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SUMMARY

The description of the flow that takcs place in clarifiers and other wastewater treatment basins may
be a powerful tool to attain an optimum design of these structures, in order to make the most of the
wastewater trcatment plant resources. Some authors have attempted so by making use of the potential
flow or the Stokes equations. When these simplifications are used, an approximation of the flow for
slow creeping conditions is obtained, but only the resolution of the all-term-including Navier—Stokes
equations will allow us to detect the real streamlines and the vortices that show up for even very slow
water flows. The use of the Navier—-Stokes formulae as the governing equations involves the appearance
of complex stability problems that do not show up for the previously mentioned simplifications. In
the present work a stable finite elcment method for the resolution of the Navier-Stokes cquations is
presented, verified, and used in the resolution of some wastewater treatment flow problems with very
interesting results. Copyright © 2004 John Wiley & Sons, Ltd.

KEY WORDS: wastewater treatment; clarifiers; viscous incompressible flow; FEM; Navier-Stokes;
SUPG

1. INTRODUCTION

A finite element formulation that solves the Navier-Stokes cquations in a stable and efficient
way has been relcased. Once this code has been evaluated, it has been used in the resolution
of some practical engineering problems rclated to the wastewater industry. The obtaining of
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the flow variables in these real cases may provide a powerful tool in order to allow for an
improvement in the geometric featurcs of the flow basins. Only through the comprehensive
knowledge of the hydrodynamic variables, will the flow be not only evaluated but also fully
understood. As a consequence, an adequate design of the basins and channels may be carried
out, based upon an efficient and reliable numerical technique, resulting in grcat cost savings.

The finite element method is a numerical procedure for solving the differential equations
that govern a wide varicty of physical problems. The basis of this numerical tcchnique are
established in “the finite element method® written in 1967 by Zienkiewicz and Taylor [1]. This
technique subdivides the domain of definition into a finite number of smaller regions, and uscs
the weighted residuals mcthod so as to transform the governing differential cquations into a
sct of discrete integral equations. This system of equations gives as a result, the value of the
unknowns at the nodal points of the basic elements, being an approximation to the problem
posed in the governing equations. The application of the finite element method to the flow
problems requires some modifications with respect to the formulation used for the structural
stress analysis problems, which were its first application. Some of thesc modifications have
been borrowed from the finite difference or finite volume approaches, and many others have
been specifically developed for finite elements. When applying the finite element analysis to
the problems of the rigid body, the weighted residual method can be exclusively applied to the
Newton’s second law, which for statics clearly turns out to be the cquilibrium equation. On the
contrary, when dealing with fluids, the shape is not any more conserved, and apart from stating
the equilibrium of momentum, we have to ensure for the continuity of mass. Consequently,
we have two equations to be verified at the same time, and the finite element formulation
should also account for the verification of both. The only set of unknowns in the conventional
structural analysis is that of the displacements, as a conscquence, the system obtained thanks to
the application of the finite element method, gives the displacements in the structure depending
on the stiffness matrix, and the load vector. In the flow problems, we arc hcaded towards
the so-called mixed finite element methods, in which both the vclocity and pressure set of
unknowns have to be treated simultaneously. Many different algorithms have been used trying
to improve the numerical behaviour of these finitc clement formulations for fluids, which
somce authors [2, 3], agree to divide into velocity—pressure integrated, segregated and penalty
methods. A 2D penalty formulation will be presented in this work for the resolution of the
laminar viscous incompressible flow.

The use of a Galerkin formulation, that takes weighting functions equal to trial functions
when solving the Navier-Stokes equations, may lcad to some problems of instability in the
obtaining of the flow by the finite clement method. To avoid this difficulty, some so-called
stabilization procedures have been releascd. The stiffness matrix resulting from structural prob-
lems solved by the finitc element method is symmetric, instead the ‘stiffncss’ matrix obtained
for fluids is non-symmetric and the usc¢ of symmetric weighting functions may lead to some
instability problems. The faster the flow turns, the more non-symmetric the cocfficicnt matrix
becomes. In practice this is featured by the appearance of some spurious node-to-node os-
cillations also known as ‘wiggles’. One way of avoiding these oscillations is to carry out a
refinement in the mesh, such that convection no longer dominates on an element level, but
this refinement turns to be a memory resources sink. This point will be avoided in this work
by the use of a stabilization technique of the SUPG type, for the algorithms considered in it.

