed a significant nega-
tive association between the change in limb temperature and the change in latencies 
of all potentials. ROM-testing procedures performed repeatedly increase ROM am-
plitude. This observation should be considered when evaluating the aftereffects of 
therapeutic interventions on ROM amplitude. None of the explored neurodynamic 
techniques produced acute aftereffects on hip ROM amplitude, spinal or muscle ex-
citability different to the induced by the ROM testing maneuver.

K E Y W O R D S

H-reflex, muscle stretching exercises, nerve tissue, physical therapy modalities, range of 
motion articular

1   |   INTRODUCTION

Neuromeningeal mobilization (also called neurodynam-
ics) (Butler,  1991; Shacklock,  1995)comprises a set of 

treatment and diagnostic techniques on nerve function. 
Neurodynamic techniques (NT) include two main tech-
niques: neural sliding and tensile load. The first involves 
alternating movements of adjacent joints, which are 

www.wileyonlinelibrary.com/journal/phy2
https://orcid.org/0000-0002-9029-5310
https://orcid.org/0000-0003-3543-3474
mailto:
https://orcid.org/0000-0003-1754-2554
http://creativecommons.org/licenses/by/4.0/
mailto:marcelo.chouza@udc.es


2 of 13  |      CANCELA et al.

thought to produce nerve sliding (Coppieters et al., 2015), 
the second is based on a partially sustained elongation of 
the nerve tract. Both techniques have yielded good clinical 
results in the treatment of various pathologies and clin-
ical signs, including cubital or carpal tunnel syndrome, 
non-radicular back pain, fatigue, spasticity, or improv-
ing functional activities in conditions like stroke, nerve 
palsy, osteoarthritis, fibromyalgia, cervical radiculopathy, 
or even aging (Anandkumar, 2015; Castilho et al.,  2012; 
De-la-Llave-Rincon et al., 2012; Kim et al., 2016; Nagrale 
et al., 2012; Oskay et al., 2010; Villafañe, 2013; Villafañe 
et al., 2011; Villafañe et al., 2012; Villafañe et al., 2013).

However, a note of caution has also been added by 
Ginanneschi et al. (2015), as neural mobilization in carpal 
tunnel syndrome may generate conduction failure in pe-
ripheral nerves. Moreover, it has been shown that muscle 
flexibility is associated with the capacity of elongation of 
neuromeningeal passive structures (McHugh et al., 2012). 
Some studies indicates that NT increases joint range of mo-
tion (ROM) (Castellote-Caballero et al.,  2013; Pietrzak & 
Vollaard, 2018), which is important in a number of activities 
with frequent muscle injuries (like sports), as the increase of 
ROM might protect against muscle injury (Davis et al., 2005). 
Notwithstanding, it is not unequivocal that sliding and ten-
sile load techniques increases hip and knee ROM (Kaur & 
Sharma, 2011; Kavlak & Uygur, 2011; Lorentzen et al., 2012; 
Mafra et al.,  2011; Marks et al.,  2011; Méndez-Sánchez 
et al., 2010; Mhatre et al., 2013; Pagare et al., 2014). Another 
effect attributed to NT is the modification of spinal excit-
ability, reducing the H-reflex latency (Kumar & Kaur, 2012; 
Rezk-Allah et al., 2011) and increasing its amplitude (Kumar 
& Kaur, 2012); results not confirmed subsequently in con-
trolled studies (Adel, 2011). Remarkably, many of the above 
cited studies are case reports or trials with no proper control 
conditions (Anandkumar, 2015; Castilho et al., 2012; De-la-
Llave-Rincon et al., 2012; Kim et al., 2016; Oskay et al., 2010; 
Villafañe, 2013; Villafañe et al., 2011; Villafañe et al., 2012; 
Villafañe et al., 2013). Therefore, the objective of this study 
is to evaluate the aftereffects of NT on ROM amplitude and 
spinal excitability, under a blind-controlled design.

2   |   METHODS

2.1  |  Experimental approach to the 
problem

In a double-blind controlled design, we tested the effects of 
a NT single session on hip ROM and H-reflex excitability in 
asymptomatic young subjects. Based on previous reports, 
our hypothesis establishes that NT will increase ROM 
and H-reflex amplitude (Castellote-Caballero et al., 2013; 
Kumar & Kaur, 2012; Pietrzak & Vollaard, 2018).

