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A B S T R A C T   

The presence and effects of microplastics in the environment is being continuously studied, so the need for a 
reliable approach to ascertain the polymer/s constituting them has increased. To characterize them, infrared (IR) 
spectrometry is commonly applied, either reflectance or attenuated total reflectance (ATR). A common problem 
when considering field samples is their weathering and biofouling, which modify their spectra. Hence, relying on 
spectral matching between the unknown spectrum and spectral databases is largely defective. In this paper, the 
use of IR spectra combined with pattern recognition techniques (principal components analysis, classification 
and regression trees and support vector classification) is explored first time to identify a collection of typical 
polymers regardless of their ageing. Results show that it is possible to identify them using a reduced suite of 
spectral wavenumbers with coherent chemical meaning. The models were validated using two datasets con-
taining artificially weathered polymers and field samples.   

1. Introduction 

Plastics constitute a durable, lightweight, and versatile family of 
materials from which an immense variety of products are created. Their 
applications range from food packaging to sports, electronics, con-
struction and transport. Currently, plastics are required in so many in-
dustrial fields that they became an indispensable material for many 
commodities and complex products (cars, planes, etc.), with their global 
production reaching 367 million tonnes in 2020, of which Europe 
accounted for 55 million tonnes (Mt) (PlasticEurope, 2021). Poly-
propylene and polyethylene are the most demanded polymers (19.7 % 
PP, 17.4 % LDPE, 12.9 % HDPE), followed by PVC (9.6 %) and PET (8.4 
%), mostly for packaging. China accounts for the highest plastic con-
sumption and production, with up to 32 % of the World's plastic pro-
duction in 2020 (PlasticEurope, 2021). 

A consequence of the massive use and inadequate recovery and 
recycling of plastics is that they have become one of the most ubiquitous 
anthropogenic contaminants in the World's environments. They have 
been found in soil (Bläsing and Amelung, 2018), airborne particles 
(Prata, 2018), water (Koelmans et al., 2019) and food (Van Cau-
wenberghe and Janssen, 2014). However, the problem is specially 
serious on aquatic environments (Jiang, 2018). It was estimated that in 

2018 alone 5.5 to 14.5 Mt entered the oceans (Wayman and Niemann, 
2021) and, as a consequence, seas and oceans have plastic debris both at 
their surface and seabed worldwide. There are many regions affected by 
this kind of pollution, even in deep sea trenches (Chiba et al., 2018). The 
most affected zone is the North Pacific area (Howell et al., 2012) as 
oceanic currents drag the plastic debris to this zone, generating plastic 
‘fields’ swirling in the oceanic surface. This has been demonstrated to 
have a detrimental effect on different species of marine flora and fauna 
(Coffin et al., 2019; Lamb et al., 2018; Markic et al., 2020; Wang et al., 
2016; Wilcox et al., 2018; Young et al., 2009). 

Microplastics (MPs) can be defined as ‘any solid plastic particle insol-
uble in water with any dimension between 1μm and 1 mm’, being larger 
particles –between 1 mm and 5 mm- ‘large microplastics’ (ISO, 2020). The 
smaller sizes in particular, along with nanoplastics, can enter the trophic 
chain through plankton (Botterell et al., 2019), fish (Bellas et al., 2016) 
and other marine species by ingestion (Jiang, 2018), and it is common to 
find microplastics in the digestive system of different aquatic species 
(Bellas et al., 2016; Compa et al., 2018). This fact, along with an 
improved capacity to adsorb other contaminants in comparison with 
meso- and macroplastics, is known to have detrimental effects (Gewert 
et al., 2015), which might affect human health through ingestion of –as a 
matter of example- shellfish (Van Cauwenberghe and Janssen, 2014), 
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fish (Battaglia et al., 2016; Bellas et al., 2016) and table salt (Iñiguez 
et al., 2017). In fact, in recent studies, plastics have been found in human 
blood and lung tissue (Jenner et al., 2022; Leslie et al., 2022). 

Therefore, a successful identification of the polymers found in the 
environment is of utmost importance to evaluate their distribution, 
origin, or subsequent behaviour there. This can be done using different 
analytical techniques, a common one being vibrational spectrometry. Its 
speed, high selectivity, and low demand of sample quantity make it a 
suitable technique for MPs analysis. Besides, it is easily combined with 
microscopic techniques and attenuated total reflectance (ATR) acces-
sories. Although ATR spectrometry is well suited for measuring big and 
medium particles (let's say >500 μm) it is not suited for smaller ones. 
Here it is where reflectance gains momentum and overcome the ATR 
limitations as it does not need direct contact between the sample and the 
IR focusing device. Two nice reports on the use and limitations of 
various types of IR spectrometry are those from Veerasingam et al. 
(2021) –that includes some interpretation of spectral bands- and 
Primpke et al. (2020) –that included a comparison with other analytical 
methodologies-. 

Irrespectively of the analytical measuring technique, there are many 
physical, biological and chemical processes that plastics undergo while 
in the environment (e.g., mechanical erosion, photodegradation due to 
the UV light and biological colonization). They can modify the original 
polymers by breaking their molecules into smaller ones, oxidizing their 
chains (usually due to chain attack by UV-originated radicals), giving 
rise to/modifying oxygenated functional groups (carboxylic acids, ke-
tones, peroxides, etc.), crosslinking alterations, changing crystallinity, 
etc. Many times this leads to smaller plastic fragments. All these effects 
are known collectively as ‘weathering’ and more details can be found 
elsewhere (Göpferich, 1996; Gewert et al., 2015; Raddadi and Fava, 
2019; Chamas et al., 2020; Ali et al., 2021; Zhang et al., 2021). The final 
consequence is that weathering alters the surface of the (micro)plastics 
and, so, their spectra. Many IR spectral bands evolve with weathering, 
some others appear, others broaden and/or overlap with neighbouring 
signals, etc. All this hinders the interpretation of the spectra. Many 
practitioners rely on spectral matching between the unknown spectrum 
and spectral databases to account for polymer identification. However, 
often the latter cannot properly match the former due to the afore-
mentioned problems, as reported frequently; e.g., Fernández-González 
et al. (2021a) and Mecozzi et al. (2016). 