The 2D Navicr-Stokes equations assumc a flow that takes place on a two-dimensional
plane, and it is consequently laminar in that sensc. The shallow water formulation has been
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also considered in this work as a way of including the third dimension in the calculations that
allows for an adequate treatment of the free surface. The shallow water formulation gives a
meaningful solution for flows in which the depth is small compared to the horizontal dimen-
sion. The intcgration in depth of the 3D Navier-Stokes formulation causes thc dependence
of the continuity equation with respect to depth, and consequently the appearance of somc
quasi-non-linear terms that depend on both the velocity and the depth. These equations are
solved thanks to a ncwly developed iterative algorithm, which will be solved bascd on a
velocity-pressure integrated formulation. The integration in depth of the 3D Navier-Stokes
cquations allows for the empirical cvaluation of the energy losses taking place in the flow
on a Manning basis. The Manning formula cvaluates empirically the overall encrgy losses
taking place in the fluid flow, including those related with the turbulent effects. This formu-
lation does not capture the turbulent eddies taking place within the fluid flow but takes into
account the turbulent energy losses. Many numerical resolutions of the incompressible flow
use the Manning approach to cvaluate these turbulent effects. However, most of the available
numerical models neglect the viscous effects compared to the turbulent ones and the viscous
term is dropped from the equations. The present shallow water formulation incorporates a
Manning term but does not get rid of the viscous term, allowing for the evaluation of the
overall turbulent losses, together with the viscous effects.

A code will be written bascd upon these particulars, and will be also validated by its
comparison with available numerical and empirical reference results. Once the program has
been validated, it will be used in the resolution of some wastewater problems, and their
results will be presented. Some authors have attempted to evaluate the flow in clarifiers by
using the Stokes hypothesis, or in other words ignoring the convective term in the Navier-
Stokes equations. The potential flow cquations are also used by some authors to cvaluate these
flows. When these simplifications arc used, an approximation of the behaviour of the flow 1s
obtained, but a very important part of the flow features is lost.

Some flow problems related to sewage disposal will be solved by making use of our code,
and their results will be commented upon. We will focus on the obtaining of the flow in
some of the most commonly used clarification and flocculation basins. The evaluation of the
pressure and velocity of the flow in these basins will provide uscful information about the
flow properties. The data about the streamlines and velocity field distribution will allow us to
know where the main recirculation regions arc taking place. This information will be priceless
for the purpose of obtaining the gcometrical parameters of the basins in order to achieve a
better performance of the trcatment plant. The obtaining of this optimum geometry will permit
to avoid the appearance of the recirculation regions, modifying in this way the dctention times
within the basin. Thanks to the information obtained by this numerical cvaluation of the flow,
the water treatment basins and channels can consequently be designed to fit the requirements
of the processes being carried out.

2. GOVERNING EQUATIONS

The relationships to be held are the dynamic and the continuity equations. The first one gives
the variation in the momentum as the summation of the acting forces on the volume of
integration. To this condition we shouid add a second one, which states that in the absence
of sources and sinks, the total mass is conserved. Both equalities make up the Navier-Stokes
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equations. Using thc indicial notation, we can express the stcady Navier-Stokes equations as

1 .
il ;= —; pitovu i+ fi (1)
Ui ; — 0 inQ

together with the boundary conditions:
ll,’]l‘] = bi O'I'jnj]r2 = (2)

where u; is the velocity, p is the pressure, f; is the body force per unit mass, p is density, v
is the cinematic viscosity, [ and I3 are two non-overlapping subsets of the piecewisc smooth
domain boundary T, b; is the velocity vector prescribed in I, 1 is the traction vector prescribed
on I3, 65 is the stress along the boundary I3, and #; is the outward unit vector normal to I3.

The 2D or laminar Navier-Stokes equations do not take into account the third dimension
in space, and provide with the velocities and pressures of a theoretical planar flow. Never-
theless, for many real flow problems, the third dimension in space is very important. The
3D Navier-Stokes algorithms involve very high computational costs; moreover they present
a great difficulty in the treatment of the free surface. The shallow water equations are a sim-
plification of the Navier-Stokes cquations, which can be used when the main direction of the
flow is the horizontal one and the distribution of the horizontal velocity along the vertical
direction can be assumed as uniform. These equations assume that the vertical acceleration of
the fluid is negligible and that a hydrostatic distribution of the pressure can be adopted. When
a 2D Navier-Stokes equation is used, the continuity cquation is only held on a 2D basis.
Nevertheless, the shallow water equations allow for the verification of the continuity equa-
tion on a 3D scnse, providing with adequate results for the depth ficld, even when important
changes in the depth arc taking place within the domain.

Integrating the steady 3D Navicr-Stokes equations in depth, it is obtained:

hll,‘{,‘ —+ lt[h.,' =0
niug Ju? 2
i j 2
wu j— —gh; +vu ;i + gl Soi — —55— )
/1‘
together with the boundary conditions:
ll,‘][‘K :171' /1]1‘: —d (4)

where 4 is the depth, g is the gravity force, Sy is the gcometric slopes, ¢ is the depth
prescribed on I3, R, is the hydraulic radius and » is the Manning coefficient.