The effects NT on H-reflex and ROM were studied in 
six groups of 10 subjects receiving different interventions 
on the sciatic nerve. Subjects were pseudo-randomly as-
signed to one of the six study groups, with balanced pro-
portion of men and women, by using EpiInfo software. 
Subjects were unaware of the existence of different groups 
and the specific objective of the study.

Investigators (blind to the group assignment) carried 
out the neurophysiological evaluations and ROM, in this 
order, at three different time-points: pre and post interven-
tion, and again 30 min later (post-2).

Interventions and evaluations were always performed 
on the subject's dominant limb, defined as: “the leg used 
to kick a ball” (Kovaleski et al., 1997).

2.2  |  Subjects

Sixty-seven healthy subjects voluntarily participated in 
the study. Exclusion criteria were: (i) lower limb surgery 
in the previous year, (ii) low back pain (iii) positive diag-
nosis of any neurological disorder.

Sixty subjects (27 women) matched the criteria and 
were enrolled (mean age, 23.8 years, SD ±2.7; weight 
68.0 kg, SD ±10.7; height, 1.7 m, SD ± 0.1).

Subjects received a detailed description of the exper-
imental procedure and the associated risks (potentially 
low) and signed consent forms. All procedures were ap-
proved by our Local Ethics Committee, complying with 
the Declaration of Helsinki.

2.3  |  Procedures

Figure 1 presents the procedure sequence, including neu-
rophysiological and ROM testing and treatment.

2.3.1  |  Neurophysiological evaluation

Subject remained seated on a gurney with hips and knees 
flexed at 90°, with back support. A footstool (adaptable 
in height) was on the floor to give feet support. Self-
adhesive electrodes were used for recording and applying 
stimulation.

After skin preparation, the soleus EMG was acquired 
by means of surface electrodes arranged in a belly–tendon 
manner, with the reference electrode on the Aquilles 
tendon and the active electrode on the soleus muscle; 
the ground electrode was placed ≈4 cm above the active 
electrode. EMG signals were recorded by means of D360 
amplifiers (Digitimer), amplified (×250–1000) and band-
width filtered between 3 and 3000 Hz. EMG was sampled 
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at 10 kHz and stored in a computer by means of a CED 
1401 mkII Power A–D converter (Cambridge Electronic 
Design), which also triggered a Digitimer DS7A stimula-
tor. Skin temperature was monitored (only in one group, 
reasons given below) by means of a fine temperature 
probe attached just at the side of the active EMG record-
ing electrode, the probe was connected to a Cibertec Citer 
which sampled temperature at 0.1 Hz and delivered the 
signal to the CED1401; therefore, temperature recording 
was synchronized to EMG recording.

We stimulated the tibial nerve (1 ms pulses) with the 
cathode on the popliteal fossa and the anode over the pa-
tella. Stimulation pulses were delivered at 0.1 Hz to avoid 
any induction of post-activation depression. Different 
stimulation intensities were used to record the H-reflex (at 
two points of the ascending-leg of the recruitment curve) 
and the compound muscle action potentials (CMAP). Ten 
responses were obtained for each intensity.

For each time-point (pre, post, post-2), peak to peak 
amplitude and latency of the following variables were 
studied (in this order):

1.	 CMAP acquired at stimulation intensity 20% above 
the supramaximal.

2.	 HMAX: acquired at the stimulation intensity producing 
the largest H-wave amplitude, we also recorded its cor-
responding M-wave.

3.	 H50: at pre testing, it was acquired at the stimulation 
intensity inducing H-wave amplitudes in the ascend-
ing leg of the recruitment curve equivalent to the 50% 
of the HMAX. We also recorded its M-wave. However, 
for post and post-2 the stimulation intensity was ad-
justed to have M-waves equivalent in amplitude to 
those obtained at pre; this was done to have similar lev-
els of antidromic volleys in the axons of the motoneu-
rons during H-reflex recording (Goulart et al.,  2000; 
Pinniger et al., 2001).

4.	 Skin temperature (only recorded in one group) was 
analyzed in Celsius grades; skin temperature is a valid 
parameter to estimate muscle temperature as shown 
previously (de Ruiter et al., 1999).

