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A B S T R A C T   

The recent unprecedented increase in energy demand has led to a growing interest in emerging alternatives such 
as the production of microbial lipids with high energy density and environmentally-friendly characteristics. 
Oleaginous yeasts represent a versatile and attractive tool for the accumulation of such lipids, also known as 
single cell oils (SCOs), used to manufacture biofuels (e.g., biodiesel, aviation fuel) and bioproducts. This review 
provides an overview of the most common oleaginous species, analysing the viability of typical feedstocks and 
their effect on lipid accumulation. The best results in terms of lipid content using glucose, glycerol, lignocellu-
lose, or acetic acid as substrates are 81.4, 70, 68.2 and 73.4% (w/w), respectively. Besides, an analysis of the 
parameters that can affect lipid production is also presented. For instance, the optimum conditions for lipid 
accumulation are usually a C/N ratio between 100 and 200, pH between 5 and 6 (being more alkaline if acids are 
used as substrates) and temperature around 30 ◦C. Besides, genetic modifications generally allow to increase the 
lipid yield, even by up to 400%. Finally, some cost analysis is provided for scaling-up, with feedstock costs 
estimated at 50–80%, followed by fermenter costs, and downstream costs estimated at around 13%.   

1. Introduction 

Biofuels have been developed and are being used due to concerns 
about energy supply and possible shortages, and environmental issues 
associated with fossil fuels [1]. Global energy demand is continuously 
increasing because of the fast-growing economies of some countries, 
such as China. Unfortunately, recent events have shown that, in a glo-
balised world, energy supply shortages may become a severe problem 
due to unpredicted pandemic situations or geopolitical conflicts. 
Moreover, the exponential increase in cryptocurrency adoption over the 
past year has led to another unprecedentedly large energy consumption 
by bitcoin mining, currently consuming 204.5 TWh of energy per year, 
equivalent to the energy consumed by Thailand annually or 174% of the 
energy used by the Netherlands last year [2]. Those situations are trig-
gering an unprecedented rise in energy prices, and therefore the search 
for other, non-conventional, or renewable energy sources has become 
more critical than ever. 

Lipid-derived biodiesel and jet fuels have recently gained much 

interest as sustainable alternative fuels due to their high energy density, 
clean-burning characteristics, environmental friendliness, and biode-
gradability [3]. In addition to the reasons mentioned above, the world’s 
population is expanding rapidly, leading to a higher demand for fuels 
than ever before, which could partly be covered by such biofuels [4]. 
Currently, lipid oils produced on an industrial scale are obtained from 
plants and animals. However, in the last decade, there has been an 
exponential increase in studies focusing on microorganisms capable of 
accumulating lipids. These microbe-derived lipids have comparable 
composition to those found in animals or plants. One of their natural 
benefits is that they are not affected by climate, seasonality or ubication, 
with the additional main advantage of reduced land requirements [5]. 

Due to rising demand for lipids and limits in their production from 
conventional sources, biotechnological techniques utilising oleaginous 
microorganisms have recently been considered attractive alternatives 
for producing lipids or microbial oils. A wide range of microorganisms, 
ranging from bacteria to yeasts, fungi, and microalgae, may be used as 
cell factories to generate a variety of bioproducts, with lipids being 
among the most attractive ones [6]. Among the above-mentioned 
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oleaginous microorganisms, yeasts present several advantages over the 
others. This is due to their relatively fast unicellular growth rate and 
capacity to accumulate large amounts of lipids [7]. The term “oleagi-
nous” originates from the ability of these microorganisms to accumulate 
lipids at concentrations exceeding 20% (w/w) of their dry weight. In 
addition, oleaginous yeasts can generate additional “rare” lipids, such as 
cocoa butter (saturated lipids) and other forms of saturated exotic fats, 
which may be used to substitute high-value and expensive lipids found 
only in plants and animals [8]. 

The present review comprehensively describes the current state-of- 
the-art and addresses aspects not thoroughly reviewed elsewhere. For 
example, Chattopadhyay et al. review current developments in genetic 
engineering of oleaginous yeasts but do not go into detail on other 
experimental parameters that influence lipid accumulation [9]. Szcze-
pańska and colleagues describe different products and compounds ob-
tained from oleaginous yeasts, but do not mention costs and process 
challenges [10]. Caporusso and co-workers review the different pa-
rameters that can affect lipid accumulation in oleaginous yeasts, but do 
not address issues such as genetic modifications or process costs [11]. 
On the other hand, authors such as Karamerou et al. or Parsons et al. 
carry out an in-depth techno-economic analysis of microbial oil pro-
duction, but do not assess, for example, how each feedstock affects lipid 
accumulation [12,13]. Abeln and colleagues provide a comprehensive 
review on the history, current status and perspectives of oleaginous 
yeasts, but address only superficially how different experimental pa-
rameters affect final lipid accumulation, e.g., it does not review the use 
of emerging substrates such acetic acid as a carbon source for oleaginous 
yeasts, while it is one of the most promising current substrates due to its 
favourable cost/performance characteristics [14]. 

This review provides an overview of the state-of-the-art process of 
microbial lipids production by oleaginous yeasts studying the influence 
of the substrate along with other operating parameters that may affect 
lipid yields. For instance, it reviews the possibility of using carboxylic 
acids as substrates for lipid production and even the indirect use of CO2, 
as recent and innovative alternatives due to their low price. The in-
dustrial scale-up of this process is also a challenge; therefore, advances 
in techniques to reduce costs are analysed. Finally, a series of conclu-
sions and future perspectives related to the implementation of this 

process on a large scale are also provided. 

2. Oleaginous yeasts as a cell factory 

For years, it has been known that oleaginous microorganisms, 
particularly some forms of oleaginous yeasts, may accumulate lipids as 
single cell oils (SCOs). It is also worth noting that not all microorganisms 
can store lipids as triacylglycerol (TAG). In recent years, the method by 
which these microbes gather this type of lipid has been studied, and 
better understood [15]. The mechanisms through which oleaginous 
yeasts can produce TAGs through the conversion of a given substrate are 
essentially the following two: de novo synthesis and ex novo synthesis 
[16]. When the microorganism is under stress, presenting a high C/N 
ratio with a lack of nitrogen, de novo synthesis occurs [17]. It is aided by 
a metabolic imbalance in the presence of a critical nutrient deficiency in 
the growth medium, causing a metabolic transition in which growth is 
halted, and the lipogenic phase is favoured. Ex novo synthesis, on the 
other hand, entails the hydrolysis of hydrophobic substrates (such as 
TAGs, alkanes and free fatty acids) to yield fatty acids (FAs) and glycerol 
which are then transported inside the cell to be reassembled into TAGs 
[16]. 

2.1. De novo synthesis 

The nitrogen depletion process comprises several central 
metabolism-related regulatory processes. It is the most efficient means 
of initiating lipogenesis, resulting in increased substrate-to-lipid con-
version yields and lipid content as internal biomass [18]. Nitrogen 
starvation activates the activity of adenosine monophosphate (AMP) 
deaminase (AMPD), which converts AMP to inosine monophosphate 
(IMP) and ammonia, is a result of nitrogen deficiency [19] (Fig. 1). As a 
result, the cell receives some nitrogen supply. The Krebs cycle, which 
pauses at the level of isocitrate, is negatively impacted by the following 
drop-in AMP concentration. Because it is allosterically triggered by 
intracellular AMP, isocitrate dehydrogenase (IDH), the enzyme that 
converts isocitrate into alpha-ketoglutarate, loses its activity (in the 
tricarboxylic acid cycle) [15]. This causes a build-up of mitochondrial 
isocitrate, which is subsequently balanced with citrate by the enzyme 
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aconitase before being exported outside the mitochondria via the 
malate/citrate cycle. Citrate is then cleaved into acetyl-CoA and oxalo-
acetate (OAA) by the ATP-citrate lyase (ACL) enzyme, with ATP con-
sumption [20]. The ACL enzyme is crucial for the lipogenesis phase 
exclusively found in oleaginous yeasts, and its absence restricts the flow 
of carbon to fatty acid synthesis [15] (Fig. 1). 

A sequence of processes in the cytosol transforms the precursor 
acetyl-CoA into long-chain fatty acids, resulting in FA biosynthesis. 
Acetyl-CoA carboxylase converts acetyl-CoA to malonyl-CoA by first 
condensing it with bicarbonate (ACC1) [21]. Under the action of the 
enzyme FA synthase complex (FAS), acetyl-CoA is then reduced to 
acyl-CoA. Condensation, reduction, and cyclic dehydration processes 
create FAs. The reducing cofactor for FA synthase is NADPH, and each 
step in the acyl-CoA chain elongation needs two NADPH molecules. A 
typical chain length for spontaneously produced acyl-CoA is 16 or 18 
carbon atoms, and these C16:0 and C18:0 molecules are then trans-
ported to the endoplasmic reticulum (ER), where they are further 
elongated and desaturated [22] (Fig. 1). 

The Kennedy route produces TAGs by starting with glycerol-3- 
phosphate (G3P), which is derived from glycolysis and acts as the 
glycerol backbone. G3P 1-acyltransferase (by the gene SCT1) catalyses 
the conversion of G3P to lysophosphatidic acid (LPA), which is the first 
step in TAG formation [23]. LPA is subsequently acylated further by LPA 
acyltransferase (by the gene SLC1), resulting in phosphatidic acid (PA). 
Phosphatidic acid phosphatase (PAP) then dephosphorylates PA to 
generate diacylglycerol (DAG). Lastly, diacylglycerol acyltransferase 
(DGAT) or phospholipid diacylglycerol acyltransferase acylates the DAG 
to create TAGs that are stored as lipid droplets (lipid body) (Fig. 1). 
These lipid droplets’ size, shape, and quantity differ significantly across 
the different types of genera and closely species [24]. 