3. FINITE ELEMENT FORMULATION

3.1. Penalty laminar formulation

One of the main difficulties found when obtaining a numerical solution for the Navier-Stokes
equations is that apart from verifying the dynamic constitutive equation, the solutions must
satisfy in addition the incompressibility condition. The mixed finite element formulations lead
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to a system in which both velocity and pressure are taken as the unknowns [4]. So as to
reduce the dimension of the resulting system of cquations, a penalty formulation can also be
used. The pcnalty formulation provides with the possibility of imposing the incompressibility
constraint without solving an auxiliary pressurc cquation, by replacing the continuity equation
with the expression:

U =—¢&ep (5)

where the so-called penalty paramcter ¢ is a number close to zero. This equation is incor-
porated into the dynamic equation, and therefore a system that depends on both velocity
and pressure is transformed into a velocity-dependant single equation, that converges to the
fully incompressible problem as ¢ approaches zero [5—7]. Once we have applied the weighted
residuals method, the following intcgral dynamic equation is obtained:

. ; 1
/ u;"(u}’uffj - fHdQ + \'/ u;-"’/-uf"j a2 + / z W ow! dS) — / thwh Al
£y MAYARY FAN

Qp

1 .
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where w; —w; + p. are the SUPG weighting functions to bc specified later in the text and the
h superscript stands for the discretization being carried out in our formulation, in terms of a
structured mcsh. Once the elementary matrices have been calculated they can be asscmbled
to obtain the non-linear system:

1
Ci(u,v)u+vAp+ " Bu=f (7

where C,(u,v) is the convective matrix, A, is the viscous matrix, B, is the pcnalty matrix,
u is the velocity vector in the x direction, v is the velocity vector in the y direction, f
is the external forces vector and v is the velocity vector. The non-linearities introduced in
the system by the convective term C,(u,v)u are solved by using a successive approximation
method, which can be mathematically expressed as

/ﬁyuju,'_jdﬂz/ ﬂ',-u}’-’*lufde (8)
2 S

where the superscripts 7 and n — 1 stand for the values of the variables in the present and
previous iterations. This linearization technique has shown to provide with good results in the
resolution of the Navier-Stokes equations [8].

Once the velocity field has been obtained, the pressure field can be calculated as a post-
processing result, by using the formula:

1
h h ’
==, (7)

The solution to Equation (6) will approximate that of the initial problem as ¢ tends to zero,
provided that the penalty consistency condition is verified. If not, the use of the penalty
formulation could lead to the obtaining of a non-singular coefficient matrix associated to the
penalty term. As & tends to zero, this term may dominate the system of equations, therefore the
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whole problem could be over-constrained, and the only possible solution could be the trivial
one [5]. This problem can bc avoided by making a so-called selective reduced integration
of the elementary matrices involved in the resolution of the problem. A reduced numecrical
integration consists in using a quadrature rule that is not exact for the polynomials considered.
The use of a one point Gauss quadrature rule for the integration of the quadratic functions in
the penalty term transforms the associated ‘penalty’ matrix into a rank deficient matnx, and
consequently ‘unlocks’ the obtaining of a non-trivial solution [9].

3.2, Shallow Water formulation

For the resolution of the shallow watcr equations we will use here a finite element mixed
approach in which the unknowns of the resulting system of equations will be both the velocity
and the depth. If we apply the weighted residuals method on both the dynamic and continuity
shallow water equations, we would obtain

/ wiul ;= g(S, — S dQ + v / wl il A —g / wl'h" dQ - / 1wl dD
RAL S S

8y

+Z/ (u’I bl 5t gh" — g(St S"~i))dS2 =0

/ g (Kl 4R a0 (8
Qn

Now we find products of both the velocity and the depth among the terms included in the
dynamic equation. The cxistence of thesc terms, allows for the verification of the conservation
of mass in a pseudo-3D basis, but introduces some pseudo-non-linearitics in our formulation
that have to be solved by employing another numerical approach [10]. When using a mixed
formulation in the resolution of the Navier-Stokes equations one of the sources of instability
is the one produced by an inappropriate combination of the interpolation functions for the
velocity and pressure unknowns. An equal interpolation may provide good results for the
velocity but a meaningless solution for the depths [11]. The Q1PO basic pair (bilinear velocity-
constant pressure) has shown to provide with stable solutions cven not satisfying strictly the
LBB condition and will be used in the calculations [12].

The linearization of the pscudo-non-linearities that appear in the continuity cquation is
going to be carried out on a finitc differences basis. For the first iteration 1t will be assumed
that the depth values in the continuity equation are equal to the outflow given depth. In the
following iterations to be carried out in order to solve for the convection, the depths and
gradients of depth in the continuity equation will be evaluated from the results of the former
iteration, and this evaluation will be carricd out in terms of a finite diffcrences approach to
obtain the star depths and star gradients of the depth. For details you can refer to Reference
(12].