2.3.2  |  ROM evaluation

The passive straight leg raise test was used to evalu-
ate the ROM amplitude, this is a valid and reliable test 
(Ayala et al., 2012; Boyd, 2012). From the previous seated 

F I G U R E  1   Testing and intervention protocols sequence. (a) Initial position for ROM evaluation. (b) Final position for ROM evaluation. 
(c) Initial position for neural mobilization group. (d) Final position for neural mobilization group. (e) Position for no-neural mobilization group.
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position to record excitability, subjects lain down on the 
gurney (supine-position). A strap of velcrum (7 cm-width) 
was placed around the gurney and the subject's waist at 
the level of the anterosuperior iliac spines; another strap 
secured the nondominant thigh in a similar way; the 
dominant limb rested on the gurney with knee extension, 
above the velcrum strap (Position A; Figure 1a). One re-
searcher lifted the dominant leg from the gurney, and 
then pushed to flex the hip (while keeping knee exten-
sion) to the point at which the participant reported the 
first feeling of muscle tension (Pagare et al., 2014) (this 
defined Position B), the maneuver lasted ≈3 s. Absence of 
non-dominant leg movements was visually checked, con-
tinuously. Another examiner performed the goniometric 
measurement (from position A to B, defined just above) 
with the goniometer fulcrum placed over the greater tro-
chanter, the fixed-arm of the goniometer oriented axil-
lary parallel to the gurney, and the moving-arm aligned to 
the external femoral condyle (Figure 1b). For each of the 
three time-points (pre, post, post-2), the ROM was tested 
three times (1 min rest) and the average was calculated.

2.4  |  Treatment

All subjects were seated on a gurney as described above. 
From this position six different protocols (all of them last-
ing 7 min; Figure 1) were applied (one per group):

Neural mobilization (NM): This group underwent a 
slide sciatic nerve maneuver. Subjects adopted the “slump 
test” position, characterized by trunk flexion with the sa-
crum in touch with a vertical back-support Figure 1c, and 
hips and knees flexed at 90°. A rigid splint was used to 
maintain a neutral ankle flexion. Participants made an 
active cervical extension while the knee was passively ex-
tended by a researcher to the point of maximum muscle-
tension (identified by each participant), Figure 1d. Then, 
participants made an active cervical flexion while the 
researcher performed a passive knee flexion; the whole 
cycle lasted ≈3 s. It has been advocated that this technique 
induces a sliding of the sciatic nerve (Ellis et al.,  2012). 
Participants executed the movements during 1 min (Véras 
et al., 2012); this was a set (i.e., 20 cycles). The whole inter-
vention included four sets, with 1 min of rest between sets.

No neural mobilization (nNM): This protocol was in-
cluded as a way of controlling the specific maneuvers of 
the NM group (Lew & Briggs, 1997). The procedure was 
the same as above, but the participant's whole back was 
in touch with the vertical back-support and the neck was 
kept extended during the 20 cycles (Figure  1e) (Lew & 
Briggs, 1997).

Sustained sciatic nerve tension (ST): A similar starting 
position as for NM was used. However, participants main-
tained cervical flexion and knee extension (to the point of 

maximum muscle-tension) for 30 s (without movement), 
with assistance from the researcher. The intervention in-
cluded five sets, 1 min rest.

ROM testing control: Participants remained at rest for 
the same period of time as the other groups (7 min). The 
inclusion of this group controls if ROM testing maneuvers 
modify ROM amplitude along the protocol. It serves as 
control for the three groups above presented.

Control group without ROM testing: Participants re-
mained at rest as the previous group but without ROM 
testing. The inclusion of this group controls the effects of 
ROM testing on spinal excitability.

Temperature-control group without ROM testing: The 
same as above, but skin temperature was monitored, it 
serves to control for putative effects of temperature on 
the neurophysiological tests. This last group was included 
after performing experiments and data analyses in the 
other five groups.

2.5  |  Statistical analysis

For each subject, H and M waves amplitudes were nor-
malized with reference to the amplitude of the CMAP at 
the corresponding evaluation time-point. The median of 
the 10 responses acquired at each time-point was the score 
introduced in the analyses. CMAP and ROM were consid-
ered in absolute values.

First, we tested the assumption of normality of distri-
butions for each variable and group (KS for one sample 
test).Then, results at the three testing points for M-wave 
amplitude of the H50 was evaluated with a repeated mea-
sures analysis of variance (3×6 ANOVARM) with factor 
TIME (pre-post-post2) and GROUP (six groups). Note that 
the intensity of stimulation for acquiring the M-wave of 
the H50 was adjusted at post and post-2 to match the ampli-
tude of the responses obtained at pre (see above). For this 
reason this variable was analyzed in isolation. The same 
approach was used to evaluate the M-wave of the HMAX, 
CMAP, and ROM.