2.2. Ex novo synthesis 

When hydrophobic substrates are used, ex novo lipid synthesis oc-
curs. These carbon sources, which include FAs and TAGs, are delivered 
into the cell and may either be utilised as an energy source or modified 
by enzymes [25]. Free FAs uptake selectivity and rate are typically 
unique for specific fatty acids, allowing for the change of FA profiles 
over time. Fat biomodification, also known as selective FAs usage, may 
be utilised to modify hydrophobic substrates’ FA profiles into 
value-added oils [16]. Non-oleaginous microorganisms prefer to accu-
mulate carbohydrates and generate secondary metabolites [25]. 

In terms of nitrogen dependence, ex novo lipid production differs 
from de novo lipid biosynthesis. Lipid build-up starts independently of 
nitrogen availability in the hydrophobic medium (i.e., waste cooking 
oils, industrial waste stream) for ex novo synthesis, and it occurs 
concurrently with cell development [26,27]. 

2.3. Specifications of the primary species 

Around 70 yeast species out of about 1600 are known to be oleagi-
nous and are then characterised by their ability to accumulate more than 
20% internal lipids, and the number of species is continuously 
increasing. Of these 70 oleaginous yeasts, at least 25 species can accu-
mulate up to 40% lipids as dry cell weight (DCW) [28]. The lipid content 
varies depending on the species, and it can reach up to 70–80% of DCW 
under certain nutritional conditions and with a carbon surplus, among 
others [29,30]. 

The oleaginous yeast divisions best known and able to accumulate 
the highest amount of lipids in the form of TAGs, classified according to 
their phylum, are the following two: Basidiomycota (e.g., Rhodotorula 

Fig. 1. Synthesis and degradation of TAGs in a yeast cell. Abbreviations: TAG, triacylglycerol; FAs, fatty acids; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; 
GAP, glyceraldehyde; DHAP, dihydroxyacetone phosphate; G3P, glycerol-3-phosphate; OAA, oxaloacetate; TCA, tricarboxylic acid cycle; IDH, isocitrate dehydro-
genase; AMP, adenosine monophosphate; IMP, inosine monophosphate; LPA, lysophosphatidic acid; PA, phosphatidic acid; DAG, diacylglycerol; TAG, tri-
acylglyceride; FFA, free fatty acids; NADPH, nicotinamide adenine dinucleotide phosphate dehydrogenase; IDH, isocitrate dehydrogenase; AMPD, adenosine 
monophosphate deaminase; ACL, ATP-citrate lyase; ACC, acetyl-CoA carboxylase; SCT1, G3P acyltransferase; FAS, FA synthase; SLC1, 1-acyl-sn-glycerol-3-phosphate 
acyltransferase; PAP, phosphatidic acid phosphatase; DGAT, diacylglycerol acyltransferase. 
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toruloides, Cutaneotrichosporon curvatus) and Ascomycota; subdivision 
Saccharomycotina (e.g., Yarrowia lipolytica, Lipomyces starkeyi). To 
quantify the importance of research dedicated to oleaginous yeasts, 
Fig. 2 shows the total number of publications from 1950 till April 2022 
related to studies on lipid production. The pie chart in Fig. 2 shows the 
percentage of each oleaginous yeast species studied with respect to the 
amount of publications available in the literature, while the bar chart 
quantifies the number of publications written and their popularity. 
Popularity is defined as those publications in which the yeast is 
mentioned even if it is only for comparison with another target yeast 
studied and described in the publication. The main characteristics of 
some of them will be described below. 

Rhodotorula toruloides is a red yeast that was previously known as 
Rhodosporidium toruloides. It is capable of producing both lipids and 
carotenoids. Torula rubescens was the first name given to that yeast, 
originally isolated from the air in Dalian, China, in 1922 [29]. 
R. toruloides grows over a relatively wide range of temperatures, typi-
cally 10 to 30 ◦C [31], and initial pH values (from 3.0 to 10.0), generally 
with best results at pH 6.0 [32]. As for the carbon source used to feed this 
yeast, several sources have been described in the literature in recent 
years, e.g., hydrolysate from lignocellulose, crude glycerol, mono-
saccharides including hexoses and pentoses, organic acids such as acetic 
acid, or even longer chain FAs, with addition to D-galacturonic acid 
[33–37]. Regarding nitrogen sources, the most effective ones are 
ammonium, nitrate, amino acids, cadaverine and small peptides 
[38–40]. R. toruloides’ robustness in terms of resistance to 
biomass-derived inhibitors has been established, among others 
observing good production of lipids and carotenoids when grown on 
biomass hydrolysates [41]. 

Cutaneotrichosporon curvatus, previously known as Cryptococcus 

curvatus, is one of the best-known and most performant oleaginous 
yeasts. In 2016, C. curvatus’ first draft genome sequence was reported, 
allowing for significant advances in understanding this oleaginous 
yeast’s metabolic behaviour and the creation of biomolecular tools for 
enhanced lipid synthesis [11]. This yeast may use lignocellulose, a mix 
of volatile fatty acids (VFAs), or chitin as carbon sources, reporting lipid 
production yields of more than 65% in terms of DCW [42–45]. The 
optimum incubation temperature at which this yeast grows is 28 ± 1 ◦C, 
and its preferred pH is around 6.0 [46]. 

Yarrowia lipolytica is another, non-conventional, yeast. According to 
Nicaud [47], the generic name “Yarrowia” honours David Yarrow’s 
discovery of a new genus. Y. lipolytica is resistant to a wide range of 
physical conditions, including acidic and alkaline pH values (from 2.9 to 
9.0), low temperatures (from 18 ◦C to 32 ◦C) and different salinities [48, 
49]. Furthermore, Y. lipolytica can use a range of cheap renewable car-
bon sources and can handle large acetyl-CoA fluxes [50,51]. The liter-
ature’s most widely reported carbon sources include lignocellulosic 
sugars, hydrophobic substrates, including TAGs and FAs derived from 
animal fats, alkanes, acetate, and even other volatile fatty acids from 
municipal, agricultural and industrial wastes [11]. Since the 1960s, 
Y. lipolytica has also been extensively studied to produce single cell 
proteins related to its ability to generate lipases and proteases [52]. This 
yeast can accumulate lipids at up to 65% content, with more than 90% of 
those lipids being stored as TAGs [53,54]. Furthermore, besides lipases, 
proteases and TAGs, organic acids such as isocitric, citric, ketoglutaric, 
itaconic, succinic and acetic acids can also be produced by Y. lipolytica. 
[11]. 

Lipomyces starkeyi was first characterised by Robert Starkey [55]. 
L. starkeyi can metabolise a wide variety of carbon and nitrogen sources: 
e.g., lignocellulosic sugars, glycerol, cellobiose, paper mill waste and 
acetic acid, among others, as carbon sources [11,56]. L. starkeyi can also 
metabolise inhibitors found in cellulosic hydrolysates, and it tolerates 
moderately acidic pH values between 5.0 and 6.5 [57]. Recommended 
agitation speeds and temperatures for healthy L. starkeyi fermentation 
have been reported to be 150–400 rpm and 28–30 ◦C, respectively [58]. 
With up to 70% lipid content as DCW, this yeast can accumulate large 
quantities of TAGs, similar in composition to palm oil [11]. 

2.4. Global demand and market trend 

The pandemic conditions resulting from the COVID-19 situation 
limited people’s travels over the period 2020–2021 and, consequently, 
during that same period, the world’s consumption of transportation 
fuels decreased [59]. On the other side, over the last 30 years, the 
production of fats and oils has increased by 167%, from 83.5 to 223 
Mtonnes, and it is expected to increase further in the coming decades 
[14]. The market for fossil fuels and biofuels rebounded in 2021 as the 
economy started to recover and limitations of movements were gradu-
ally lifted. The biodiesel market grew due to increased blending regu-
lations, direct subsidies, tax incentives, and market-wide 
decarbonisation measures. The medium-term growth of the biofuels 
industry is anticipated to be led by developing nations, according to the 
Organisation for Economic Co-operation and Development (OECD). 
They will enact blending laws and providing subsidies to encourage 
local production and the use of blended fuels. The loss of fossil fuels and 
fewer legislative incentives will, however, limit the growth of biofuels 
production in already established nations like the EU [59]. 

The resurgence of the demand for fossil fuels was favoured by the 
recovery of the world’s economy and the relaxation of transportation 
limitations, which had a favourable impact on the biofuels market. In 
only one year, the usage of biodiesel surged by 55 billion litres in 2021 
(IEA, 2022) [60]. The production margins for biofuels were impacted by 
increasing feedstock and producing costs notwithstanding the recovery, 
which had a detrimental effect on the production of biofuels in certain 
key producing nations. For instance, Argentina reduced its biodiesel 
blend rates in 2021 due to rising production costs and higher vegetable 

Fig. 2. Number of publications and popularity of the primary oleaginous yeast 
strains, from 1950, focused on lipids or biodiesel production. Updates of the 
yeast names have been considered. Example of search performed: (“R. tor-
uloides OR “Rhodotorula toruloides” OR “Rhodosporidium toruloides”) AND 
(“lipid*" OR “biofuel” OR “biodiesel” or FAME*"). Data obtained from di-
mensions. ai, the world’s largest research database, accessed April 2022.1.- 
Number of publications that contain the name of the yeast in the title and/or 
abstract. 2.- Number of publications that contain the name of the yeast in the 
full text. 
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oil prices. Nevertheless, a few nations, like Indonesia and India continue 
to subsidise, tax-credit, and demand increasing biofuel production [59]. 
The high cost of fossil fuels has, in some ways, given the biofuels busi-
ness greater clout. The nominal price of biodiesel was historically high in 
the last year due to a rebound in demand and increased feedstock costs. 