A complete relation of the evolution of each of the polymers used in 
this work is out of the scope of this paper and only some general details 
will be given. Interested readers are kindly forwarded to the references 
cited next, and those referred to therein. The most relevant changes 
observed in the spectra were compatible with damages caused by the UV 
radiation that gave rise to chain attacks by radicals (Norris-type re-
actions). A general introduction to those modifications was presented by 
Gewert et al. (2015). Specific changes on the spectra and surface of the 
five most common packaging polymers –LDPE, HDPE, PS, PP and PET- 
and PA6.6 were studied previously (Fernández-González et al., 2021a, 
2021b). In the former paper, a table resumed which bands increased or 
decreased with time, per plastic. Also, dramatic changes on the poly-
meric structure (leakage of Cl atoms and appearance of C––C bonds) 
were reported for weathered PVC particles (Fernández-González et al., 
2022), which might explain the usually low reports of PVC microplastics 
in environmental samples. Particular details can be found elsewhere for 
PET (Gok et al., 2019; Oreski and Wallner, 2005; Renner et al., 2017; 
Venkatachalam et al., 2012), LDPE (Brandon et al., 2016; Hirsch et al., 
2017; Luo et al., 2020), PC (Shi et al., 2021), PP (Brandon et al., 2016; 
ter Halle et al., 2017), and PS (Yousif and Haddad, 2013). 

A natural way to reduce this problem is to include spectra of 
weathered polymers into the databases (Fernández-González et al., 
2021a). In this sense, a low-cost weathering system was proposed 
recently to resemble natural conditions (Andrade et al., 2019) and 
standardize this task. The need for complete databases and the risk of 
relying on current correlation coefficients to identify unknown particles 

were presented by Mecozzi et al. (2016) and they proposed a suite of 
three similarity indexes and the use of independent components analysis 
to search the database. 

Another novel and totally different route to mitigate this problem is 
explored in this work using unsupervised chemometric pattern recog-
nition. The main objective of this paper is to explore a new way to get rid 
of the spectral information related to the weathering processes of the 
materials constituting the MPs. If so, the remaining spectral character-
istics, which in essence will not be affected by weathering, would 
simplify the identification of the polymers and, therefore, open up new 
possibilities for MPs studies and environmental monitoring. It is worth 
noting that this working hypothesis does not correspond to typical 
pattern recognition studies where the most important patterns (linked to 
the first statistical factors that explain most of the variance into the 
spectral data) are used to, precisely, visualize the sets of samples. Here 
we look in the other way around; i.e., how the influence of weathering 
on the spectra – which constitute their principal source of variation - can 
be avoided and, so, weathered and unweathered specimens of a polymer 
appear close together after a statistical study (e.g. in a given plot of the 
samples). As a referee pointed out, a similar though conceptually 
different approach would be to look for parameters not evolving with 
time, but such an approach was not considered in this work. 

2. Experimental 

2.1. Samples 

The polymers used throughout this study were provided by the 
Universität of Bayreuth (Germany), within the framework of the JPI- 
Oceans-funded BASEMAN project. They were fabricated with the 
lowest possible amount of additives. Two sample forms were studied: 
powder (average size ca. 300 μm) and pellets (average size ca. 3 mm), 
more details can be found in the Supplementary material. 

Small quantities (10–20 g) of all polymers were aged for 10 weeks in 
a dedicated ad-hoc weathering system designed for standardizing the 
weathering of MPs at geographical medium latitude (Andrade et al., 
2019). Aliquots were either submerged in seawater to simulate weath-
ering in the superficial oceanic layer or kept dry to simulate weathering 
at the shoreline (e.g., upper part of beaches and dunes). An aliquot of 
each polymer was withdrawn weekly from each weathering container 
and measured by ATR and micro reflectance infrared spectrometry. The 
experimental weathering conditions and related details can be found 
elsewhere (Andrade et al., 2019). Fig. SM1 (Supplementary material) 
exemplifies the reflectance spectra obtained for the pelletized and 
powdered samples. 

In the present work, the pristine (as received) and ten aliquots with-
drawn from the weathering system weekly were considered. Half the 
samples, the odd ones, were employed to calibrate the models whereas 
the even were used for validation. In addition a second field dataset 
composed of 67 field plastic fragments collected from three Mediterra-
nean beaches studied previously (León et al., 2019) was used to test the 
models under field monitoring conditions. 

2.2. Equipment 

A Spectrum 400 FT-IR Perkin-Elmer spectrometer coupled with a 
Perkin Elmer IR Spotlight 200i microscope and a horizontal one-bounce 
diamond ATR (Miracle, Pike, USA) were employed. Each particle was 
measured twice (changing the position of the pellet) and the resulting 
spectra were averaged. The MIPIR (minimum information for publica-
tion of IR-related data on MPs characterization (Andrade et al., 2020)) 
experimental setup was: resolution: 4 cm−1; number of scans: 200; 
spectral range: 3500–600 cm−1; background recording before 
measuring each particle; aperture: 100 μm (adjusted to smaller aper-
tures whenever the granule was smaller); apodization: Beer-Norton, 
strong; spectral processing: multipoint baseline correction plus 
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normalization 10 % plus Kubelka-Munk (for pellets), and multipoint 
baseline correction plus Kramers-Kronig (for powders). ATR spectra 
were corrected for depth penetration. The sample form affects the 
required spectral processing due to the different interaction the surface 
of the granule has with the IR beam. For pellets the surface selected for 
measurements was mostly flat, making the reflection mostly specular. 
For powders, however, the reflection is mostly diffuse, due to the ir-
regularities of the powder grains. 

Reflectance instead of transmittance was considered because the 
former is very common to deal with MPs characterization; mainly, 
attenuated total reflectance, ATR, but also specular and diffuse reflec-
tance (Fernández-González et al., 2021b). Reflectance spectra do not 
depend in essence on particle thickness and can be applied straightfor-
wardly. On the other hand, as reflectance characterizes the surface of the 
particles it is affected by polymer ageing and, so, the studies presented in 
this paper are worth of interest for routine use. 

2.3. Software 

The multivariate statistical software employed throughout was 
GenEx7 (MultiD Analysis AB, Göteborg, Sweden), Matlab's PLS Toolbox 
(Eigenvector Co, USA) and Orange (University of Ljubljana, Slovenia). 

2.4. Chemometric tools 

The evolution of IR spectra during weathering makes this source of 
variance (statistical information) dominate the distribution of the sam-
ples in multivariate analyses. This difficults or impedes the correct 
assignation of a material to a type of polymer. Such an information is 
what it is expected to avoid here. 