For the amplitudes of the two H-waves, the same statisti-
cal model was used but adding factor RECRUITMENT. This 
way, the analysis allowed us to estimate if the effects were 
differently expressed for H50 and HMAX; therefore, if factor 
RECRUITMENT interacted significantly with any other fac-
tor, the estimated effect would be different for H50 and HMAX. 
We proceeded the same way to analyze all wave-latencies, 
but in the case of M-waves latencies RECRUITMENT had 
three levels (M-wave for H50; M-wave for HMAX, CMAP).

For the ANOVA, the degrees of freedom were corrected 
with Greenhouse–Geisser coefficients if the sphericity 
was not assumed.

With data derived from the temperature-control group 
without ROM testing, we performed correlation analyses 
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to look for the relation between putative changes in H and 
M waves scores (in latency and amplitude) with changes 
in temperature; for this purpose we used Pearson's or 
Sperman's correlation analyses, depending on the viola-
tion of normality of the variables.

Significance was set at a p < 0.05. Data in the graphs are 
means and standard deviation (SD).

3   |   RESULTS

3.1  |  Effect of interventions on the  
M-wave amplitude of the H50

M-wave amplitude during H50 acquisition was stable along 
the three testing time-points (F2,108 = 0.8ε = 0.6 p = 0.4TIME) 

in the six groups (F10,108 = 1.2ε = 0.6 p = 0.3TIME × GROUP); 
this was expected as it was imposed by the experimental 
condition to control the level of antidromic volleys in the 
axons at the different testing times during H50 acquisition. 
Figure 2a,b show the results split by groups, and Figure 2c 
with all groups pooled (as the effect along time was not 
different for each group).

3.2  |  Effect of interventions on the  
M-wave amplitude of the HMAX

The size of the M-wave (acquired with the optimum inten-
sity to get the HMAX) did not change along the three testing 
points (F2,108 = 0.6 p = 0.9TIME) and this was not different for 
the six groups (F10,108 = 0.1 p = 1.0TIME × GROUP) (Figure 2d–f).

F I G U R E  2   (a) Amplitudes of the M-waves during the recording of the H50 along the three time-points, in the six groups. Amplitudes 
were unchanged the along testing times in all groups. (b) The same plot as (a) at different y-axis scale. (c) The same variable that (a) and (b) but 
pooling groups as their responses along time were not different for the groups, dots are individuals' responses. (d) M-wave amplitudes during 
HMAX recording at the testing time-points, for all groups. (e) The same variable that (d) at different y-axis scale. (f) The same variable that (d) and 
(e) but pooling groups, since their responses along time were not different for the groups, dots are individuals' responses. (g) CMAP amplitudes 
at the testing time-points, for the six groups. (h) The same variable that (g) but pooling groups since their responses along time were not 
different, dots are individuals' responses. Amplitudes remained unchanged in all groups along time. Scores are means and standard deviations.
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3.3  |  Effect of interventions on the 
CMAP amplitude

The amplitude of the CMAP changed along the three 
testing points (F2,108 = 4.2Ԑ = 0.6 p = 0.039TIME). No signifi-
cant interactions by group was detected indicating that 
the effect was not different in the six groups. The effect 
was small and post hoc analyses between pairs did not 
show significant differences between any pair (Bonferroni 
p > 0.1 in all cases) (Figure 2g,h).

3.4  |  Effect of interventions on the  
H-waves amplitudes

Contrary to the case of the M-waves (in which M-wave 
amplitude of the H50 had been matched in post and post-2 
to pre values), the H-waves (H50 and HMAX) were intro-
duced in the same ANOVA to know if the protocol had a 
different impact on both waves.

Two main effects were observed. First, HMAX amplitudes 
were larger than H50 (F1,54 = 106.2 p < 0.001RECRUITMENT). 
Second, amplitudes were modified along the three testing 

points (F2,108 = 6.1ε = 0.9 p = 0.005TIME). No significant in-
teractions between them or with factor Group were de-
tected, which means that the effect was not different for 
all groups (including the Control groups). Subsequent 
post hoc analyses indicated an increase in the amplitudes 
(HMAX and H50) from pre to post (Bonferroni p = 0.015), 
which remained at post-2 (Bonferroni p = 0.028). The mean 
increase from pre to post was small in size (<3% in the two 
cases, normalized in terms of their respective CMAP; 
Figure 3a–d).