Over 2022–2031, international biofuel prices are expected to 
decrease in real terms while being stable in nominal ones. The pricing of 
feedstocks, crude oil, and distribution expenses, as well as consumers’ 
disposable income and consumption choices, only partly represent the 
underlying drivers of the biofuel market. Policies that tie biofuel usage, 
such as domestic governmental support, also tend to influence price 
trends over time [59]. 

2.5. Commercial applications of lipids synthesised from oleaginous yeast 

There are currently different commercial applications for the use of 
lipids synthesised from oleaginous yeasts. The most common use is in 
energy, specifically in the production of biofuels, but there are also other 
applications, e.g., in the food industry. 

As for the application in the biodiesel industry, today, approximately 
75% of biodiesel comes from first generation processes (vegetable oils) 
[59]. There are transport sectors, such as short-haul aviation, where the 
biofuel used is mainly based on Hydro-processed Esters and Fatty Acids 
(HEFA), produced from vegetable oils, waste lipids and animal fats [61]. 
More than 450,000 flights have used different aviation biofuel mixes 
[62]. Although there have not yet been any flights with biofuel produced 
from microorganisms, these data show that a future may be in the offing. 
Due to high prices, limited fuel supply, retrofitting and bunkering pro-
cedures, and institutional permission, fewer than 1% of marine transport 
employs biofuels, mostly in inland or short-sea transportation [63]. The 
most significant mode of international cargo transportation, merchant 
shipping, still uses fossil fuels. The use of third-generation biodiesel in 
road transport is expected to be the most common sector where it will be 
applied. Currently, 97% of heavy-duty vehicles, e.g., buses and trucks, 
are fuelled by diesel and 42% of light-duty vehicles, which means high 
compatibility with biodiesel [63]. 

Another potential application of lipids produced by oleaginous 
yeasts is in the food industry, e.g., as a replacement for palm oil. The 
primary uses of palm oil are in food and personal care goods [64]. A 
palm oil similar to that produced by palms’ fruit, mostly made up of 
palmitic, stearic, oleic, and linoleic acids, may be produced by oleagi-
nous yeast species [30], in particular species such as Rhodotorula glutinis, 
Lipomyces lipofer or L. starkeyi [65,66]. Moreover, one of the key com-
ponents of chocolate is cocoa butter, which is also utilised in other goods 
like cosmetics. Cocoa butter contains about 60% saturated fatty acids 
[67]. Recent studies have determined that, under specific conditions, the 
yeast Y. lipolytica can perfectly mimic the lipid profile to produce cocoa 
butter equivalent [68]. The price of cocoa butter is relatively high, so 
using oleaginous yeasts in this field may prove to be a good market 
opportunity, producing high-quality equivalent cocoa butter. PUFAs, or 
Poly Unsaturated Fatty Acids, which are usually extracted from 
deep-water fish oil, are dietary components that are necessary for 
human health and can also be produced from oleaginous yeasts. Yeasts 
such as Yarrowia lipolytica can accumulate high amounts of internal 
lipids, which suggests that it has a lot of promise as a host for the in-
dustrial synthesis of PUFAs [69]. Notably, new engineering techniques 
have been used to enhance and enhance Y. lipolytica’s capacity to syn-
thesise PUFAs. These techniques include the development and optimi-
sation of PUFA biosynthetic pathways, enhancement of the availability 
of precursors NADPH and Acetyl-CoA, and regulation of genes involved 
in lipid metabolism [70]. 

3. Common feedstocks and substrates for oleaginous yeasts 
producing lipids 

Carbohydrates used as substrates can be bio-converted into TAGs or 

lipids due to adequate intracellular metabolic pathways found in 
oleaginous yeasts. The yield of such bioconversion can vary depending 
on several factors, including the cultivation method, the strain used, the 
extraction strategy or the carbon source used. Considering the possible 
industrial-scale implementation of TAGs production for subsequent 
conversion to biodiesel, techno-economic feasibility assessment should 
be a key parameter in the experimental design. In a techno-economic 
analysis of microorganisms producing high-value lipids, it was discov-
ered that the utilised carbon source represented 50–80% of the pro-
duction costs [10,71]. Studying the possible carbon sources to be 
considered substrates is advisable to reduce production costs and in-
crease lipid accumulation. Table 1 shows some results on lipid produc-
tion by various oleaginous yeasts using different carbon sources for 
growth. Fig. 3 shows the processes described below, using different 
feedstocks for lipid production. 

3.1. Glucose and other sugars 

Oleaginous yeasts can utilise diverse hydrophilic and hydrophobic 
substrates as carbon sources to accumulate lipids in the form of SCOs. Of 
all possible sugar carbon sources, glucose has probably been most 
extensively studied in lab-scale studies, reaching significant fat contents 
[22]. Other sugars used to grow such yeasts mainly include pure xylose, 
fructose, sucrose or galactose. This process is illustrated in Fig. 3A. 

According to Carsamba and co-workers, three types of lipid accu-
mulations are observed when glucose (or similarly catabolised com-
pounds) are used as a carbon source in batch nitrogen-limited cultures 
[49]. The first one, known as typical oleaginous metabolism, occurs 
when large amounts of lipids are accumulated in the cell after nitrogen 
exhaustion. At the same time, extracellular metabolites production, such 
as citric acid and polyols, is reduced. The second type (also known as 
atypical oleaginous metabolism) stores lipids following nitrogen deple-
tion in the medium, and citric acid generation commences and continues 
unabated at a later stage, accompanied by a decrease in lipid content. 
The third form of metabolism is atypical metabolism, in which lipids 
accumulate slowly in yeast cells without being degraded, while citric 
acid is secreted simultaneously. 

Moreover, according to the stoichiometry of glucose (and compara-
ble sugars such as lactose, fructose, and others) metabolism, 100 g of 
glucose (⁓ 0.56 mol) catabolised would produce roughly 1.1 mol of 
acetyl-CoA. As a result, assuming 100% of the acetyl-CoA generated goes 
towards lipid synthesis, the highest possible yield of SCO produced per 
gram of glucose ingested would be 0.32 g/g [89]. However, even under 
optimum SCO production conditions (e.g., well-aerated chemostat cul-
tures), the lipid yield on ingested glucose is seldom more than 0.22 g/g, 
although, in other instances, this threshold value has been set at 0.20 g/g 
or even lower [16]. 

In a study in which the yeast Cryptococcus sp. was cultivated on 
glucose (from 2 to 6%, w/w), when the glucose concentration was 
increased to 6% (w/w), growth and lipid production were suppressed 
[74]. Park and co-workers reported similar findings, claiming that the 
yeast is substrate inhibited when the glucose content in the medium 
exceeds 40 g/L and, that concentrations, between 20 and 40 g/L of 
glucose is optimal for yeast development [90]. 

Moreover, at an initial glucose concentration of 40 g/L, Fontanille 
and colleagues found that Y. lipolytica produced 31 g/L biomass with 
40% lipid content [91]. Since wild strains of Y. lipolytica cannot assim-
ilate xylose and sucrose as sole carbon sources unless the sugar is 
hydrolysed first or the strains are modified to increase the range of 
assimilable carbon sources, they are not particularly efficient sugar 
utilisation platforms and may even prefer substrates such as glycerol 
over glucose [92,93]. To solve problems related to the tolerance to 
xylose and sucrose, metabolic engineering strategies hold great promise 
for this yeast, together with co-fermentation strategies. Burgstaller and 
co-workers reached similar conclusions when growing the oleaginous 
yeasts Apiotrichum brassicae and Pichia kudriavzevii on different carbon 
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sources, including glucose, sucrose, xylose, and galactose [94]. At an 
initial concentration of 10 g/L as sugar content, they managed to 
consume 100% of the glucose and galactose substrates. In contrast, in 
the case of sucrose or galactose, a consumption of 30–60% of the sub-
strate was reached under otherwise the same conditions [94]. Therefore, 
this shows a low tolerance to the latter pair of sugars. 

The mutant yeast R. toruloides R-ZL2 was also used to study the ef-
fects of different carbon sources. Research carried out by Ye and co- 
workers confirmed that sucrose (5% w/w) as a carbon source yields 
better results in terms of lipid production compared to glucose and 
xylose, i.e., 2 g/L vs 1.5 and 1.25 g/L, respectively [95]. These results are 
greatly improved by controlling the nitrogen source used and the C/N 
ratio; ammonium nitrate at a C/N ratio of 200 yields 8.25 g/L lipid 
production, while 65% lipid content can be achieved (using sucrose at 
4% concentration, w/w) [95]. However, according to Manzoor, one of 
the maximum values achieved in terms of lipid content, with glucose as a 
carbon source in the culture medium, was 72% (w/w) with the yeast 
Rhodotorula glutinis [96]. 

