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Abstract. Nowadays, search engine users commonly rely on query sug-
gestions to improve their initial inputs. Current systems are very good
at recommending lexical adaptations or spelling corrections to users’
queries. However, they often struggle to suggest semantically related key-
words given a user’s query. The construction of a detailed query is crucial
in some tasks, such as legal retrieval or academic search. In these scenar-
ios, keyword suggestion methods are critical to guide the user during the
query formulation. This paper proposes two novel models for the keyword
suggestion task trained on scientific literature. Our techniques adapt the
architecture of Word2Vec and FastText to generate keyword embeddings
by leveraging documents’ keyword co-occurrence. Along with these mod-
els, we also present a specially tailored negative sampling approach that
exploits how keywords appear in academic publications. We devise a
ranking-based evaluation methodology following both known-item and
ad-hoc search scenarios. Finally, we evaluate our proposals against the
state-of-the-art word and sentence embedding models showing consider-
able improvements over the baselines for the tasks.

Keywords: Keyword suggestion · Keyword embeddings · Negative sam-
pling · Academic search.

1 Introduction

The use of word embeddings [6] has improved the results of many Natural Lan-
guage Processing (NLP) tasks, such as name entity recognition, speech pro-
cessing, part-of-speech tagging, semantic role labelling, chunking, and syntactic
parsing, among others. These techniques represent words as dense real-valued
vectors which preserve semantic and syntactic similarities between words. More
recently, the so-called document and sentence embedding models allow the com-
puting of embeddings for larger pieces of text directly (instead of doing it word
by word), getting state-of-the-art results on different tasks.

Nowadays, search engines are outstanding in recommending lexical adap-
tations or corrections to users’ queries [14,17]. However, there is still room for
improvement in suggesting semantically similar phrases to users’ inputs. The few
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systems that address this task do it by simply using existing word or sentence
embedding models, which leads to poor keyword suggestions.

Keyword suggestion, which consists in recommending keywords similar to
the user’s input, is critical in search scenarios where the completeness of the
query clauses may dramatically affect the recall, such as academic or legal
search [24,13]. An incomplete query may end up in a null search session [15],
that is, the system presents an empty result list to the user. In tasks where use
cases are recall-oriented, having an incomplete or even empty results set greatly
diminishes the search experience.

Having good keyword suggestion models in a keyword-based search engine
has many benefits. (i) It will help to identify the query intent [10], as users will
be able to refine their search by adding new query clauses that may be clarifying.
(ii) It will promote serendipity [5,1], as users may see a recommended keyword
that they were not considering but perfectly fits their search interest. (iii) It
will help prevent null sessions or incomplete results lists. (iv) Systems may use
semantically similar keywords to the user input to perform query expansion [7,22]
without further user interaction.

In this paper, we leverage Word2Vec [19] and FastText [4] models’ architec-
ture to generate keyword embeddings instead of word embeddings, this meaning
that embeddings represent sequences of words rather than a single word, simi-
lar to sentence embeddings. Unlike the base models, which use bag-of-words to
build the representations, our approaches are based on bag-of-keywords. Thus,
the proposed models exploit the annotated keywords’ co-occurrence in the sci-
entific literature for learning the dense keyword representations.

Our main aim for producing keyword embeddings is to represent concepts
or topics instead of representing just words’ semantics or even their contextual
meaning like word embedding models do. The keywords’ conceptual or topical
semantics rely on an explicit human annotation process. First, the annotator will
only select proper or commonly used descriptors for the presented documents. In
this way, we may assume that those keywords are a good proxy when searching
for the documents’ topics. Second, authors use a limited number of keywords
when annotating documents, so the strength of the semantic relationships among
them is higher than the traditional approach of word co-occurrence in windows
of free text.

Along with these models, we propose a new method to perform negative
sampling, which leverages connected components to select the negative inputs
used in the training phase. This method uses the keywords co-occurrence graph
to extract the connected components and then select inputs that are not in the
same connected component as negative samples.