3.5  |  Effect of interventions on the  
M-waves latencies

The ANOVA including all M-waves indicated that the 
latencies were different for the three recruitment points 
(F2,108 = 58.2 p < 0.001RECRUITMENT). As expected, post hoc 
analyses showed that latency was shorter for the Mmax (i.e., 
CMAP) compared to M-wave of H50 and M-wave of HMAX 
(Bonferroni p < 0.001 for all comparisons). Wave laten-
cies were significantly delayed (≈0.4 ms) along the three 
testing points (F2,108 = 16.2ε = 0.7 p < 0.001TIME; pre vs. post 

F I G U R E  3   Amplitudes of the H50-waves (a), and the HMAX (b) along the three time-points in the six groups, responses between groups 
along pre-post-post2 did not differ significantly. (c) Same plot that (a) and (b) but pooling groups, responses for H50 did not differ in a 
significant way from responses for HMAX, both increased along time as shown in (d). Insets d.1 and d.2 represent individuals' responses. 
Scores are means and standard deviations. *p < 0.05.
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Bonferroni p < 0.01, pre vs. post-2 Bonferroni p < 0.001). 
The lack of significant interactions of factor TIME with 
any other factor indicated that latencies increased not dif-
ferently in all M waves explored, along the three testing 
times and in all groups (Figure 4a–e).

3.6  |  Effect of interventions on the  
H-waves latencies

The latency of the H-waves was different for the two re-
cruitment points tested, being HMAX shorter than H50, 
(F1,58 = 27.2 p < 0.001RECRUITMENT; see Figure  5a–c). They 
were significantly delayed along the three testing points 
(F2,108 = 21.8ε  = 0.9 p < 0.001TIME; pre vs. post Bonferroni 
p < 0.001; pre vs. post-2 Bonferroni p < 0.001 – Figure 5d); 
changes were ≈0.5 ms in magnitude. No significant inter-
actions indicated that the significant increase in latency 
was not different for HMAX and H50 (i.e., both were equally 
modified), the effects were observed in all groups.

3.7  |  Effect of interventions on the ROM

The ROM was tested in four out of the six groups. Three 
groups underwent intervention techniques (NM, nNM 
and ST) and a fourth group only executed the ROM test-
ing technique; the other two groups, without ROM test-
ing, served to control the putative effect of ROM testing 
and superficial leg temperature on excitability scores.

The analyses indicated an increase of ROM along 
the three testing points (F2,72 = 4.4ε  = 0.8 p = 0.015TIME.). 
The increased was not different in the four groups 
evaluated (F6,72 = 0.9ε  = 0.8 p = 0.470TIME × GROUP.). Post 
hoc analyses indicated an increment from pre to post 
(Bonferroni p = 0.051) which remained at post-2 (vs. 
pre; Bonferroni p = 0.051); the size of the effect was 
small, about two degrees. Therefore, the testing pro-
tocol itself increases the ROM and NM, nNM and ST 
interventions had no effect on increasing ROM beyond 
the explained by ROM testing itself (Figure  6); how-
ever, the change is very small.

F I G U R E  4   M-wave latencies changes along time for the different groups when acquiring H50 (a), HMAX (b), and CMAP (c). Section 
(d) shows the same responses with groups pooled (as responses along time did not differ for the groups). Responses for the three types of 
M responses along pre-post-post2 did not differ between them, the increase was significant as shown in section e. Insets e.1, e.2 and e.3 
represent individuals' responses. Scores are means and standard deviations. **p < 0.01; ***p < 0.001.
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3.8  |  Effect of limb temperature change 
on outcomes

Thus far, the results indicated that the effects observed on 
M and H waves amplitudes and latencies where not dif-
ferent in the six groups tested in our experiment. A same 

pattern had been observed initially before including in the 
analyses of the temperature-control group without ROM 
testing. As the inclusion of this group did not change the 
behavior of the amplitudes and latencies of the different 
potentials, we performed correlation analyses between the 
changes in amplitudes (and latencies) from pre to post and 