3.2. Glycerol 

Glycerol is a major by-product in the biodiesel manufacturing pro-
cess. According to production estimates, for every 10 kg of biodiesel 
produced, roughly 1 kg of crude glycerol is obtained [77]. As a result, in 
2021, Europe generated 236 barrels of biodiesel per day, equivalent to 
more than 1.2 million tonnes per year of crude glycerol [97]. Approxi-
mately half of the oleaginous yeasts cultivated on glycerol have been 
grown on crude glycerol [14]. 

Glycerol constitutes the structural backbone of TAGs and a recom-
mended substrate for yeast lipids, hence oleaginous yeasts may be 

suitable for metabolising industrial glycerol. Therefore, a microbial lipid 
production process may be integrated into a biodiesel producing facility, 
with surplus biodiesel being transesterified from the microbial lipids 
[87]. However, the presence of certain impurities or contaminants, like 
MeOH, may reduce or hinder yeast growth, necessitating purification 
before fermentation [98]. A typical pre-treatment process, with the 
subsequent use of the pre-treated substrate to cultivate an oleaginous 
yeast for lipid production, is depicted in Fig. 3B. 

Y. lipolytica and R. toruloides species have been shown to use glycerol 
efficiently, making them popular among glycerol researchers [99]. For 
example, some of the Rhodotorula species have demonstrated to generate 
higher levels of conjugated linoleic acid [100] with lipid yields of 
roughly 0.27 w/w with pure glycerol [101] and 0.22 w/w with synthetic 
crude glycerol [102]. These are promising results considering that the 
theoretical maximum yield in grams of lipid produced per gram of 
substrate consumed is around ⁓0.30 g/g [89]. Moreover, Teixeira 
Souza and co-workers compared the results of growth and lipid pro-
duction of the yeasts Y. lipolytica CCMA 0242, Y. lipolytica CCMA 0357, 
C. humicola CCMA 0346 and W. anomalus CCMA 0358 grown in culture 
media containing glucose, glycerol and crude glycerol (from biodiesel 
industries) [77]. The lipid production of Y. lipolytica CCMA 0357 was the 
highest, with nearly 70% (w/w) lipids produced, using 100 g/L crude 
glycerol [77]. Other authors, such as Uprety and colleagues, report the 
capacity of some other microorganisms to assimilate crude glycerol to 
obtain biodiesel. For example, they also show the capacity of Tricho-
sporonoides spathulata JU4-57 to accumulate lipids in the form of SCO 
from crude glycerol, reaching a lipid content of 56.4% (w/w) when 
cultivated in fed batch mode [103]. 

Table 1 
Lipids production by oleaginous yeasts on different carbon sources.  

Yeast Carbon source C/N Culture mode Lipid concentration 
(g/L) 

Lipid content 
(%, w/w) 

Lipid yield 
(YL/s) 

Ref. 

C. curvatus DSM 101032 Glucose 40 g/L 40 Batch culture 5.23 52.6 0.15 [72] 
C. curvatus MUCL 

29819 
Glucose 40 g/L N. 

D. 
Batch culture 3.5 42 0.088 [73] 

C. curvatus MUCL 
29819 

Acetic acid N. 
D. 

Batch culture 5.01 71.7 >0.139 [73] 

Cryptococcus sp. 
SM5S05 

Glucose 4% w/w N. 
D. 

Batch culture 6.0 63.5 N.D. [74] 

C. curvatus ATCC 20509 Acetic acid 40 g/L N. 
D. 

Batch culture 6.32 65.3 0.17 [75] 

C. curvatus DSM 70022 VFAs derived from wastepaper 40 Batch culture 1.78 41.2 0.11 [76] 
Y. lipolytica CCMA 0357 Crude glycerol 100 g/L N. 

D. 
Batch culture N.D. 70 N.D. [77] 

Y. lipolytica CICC 31596 Acetic acid 70 g/L N. 
D. 

Batch culture 10.1 27.2 0.14 [78] 

Y. lipolytica CICC 31596 Mix of VFAs 50 g/L (acetic: propionic: butyric acid =
5:2:3) 

N. 
D. 

Batch culture 8.28 30.7 0.16 [78] 

Y. lipolytica ACA DC 
50109 

Mix of VFAs 15 g/L (acetic:hexanoic = 6:1) 200 Batch culture ⁓5 43.4 N.D. [79] 

Y. lipolytica Po1g 
modified 

Glucose (367.4 g/L consumed) N. 
D. 

Fed-batch 
bioreactor 

98.9 66.8 0.269 [80] 

Y. lipolytica ATCC2046 
modified 

Glucose 100 g/L initial + 400 g/L feed N. 
D. 

Bench top 
bioreactor 

72.7 81.4 0.252 [81] 

L. starkeyi NBRC10381 Lignocellulose 30 g/L N. 
D. 

Batch culture N.D. 68.2 0.19 [82] 

L. starkeyi DSM 70295 Glucose 64 g/L + Xylose 16 g/L 72 Batch culture 4.9 40 0.162 [83] 
L. starkeyi ATCC 58680 Glucose 20 g/L + Xylose 10 g/L N. 

D. 
Batch culture N.D. 56 0.18 [84] 

R. toruloides AS 2.1389 Food waste (50 g/L sugars) 73 Batch culture 6.37 52.7 0.127 [85] 
R. toruloides AS 2.1389 Distillery wastewater 21 Unsterilised 

batch 
3.5 43.7 N.D. [86] 

R. toruloides ATCC 
10788 

Crude glycerol 44.5 g/L 100 Batch culture 11.3 53.3 N.D. [87] 

L. lipofer NRRL Y-1155 Crude glycerol 61 g/L N. 
D. 

Batch culture 5.46 57.6 0.12 [66] 

R. babjevae DVBPG 
8058 

Lignocellulose hydrolysate (Glucose 56 g/L + Xylose 
27.2 g/L + Acetic acid 5 g/L) 

N. 
D. 

Batch culture 18.1 64.8 0.24 [88]  
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3.3. Lignocellulose 

The hydrolysis of complex organic feedstocks can be used to provide 
a suitable culture medium for yeasts. Regarding availability, lignocel-
lulosic biomass is abundant and appealing in the form of hydrolysed 
feedstock. 

In oleaginous yeast research, lignocellulosic materials, primarily 
maise stover, grass/cane, or other plant wastes, have been employed 
considerably for hydrolysis [104]. Artificial hydrolysates have also been 
created to assess a yeast strain’s capacity to synthesise lipids, including 
mixtures of glucose, arabinose, xylose or acetate, as well as cellobiose, 
from lignocellulosic hydrolysates [105,106]. Regarding xylose, it could 
be considered that the phosphoketolase pathway is used for its assimi-
lation. Therefore, the theoretical maximum yield of lipid production per 
gram of xylose consumed is about 0.34 g/g [89]. As the initial step to-
ward microbial lipid synthesis, polysaccharides in lignocellulosic 
biomass must be transformed into monomeric sugars through enzymatic 
hydrolysis. High sugar concentrations from enzymatic hydrolysis are 
desirable because they allow for high-titter lipid synthesis, which is 
necessary for a commercially viable microbial lipid biorefinery [107]. 
However, sugar production and concentration are frequently low to 

moderate due to lignocellulosic biomass’s complex structure and re-
fractory nature [108]. A pre-treatment procedure to deconstruct a 
polysaccharide-lignin complex is required to minimise biomass recalci-
trance and maximise biochemical conversion [109]. In addition to 
sugars, inhibitory chemical compounds (ICCs) are also produced due to 
the biomass pre-treatment, and they would restrict microbial growth 
throughout the fermentation process. This process is illustrated in 
Fig. 3C. Estimating the types of ICCs is challenging since the nature of 
by-products generated depends on both the kind of biomass treated and 
the pre-treatment technique used [82]. 

There are yeast strains which, by their nature, can better metabolise 
the major components found in the lignocellulosic biomass. Some of 
these strains are C. curvatus [110], L. starkeyi [111] and P. hubeiensis 
[105], among others. In particular, several yeasts of the Lipomyces 
genus, such as L. starkeyi, L. doorenjongii or L. orientalis, have proven 
their ability to consume 100 g/L lignocellulose sugars (50 g/L glucose +
50 g/L xylose), which is relatively high compared to other strains [82]. 
Of the three strains mentioned above, L. starkeyi results are the most 
promising to date in the use of lignocellulosic biomass, reaching lipid 
contents of 68.2%, even in media where ICCs were present, such as 
furfural, vanillin, syringaldehyde or acetic acid [82]. However, 

Fig. 3. Overview of different lipid production processes according to the different primary carbon sources. A) Production of lipids from glucose. B) Lipid production 
from crude glycerol. C) Lipid production from lignocellulosic biomass. D) Lipid production from VFAs. 
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sometimes, the presence of acetic acid or other VFAs can be beneficial 
for the growth of the strains as long as they are present in relatively 
small concentrations, as also addressed more in detail in a later section. 

In the case of other oleaginous yeasts that show higher inhibition to 
ICC compounds generated in the pre-treatment, a possible solution that 
gives positive results is genetic engineering, as in the case of 
R. toruloides. For instance, in a recent study aiming to improve the 
robustness of R. toruloides to inhibitory compounds such as phenols (p- 
hydroxyphenyl, guaiacyl, and syringyl groups), genes degrading 
phenolic compounds were overexpressed through genetic engineering, 
resulting in a 25% increase in lipid production and a 30% increase in 
terms of biomass [112]. This could be a way to improve performance 
when dealing with inhibitory compounds present in lignocellulose. 