After each iteration for convection has been solved, the star depths and star gradients of
the depth are calculated and re-fed into the continuity equation. The use of this algorithm
developed by the authors in the resolution of the Shallow Water cquations achieves very
good numerical results as will be seen in thc numerical examples. The general procedure
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for the obtaining of the steady system of differential equations could be written in its matrix
form as

C,(u,v)u+vA,v -Bh—_f 9
D(h*)v + E(h*)p =0 (10)

where C,(w,v) is the convective matrix, A, is the viscous matrix, B 1s the depth matrix,
f is external forces vector, D(h*) is the star depth matrix, E(h*) is the star gradient of
depth matrix, f is the external forces vector, h is the depth vector and v is the velocity
vector.

3.3. SUPG stabilization of the algorithms

The SUPG (streamline/upwinding Petrov—Galerkin) technique, first developed by Brookes
[13], succeeds in eliminating the spurious velocity field, without carrying out a severe refine-
ment in the mesh, by considering weighting functions that differ from trial functions in an
upwinding term. This method was first released for the transport equation, and its generaliza-
tion to the Navier—Stokes equation brings an additional problem; that is the appcarance of an
excessive diffusion normal to the flow. The SUPG method eliminates this spurious crosswind
diffusion by considering an artificial diffusion that acts only in the direction of the flow. The
above formulations include a SUPG term in the dynamic weighting functions that are defined
as follows:

- o, kAt
w;=w; + p, with pf' = H“I’H\ (11)
where the multi-dimensional definition of the diffusion coefficient & is given by
=,k |
. u; - Glths + nu{,h,,
L W SR e (12)
© 2
where
= 1 -
= |(cothoa;—— |, 7= cotho, — —
o "
whh: ulh, (13)
o — N oy — ——
° 2v T 2y
W =equl, ' =e

where A, h, and ez, e, are the characteristic basic-element lengths and unit vectors in the
direction of the local axes ¢ and # (see Figure 1). The parameters o; and 2, are the directional
Reynolds numbers of the basic element, u/; is the velocity in the interior of the element
and v is the kinematic viscosity of the fluid. Different versions of the streamline upwind
formulation have been used by other authors and can be found in [3,7,14]. The present
weighting functions will be used in the penalty laminar and in the shallow water formulation
explained before.
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Figure 1. Characteristic basic-element lengths and unit vectors. Optimal rulc
for the approximation of {y#.

4. NUMERICAL RESULTS

4.1. The Backward-fucing step benchmark problem

The backward-facing step benchmark problem will be used for verification purposes. The
backward step is based upon a simple geometry where flow separation and reattachment
occur. Experimental data for this problem can be found in Amaly et al [15], who also
solved this problem numerically by using a control-volume-based finite difference method.

The geometry and boundary conditions considered for this benchmark problem have been
those used in Reference [15]. An cxpansion ratio of 1:1.94 has been considered for the
widening of the channel, which has a total length of 50 so as to allow for the vortices to
take place. The inlet boundary has becn located at 3.5 step heights upstream of the expansion
corner. The domain has been split into 2850 Q1PO basic non-regular elements with 3021
nodes. The mesh is coarser at the outlet and more refined at the left-hand side of the channel,
so as to allow for a better accuracy in the regions where the primary vortices occur. A bias
parameter of 0.5 has been used for this purpose along the x-axis, therefore the width of the
basic elements at the inlet is one half of that of the clements at the outlet, and the height of
the basic elements is uniform within the whole domain. The mesh can be seen in Figure 2,
where a magnifying factor of two has been used for the y-axis. A parabolic horizontal velocity
profile has been imposed at the inlet with a maximum velocity of 1, and the velocity is equal
to zero at the boundaries. The lateral sides have been considered as solid boundaries and
the no-slip condition has been imposed on them. Finally, a zero traction condition has been
imposed at the outlet.

The flow has becen obtained for a Reynolds number between 100 and 1200. The Reynolds
number has been defined as Re —u - D/v, where u is the average inlet velocity, D 1s the
hydraulic diameter and the kinematic viscosity v has been altered so as to make the Reynolds
number vary. As foretold by the experimental results in Reference [15], there cxists a single
re-circulation zone at the expansion corner up to a Reynolds number of about 450, beyond
which a second vortex shows up at the top boundary, and gets bigger as the Reynolds number
is increased (Figure 3).

The reattachment locations of the vortices are defined as follows; s; i1s the reattachment
location of the primary vortex, s; is the separation location of the secondary top boundary
vortex and s; is the reattachment location of the secondary vortex. All of them have been
measured from the expansion comer, as depicted in Figure 4.