F I G U R E  5   H-wave latencies changes along time for the different groups when acquiring H50 (a) and HMAX (b). Section (c) shows the 
same responses with groups pooled (since responses along time did not differ in a significant level for the groups). Responses for the two 
types of H responses along pre-post-post2 did not differ between them, both increased as shown in section (d). Insets d.1 and d.2 represent 
individuals' responses. Scores are means and standard deviations. ***p < 0.001.
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F I G U R E  6   (a) Hip ROM amplitude change along the three testing times for the different groups. Section (b) shows the same responses 
with groups pooled (as responses along time did not differ between groups). In all groups, ROM increased from PRE to POST, and the 
change remained at post2. Inset b.1 represents individuals' responses. Scores are means and standard deviations.
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pre to post-2 versus changes in skin/muscle temperature 
(pre to post and pre to post-2). Analyses were performed 
pooling M-waves and H-waves together. These analyses 
were aimed at understanding the putative effect of limb 
temperature change on H and M waves parameters.

The limb temperature drop along the protocol (keep-
ing the same conditions as in the other groups). This ef-
fect was observed within each testing-time-point, which 
means there is a drop in temperature during sequential 
recording of CMAP, HMAX (an its corresponding M-wave) 
and H50 (an its corresponding M-wave); the effect was very 
small but consistently expressed in the subjects F2,18 = 17.7 
p < 0.001POTENTIAL-TYPE. The same was observed along the 
three testing time-points F2,18 = 29.6ε  = 0.5 p < 0.001TIME. 
There was not interaction between these two factors (see 
Figure 7a).

The association between the changes in the ampli-
tude of the potentials and the changes in limb tempera-
ture along the testing time-points was not significant 

(p = 0.147, Spearman Rho, Figure  7b). Conversely, the 
changes in limb temperature and the latencies of the po-
tentials were significantly associated (p < 0.001, Pearson), 
with a negative coefficient (r = −0.46), thus a drop in tem-
perature caused latency to increase, Figure 7c.

4   |   DISCUSSION

NT has been advocated to induce changes in ROM and 
spinal excitability, which made them appealing for clini-
cal practice (Castellote-Caballero et al.,  2013; Kumar 
& Kaur,  2012; Pietrzak & Vollaard,  2018; Rezk-Allah 
et al., 2011). Since it is recognized that some of these stud-
ies are not properly controlled (Kumar & Kaur,  2012; 
Pietrzak & Vollaard, 2018), our objective was to investigate 
the effect of different NT on ROM and spinal excitability, 
under better controlled conditions. We have shown that 
none of the techniques evaluated presents any significant 

F I G U R E  7   (a) Change in limb temperature during the testing of the potentials at the different time-points (means and standard 
deviations). (b) Scatter-plot of the association between the changes the amplitude of the potentials along the whole protocol (normalized 
scores – x axis) and changes in limb temperature (° – y axis). (c) Scatter-plot of the association between the changes the latency of the 
potentials along the whole protocol (ms – x axis) and changes in limb temperature (° – y axis). Changes in latencies were significantly 
associated to changes in limb temperature; this effect was not observed for the amplitudes of the potentials.
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effect on ROM amplitude after a single session, apart from 
the induced by ROM testing maneuvers itself. None of the 
protocols tested produced changes in the spinal excitabil-
ity other than the small (but significant) changes observed 
in passive control groups, suggesting that the evaluated 
techniques are not useful to modify spinal excitability, if 
applied in a single session.

4.1  |  Effect of the protocol on ROM

The ROM increased in all groups which underwent ROM 
testing. The fact that none of the interventions was able 
of inducing ROM increments beyond the observed in the 
ROM testing control group is truly relevant. The absence 
of such control group in a number of previous studies 
(Kaur & Sharma,  2011; Méndez-Sánchez et al.,  2010) 
conditions the interpretation of their results. This is not 
the case, however, of the study by Castellote-Caballero 
et al (Castellote-Caballero et al.,  2013), where a proper 
control was included and the effectiveness of NT was 
shown. It is noteworthy, that their study included par-
ticipants with already limited hip ROM (as inclusion 
criteria); thus, their participants had a mean ROM be-
fore treatment of 58° (with a cut-off stablished at 75°), 
whereas our sample of subjects had mean ROM at pre 
larger than 75°.