3.4. Acetic acid and other VFAs 

Volatile fatty acids are highly appealing substrates because they may 
be generated by pure or mixed microbial cultures from feedstocks such 
as waste or gas emissions [113,114]. To assess their efficiency for 
growing on lignocellulosic hydrolysate or anaerobic digestion (AD) ef-
fluents, oleaginous yeasts have been cultivated on acetate or combined 
VFAs [115,116]. The most common VFAs generated during AD are 
acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, and caproic 
acids [117]. Nevertheless, less is known about the possible use of 
iso-butyric, valeric, iso-valeric, and caproic acids, which can account for 
more than 30% of all VFAs in anaerobic fermentation effluents [117]. 
Many different types of wastes, wastewaters, and other similar feed-
stocks have been used to produce VFAs. They are suitable for oleaginous 
yeast growth, e.g., wastepaper [76], tuna waste [113], food waste [118], 
algae biomass [117], cheese whey [119], sewage sludge [120], brewery 
wastewater [121], among others. With anaerobic bacteria, the VFAs 
production profile highly depends on different aspects, such as the na-
ture of the substrate used and the operational conditions in the case of 
AD processes [118]. This process is illustrated in Fig. 3D. 

On the other hand, acid toxicity is one of the critical problems pre-
venting reaching high lipid yields with this type of substrate. Acid 
concentrations typically employed in batch fermentations can inhibit 
the yeast’s activity, and excessively high VFAs concentrations would 
thus have adverse effects on oleaginous yeasts [122]. The pH will 
decrease as the acid concentrations increase in the yeast’s culture me-
dium. This is also a key factor affecting their growth, as at pH below 4, 
most oleaginous yeasts are inhibited [42]. Besides, during VFAs 
metabolisation, the pH might become basic due to the assimilation of 
acids, resulting in potential yeast growth suppression. Furthermore, 
about the use of different volatile fatty acids as substrates, it was found 
that yeasts assimilate short-chain acids better than long-chain acids. For 
instance, it was observed that over the first 24 h of fermentation, 
Y. lipolytica could more swiftly metabolise acetic acid than other VFAs 
(0.035 g/L⋅h vs 0.015 g/L⋅h) [123]. 

Despite the problems that can appear during the cultivation on VFAs, 
either through inhibition and/or because of the type of acid, oleaginous 
yeasts can effectively convert acids into lipids. For example, under 
alkaline conditions, Gao and co-workers cultivated the yeast Y. lipolytica 
in batch cultures using synthetic and waste-derived high-content vola-
tile fatty acids [78]. Due to the alkaline conditions, the yeast was able to 
tolerate acetic acid concentrations of 70 g/L and higher, with a lag phase 
of no more than 24 h and a lipid concentration and lipid content of 10.1 
g/L and 27.2% (w/w), respectively, using an alkaline pH of 8.0 [78]. It 
was also able to avoid inhibition using a 50 g/L VFAs mixture (acetic: 
propionic:butyric acids, 25:10:15) as substrate, with results in terms of 
lipid concentration and lipid content of 8.28 g/L and 30.7% (w/w) 
respectively, at pH 9.0 [78]. In another study, using a mixture of 
different VFAs with a total concentration of 30 g/L (acetic:propionic: 
butyric acids, 15:5:10) to cultivate the yeast C. curvatus, maximum 
concentration and lipid content of 4.93 g/L and 56.8%, respectively, 
were achieved [42]. So far, one of the highest results obtained in terms 

of lipid content, using acetic acid as the sole carbon source, was 73.4% 
(w/w), reached with the yeast C. curvatus [115]. Huang and co-workers 
found that R. toruloides was able to accumulate more lipids when grown 
on 20 g/L acetic acid as the sole carbon source than with 20 g/L glucose, 
using otherwise the same culture conditions [73]. 

3.4.1. Acetic acid and other VFAs from carbon capture and CO2 
valorisation 

Contrary to AD, when gases such as CO2 or syngas are fermented by 
anaerobic bacteria such as acetogens, acetic acid will essentially be the 
primary or even single acid produced. Only occasionally have butyric 
and caproic acids been observed, besides acetic acid, in such C1-gas 
fermentation processes [124]. Related to this, Robles-Iglesias and 
co-workers efficiently produced lipids with R. toruloides from acetic acid 
obtained from Acetobacterium woodii grown in bioreactors with contin-
uous feed of a mixture of CO2 and H2, aiming at valorising biogenic CO2 
[34]. A. woodii converts C1 gases through the Wood–Ljungdahl pathway 
(WLP), with acetic acid as the end metabolite. Suppose longer chain, 
even fatty acids (i.e., butyric and caproic acids) are produced, besides 
acetic acid. In that case, such mixture is also efficiently metabolised by 
oleaginous yeasts such as Y. lipolytica, though further optimisation 
studies are necessary [125]. C. carboxidivorans can typically produce 
such C2, C4, and C6 fatty acids mixtures from C1-gases (CO2, CO) [124]. 

4. Parameters affecting lipid accumulation 

Process variables, including the nature of the substrate, C/N ratio, 
nitrogen source, pH, temperature, or even dissolved oxygen (DO) con-
centration, can significantly impact on yeast lipid synthesis and their 
characteristics, including the fatty acid profile. For instance, nitrogen 
deficiency has generally been identified as the critical factor for lipid 
accumulation in oleaginous yeasts, as described hereafter [126]. 

4.1. C/N ratio and nitrogen source 

According to several studies and as mentioned above, the carbon to 
nitrogen ratio is one of the main factors which affect the lipid content. 
An optimal C/N ratio is a crucial factor for the stoichiometric require-
ment of the carbon flow to generate biomass and leave excess for lipid 
synthesis [127]. Therefore, an optimal condition for lipid over-
production is a culture medium rich in a carbon source with a limited 
amount of nitrogen and thus a high C/N value [128]. A study with 
R. glutinis grown on glucose as a carbon source clearly showed that the 
lipid content increased by 32% when the C/N ratio was raised from 20 to 
70, while the lipid concentration was also increased 4.5-fold [129]. This 
experiment also revealed that at higher C/N ratios (above 100), the 
yeast’s ability to synthesise lipids was inhibited, probably due to inhi-
bition by high glucose concentrations in the culture medium [129], 
which in the end is more related to substrate inhibition rather than the 
C/N ratio as such. The maximum C/N ratio that a yeast can tolerate can 
vary depending on the strain. Indeed, compared to the study above, 
Award and co-workers, performing experiments with the yeast 
C. oleaginous, determined that the best C/N ratio was 120, reaching 
44.3% (w/w) lipid content using glucose and yeast extract as carbon and 
nitrogen source, respectively [130]. It is also worth highlighting that, 
besides the C/N ratio, different studies may use different operating 
conditions (e.g., pH, temperature, macro- and micro-nutrients) which 
may affect the final results and conclusions. When using acetic acid as 
the sole carbon source, combined with ammonium chloride as the ni-
trogen source, to culture the yeast R. toruloides, in this case, it was found 
that a C/N ratio as high as 200 was the optimum, resulting in 48.2% 
(w/w) lipid content, in batch cultures [116]. 

On the other hand, increasing the C/N ratio in the growth medium 
may also have adverse effects on some bioprocess efficiency parameters, 
increasing lipid yield and productivity while lowering the biomass and 
growth rate. For example, when growing R. toruloides with a C/N ratio =
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∞ (no nitrogen source was added), a minimum amount of biomass of 
6.8 g/L was obtained when growing the yeast with glucose, while this 
value increased and basically doubled, to 13 g/L, when the C/N ratio 
was 20 [95]. Table 2 shows different values obtained in a study by 
Alexander and co-workers comparing different C/N ratios in three spe-
cies of the Rhodotorula genus [131]. For example, the highest difference 
in biomass decrease was observed in R. kratochvilovae, where increasing 
the C/N ratio from 2 to 100 resulted in a 4-fold reduction in biomass. 
Although with a minor difference, this behaviour was similar in the 
other strains. On the other hand, increasing lipid content was achieved 
by increasing the C/N ratio in each experiment. 

Moreover, in a research carried out by Park and colleagues, the yeast 
C. curvatus was cultured with glucose as the sole carbon source, while 
NH4Cl and NaNO3 were used as nitrogen sources [90]. The C/N ratio in 
both experiments ranged from 5 to 160, at an initial pH of 5.5. As ex-
pected in the experiment with NH4Cl, the amount of lipids increased as a 
function of the C/N ratio, reaching a maximum lipid content of 34% at a 
C/N ratio of 160. On the other hand, different results were found when 
NaNO3 was used as the nitrogen source. With NaNO3, the lipid content 
remained basically constant at all C/N ratios tested, with values close to 
50% (w/w) [90]. In another study, Brabender and co-workers assessed 
the influence of urea as an alternative to ammonium sulfate as nitrogen 
source in Y. lipolytica, and observed an increase in cell growth with 
glucose as carbon source [132]. Overall, the results in terms of lipid 
accumulation slightly improved when using urea, reaching the best re-
sults (1.160 g/L of lipid concentration) with C/N = 240 and 0.333 g/L 
urea [132]. 

Conversely, in some cases, there is evidence that when the C/N ratio 
is increased, the accumulation of intracellular lipids may decrease. This 
occurred in a study where acetic acid or other VFAs were supplied as the 
carbon source at relatively high concentrations. For example, if 
C. curvatus was grown with 30 g/L acetic acid, increasing the C/N ratio 
from 10 to 200 increased the lipid content, but when cultivating this 
yeast with 40 g/L acetic acid, increasing the C/N ratio decreased the 
amount of lipids [75]. This shows that, at high acid concentrations, the 
source of nitrogen, such as yeast extract, or amino acids, such as arginine 
and lysine, becomes more necessary for lipid production and arguably 
prevents acid inhibition [75]. 