The three chemometric techniques applied in this paper are depicted 
briefly in the Supplementary material. They are principal components 
analysis (PCA), classification and regression trees (CART) and support 
vectors machine (SVM). They correspond to standard algorithms avail-
able in any chemometric statistical package, no implementation changes 
have been done. Therefore, the explanations refer to the conceptual 
bases of the techniques, without going into mathematical details (which 
are available in the references given therein). Non skilled readers are 
kindly encouraged to review the Supplementary material for the basic 
meaning of the terms scores and loadings as they are used throughout 
the next sections. They also constitute the basis of two variable selection 
approaches. 

The major output of a PCA study is a set of combinations of variables, 
each of which is a principal component, PC (see Supplementary material 
for a simplified explanation on how they are calculated and interpreted 
from a chemical viewpoint). To avoid confusion with polycarbonate 
(whose acronym is also PC) references to the principal components will 
be always associated to an ordinal (i.e., the number of the principal 
component under discussion; e.g. PC4), or to the plural form, PCs. 

SVM was performed using a reduced set of variables derived from the 
most relevant PCA loadings. In particular, those from the PCs that 
differentiated the most among the polymers. The data pretreatment for 
the SVM models that used micro reflectance spectra was the same as for 
the PCA model from which the variables were selected (automatic 
baseline correction plus first derivative). The data pretreatment for SVM 
models developed with ATR spectra required baseline correction 
(automatic weighted least squares, 2nd order), normalization (area = 1), 
and standard normal variate (SNV). 

For the CART models no pretreatment was applied, but the spectra 
were reduced to the 1800–600 cm−1 range, in order to avoid variables 
without real information (atmospheric CO2 peaks, baseline and noise) 
and to reduce the computational burden. 

To evaluate the performance of the models a series of straightfor-
ward statistics can be calculated: the ratio of false positives (calculated as 
(false positives) / (true negatives + false positives)); and the ratio of false 
negatives, calculated as (false negatives) / (true positives + false 

negatives). Also, the Mathews' Correlation coefficient (MCC) was 
calculated to accurately summarize the behaviour of the models (Cua-
dros-Rodríguez et al., 2016), following the equation below: 

MCC =
(TP*TN) − (FP*FN)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)

√

where TP is the number of true positives in the sample, TN the number of 
true negatives, FP the number of false positives and FN the number of 
false negatives. A perfect model would yield a MCC value of 1. In all 
models, the criterion used to assign a sample to a group was the ‘most 
probable’ (i.e., the sample is included in the group to which it shows the 
highest probability). 

3. Results and discussions 

To simplify the discussions and comparisons among the studies, the 
results for the pelletized form of the polymers are presented first for 
seawater and second for dry conditions, for both the micro reflectance 
and ATR measurements, each. Then, those for the powder form will be 
given in the same order. The results are presented in the following order: 
1st, the PCA study (scores and loadings), with the identification and 
interpretation of the most relevant loadings; 2nd, dynamic PCA; 3rd, 
PCA using only the variables associated to the most relevant loadings; 
4th, SVM model; and 5th, CART model. 

The chemical interpretation of the loadings is presented graphically 
for the sake of simplicity and to avoid repetitive discussions. Specific 
details on the interpretation of the IR spectra for the different polymers 
and their functional groups can be found in some previous works; for 
example, those from Arrieta et al. (2013), Brandon et al. (2016), Mecozzi 
et al. (2016) -although they focused on the most relevant bands to 
identify the polymers-, Tiwari et al. (2019), Vasanthan (2012), Veer-
asingam et al. (2021) and the exhaustive recopilation of Jung et al. 
(2018). 

In addition to the spectral processing detailed in Section 2.2, the data 
pretreatment for the PCA was: automatic baseline correction (using a 
second order polynomial function) plus normalization (total area = 1) 
plus mean centring. The pretreatment for powders measured by micro 
reflectance was: automatic baseline correction plus first derivative. 
These treatments were selected after several preliminary trials as they 
yielded the best groups of samples. 

3.1. Pellets weathered in seawater 

The PCA carried out on the micro reflectance spectra of the pellets 
weathered in seawater conditions revealed that they could be differen-
tiated nicely using the PC1-PC4-PC6 subspace (56.2 % explained vari-
ance), see Fig. 1a. PC2, PC3 and PC5 did not differentiate them because 
even though they could group some polymers the others led to widely 
dispersed scores (likely, due to weathering), yielding overlaps between 
the groups and impeding their separation. 

PC1 (39.5 % explained information) in essence opposes PC, PET and 
PMMA (negative scores) to the other polymers (with positive or close-to- 
zero scores), the former being the polymers with the most complex 
chemical structures. Fig. 2 shows that the variables contributing more to 
this factor are clearly associated to HDPE and LDPE, with positive 
loadings, and also related with highest positive scores in PC1. The most 
important negative loadings characterize PC, PET and PMMA. 

PC4 (11.2 % explained variance) separates PA (negative scores) and 
PS (positive scores, Fig. 1b). The loadings are mostly related to PA 
(Fig. 2, negative loadings) but for a band at 698 cm−1, which can be 
attributed mainly to PS due to its aromatic nature and positive loading. 

PC6 (5.5 % explained information) separates basically PET (char-
acterized by the most negative scores, Fig. 1b; and negative loadings, 
Fig. 2) from PP plus PMMA (with positive scores, Fig. 1b, and positive 
loadings associated to the paraffinic characteristics of PP and PMMA, 
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Fig. 2). 
Using dynamic PCA it was possible to reduce the overall number of 

wavenumbers from 3400 to 10 and they still allowed visualizing the 
groups of polymers: 3455, 3024, 2918, 1775, 1631, 1268, 1262, 1230, 
1156, and 706 cm−1. All the variables are coherent with those illustrated 
in the loadings figures (Fig. 2, and Supplementary material), with the 
exception of 3455 and 3024 cm−1, that are associated with the humidity 
of the samples (Brandon et al., 2016). 