As seen in Figures 5-7, the computed results obtained in the present work compare more
favourably with cxperimental data than the numerical results from Armaly. Although the
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Figure 2. Backward facing step. Mesh.
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Figure 4. Flow over a backward facing step. Sketch of the recirculation lengths.
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Figure 5. Reattachment length s, versus Reynolds number for the backward facing step.

present results are totally analogous to the experimental data in Reference [15] for s3 and for
all the Reynolds numbers considered, when taking about s> and specially s, the experimental
data differ from the calculated results beyond a Reynolds number of about 400. This difference
between measured and calculated values is not only shown in the numerical results by Armaly,
but also in the results by References [2,16] among many others. The differences 1n these
values are due to the fact that the 3D effect becomes very important as the Reynolds number
is increased. As pointed out by Armaly, these effects became predominant beyond a Reynolds
number of 1300.
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Reattachment length s2
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Figure 6. Recattachment length s; versus Reynolds number for the backward facing step.
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Figure 7. Reattachment length s; versus Reynolds number for the backward facing step.

4.2. Application to some wastewater treatment problems

The so defined algorithms create an optimum frame for the evaluation of the flow in some
wastcwater treatment basins, which is an cssential tool in the designing of the wastewater
treatment plants for the optimization of their behaviour. Making use of the code, the flow has
been cvaluated in some conventional wastewater basins of common use, and has also been
employed in the design of some newly developed basins for wastcwater biological treatment,
as part of the research being carried out in the School of Civil Engineering of La Coruna.
Some authors have used the potential flow cquations to evaluate the flow in clarifiers and
other wastewater treatment basins. When we use thesc simplifications, we can obtain an
approximation of the flow for slow creeping conditions, but only the resolution of the all-
term-including Navier—Stokes cquations will allow us to detect the real streamlines and the
vortices that show up ¢ven for very slow water flows. Let us now use the previously explained
formulations in the resolution of some wastewater treatment basins.

4.3. Flow in a clarification basin

The flow of water in several clarification tanks has been considered. Clarification has two
main applications in the water treatment processes. Its most usual aim is to reduce the solids
load after coagulation and flocculation have taken place. Its second application is the removal
of heavy settleable solids from a turbid source to lessen the solids load in water.

The simplest type of clarification pool is the so-called horizontal-flow sedimentation basin,
in cither its rectangular, square or circular design. The aim of a good clarification basin design
is the obtaining of a sufficiently stable flow, so as to achieve a better sedimentation. There
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Figure 8. Rectangular clarifier with bottom sludge scraper.

is a large numbecr of non-conventional devices for high rate clanfication, such as tube or
plate settlers, dissolved air flotation clarifiers, sludge blanket or slurry recirculation clarifiers.
The choice of onc of those depends on the features of the inflow water, the outflow water
requirements, and on the time, space and budget availability to carry out the purification of
the water, and should be determined for each particular case. The description of the flow is
a powerful tool to attain an optimum shape in the designing of these structures, in order to
make the most of the plant resources. The clarification basins calculated as an example have
been a rectangular and a circular conventional clarifiers, and also a plate settler. To do so,
the laminar penalty Navier-Stokes and the shallow water formulations have been uscd.

The rectangular and circular basins are the most commonly used clarification devices, in
spitc of their simplicity, they have achicved excellent results with scant maintenance costs.
These basins were originally designed with the capacity to store sludge for several months and
were periodically taken out of service for manual cleaning. Today, most of the clarification
basins include a continuous cleaning mechanical equipment, such as dragging chains that plow
the sludge along the basin floor to hoppers. Nevertheless, these mobile devices for cleaning
and other purposes do not have an important influence in the streamline distribution, and can
be ignored when the flow is calculated (for further details on clarification basins you can refer
to Reference [17]).

4.3.1. Flow in a rectangular clarifier. As a first example, the flow in a conventional hori-
zontal-flow rectangular basin is observed. The tank dimensions are: width 9 m, length 24 m
and depth: 3.3 m. A slopc of 1.25% has been given to the floor in order to allow for sludge
concentration and withdrawal. The design parameters are a detention time 3 h and a surface
loading rate of 1 m/h. When working with clarifying basins, one of the criteria to be used
in their definition is that of achieving a maximum head loss at the inlet, so as not to disturb
the slow flow of the water mass being treated. Therefore, we should avoid turbulence by
placing some kind of energy dissipating structure in the faster zonc, that is the inlet (sce
Figure 8). Onc of these maze-looking dissipating structures has been considered for the inlet
of our rectangular clarifier, being placed in the left-hand side. For the outlet, a conventional
overflow Jaunder has been disposed in the right-hand side, and the main streamlines are
therefore travelling from left to right. For the outlet. a baffie plate has been placed at a
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Figure 9. Flow in a rectangular clarifying basin. Mesh.
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Figure 10. Flow in a rectangular clarifying basin. Streamlines.

distance of 0.5 m from the spillway so as to avoid floating stuff getting into the effluent
nozzle.