4.2. Genetic engineering 

The use of metabolic engineering techniques to increase lipid accu-
mulation in oleaginous yeasts has greatly improved and can significantly 
impact the lipid yield obtained. Nevertheless, most naturally occurring 
oleaginous yeasts are often untyped strains, making it difficult to use 
effective genetic modification approaches [133]. Currently, the primary 
impediment to considerer certain oleaginous yeasts as lipid cell factories 
is the absence of advanced genetic manipulation techniques. One of the 
common oleaginous yeasts regarded as a safe organism for biotechno-
logical purposes is Y. lipolytica. Since the species’ whole genome 
sequence is publicly accessible in a database, it has often served as a 
main reference organism in research on genetics, metabolism, and 
transcriptomics [134]. Although Y. lipolytica is probably the most widely 
reported organism so far in the literature, other species, such as 
R. toruloides, have successfully responded to genetic modifications as 

well [135]. Table 3 shows the results of different genetic engineering 
strategies aimed at increasing lipid accumulation. 

Y. lipolytica and R. toruloides, included in Table 3, have shown 
encouraging results in synthesising lipids and lipid-based chemicals. To 
create specific strains that may be used on an industrial scale, additional 
research is required to understand better the metabolic network 
involved in the push-pull pathways of the target metabolite production. 
If they are susceptible to genetic modification, several other non- 
conventional yeasts with intriguing oleaginous traits may be investi-
gated as prospective hosts [9]. Creating such a platform for commer-
cially viable biotransformation might be greatly aided by new recent 
molecular tools and methods combined with bioprocess optimisation 
methodologies [9]. 

4.3. pH 

The pH of the medium is also an essential parameter in the assimi-
lation of the carbon source by the yeast and the accumulation of lipids. 
Besides, the surface features of the cell membrane are influenced by pH, 
which impacts the carbon absorption process. 

Some studies showed that a slightly acidified medium might favour 
lipid accumulation in some yeast cells (pH 5.0 to 6.5) [141,142]. For 
instance, a pH range of 5–6 is optimal for lipid synthesis, according to 
several experiments using Y. lipolytica grown on glucose [143]. This 
tendency is shown in yeasts whose carbon source is glucose since, on the 
other hand, Gao et al. achieved the best results at an alkaline pH of 8.0 in 
the yeast Y. lipolytica using acidic sources [78]. As explained above, their 
study suggests that in media-rich in acetic acid and other VFAs, the 
alkaline pH helps prevent inhibition, thus stimulating further lipid 
accumulation. Similarly, Liu and co-workers showed that C. curvatus 
grew well in an alkaline medium (pH 8.0–10.0) containing 40 g/L acetic 
acid [75]. This behaviour was attributable to decreased dissociation of 
the VFAs at the high pH values. 

In another study with the yeast R. glutinis grown in potato waste-
water and 5% glycerol, the lipid content was affected by inhibition 
phenomena at pH values below 3. In contrast, the lipid content remained 
constant at pH 4–7 [144]. For R. toruloides grown on food waste hy-
drolysate, there was a significant increase in lipid content when the 
initial pH of the medium was set at 11, reaching 46% (w/w), which was 
50% higher than at pH 4 [145]. Generally, according to several authors, 
the most suitable pH for optimal growth of R. toruloides ranges between 

Table 2 
Lipid content and dry biomass in three Rhodotorula strains using culture media 
with C/N values of 2 and 100, adapted from Ref. [131].  

Yeast C/N Lipid content (%, w/w) Dry biomass (g/L) 

R. glutinis 2 24.5 19.01 
100 31.5 9.98 

R. mucilaginosa 2 20.2 27.74 
100 23.1 13.90 

R. kratochvilovae 2 21.3 41.33 
100 29.7 9.80  

Table 3 
Different genetic modifications applied to Y. lipolytica and R. toruloides that 
resulted in a remarkable increase in the lipid yield.  

Yeast Carbon 
source 

Genetic 
modification 

Genes Lipid yield 
(g/g 
substrate) 
improvement 

Ref. 

Y. lipolytica Glucose Overexpression ACC1, 
DGA1, 
GAPC 

25% [80] 

Y. lipolytica Glucose Overexpression 
and deletion 

DGA1, 
DGA2, 
Δtgl3 

250% [136] 

Y. lipolytica Glucose Overexpression 
and deletion 

DGA1, 
Δpex10, 
Δmfe1 

400% [137] 

Y. lipolytica Sucrose Overexpression 
and deletion 

DGA 
(x3), 
Δdga1, 
Δdga2, 
Δlro1, 
Δare1 

175% [138] 

R. toruloides Glucose Overexpression ACC1, 
DGA1, 
SCD 

42% [139] 

R. toruloides Glycerol Overexpression DGAT1, 
SCD1 

13% [140]  
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4 and 6 [85,146]. In a nutshell, the results of different research studies 
suggest that the ideal pH value varies from one strain to another and is 
also dependent on the carbon sources, among others. 

4.4. Temperature 

The best temperature to grow most oleaginous yeasts is around 
30 ◦C, as most of them are mesophilic [13]; however, some oleaginous 
yeasts have been cultivated at temperatures as low as 3 ◦C (e.g., Rho-
dotorula glacialis) [147] or also under thermophilic conditions, at 45 ◦C, 
as in the case of Blastobotrys adeninivorans [148]. 

Generally, the optimal growth temperature would best be as close to 
room temperature as possible because this would reduce both heating 
and/or cooling costs. In a study with a wide range of strains from 
different families, grown at a C/N ratio of 5 and varying temperature 
from 20 to 37 ◦C, it was found that both below and above the optimum 
temperature, the strains were able to grow but with a lower biomass 
production, which decreased as the temperature moved away from the 
optimum temperature [149]. If it is considered that the optimal tem-
perature for yeast cultures, in terms of energy costs, is 20 ◦C, the yeast 
Waltomyces lipofer showed excellent results, generating an amount of 
biomass very close to its optimal culture temperature [149]. 

In a study carried out on the effect of culture temperature using 
obligate psychrophilic, facultative psychrophilic and mesophilic yeasts, 
it was concluded that for the latter two types, culturing at 4 ◦C affected 
growth rate but not biomass accumulation [150]. In terms of lipid 
production, the only yeasts that experienced a decrease when cultured at 
low temperatures were the mesophilic yeasts [150]. 

Briefly, finding an optimal temperature range where the yeast can 
produce the maximum amount of biomass will favour lipid accumula-
tion and cost-effectiveness. 

4.5. Macro-nutrients 

Some authors studied how some macro-nutrients of the culture me-
dium influenced the yeast’s ability to synthesise lipids. For example, 
Wierzchowska and co-workers discovered a direct relationship between 
the KH2PO4 concentration of the medium and lipid accumulation [151]. 
The authors reported how under limiting concentrations of KH2PO4, the 
amount of lipids accumulated in the yeast Y. lipolytica increased. Still, on 
the other hand, this led to unfavourable conditions for biomass pro-
duction [151]. Other authors, such as Zhao and co-workers, determined 
that FeSO4, together with yeast extract and the concentration of the 
carbon source, are significant components influencing lipid accumula-
tion [152]. Using the yeast R. toruloides, the limitation of various nu-
trients, such as N, P and S, both individually and together, in a medium 
composed mainly of glucose, was also studied through mathematical 
modelling [153]. When testing different concentrations of these nutri-
ents, the lipid content varied between 50 and 77% (w/w). N was the 
compound that most altered the lipid production, with the content 
increasing as nitrogen was limited. With both P and S, the lipid content 
was also reduced when limiting their concentration in the culture me-
dium [153]. 

4.6. Physical parameters 

Physical parameters such as agitation speed, fermentation time or 
even the inoculum’s age and size can also affect lipid production per-
formance [58]. For example, according to Zhang and co-workers, 
optimal agitation for the growth of oleaginous yeasts, such as 
L. starkeyi, lays between 150 and 400 rpm [58]. On the other hand, Liu 
and co-workers studied the effect of inoculum age on lipid production 
with L. starkeyi by growing the inoculum for 36, 40 and 48 h in liquid 
YPD (Yeast extract-Peptone-Dextrose) and then fermenting it in a sugar 
mixture for 36 h [154]. The results of this experiment in terms of lipid 
production were high and very similar, with around 60% w/w lipid 

content. However, there was a difference in the amount of biomass 
obtained (g/L), with the inoculum grown for 36 h yielding the lowest 
amount and the 48-h inoculum the highest. The fermentation time may 
also affect the lipid content and rate of lipid production, with a signifi-
cant increase in both variables during the first 24 h of growth and then 
remaining almost constant [154]. A study on lipid production with 
L. starkeyi dedicated to evaluating the effect of the optical density of the 
inoculation medium revealed that in the case of inoculation of the cul-
ture medium with either a minimum optical density at 600 nm 
(OD600nm) of 0.6 or a maximum OD600nm of 18.0, the final lipid yield was 
roughly similar. However, the growth rate (g/L⋅h) varied, even tripli-
cated, when the medium was inoculated with OD600 nm = 18.0 [155]. 
These results are interesting since inoculating with a higher optical 
density could shorten growth time, resulting in cost savings at the in-
dustrial level. 