When the variables associated with the maxima of the loadings were 
used (only 11 wavenumbers corresponding to the peaks labelled in 
Fig. 2) to develop a dedicated PCA the groups of polymers could also be 
differentiated. SVM models considering these wavenumbers yielded 
satisfactory classifications, with only partially erroneous models when 
considering HDPE and LDPE. Fig. 3a exemplifies the separation of HDPE 
in a model, where the similarity between HDPE and LDPE is clear 
(indeed, they have minor spectral differences). Fig. 3b exemplifies the 
optimization of the cost and gamma parameters required to get the SVM 

model. 
Finally, CART studies required only 7 divisions (14 branches) to 

successfully separate the polymers (Fig. 4a). This implied that only 7 
variables were required (i.e., 1797, 1749, 1663, 1602, 1512, 1475 and 
1268 cm−1), whose interpretation agrees quite well with the previous 
relevant vector loadings (the C–O stretching, N–H bending plus C–N 
stretching, and the C––O typical functional groups can be seen rather 
clearly here). 

When the ATR spectra were considered, the polymers could be 
differentiated using just two PCs: PC1 and PC4 (70.34 % explained 
variance, Fig. 1c). PC2 and PC3 could not separate HDPE and LDPE. In 
this study the 4000 to 3000 cm−1 region (mostly attributed to water) 
was excluded, as well as a PMMA sample, due to its anomalous behav-
iour. It is worth noting that PC1 and PC4 were also required when using 
the micro reflectance dataset above. 

PC1 (64.35 % explained information) in essence opposes the most 
‘simple’ polymers HDPE, LDPE and PP (positive scores, Fig. 1c, 

PMMA

PS

PC
PA

PET

PP

□ - LDPE

X - HDPE

PP

PMMA

PA
PS

PET

□ - LDPE

X – HDPE

▲ - PC

PP

LDPE

HDPE

PMMA

PET
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PET
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LDPE
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PMMA

PC
PP
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Fig. 1. Representation of the most relevant principal component subspaces to identify the groups of polymers. Seawater-aged pellets measured by micro reflectance 
(a) and (b), and by ATR (c). Dry-aged pellets measured by micro reflectance (d) and by ATR (e). 
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characterized by the most relevant positive loadings in PC1, Fig. 5) to 
the other polymers, mainly PC, PET and PMMA, described by negative 
loadings (Fig. 5). 

PC4 (6 % explained variance) separates mostly PA6.6, with negative 

scores and negative loadings, from PP which has positive scores and 
positive loadings (Figs. 1c and 5, respectively). The maximum loadings 
agree with characteristic spectral peaks for these polymers. 

The use of dynamic PCA reduced the variables needed to keep the 

Fig. 2. Seawater-aged pellets, micro reflectance loadings.  

Fig. 3. a) Example of a SVM classification model, corresponding to pelletized HDPE aged in seawater and measured by micro reflectance IR spectrometry. b) 
Optimization of the cost and gamma parameters (the optimal value is marked with an X at the low, right corner). 
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polymer groups to 10 wavenumbers, at: 2959, 2847, 1736, 1544, 1420, 
827, 872, 702, 699 and 688 cm−1. 

When the variables associated to the maximum loadings of both 
factors were used (6 in total), the groups of polymers could also be 
differentiated, with the exception of a PMMA outlying sample (as noted 
above). Application of SVM considering only those wavenumbers yiel-
ded good separations, with the exception of some HDPE and PS samples. 

Finally, CART required only 9 divisions (18 branches) to get a good 
separation of the polymers (Fig. 4b). The 7 variables required for the 
sequential decisions were 1800 (twice), 1755, 1751, 1716 (twice), 1495, 
1474 and 1641 cm−1, whose general interpretation (CH2 bending and 
C––O stretching) mostly agrees with the regions selected by dynamic- 
PCA (but for the 3000–2800 cm−1 spectral region, not included in 
CART, as explained above). 

However, the classification is not as nice as that derived from micro 
reflectance measurements. The final groups for PP, PET, HDPE, PS and 
PA are 100 % homogeneous and form differentiated groups. However, 
LDPE needed two criteria (at 1716 and 1800 cm−1) to be differentiated 
from HDPE and a PC sample mixes with another PMMA one, although 
the other pellets of these polymers became well separated. 

3.2. Pellets weathered under dry conditions 

When micro reflectance measurements were made, the factors that 
lead to the best differentiation among polymers were PC2 and PC4 (25.2 
% explained information, Fig. 1d). 

PC2 (15.8 % explained variance) differentiates PMMA and PET 
(positive scores) from PP, PS and PA (negative scores). Fig. SM2 (Sup-
plementary material) shows the most relevant loadings defining this 
factor. PMMA and PET became characterized by their ester character-
istics (the most positive loadings) while PA, PS and PP were character-
ized by negative loadings. No distinctive loadings can be attributed to 
PP, but for the typical CH stretching at ca. 2850 and 2950 cm−1. 

PC4 (9.5 % explained variance) is dominated by the Amide II band 
(NH monosubstituted amide bending plus the CN stretching) and dif-
ferentiates basically PA (positive scores and positive loadings) from PC 
and PP (negative scores and their associated loadings, Fig. SM2). The 
negative loadings seem mostly linked to PC as the PP characteristics 
(stretching and bending of the CH bonds) cannot be seen, probably, 
masked by the CH bonds of PA6.6. 

Using dynamic PCA the overall number of wavenumbers needed to 
visualize the groups of polymers got reduced from 2900 to 15 variables. 

Fig. 4. Pellets aged in seawater, schematic representation of the CART decision tree obtained from the micro reflectance (a) and ATR (b) measurements. The final 
groups (each in a different colour) are 100 % homogeneous. The values at the bottom of the decision boxes correspond to the discriminating wavelength whereas the 
values over the boxes are the absorbance of the wavenumber that separates the branches (e.g., in the first node, if the absorbance at 1268 cm−1 is lower than or equal 
to 0.1473 a.u. the polymer may be HDPE, LDPE, PA, PP or PS). 
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These were: 3457–3455, 2918, 1917, 1775, 1732, 1731, 1636–1634, 
1269, 1268, 698, and 697 cm−1 wavenumbers. 

When the 12 variables associated to the most relevant loadings of the 
principal components were used to perform a dedicated PCA the groups 
of polymers could still be differentiated. Using SVM, however, it was not 
possible to categorize the HDPE and LDPE samples. Finally, CART 
required 10 divisions (20 branches) to successfully separate the poly-
mers (Fig. SM3), using only 9 variables (i.e., 1800 (twice), 1795, 1740, 
1677, 1651, 1474, 1468, 1465 and 600 cm−1). 