The domain in which the flow takes place has been split into 949 Q1PO basic elements with
1052 nodes. For the working parameters chosen and an inflow section of 0.6m, a velocity of
1 cm/s has been imposed at the inlet. The no-slip condition has been imposed at the bottom
and lateral sides, and the spillway has been left free with a zero traction boundary condition.
For the topside, the vertical velocity has been fixed as zcro and the horizontal velocity has
been left free (Figure 9).

As can be seen in the streamline plot (Figure 10), a re-circulation zone happens to occur
at the inlet, and a bigger one shows up besides the inflow baffle platc. The first one is
a consequence of the leftward direction of the inflow. This is a wanted effect so as not to
disturb the flow in the chamber by the entrance of the water. The second and bigger one takes
different sizes for varying inflow velocity values, and would vanish for a Stokes analysis that
ignores the convective effects. Its existence is an unwanted effect and the basin proportions
should be re-designed so as to avoid its existence. Figures 10 and 11 rcpresent the isobars
graph and surface plot for the pressure ficld within a vertical scction of the rectangular clarifier,
in both of them the pressure is cxpressed in cm. The so-obtained pressure field is simular to
that of the hydrostatic problem as expected.

4.3.2. Flow in a circular clarifier. The other conventional horizontal-flow sedimentation basin
considered has been a circular basin with central feeding. The dimensions of the basin are:
depth: 3.65m and diameter: 17.5m. A slopc of 8% has becn considered for the bed. The
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Figure 11. Flow in a circular clarifying basin. Pressures ( p/7) in cm.
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Figure 12. Circular clarificr with bottom sludge scraper. Sketch.

design parameters uscd in its definition are: detention time 3 h, surface loading rate I m/h. To
avoid turbulence at the inlet, a 1 m high bafflc platc with a diameter of 1.7m has been placed
around the inflow central cylindcr, where the horizontal inflow velocity is imposed from height
265 cm up to height 365 cm. The outlets are situated at the circumference perimeter, where
an overflow launder endowed with a baffle plate, has been disposed. The flow is obtained by
considering a laminar slice that is solved in one half, and then mirrored by the vertical axis
so as to obtain the whole flow diagram. Hence, the flow is calculated in a faster way for the
same rate of accuracy by using its symmetry property (Figure 12).

This half-domain has been divided into 756 Q1P0 basic clements with 817 nodes. A Dirich-
let boundary condition of velocity equal to 1 cm/s has been imposcd along the 1 m height
of the inlet so as to fit the design parameters. The no-slip condition is again imposed at
the bottom and the lateral sides, and the spillway is left free with a zero traction boundary
condition. For the topside, the vertical velocity has been fixed as being equal to zero and the
horizontal velocity has been left free (Figure 13).

The streamline plot (see Figure 14) shows a primary vortex that takes up most of the room,
and two secondary vortices, one of them at the inside bottom zone and a smaller one showing
up at the lower external side of the domain. The appearance of these new vortices and the
bigger dimensions of the primary one, compared to the rectangular basin, are a consequence
of the lesser shallowness of the flow, where the dimension of the vortices depend on the
inflow velocity. The pressure values are again similar to those of the hydrostatic problem,
and can be scen in Figure 14 in both its isobars plot version, with the pressure units given
in cm (Figure 15).
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Figure 15. Flow in a circular clarifying basin. Pressures (p/7) in cm.

4.4. Flow in a maze flocculator

The flow along a maze chamber, often used in the flocculation processcs, has been calculated.
Flocculation is defined as the agglomeration of small particles and colloids to form settleable
or filterable particles. A separate flocculation process, where chemical aids are added to water,
is very often included in the treatment train to enhance contact of destabilized particles and
to build dense floc particles of optimum size. The hydraulic flocculators, in opposition to the
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mechanical ones, allow for the formation of the flocs without the help of any mcchanical
device. This type of flocculation is simple and effective, especially for relatively constant
flows. This sort of chambers is also used in chlorination processes. Chlorination forms part of
the chemical disinfection treatments that are carricd out on supply water in order to achieve
its purification and transformation into drinkablc water.

The aim of the winding design is to achieve a slow and steady flow over a long distance
to allow for the flocs to form. In chlorine disinfection processes, this slowness cnables water
to maintain contact with the chemical reagent over a long period of time (see Reference [17]
for further details on maze flocculators). The velocities involved are quite slow, and a laminar
flow is expected, howcever, small vortices can show up and the Stokes cvaluation of the flow
could not dctect them. For this reason, a convective-term-including formulation is required.
A rectangular chamber, in which water is re-circulated along a winding path, often constitutcs
this kind of basins, and for this particular case will be modelled as a prismatic tank with
dimensions 8 m wide and 10 m long, in which a twisting channel is inscribed, split into 10
straight segments. The design parameters chosen for the chiorination tank are the following:
tank dimensions 8 x 10 x 2 m>, channel width 1 m, channel length 80 m, horizontal velocity
6.6 cm/s, contact time 20.2 min (Figure 16).