Some other substantial aspects can explain the dif-
ferences between the two works. First, the presence 
of a ceiling effect for ROM amplitude in our sample 
of physiological participants might limit the effects of 
the techniques, while there was room to improve in the 
work by Castellote-Caballero et al (Castellote-Caballero 
et al.,  2013). Second, our experiments were designed to 
evaluate acute effects (intra-session), whereas Castellote-
Caballero et al (Castellote-Caballero et al., 2013) extended 
the application of the protocol for 3 days along 1 week. 
Thus, it is conceivable that NM is effective if applied re-
peatedly over time in subjects with compromised ROM. 
Some other works involving healthy participant showed 
that both NM and ST techniques increase ROM intra-
session, but the specific effect of ROM testing maneuver 
itself was not controlled (Herrintong,  2006; Pietrzak & 
Vollaard,  2018). It is remarkable that ROM increased in 
our study along the testing times in all groups (including 
the ROM-testing control group, with no interventions); 
this might be the reason why some studies observed in-
creased ROM during the execution of NT while testing 
elbow extension (Beneciuk et al., 2009). A similar cumu-
lative effect has recently been described during some pro-
tocols of testing muscle force and the level of central drive 
to the muscle (Madrid et al., 2018).

4.2  |  Effect of the protocol on spinal and 
muscle excitability

In our work, we observed changes of spinal excitability 
along the three testing times, a protocol lasting about 
90 min. Remarkably, those changes were very small in 
size and not associated to any intervention because they 
were present in the Control groups.

First, the latencies of all recorded neurophysiological 
signals showed small but significant increments. A de-
crease in muscle temperature, which is reported to in-
crease H and M waves latencies and amplitudes in young 
healthy subjects (Dewhurst et al., 2005) appears to explain 
the changes in H and M waves latencies in our work; 
therefore, changes in muscle temperature might be also 
the explanation for NT effects in other un-controlled stud-
ies (Castellote-Caballero et al., 2013; Kumar & Kaur, 2012; 
Pietrzak & Vollaard,  2018). Our experiments were ex-
ecuted under clinical practice settings, and we did not 
manipulate muscle temperature; subjects remained with 
bare legs throughout the protocol (about 90 min). For this 
reason, limb cooling along the experiment was very small 
(≈1.2 degrees). Despite such small change in temperature, 
correlation analysis shown an inverse significant associ-
ation between the change in latency potentials and limb 
temperature. Such association was not observed for the 
increase in H-waves amplitudes. It is noteworthy saying 
that the changes in temperature in our work was very 
small, perhaps for this reason the significant increase in 
H-amplitude with much larger reductions in temperature 
observed previously (Herrintong, 2006) is not questioned 
by our results. On the other hand, M-waves amplitudes 
did not change, but the amplitude of M-wave for H50 was 
controlled to warrantee similar level of antidromic prop-
agation during reflex testing, and the effect of muscle 
cooling seems to be of much lower extent (about 50%) for 
M-waves that for H-waves (Dewhurst et al., 2005). We also 
observed a trend for muscle excitability reduction along 
the experiment (amplitude of the soleus CMAP), not 
enough to express changes comparing the different time-
points. This trend might be produced by the prolonged pe-
riod of absent muscle activity during the protocol (Cupido 
et al., 1996).

Other works have also reported and effect of the NT 
techniques on the latencies of H-reflex. Regrettably, the 
lack of a proper control group and the fact that in some of 
them a consistent location of the stimulation electrode can-
not be guaranteed, hinders any comparison (Adel, 2011; 
Kumar et al., 2013; Shaker & Abd El-Mageed, 2008). This 
makes possible that the attributed effects of neurodynam-
ics on H-reflex latency can be explained by some method-
ological elements not properly controlled.
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4.3  |  Limitation of the study

Despite the fact that 60 subjects were enrolled, the groups 
included were not very large. Subjects were split in groups 
of 10. This can always have an impact on the power of ob-
servations, but the number of subjects in our study were 
similar to the used in other studies with positive results.

5   |   CONCLUSIONS

One session of neural mobilization techniques does not 
produce modification of the ROM or spinal excitability in 
healthy people. However, based on literature, it appears 
possible a positive aftereffect of NT after multi-session 
protocols or single sessions with different application 
times. This possibility deserves to be studied; however, the 
use of proper control conditions should be carefully con-
sidered, including the control of the aftereffects of ROM 
testing maneuvers on ROM amplitude.
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