For ATR spectra, the factors that differentiated the polymers best 
were PC2 and PC3 (18.2 % explained information, Fig. 1e). PC1 could 
not separate several polymers despite it takes account of more infor-
mation (likely related to ageing). This result is similar to that with 
reflectance data above. However, the interpretation of the loadings is a 
bit more complicated here. 

Positive scores and loadings in PC2 (9.89 % explained variance) 
differentiated clearly PP and PS from the other polymers. The most 
important positive loadings were linked to PS and PP (the peaks at 2950 
and 1452 cm−1) (Fig. SM4). The peaks at 2950 and 1452 related to PP, 
whereas the others are characteristic of PS. The most relevant negative 
loadings relate to the C–H stretching of HDPE and LDPE, whose samples 
outstand in the negative scores. The loading at 1720 cm−1 points to-
wards the C––O groups of PC, PA and PET. 

PC3 (8.30 % explained variance) separates PP from PS (Fig. 1e), 
whose scores in PC2 are almost the same. It also helps differentiating 
LDPE, HDPE and PMMA from PC, PA and PET. Here, it is difficult to 
assign loadings to specific monomers. The most important loadings 
relate to C–H stretching, CH2 bending, C–H bending and aromatic out- 
of-plane bending (see Fig. SM4). 

With the use of dynamic PCA the number of variables can be reduced 

to only 4, still with a nice polymer differentiation: 2925 and 2924 cm−1 

(C–H stretch) and 1714 and 1713 cm−1 (mostly C––O bands). 
When the variables associated only to the maximum loadings (pos-

itive and negative) were used (7 in total) to carry out a PCA, the groups 
of polymers were still differentiated. When SVM was applied to those 
variables it was possible to visualize several groups of polymers, but 
LDPE and PS offered unsatisfactory results. 

Finally, CART required only 8 divisions (16 branches) to successfully 
separate the polymers (Fig. SM5) employing 8 variables (i.e., 1800, 
1752, 1733, 1507, 1496, 1474, 1456 and 1378 cm−1). 

3.3. Powder aged in seawater 

The typical PC1-PC2-PC3 scores subspace (51.9 % explained vari-
ance) is adequate to separate the polymers when their powders are 
weathered in seawater and measured by micro reflectance spectrometry 
(Fig. 6a and b). 

PC1 (21.4 % variance) is devoted to differentiate the PS samples (the 
most negative scores, Fig. 6a and b). It is not surprising thus that the 
most remarkable loadings in this factor are associated to PS (Fig. SM6); 
even the typical four peaks of similar intensity that characterize the 
typical monosubstituted aromatic pattern between 2000 and 1700 cm−1 

can be seen. 
PC2 opposes the ‘simplest’ hydrocarbon structures of PP, HDPE and 

LDPE (negative scores) to the other polymers (which contain hetero-
atoms and aromatic and more complex monomeric structures), in 
particular to PS (highest positive scores and whose bands can be linked 
to the largest positive loadings, Fig. SM6). The most relevant positive 
loadings are associated to –likely- the more linear structures: CH2 
bending and rocking. 

Fig. 5. Seawater-aged pellets, ATR loadings.  
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Fig. 6. Representation of the most relevant principal component subspaces to identify the groups of polymers. Seawater-aged powder measured by micro reflectance 
(a) and (b); and by ATR (c) and (d). Dry-aged powder measured by micro reflectance (e) and ATR (f). 
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PC3 separates mainly PVC (highest positive scores) from PET 
(highest negative scores), Fig. 6a and b. The loadings reflect also this 
point (Fig. SM6) as PET is characterized by positive loadings, mainly 
C––O stretch. On the contrary, PVC –an essentially linear structure- is 
reflected in the most relevant negative loadings, including the typical 
C–Cl bending. 

The variables associated to those loadings were not enough to 
differentiate the groups of samples when a dedicated PCA was done, 
likely because of the complexity of the loadings (Fig. SM6) which make 
it hard any reasonable manual selection. However, after using SVM with 
these wavenumbers an acceptable separation of the polymers was found. 

Using the dynamic PCA algorithm it was possible to reduce the 
amount of wavenumbers to 11: 2849, 2292, 1745, 1740, 1660, 1443, 
1287, 1257, 905, 737 and 702 cm−1. Finally, CART required 8 divisions 
(16 branches) to get a good separation of the polymers (Fig. SM7) using 
only 7 variables (i.e., 1800 (twice), 1787, 1776, 1743, 1507, 1392, and 
1106 cm−1). 

The results obtained when ATR spectra were used are depicted in 
Fig. 6c and d. The PC2-PC3-PC4 scores subspace (24.1 % explained in-
formation) was chosen. Even though the groups appear quite separated 
from each other the results are not as good as for the study above using 
micro reflectance because the groups presented quite large dispersions 
(in fact, PC1 was not selected because the samples there become even 
more disperse, making it impossible to discern the groups). It also 
happens that the interpretation of the loadings is not straightforward. In 
PC2 (10.43 % explained variance) the only polymers that are sharply 
separated are PA and PP and HDPE and LDPE (figure not shown). The 
most important positive loadings for this factor (Fig. SM8) characterize 
HDPE and LDPE, whereas the negative loadings correspond to typical PA 
spectral bands. 

PC3 (8.2 % explained variance) allows a slight separation of HDPE 
and LDPE (although they overlap with other polymers, Fig. 6c and d) 
and it clearly differentiates PP. The most important loadings that 
differentiate it from the other polymers (Fig. SM8) are linked to the C–H 
structures (positive loadings). The negative loadings point towards the 
other more complex structures with C––O groups. 

PC4 (5.5 % explained variance) separates PET and PMMA (positive 
scores) from PC and PS (negative scores), Fig. 6d, though the groups are 
highly dispersed. The latter polymer becomes differentiated by the C––O 
stretching and the CH out-of-plane aromatic ring stretching (positive 
loadings, see Fig. SM8). 

As for the micro reflectance spectra, the use of the variables associ-
ated to the most relevant loadings alone yielded bad results when a PCA 
was made and that was attributed to the difficulty in selecting the most 
relevant wavenumbers. However, applying SVM to these variables all 
the samples became well classified except for some LDPE ones. 

On the other hand, using dynamic PCA it was possible to reduce the 
total amount of wavenumbers required to visualize the groups to 36, in 
the 2950–2840, 1780–1738 cm−1 ranges and 1535, 1427–1424 
955–953, 829, 828, 725–723 cm−1 wavenumbers. 