A 2091-node rcgular mesh with 2000 QIPO basic elements has been chosen to model
the tank. The mixed Shallow Water algorithm has been used with a Manning coefficient
of 0.012 m~'?3/s. A Dirichlet boundary condition has been prescribed at the inlet, where a
parabolic velocity of 6.6 cm/s has been scttled at the six lower lefi-hand-side nodes. At the
outlet, the velocity on the six lower right-hand-side nodes has been considered as an unknown,
and a hydrostatic pressure boundary condition of 2 m depth has been prescribed. A slope of
103 has been considered falling rightward all over the domain. A viscosity of 10~ ®m?/s has
been used for the wastewater.

As a first guess, the program is used on a Stokes assumption, and the re-circulation obtained
is null as expected. The flow is driven ‘peacefully’ towards the outlet and the parabolic profile
is conserved all over the channel length. The results can be seen in Figure 17.

When the convective term is included, small re-circulation zones show up besides the
corners. These results are plotted in Figure 18.
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Figure 18. Convective flow in the maze flocculator. Streamlines.

By comparing the results for the Stokes flow and for the full convective-term-including
formulation, we can observe some differences in the velocity and streamlines plots. For the
first approach the streamlines are kept in an equidistant position with respect to the sides of
the winding channel all along the path length, and the parabolic profile of the velocities is
also maintained in all the cross sections. Meanwhile, the streamlines in the full convective
formulation are sent towards the right-hand side of the channel once they have taken over
the comer. The appearance of a small re-circulation area at these twisting zones can also be
observed for the convective formulation. This re-circulation is the responsible for both the
appearance of sediments besides the corners and also is the cause of a certain energy loss.
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These effects are unwanted and could be removed by either carrying out a proper decrease in
the velocity of the flow or the re-shaping of the channel.

5. CONCLUSIONS

A stable and computationally cfficient code based upon a realistic interpretation of the forces
has been written, having proved to provide with optimum results when compared with some
reference results. The complexity of the fluid flow creates the need for the use of some
numerical devices, so as to avoid the numerical problems that appear in the resolution of the
Navier—Stokes equations by the finite clcment method. One of the sources of instability 1s
that produced by the need of the verification of some consistency conditions. This potential
source of instability has been eliminated by an appropriate election in the basic functions and
the use of a sclective reduced integration for the penalty formulation. As a consequence some
spurious solutions, such as the checkerboard pressure modes, have been eliminated and do
not appear at all in the present formulation.

The other main source of instability in the obtaining of the flow solutions is due to the
presence of the convective term; the symmetric treatment of this term by a standard Galerkin
Finite Element formulation is the source of this kind of instability, being the causc of the
oscillations that show up in the solution as the Reynolds number is increased. In the algorithms
implemented in the code, a stabilization technique of the SUPG type has been used so as
to avoid the instability that shows up in the resolution of the pressure and the velocity field
when a moderate Reynolds number is used in the calculations. The employment of such a
stabilization technique allows us to avoid an excessive refinement of the mesh, in order to
prevent the obtaining of the unwanted ‘wiggles’ in the solution. A SUPG-type stabilization
technique that affects all the terms included in the dynamic equation has been used with
optimum results providing very accurate and computationally cffective results as has been
demonstrated in the numerical examples provided.

As a result of the comparison carried out between the present and the reference results,
the conclusion is that the solutions obtained by our code compare very favourably with the
reference numerical and empirical results by other authors, contributing to a better and faster
approach to these problems.

The resolution of the Shallow Water equations is carried out thanks to a newly devcloped
algorithm, which makes use of the finite difference tools within the finite element frame. The
evaluation of the friction slope in the Shallow Water equations is based upon on a Manning
type formula, which makes use of the empirically determined Manning roughness coefficient.
This term accounts not only for the energy losses that take place becausc of the friction with
the wetted perimeter, but also for the overall turbulent losses that take place over the whole
domain of integration.

The algorithms regarded in this work provide a perfect frame for the resolution of the flow
in somc wastewater treatment basins. The evaluation of the pressure and velocity of the flow
in these basins provides with useful information about the flow propcrties that overcomes that
found in other related literaturc. The data about the streamlines and velocity field distribution
allows us to know where the main recirculation regions are taking place. This information
will be priceless for the purposc of obtaining the geometrical parameters of the basins in
order to achieve a better performance for the treatment plant. The obtaining of this optimum
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geometry will allow for a further recirculation, if the encrgy losses are required; or will cnable
its avoidance if unwanted, modifying in this way the detention times within the basin. The
velocity and pressure ficlds also provide invaluable information about the distribution of the
discharge among the outlets, which again can be redefined in order to improve the behaviour
of the plant. Thanks to the information obtained by this numerical evaluation of the flow, the
water treatment basins and channels can consequently be designed to fit the requirements of
the processes being carried out.