To evaluate our models’ performance, we compare them against a set of base-
lines composed of state-of-the-art word and sentence embedding models. We both
trained the baselines in the keyword data and used the pre-trained models. In
particular, we further trained Word2Vec [19] and Sentence-BERT [21] (SBERT)
on the task data, and we used SBERT, SciBERT [2] and FastText [4] base models.
We carry out the evaluation in Inspec [11] and KP20k [18], two classical keyword
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extraction datasets compound of scientific publications which count with a set
of human-annotated keywords (for now on, we refer to keywords annotated by
documents’ authors or professional annotators as annotated keywords). The re-
sults show significant improvements for the task over state-of-the-art word and
sentence embedding models.

The main contributions of our work can be summarized as follows:

– Keywords2Vec, a keyword embedding model based on Word2Vec.
– FastKeywords, a keyword embedding model based on FastText.
– A new method for negative sampling based on connected components.
– Baselines and evaluation methods for the similar keyword suggestion task.

2 Related Work

This section briefly overviews the existing word and sentence embedding models,
particularly those used as baselines in the evaluation stage, along with some
previous work related to the keyword suggestion task.

Dense vector representations, a.k.a. embeddings, have an appealing, intuitive
interpretation and can be the subject of valuable operations (e.g. addition, sub-
traction, distance measures, etc.). Because of those features, embeddings have
massively replaced traditional representations in most Machine Learning algo-
rithms and strategies. Many word embedding models, such as Word2Vec [19],
GloVe [20] or FastText [4], have been integrated into widely used toolkits, re-
sulting in even more precise and faster word representations.

Word2Vec [19] was one of the first widely used neural network-based tech-
niques for word embeddings. These representations preserve semantic links be-
tween words and their contexts by using the surrounding words to the target
one. The authors proposed two methods for computing word embeddings [19]:
skip-gram (SG), which predicts context words given a target word, and contin-
uous bag-of-words (CBOW), which predicts a target word using a bag-of-words
context.

FastText [4] is a Word2Vec add-on that treats each word as a collection of
character n-grams. FastText can estimate unusual and out-of-vocabulary words
thanks to the sub-word representation. In [12], authors employed FastText word
representation in conjunction with strategies such as bag of n-gram character-
istics and demonstrated that FastText outperformed deep learning approaches
while being faster.

Sentence embeddings surged as a natural progression of the word embed-
ding problem. Significant progress has been made in sentence embeddings in
recent years, particularly in developing universal sentence encoders capable of
producing good results in a wide range of downstream applications.

Sentence-BERT [21] is one of the most popular sentence embedding models
and state-of-the-art on the sentence representation task. It is a modification of
the BERT [9] network using siamese and triplet networks that can derive seman-
tically meaningful sentence embeddings.
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There are other sentence embedding models based on pre-trained language
models. An example of those language models which achieves excellent results
when working with scientific data is SciBERT. SciBERT [2] is an adaptation of
BERT [9] to address the lack of high-quality, large-scale labelled scientific data.
This model leverages BERT unsupervised pre-training capabilities to further train
the model on a large multi-domain corpus of scientific publications, producing
significant improvements in downstream scientific NLP tasks.

Even though word and sentence embeddings have been widely studied, the
work on keyword embeddings is still limited. Researchers have employed them
mainly on tasks like keyword extraction, phrase similarity or paraphrase identi-
fication. Several approaches for the keyword extraction task, like EmbedRank [3],
directly rely on pre-trained sentence embedding models to rank the extracted
keywords. However, other approaches such as Key2Vec [16] train their own model
for the phrase embedding generation. In particular, the authors propose directly
training multi-word phrase embeddings using FastText instead of a classic ap-
proach that learns a model for unigram words combining the words’ dense vectors
to build multi-word embeddings later.

Yin and Schütze [26] presented an embedding model for generalized phrases
to address the paraphrase identification task. This approach aims to train the
Word2Vec SG model without any modification to learn phrase embeddings. They
pre-process the corpus by reformatting the sentences with the continuity infor-
mation of phrases. The final collection contains two-word phrases whose parts
may occur next to each other (continuous) or separated from each other (dis-
continuous).