CART required only 10 divisions (20 branches) to get a good sepa-
ration of the polymers (Fig. SM9) with only 9 variables (i.e., 1800 
(twice), 1795, 1740, 1677, 1651, 1474, 1468, 1465 and 600 cm−1), all 
of them in the surroundings of the typical C––O carbonyl region –as it 
happened with dynamic PCA, but for the 600 cm−1 wavenumbers. 

3.4. Powder weathered under dry conditions 

In essence, powdered samples weathered in dry conditions and 
measured by micro reflectance spectrometry behaved as their seawater- 
aged counterparts. In this case the separation between the polymers can 
be achieved with just two principal components (Fig. 6e); i.e. the PC1- 
PC3 subspace (ca. 36.5 % explained variance). PC2 was not selected 
because some PP samples got intertwined with those from HDPE and 
LDPE, yielding worst results. It was found that a PMMA sample behaved 
anomalously, so it was excluded from the final studies. There, PC1 

(21.64 % variance) differentiates PS (extreme negative scores, Fig. 6e). 
The negative loadings influencing this factor the most were related to PS 
(Fig. SM10). The peak at 2924 cm−1 has no clear assignment and it may 
be a mixture of the C–H aromatic stretching from PS and the aliphatic 
CH stretching of HDPE and LDPE. 

PC3 (ca. 14.5 % variance) in essence opposes PP (positive scores) to 
HDPE and LDPE (negative scores), with all other polymers showing 
close-to-zero scores, although each polymer forms very tight clusters, 
regardless of the degree of weathering during the study (Fig. 6e). The 
most important loadings are positive (Fig. SM10), but they cannot be 
associated to specific structures. 

Dynamic PCA reduced the number of variables needed to visualize 
the groups of polymers from 3400 to 15 ones: 3457–3455, 2918, 1917, 
1775, 1732, 1731, 1636–1634, 1269, 1268, 698 and 697 cm−1. Using 
SVM with the wavenumbers associated with the highest loadings an 
acceptable separation among the polymers was obtained. Finally, CART 
employed only 9 divisions (18 branches) to get a good separation of the 
polymers (Fig. SM11) with only 8 variables (i.e., 1800 (twice), 1713, 
1507, 1414, 1276, 1245, 1155 and 717 cm−1). 

Finally, two components separate the polymers when ATR spectra 
are considered (Fig. 6f): PC2 and PC3, being PC1 useless for this pur-
pose. PC2 (9.3 % explained variance) opposes PA, PP and PS (negative 
scores) to the other polymers, most notably HDPE, LDPE, and PET 
(Fig. 6f), as it happened previously with the micro reflectance mea-
surements. Relevant positive loadings for this factor coincide with 
typical HDPE and LDPE bands (Fig. SM12) while highest negative 
loadings correspond mainly to PP. 

PC3 (7.8 % explained variance) separates clearly PS and PP, Fig. 6f. 
The PS-related negative loading at 695 cm−1 (aromatic CH out-of-plane 
bending) opposes to the most relevant positive loadings (typical C–H 
stretching, likely from PP, ca. 2950 cm−1, Fig. SM12). 

Dynamic PCA required only 3 variables to visualize the groups, 
corresponding to the C–H stretching region (i.e., 2924, 2923 and 2922 
cm−1). 

Combining SVM with the wavenumbers associated with the highest 
loadings a perfect differentiation between the polymers were obtained. 
Finally, CART made 9 divisions (18 branches) to get a good separation of 
the polymers (Fig. SM13) with 8 variables (i.e., 1800, 1659, 1605, 1468, 
1467, 1136, 722 and 600 (twice) cm−1). 

3.5. General comparison of the selected wavenumbers 

The wavenumbers selected by the different approaches were highly 
consistent among them, of course with the logical small differences due 
to their different fundamentals, and they allowed differentiating among 
the polymers at the model development (or training) stage. Fig. SM14 
depicts graphically all the variables selected from the different models 
studied above (recall that SVM does not select variables by itself, but we 
included here a previous step that chooses those linked to the most 
relevant loadings). The figure shows clearly that the most relevant 
wavenumbers accumulate almost always in the fingerprint and the C–H 
stretching (~2800–3000 cm−1) regions. Note that even despite CART 
considered only the fingerprint region, the variables selected for the 
decision nodes agree very well with the variables selected (in that re-
gion) using the other techniques. 

The main question now is to decide which option is best. This in-
volves a twofold choice: it has to be decided among ATR and reflectance 
measurements, and among the variable selection strategies. Unfortu-
nately, this is a complex decision because although a variable might be 
useful do separate some polymers using (e.g.) ATR it might be detri-
mental when reflectance is considered. So, it is not only about ATR or 
reflectance, it is also about which particular combination of wave-
numbers is considered. Many models discussed in the previous section 
had no false positives nor false negatives (detailed statistics are not show 
here) but one has to be aware that this may be an “artefact” caused by 
overfitting the models. Therefore, it is critical to test each and every 
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model with samples not used to develop the models at all. This is done in 
the next section. 

3.6. Model validation 

To validate the models, two set of samples were used, as detailed in 
Section 2.1; one considers particles extracted from the weathering setup 
during the period under study and the other considers field plastics 
collected at beaches. The latter are much more complex because of their 
unknown weathering extent, physical and chemical degradation, 
amount of additives, morphology, etc. Because of that, and after pre-
liminary assays, the “HDPE” and “LDPE” categories will be combined 
into one, with the general denomination “PE”. 

PCA projection of the field samples into the scores subspace didn't 
yield satisfactory identifications, so it will not be considered further. 
This is explained because PCA and dynamic-PCA are not true classifi-
cation methods as the final assignations are made subjectively, as per 
visual observation of the location of the samples. Hence, they are fast, 
although rough approaches to ascertain a polymer type. However, using 
the loadings from the PCA models it was possible to develop useful SVM 
models with a reduced number of variables Tables 1 and 2. 

Table 1 presents the validation statistics for the SVM models. For the 
samples weathered artificially the results are encouraging for both 
spectrometric techniques. Micro reflectance models are, in general, 
slightly better than their ATR-based counterparts since 29 models (out of 
30) had MCCs ≥0.8 (this happened for 26 ATR ones), with almost no 
false positives and with only one model showing poor classification 

capabilities. The worst models were found for PMMA measured by ATR, 
although those developed using powders became slightly better than 
those for pellets. In general, the models differentiate the polymers really 
well. 