One of the other factors influencing lipid production by oleaginous 
yeasts is aeration. For example, increasing the aeration flow rate from 
zero to 2.0 vvm significantly increased the biomass and lipid yields in 
R. glutinis, while increasing from 2.0 to 3.0 vvm exhibited no significant 
change [7]. This indicates that if the rate of DO supply is exceeded, 
virtually no change is observed. On the other hand, it suggests that if a 
high lipid accumulation performance is desired, the DO should be at 
least equal to the oxygen demand. 

In general, optimising yeast growth to achieve maximum yields of 
lipid accumulation should be a key factor before industrial scale-up. 

5. Factors affecting the lipid profile 

The experimental conditions are strongly correlated with the lipid 
profile produced by some yeasts [156]. Typically, lipid profile display 
variations among different strains and media. Of all the lipids commonly 
produced by oleaginous yeasts, oleic acid (C18:1) is generally predom-
inant, with a total percentage ranging from 28 to 66%, approximately, of 
the total lipids produced, followed by palmitic acid (C16:0) with 
11–37% [96]. Lipids that are also produced by oleaginous yeasts but 
which are not as predominant as those mentioned above are linoleic acid 
(C18:2), stearic acid (C18:0), palmitoleic acid (C16:1) and linolenic acid 
(C18:3), whose approximate typical abundance as a function of total 
lipids is, respectively, 3–14%, 1–10%, 1–6% and 1–3% [96]. Their 
relative ratios are comparable to those of various commercial vegetable 
oils in certain circumstances, as shown in Table 4. 

The ability of oleaginous yeasts to produce different lipid profile, 
varying, among others, according to both strain and substrate, converts 

Table 4 
Comparison of the major lipid profiles in vegetable oils and different species of 
oleaginous yeasts.  

Lipid source Lipid composition (%, w/w) Ref. 

C16:0 C16:1 C18:0 C18:1 C18:2 C18:3 

Palm 18.7 1.6 0.9 56.1 21.1 – [157] 
Canola 4.1 0.3 1.8 61 21 8.8 [158] 
Soybean 10.9 0.1 5.7 27.5 51.5 3 [157] 
Corn 11.6 – 2.5 38.7 44.7 1.4 [157] 
Rapeseed 2.8 0.3 1.3 64.4 22.3 7.3 [159] 
R. toruloides 

32,489 
22.2 2.9 5.7 21.3 39.5 6.7 [98] 

R. toruloides 
CBS 14 

25.6 0.8 11.3 45.6 12 2.1 [36] 

Y. lipolytica 
Po1dL 

34 2.6 16.4 15.4 12.2 18.3 [49] 

L. starkeyi DSM 
70295 

43 5.2 6.5 42 2.1 0.1 [160] 

L. starkeyi DSM 
70296 

29.2 4.1 4 55.5 5.7 – [161] 

R. glutinis T13 24.5 1.9 8.7 37.6 18.8 3.5 [162] 
C. curvatus 

NRRL Y-151 
22.9 <0.1 7.6 52 10.7 <0.1 [46]  
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them into microorganisms of high industrial interest. For example, in a 
study by Shaigani and co-workers, the lipid profile of some yeasts was 
mapped by culturing them with different nitrogen-limited sources con-
taining xylose (Xyl), glucose (Glu), and mannitol, and also phosphate- 
limited sources containing N-acetylglucosamine [163]. When 
comparing the N-acetylglucosamine medium to synthetic 
Glu/Xyl-containing media, the FA profile revealed a higher amount of 
unsaturated FAs in the N-acetylglucosamine medium. With N-acetyl-
glucosamine, C. oleaginosus had a lower C16:0 ratio and generated a 
double of C18:2. The use of the mannitol medium also led to an increase 
in unsaturated FAs in Trichosporon asahii and C. oleaginosus and reduced 
C18:0 percentages in this medium [163]. 

Using different concentrations of the same substrate also leads to 
changes in the lipid profile. For example, with the yeast R. toruloides 
DSM 10134 growing in a medium rich in acetic acid, C18:1 decreased 
while C16:0 increased as the initial substrate concentration was 
increased [34]. When different acids are used as carbon sources for the 
yeast, changes in the lipid profile are also experienced. For example, 
several studies have shown that raising propionic and butyric acid levels 
can boost odd chain FAs synthesis in a variety of oleaginous yeasts [164, 
165]. 

Both temperature and pH of the medium can also alter the lipid 
profile produced by yeasts. On the one hand, decreasing the temperature 
most often increases unsaturated fatty acids, although this is not related 
to an increase in total lipid content [166]. On the other hand, decreasing 
the pH of the medium may lead to a rise in C18:1, while the ratio of 
saturated/unsaturated fatty acids remains almost constant [144]. 
Finally, many investigations revealed that the lipid profile is comparable 
to that of vegetable oils. It can be altered by altering the yeast strain, 
carbon concentration and supply, temperature, and pH, among others. 

6. SCOs lipids production costs, scale-up, and LCA 

As with any process to be brought to an industrial scale, a critical step 
is to determine whether it can potentially be cost-effective. The feed-
stock cost is crucial when analysing whether the process will be viable, 
as it generally represents between 50 and 80% of the total costs [10,71]. 

Apart from the feedstock, the following two major costs of this process 
would be the midstream (associated with aspects such as the bioreactor, 
cultivation, media preparation, sterilisation) and downstream (related 
to cell harvesting, lipid extraction, recovery, among others) processes, as 
summarised in Fig. 4. In each of these two processes, the main costs are 
directly derived from the capital, energy, and wastes. All scientific ad-
vances in these three key areas (feedstocks, midstream and downstream) 
would be essential to make lipid accumulation economically competi-
tive in the form of SCO [167]. 

Every engineer is aware that scaling requires an organised, stage- 
gate strategy that outlines the full-scale process from beginning to end 
and applies rigorous project management approaches throughout. 
Therefore, a small diagram summarising the steps that should be fol-
lowed in the industrial scale-up of this fermentation process has been 
developed (Fig. 5). The scaling process is not a closed process and should 
continuously be reviewed iteratively as the project progresses [168]. 

6.1. Feedstock costs 

Yeasts need an organic carbon source to grow, representing one of 
the process’s high operational costs, as indicated above. Before ana-
lysing the costs of the raw material used for yeast cultivation, it is helpful 

Fig. 4. Diagram of the SCO manufacturing process showing the three main cost-critical parts: feedstock, midstream and downstream.  

Fig. 5. A step-by-step approach to the process of industrial scale-up and con-
struction of a yeast fermentation plant. 
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to have a reference of the evolution of feedstock prices of first- 
generation biodiesel. This information is provided in Fig. 6. Besides, 
Table 5 shows the prices of different raw materials used as carbon 
sources by oleaginous yeasts, with some of their main advantages and 
drawbacks. Looking at the recent rise in the price of first-generation 
biodiesel, in Fig. 6, and comparing this with the prices of the raw ma-
terials used to obtain biodiesel from yeasts (Table 5), it can be deduced 
that the cost of the raw material is of high relevance. Authors such as 
Parsons and co-workers conclude in their studies on the techno- 
economic analysis of microbial oil production that the factor that most 
influences the process’s overall economic performance is the price of the 
raw material and the lipid yield. However, the valorisation of co- 
products also has a significant effect [13]. 

According to the prices appearing in Table 5, volatile fatty acids are 
among the cheapest raw materials in terms of carbon substrates used by 
yeasts, with much lower prices compared to other options. Therefore, if 
a good yield in lipid production can be achieved from VFAs, this may 
represent the optimal cultivation option. 

6.2. Midstream costs 

The midstream incur costs and can be a problem in terms of indus-
trial scaling. Around 70–90% of all equipment costs within the 
midstream costs derive from the fermenter [172]. According to Parsons 
and co-workers, these figures are significantly higher if we compare with 
anaerobic fermentation, and therefore such an increased capital in-
vestment may become somewhat prohibitive today [30]. It is essential to 
correctly calculate the working volume to be used, to avoid cost over-
runs. Some authors studied operational alternatives to reduce costs and 
make scaling up less challenging. For example, costs are considerably 
reduced if an open fermenter is used instead of a closed fermentation. 
Braunwald and colleagues estimated that this could result in 27% lower 
operational costs [173]. Also, a difference was reported in terms of 
optimal working volume between these two types of fermenters, being 
80% in closed fermenters and 85% in open fermenters, with a 5% in-
crease in production in open fermenters. While the main disadvantage of 
open culture systems is the potential of external contamination and the 
inability to regulate culture conditions fully, the risk can be reduced by 
constantly feeding fresh inoculum and operating at a high organic load. 
It is also worth highlighting that many yeasts often grow well under 
slightly acidic conditions, which may limit potential bacterial contam-
ination, as the latter generally prefer near-neutral pH conditions. Be-
sides, keeping the nutrient content as low as possible further limits the 
possibility of contamination. Because lipids accumulate in a 
nutrient-limited environment, lipid synthesis would not be affected 
[173]. 

When trying to determine the best operational conditions for given 

biofuel production strains, it is important to evaluate from the onset 
what large-scale production would entail and how large-scale circum-
stances will vary from those commonly seen in smaller laboratory bio-
reactors. First, full-scale bioreactors will have vessel mixing periods and 
gradients in temperature, hydrostatic pressure, nutrient concentrations, 
and dissolved oxygen concentration that are normally more insignificant 
at the laboratory scale [174]. In the end, it could be necessary to develop 
novel process designs to provide enough mixing in the bioreactor vessel 
such that, with good operation, the size and length of such gradients 
would stay within what the production strain can tolerate. However, 
achieving favourable process economics necessitates extreme cost min-
imisation, which almost certainly entails reducing energy inputs for 
agitation and air/oxygen compression, typically resulting in larger 
gradients within the bioreactor. These energy inputs are also necessary 
for mixing and aerating the culture. Therefore, an optimal selection of 
strains capable of maintaining high yields while minimising energy use 
is necessary. Simply said, strains that can maintain productivity in the 
face of higher concentration and temperature gradients inside the 
bioreactor throughout the production process will be favoured for 
large-scale production. 