ACKNOWLEDGEMENTS

The authors want to express their gratitude to the Environmental Engineering Area of the Civil Engi-

neering School of La Coruiia (Area de Ingenicria Sanitaria y Ambiental de lu ETS de Ingenicros
de Caminos, Canales v Puertos de La Corwiia), led by Dr Joaquin Suarez. This work has also been
partially funded by the European Union FEDER project ‘Optimizacién de circuitos hidrodindmicos y
de los procesos en instalaciones de tratamiento fisico-quimico de agua. Aplicacion a lu planta de eftu-
entes quimicos de As Pontes (1FD1997-0053/HID1,X1/98-X/01), the Foundation of Civil Engineering
of Galicia (Fundacion de la Ingenieria Civil de Galicia), the Ministry of Science and Technology
(Ministerio de Ciencia y Tecnologia), the Regional Government of Galicia (Secretaria Xeral de 1+D
de la Xunta de Galicia) and the private company ENDESA.

REFERENCES

. Zienkiewicz OC, Taylor RL. The Finite Element Method. McGraw-Hill: New York, 1989.

2. Kim SW. A fine grid finitc clement computation of two-dimensional high Reynolds numbers flows. Computers

and Fluids 1988; 16(4):429-444.

. Choi HG, Yoo JY. Streamline upwind scheme for the scgregated formulation of the Navier-Stokes equation.

Numerical Heat Transfer 1994; 25(Part B):145-161.

4. Chacon T, Dominguez A. A unified analysis of mixed and stabilized finite element solutions of Navier-Stokes
equations. Computer Methods in Applied Mechanics and Engineering 2000; 182:301-331.

5. Hughes TJR, Liu WK, Brooks A. Review of finite clement analysis of incompressible viscous flow by the
penalty function formulation. Journal of Computational Physics 1979; 30:1-60.

6. Sohn JL, Heinrich JC. A Poisson equation formulation for pressure calculations in penalty finite element models
for viscous incompressible flows. International Journal for Numerical Methods in Engineering 1990; 30:
349-361.

7. Hannani SK, Stanislas M. Dupont P. Incompressible Navier-Stokes computations with SUPG and GLS
formulations—a comparison study. Computer Methods in Applied Mechanics and Engineering 1995, 124:
153-170.

8. Gartling DK. Finite element analysis of viscous incompressible flow. PA.D. Dissertation. University of Tcxas
at Austin, Austin, 1974,

9. Carey G, Oden J. Finite Elements. Prentice-Hall: Englewood Cliffs, NJ, 1984.

10. Sheu TWH, Fang CC. High resolution finite-clement analysis of shallow watcr cquations in two dimensions.
Computer Methods in Applicd Mechunics and Engineering 2001: 190(20-21):2581-2601.

11. Taylor C, Hood P. A numerical solution of the Navier—Stokes equation using FEM technique. Compurers and
Fluids 1973; 1:73-100.

12. Vellando P. On the resolution of the Navier-Stokes equations by the finite clement method using a SUPG
stabilization technique. Application to some wastewater treatment problems. Doctoral Thesis, Universidad de
La Coruna (Spain), Marzo, 2001.

13. Brooks AN, Hughes JR. Streamline Upwind/Petrov—Galerkin formulations for convection dominated flows with
particular emphasis on the incompressible Navier—Stokes cquations. Computer Mcthods in Applied Mechuanics
und Engineering 1982; 32:199-259.

14. Franca LP, Russo A. Recovering SUPG using Petrov-Galerkin formulations enriched with adjoint residual-free
bubbles. Computer Methods in Applied Mechanics and Engineering 2000; 182(3-4):333-339.

15. Armaly BF. Durst F, Percira JCF, Schonung B. Experimental and theoretical investigation of backward-facing

step flow. Journal of Fluid Mechanics 1983; 127:473-496.

(93]

Copyright @ 2004 John Wiley & Sons, Ltd. Int. J. Numer. Mcth, Fluids 2004; 44:115-133



FLOW IN WASTEWATER CLARIFIERS 133

16. Kwak D, Chang JLC. A three dimensional incompressible Navier-Stokes flow solver. Part I.—INS3D Code.
CFD Workshop, University of Tennessee Space Institute, Tullahoma, TN, 1985.

17. Metcalf & Eddy INC. Ingenicria de ayuus residuales, tratamicnto, vertido ) reutilizacion. McGraw-Hill:
New York, 1995.

18. Choi HG. Choi H, Yoo JY. A fractional four-step finite clement formulation of the unsteady incompressible
Navier-Stokes equations using SUPG and linear equal-order element methods. Compurer Methods in Applied
Mechanics and Engineering 1997; 143:333-348.

19. Franca LP, Frey SL. Stabilized finitc clement methods: II The incompressible Navier-Stokes equations.
Computer Methods in Applied Mechunics und Enginceering 1992; 99:209-233.

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth, Fluids 2004; 44:115-133