When field samples are considered (Table 1, bottom part) the final 
assignations are not so satisfactory because the spectra became affected 
more by the different weathering processes they might had undergone: 
biofouling, physical erosion, chemical degradation, etc. Their spectra 
are noisier, with broader and less defined bands. Most field samples 
(>90 %) were thin sheet fragments, from food and one-use wrappings. 
This produces detrimental effects in reflectance measurements, as it 
often provokes an etalon-like effect: sinusoidal waves along the spec-
trum produced by the light passing through several parallel surfaces, 
which complicates the characterizations. This is reflected in the poor 
polymer identifications in the micro reflectance models, none of them 
surpassing a 0.5 MCC value. However, the ATR models showed more 
acceptable identifications, most of them having MCCs ≥0.8 (7 models 
out of 10), and low ratios of false positives and negatives. This seems 
very good news for garbage and plastic litter monitoring because they 
usually concentrate on relatively ‘big’ fragments, mostly when following 
OSPAR recommendations. 

CART yielded less satisfactory models than SVM (Table 2), as evi-
denced by slightly worse statistics. For artificially weathered samples, 
reflectance-based models are preferred to ATR-based ones because up to 
18 models lead to satisfactory ≥0.8 MCC values (vs. only 12 satisfactory 
ones using ATR). However, figures for field samples are not adequate. In 
our view, this might be because of the simple classification strategy of 

Table 1 
Validation statistics obtained for SVM models. The first value is the MCC statistic; those within the paren-
thesis represent the ratios of false positives and negatives (respectively). The colors in the boxes indicate the 
success of the model, from green (adequate model) to orange (unsuccessful model). (PVC was not available in 
pellets). 

Weathered samples

Polymer
ATR Reflectance

Pellets Powder Pellets Powder
Sea Dry Sea Dry Sea Dry Sea Dry

PE 1
(0 ; 0)

1
(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.8

(0.1 ; 0)

1

(0 ; 0)

0.9

(0.03 ; 0)

PA 1
(0 ; 0)

1
(0 ; 0)

0.9

(0 ; 0.3)

0.7

(0 ; 0.5)

1

(0 ; 0)

0.8

(0 ; 0.4)

1

(0 ; 0)

0.9

(0.03 ; 0)

PC 1
(0 ; 0)

0.9

(0 ; 0.3)
1

(0 ; 0)

0.9

(0 ; 0.3)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

PET 1
(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.3)

0.9

(0.03 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

1

(0 ; 0)

PMMA 0.5

(0. ; 0.8)

0.7

(0 ; 0.5)
1

(0 ; 0)

0.7

(0 ; 0.5)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.8

(0 ; 0.4)

PP 0.9

(0 ; 0.3)

1

(0 ; 0)
1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

0

(0 ; 1)

1

(0 ; 0)

1

(0 ; 0)

PS 1
(0 ; 0)

1

(0 ; 0)
1

(0 ; 0)

0.9

(0 ; 0.3)

1

(0 ; 0)

1

(0 ; 0)

1

(0 ; 0)

0.9

(0 ; 0.2)

PVC -- --
1

(0 ; 0)

0.9

(0 ; 0.3)
-- --

1

(0 ; 0)

0.9

(0 ; 0.2)

Field samples

Polymer
ATR Reflectance

Sea Dry Sea Dry

PE 0.95

(0 ; 0.07)

0.95

(0 ; 0.07)

0.4

(0 ; 0.7)

0.3

(0.5 ; 0.1)

PET 0.8

(0.03 ; 0.2)

0.9

(0.02 ; 0.1)

0.3

(0 ; 0.9)

0.3

(0 ; 0.9)

PP 0.8

(0 ; 0.3)

0.8

(0 ; 0.3)

0.5

(0 ; 0.7)

0

(0 ; 1)

PS 0.8

(0 ; 0.5)

0.5

(0.07 ; 0.25)

0

(0 ; 1)

−0.04

(0.06 ; 1)

PVC 0.4

(0,02 ; 0.7)

0.6

(0 ; 0.6)

0.5

(0.02 ; 0.7)

0.5

(0.02 ; 0.7)

B. Ferreiro et al.                                                                                                                                                                                                                                 



Marine Pollution Bulletin 181 (2022) 113897

11

the CART method. Dichotomic decision rules work well as long as 
similar spectra are considered for both calibration and validation. 
However, field samples were exposed to many weathering phenomena 
that, finally, distort the original spectrum so that the dichotomic 
absorbance decisions at the different nodes can be misleading. 

Therefore, in the authors' opinion the final tradeoff analysis points 
out that ATR analysis (of both pellets and powders) combined with the 
chemometric support vector machine tool lead to the most satisfactory 
differentiation among the nine polymers considered in this work, along 
with satisfactory classification ratios of new samples. Although partic-
ular details were given in the previous sections, Table SM1 resumes the 
variables employed for each model and it can be seen that the three most 
relevant structural moieties involved in the differentiation and classifi-
cation of the polymers were the C–H stretching, C–H bending, C––O 
stretching and the C–H out-of-plane bending (likely of aromatic rings); 
see Table SM2 (compiled from Brandon et al. (2016), Tiwari et al. 
(2019), Vasanthan (2012), Veerasingam et al. (2021), Jung et al. 
(2018)). Somehow this suggests that the models try to find out the sig-
nals of the main structural chains of the polymers (note that –for 
instance- the broad O–H stretching band typical of polymer weathering 
in the 3000–3200 cm−1 region does not appear at all within any variable 
selection). 

4. Conclusions 

The results obtained in this study indicate that polymer weathering 
complicates the formation of clear groups of samples in multivariate 
studies. In many cases, high-order principal components were needed to 
visualize more or less definite groups. This means that the most relevant 
spectral variance is not related to the different polymers but to other 

factors, mostly weathering. In general, the micro reflectance spectra of 
pellets were more interpretable and lead to better groups than those of 
powders, likely because reflected radiation is mostly specular, which 
yields simpler spectra than the diffuse radiation from the powders. 

The studies presented here suggest that pattern recognition models 
developed with a reduced suite of selected variables may be a good way 
to address this problem. All the variable selection strategies allowed for 
significant reductions in the number of wavenumbers required to visu-
alize the groups of polymers; being the most extreme situation that for 
dynamic PCA in the dry weathering of powdered polymers by ATR 
which required only three wavenumbers to differentiate the groups. 