On the other side, if a high process yield is desired, operational pa-
rameters such as oxygen demand, good agitation and aeration, optimal 
growth temperature, and sterilisation, among others, must be optimised. 
Consequently, costs may also be incurred increase. Humbird and co- 
workers conducted a study on the costs of aeration in an aerobic 
reactor. Their analysis suggested that using a bubble-column reactor 
could reduce 10–20% aeration costs [175]. As a result, a trade-off be-
tween productivity, operational, and capital costs may be required 
within technological feasibility and investment potential. 

6.3. Downstream costs 

Lipid extraction and cell harvesting are critical steps in downstream 
processing after fermentation. In this regard, in a given study, the cost of 
oil recovery through solvent extraction has been calculated to represent 
roughly 13% of the entire cost of yeast lipid synthesis [14]. A cell 
disruption step is necessary to break the cell wall and allow lipid 
extraction. Commonly, a solvent is used for this purpose. This process 
could be integrated into a single step on an industrial scale. The solvent 
would be introduced, the mixture would be homogenised, and then, 
using a distillation column and a solvent recovery process, the solvent 
and lipids would be recovered [173]. Ultrasounds, bead grinding, acid 
or enzymatic hydrolysis and microwave are examples of other disrup-
tion techniques. On an industrial scale, hexane-based wet extraction has 
been modelled [176]. However, enzymatic treatment may be advanta-
geous because it can save on operating costs with low energy con-
sumption; this technique for oleaginous yeasts is still considerably 
limited [177]. Enzymatic pre-treatment with L. starkeyi, for example, is 
ineffective due to sulphide bonding in its cell wall [178]. Some emerging 
technologies for lipid extraction, such as supercritical fluid extraction Fig. 6. Vegetable oil prices from 2016 to 2022 [169,].  

Table 5 
Recent estimated feedstock costs for yeast cultivation with some advantages and 
disadvantages.  

Feedstock Price 
($/kg) 

Year Advantages Disadvantages Ref. 

Glucose 0.5 2017 High lipid 
yields 

Price [77] 
Glucose 0.4 2020 [170] 
Glycerol 0.22 2021 High yield, 

wide sources 
Pre-treatment [14] 

Lignocellulose 0.255 2021 Low raw 
material costs 

Pre-treatment [14] 

VFAs 0.02–0.1 2021 Price, diverse 
raw material 
sources, no 
complicated 
pre-treatment 

Possible 
toxicity on 
growth 

[171]  
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with CO2, are regarded as effective, moderate, and “green” alternative 
approaches, but there are not yet enough techno-economic data to draw 
conclusions on profitability [177]. 

Based on the diagram shown in Fig. 4, the energy costs of each 
equipment in the downstream process have been analysed, taking as 
reference the studies carried out by Karamerou et al. [12] and Bonatsos 
et al. [170]. The costs, estimated for the production of 10,000 ton 
SCO/year, are shown in Table 6. An energy price of $0.06 per kWh has 
been used as a reference. 

According to Bonatsos and co-workers, the energy needed in the 
downstream stage is significantly lower compared to that needed in the 
midstream stage, by approximately 1 kWh for every 25 kWh in the 
midstream [170]. 

As energy-saving methods, apart from the aforementioned solvent 
recovery, a hot air stream coming out of the autoclave in the sterilisation 
stage could be used and recirculated to the heater in the downstream 
stage to save on heating costs. The fermentation’s output properties can 
also ease downstream processing, lowering total production costs. For 
instance, lipid secretion into the culture broth would aid subsequent 
lipid recovery by centrifugation and would save on the cost linked to the 
need to use an extracting solvent [179]. In addition, if not all the sub-
strate has been consumed at the time of lipid extraction, returning the 
remaining supernatant from the centrifugation to the original medium 
would be another cost-saving method to be considered. 

6.4. Life cycle analysis (LCA) 

By identifying all energy and material fluxes that occur within the 
boundaries of a well-defined system, environmental life cycle assess-
ment is a systematic way for assessing the environmental effect of a 
product, a process, or an activity. Only a few LCA have been published 
on the generation of oleaginous yeasts because of the dearth of industrial 
data on the procedure. The sustainability of the feedstock, emphasising 
waste resources rather than first-generation sugars, is one of the essen-
tial needs. Moreover, without a rigorous analysis of its environmental 
performance, the evaluation of a novel process for the manufacture of a 
chemical, energy, or fuel cannot be regarded as complete (impacts). 

In recent LCA studies, the three steps shown in Fig. 4 have been 
considered, from the yeast feedstocks’ pre-treatment processes to the 
product’s final purification. Emissions resulting from administration, 
maintenance, and monitoring of their functioning are not included, nor 
are emissions produced during the building of manufacturing facilities 
and equipment. Acetic acid generated from poplar biomass utilising a 
bioconversion process was considered in an LCA research for the syn-
thesis of yeast derived SCOs feedstock (carbon source) [180]. One ton of 
SCO produced from yeast is used as the functional unit. The LCA data 
referring to the bioproduction of acetic acid for use as substrate in the 
process were obtained from Budsberg et al. [180]. On the other side, the 
data used for the midstream and downstream stages were obtained from 
Bonatsos et al. [170]. 

A lipid yield of 0.17 g/g acetic acid, obtained from the study pre-
sented in Table 1, has been considered. Therefore, approximately 5.88 
tons of acetic acid will be needed to produce 1 ton of SCO. As for yeast 
extract (nitrogen source) and water, it was calculated that 0.42 and 10 
tons are, respectively needed, per ton of SCO [170]. The energy required 
to bio-produce 5.88 tons of acetic acid will be 24,500 kWh [180], and 
the process of bio-converting that acetic acid into lipids is 5193 kWh 
[170]. Therefore, the total energy required will be 29,693 kWh for each 
ton of SCO. In terms of atmospheric emissions, the balance proposed by 
Budsberg and colleagues to produce 5.88 tons of acetic acid is negative, 
at −2175 kg CO2-eq [180], while the process to convert that acetic acid 
into lipids, 4080 kg CO2-eq [170]. In total, 1905 kg CO2-eq would be 
emitted for each ton of SCO. As for the hexane required, it was calcu-
lated that 2.8 kg were needed for each ton of SCO produced, considering 
the solvent’s recirculation and recovery. 

The minimal selling price of SCO was determined from a thorough 

techno-economic study on six different yearly capacities [170]. If we use 
the minimum selling price of acetic acid reported in the analysis of 
Budsberg and co-workers [180] ($0.677 per kg of acetic acid) and 
considering a yield of 0.17 g SCO/g acetic acid, the minimum selling 
price of the SCO is estimated to be between $5.5 and $7.3 per kilogram. 
This value is significantly more than the current prices of vegetable oils, 
which are around $1.5 per kilogram of vegetable oil (Fig. 6). This sce-
nario changes if we use the VFAs prices presented in Table 5 ($0.02–0.1 
per kg of acetic acid). When using these values, the minimum selling 
price of SCO is estimated to be between $1.2 and $4.4 per kilogram. 
These values are closer to the current selling price, however, there is still 
a lot of research to be done in order to lower this threshold and make 
such a process more profitable. According to the present LCA study, GHG 
emissions are in the range of 1.9 kg CO2-eq/kg SCO and are not as high 
as those linked to the manufacturing of popular vegetable oils (3–5 kg 
CO2-eq/kg veg. oil). 

7. Conclusions and future perspectives 

SCOs have been proven to have similar lipid profiles to other vege-
table oils currently in use, such as palm, canola, or soybean oils. This 
provides SCOs identical properties as vegetable oils for biodiesel 
manufacturing. However, despite the academic and technological ad-
vances in this area, in recent years, SCOs still represent a relatively new 
alternative for biodiesel production, currently with some gaps for its 
industrial implementation. For instance, the total costs of setting up a 
biofuel plant from microorganisms are still quite high considering the 
relatively low lipid yields presently reachable. The use of waste-based 
feedstocks, such as volatile fatty acids, would bring the costs down a 
considerable amount. Still, the toxicity for growth at high acids con-
centrations would be a limitation to overcome. 

In terms of legislation and accordance with the 2030 agenda, the 
European Union is committed to third-generation biofuel in regulation 
2009/28/EC, which establishes a target of 3.5% of total transport 
renewable energy use by 2030 (1% by 2025). It plans to phase out the 
use of other biofuels of plant and food origin to reduce CO2 emissions, 
among others. This opens the door to possible increases in financial 
support for both research and implementation of existing technologies 
in the short term. Together with a clear demonstration of environmental 
benefits and solid political support, such financial support could boost 
the roadmap for integrating SCOs in biofuels production processes. 
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[143] Park YK, González-Fernández C, Robles-Iglesias R, Vidal L, Fontanille P, 
Kennes C, et al. Bioproducts generation from carboxylate platforms by the non- 
conventional yeast Yarrowia lipolytica. FEMS Yeast Res 2021;21:1–13. https://doi. 
org/10.1093/femsyr/foab047. 
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