The simplest feature selection implies selecting wavenumbers asso-
ciated to the maximum loadings of the principal components. This yields 
satisfactory differentiations when the spectra are well defined, mostly 
with pellet configurations. When this option is combined with SVM it is 
possible to differentiate all polymers with only some few marginal errors 
in some models (mostly for HDPE and LDPE, due to their spectral 
similarity). 

Dynamic PCA is also a very simple methodology and it leads to very 
satisfactory results although the number of wavenumbers required to 
visualize the groups of polymers vary among the assays. In most cases, 
only 10 wavenumbers (out of the 3400 initial ones) were sufficient. 
Unfortunately, the projections of the field samples led to poor assigna-
tions because they have to be done visually. 

CART behaved very consistently and required around 8 wave-
numbers to separate the polymer groups. However, they were not al-
ways 100 % homogeneous and results were not too satisfactory for field 
samples. This was attributed to the spectral differences between the field 
and artificially-weathered plastics (which in turn yielded good valida-
tions), which make the dichotomic CART decisions suboptimal for field 

Table 2 
Validation statistics obtained for CART models. The first value corresponds to the MCC statistic; those within 
the parenthesis represent the ratios of false positives and negatives (respectively). The colors in the boxes 
indicate the success of the model, from green (adequate model) to orange (unsuccessful model). (PVC was not 
available in pellets). 

Weathered samples

Polymer
ATR Reflectance

Pellets Powder Pellets Powder
Sea Dry Sea Dry Sea Dry Sea Dry

PE 1 

(0 ; 0)

0.9

(0.2 ; 0)

0.9

(0 ; 0.1)

0.9

(0 ; 0.1)

0.3 

(0.6 ; 0.2)

0.6 

(0.5 ; 0.1)

0.9

(0 ; 0.1)

0.9

(0.1 ; 0)

PA 0.85

(0 ; 0.3)

0.7

(0 ; 0.5)

0.2

(0.7 ; 0.8)

0.3

(0.7 ; 0.5)

0.6

(0 ; 0.6)

0

(0 ; 1)

0.9

(0.2 ; 0)

1

(0 ; 0)

PC 1

(0 ; 0)

0.9

(0 ; 0.3)

0.5

(0 ; 0.8)

0.7

(0.4 ; 0)

0.8

(0 ; 0.4)

0.4

(0 ; 0.8)

0

(0 ; 1)

0.9

(0.2 ; 0)

PET 0

(0 ; 1)

−0.07

(1 ; 1)

0

(0 ; 1)

0.7

(0.3 ; 0.3)

1

(0 ; 0)

0.8

(0.4 ; 0)

0.8

(0.4 ; 0)

0

(0 ; 1)

PMMA −0.06

(1 ; 1)

0.5

(0.6 ; 0.3)

1

(0 ; 0)

0.5

(0 ; 0.75)

0.4

(0 ; 0.8)

0.8

(0 ; 0.4)

0.2

(0.7 ; 0.6)

0.6

(0.2 ; 0.5)

PP 0.5

(0.7 ; 0)

0.8

(0.3 ; 0)

0.9

(0.3 ; 0)

−0.059

(0 ; 0)

0.1

(0.8 ; 0.8)

0.5

(0.5 ; 0.4)

0.9

(0.2 ; 0)

0.9

(0 ; 0.2)

PS 1

(0 ; 0)

0.9

(0 ; 0.3)

0

(0 ; 1)

0.5

(0.3 ; 0.5)

0.9

(0 ; 0.2)

0.8

(0.2 ; 0.2)

1

(0 ; 0)

0.9

(0 ; 0.2)

PVC -- --
0.4

(0.8 ; 0)

0.7

(0 ; 4)
-- --

0.9

(0 ; 0.2)

0.9

(0.2 ; 0)

Field samples

Polymer
ATR Reflectance

Powder Powder
Sea Dry Sea Dry

PE 0.4

(0.5 ; 0.2)

0.4

(0.5 ; 0.2)

0.3

(0.5 ; 0.2)

0.03

(0.6 ; 0.7)

PET 0.4

(0 ; 0.8)

0.6

(0.4 ; 0.4)

0.2 

(0.5 ; 0.9)

0.1

(0.8 ; 0.8)

PP 0

(0 ; 1)

0.5

(0.2 ; 0.6)

−0.2

(1 ; 1)

−0.15

(0.9 ; 0.9)

PS 0

(0 ; 1)

−0.05

(1 ; 1)

0

(0 ; 1)

0.7

(0 ; 0.5)

PVC 0.4

(0.6 ; 0.3)

0.3

(0.6 ; 0.7)

0.4

(0.6 ; 0.3)

0.1

(0.8 ; 0.6)
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samples. The classification models for SVM are more satisfactory when 
ATR spectra are considered. In particular, SVM performed clearly better 
than CART for field samples. 

In our view, this work opens up the possibility of identifying poly-
mers is spite of their weathering level by considering a reduced number 
of IR wavenumbers, although more studies are needed to improve the 
modelization of tiny particles and to ascertain how to incorporate this 
approach into the databases. 

A final reflection on the limitations and future work to refine this 
approach is in order. The artificial weathering process employed here 
yields physical and chemical degradation but biofouling was not 
considered. The SVM models worked well for field samples without 
obvious biofouling but it remains to be assessed whether they also work 
in other circumstances where more bio-materials are present at the 
surface of the plastics. Such a study is being done in our laboratory as a 
part of a more comprehensive project (the JPI-Oceans EU-funded 
MicroplasticX). As a referee pointed out, it also has to be studied how the 
models behave when big amounts of additives are added to the core 
polymer so that they affect its spectrum. 

It is worth noting that this approach can be used for on-site field MPs 
identification. Right now there are commercial portable (car battery- 
powered) ATR-FTIR systems, even from major brands, and since they 
are controlled by laptops it is indeed possible to include the chemo-
metric models there. However, micro reflectance instrumental systems 
are not still portable. So, currently the portability option depends on the 
size of the microplastics under scrutiny (likely, 500 μm would be the 
very minimum acceptable size for current ATR devices). 
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Lorenzo, S., 2021b. Monitorization of polyamide microplastic weathering usigng 
attenuated total reflectance and microreflectance infrared spectrometry. 
Spectrochim. Acta, Part A 263, 120162. https://doi.org/10.1016/j. 
saa.2021.120162. 
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