The phrase semantic similarity task is akin to the one we address in this pa-
per. Many sentence embedding models, including SBERT, are pre-trained in that
downstream task. In [27], the authors present a composition model for build-
ing phrase embeddings with semantic similarity in mind. This model, named
Feature-rich Compositional Transformation (FCT), learns transformations for
composing phrase embeddings from the component words based on extracted
features from a phrase.

Finally, the keyword suggestion task is also a sub-type of query sugges-
tion where all the input and output queries are represented as keywords. Pre-
vious works in query term suggestion did not leverage the power of keyword
co-occurrence to recommend new terms. Instead, existing query suggestion sys-
tems usually approach this task by suggesting terms extracted from the docu-
ment’s content without relying on the relations between these terms. For exam-
ple, in [25], authors propose indexing a set of terms extracted from the corpus
to rank them using a language model given an input query. The problem with
these approaches is that they depend on the appearance of semantically related
terms in the analyzed documents.
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3 Proposal

In this section, we present two novel keyword embedding models that leverage
Word2Vec [19] and FastText [4] architectures to produce keyword embeddings.
We name these models Keywords2Vec and FastKeywords, respectively. Unlike
Word2Vec and FastText, these models are not trained on rolling windows over
the documents’ full text; instead, we only use combinations from the documents’
set of keywords as inputs.

The first of them, Keywords2Vec, modifies Word2Vec CBOW architecture to
represent each keyword as one item. That is, we use keywords as token inputs
instead of words. Additionally, we change how to perform the training of the
models; we will explain it later for both proposals. We also evaluated the SG
counterpart, but it performed considerably worse than the CBOW, so we do not
report them here for brevity.

The second one, FastKeywords, adapts FastText CBOW variant in a more
complex way. First, instead of working with words as the bigger information
unit, it works with keywords. Second, it always selects each word of the keyword
and the keyword itself as inputs, and then, during the n-grams selection process,
it generates each word’s n-grams.

Taking the keyword “search engine” and n = 3 as an example, it will be
represented by the following n-grams:

sea ear arc rch eng ngi gin ine

the special sequences for words:

search engine

and the special sequence for the whole keyword:

search engine

The model uses special sequences to capture the semantic meaning of both
words and keywords. Finally, we implemented a weighting system to ignore “fill”
n-grams used when a keyword does not have enough n-grams to fill the desired
input size. The inclusion of this kind of n-grams is needed because the model
requires the same input length on every iteration.

Another novel contribution of this paper is how we generate the training
inputs. The model needs both positive and negative contexts for the target key-
word. They are called positive and negative samples. For producing the positive
samples, we select combinations of annotated keywords from the document to
which the target keyword belongs. In the case of the negative samples, we repre-
sent the keywords’ co-occurrences in the dataset as a graph. In this graph, each
keyword is a node and edges are created when two keywords appear together in a
document. We select the negative samples from connected components different
from that of the target keyword.
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Fig. 1. Example of a keyword co-occurrence graph with its connected components.

Figure 1 shows an example of a keyword co-occurrence graph and its con-
nected components. In that example, the positive samples for the keyword “infor-

mation retrieval ” would be combinations of “search engine”, “word embeddings”
and “vector ”, and its negative samples will always be extracted from connected
components 2 or 3. Note that this means that the keyword “maths” will never be
a negative sample for “information retrieval ”, even though it does not co-occur
with it in any document.

Fig. 2. Positive and negative samples generation example. (The target keyword is high-

lighted).

Figure 2 shows how the positive and negative sampling is performed for a
document extracted from the graph shown in the Figure 1. Having the keyword
“word embeddings” as the target, we first select its positive samples. In this
example, we select every combination of 2 (w − 1 = 2) keywords that belong
to the same document as the target. Then, for each pair of keywords we have
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to select the two negative samples (ns = 2). Given the connected components
shown in the Figure 1, we select two keywords that do not belong to the same
connected component than the target keyword.

Formally, to train these models, we use a dataset of scientific documents (D).
Each document (d ∈ D) contains a set of annotated keywords (Kd). Then, given
a combination size (w− 1), which plays an analogous role to the window size in
the original models, we compute the set of positive samples (Kps

d ) of a document
d as follows:

K
ps

d =

{

(ki,K
psj
d ) | ki ∈ Kd, K

psj
d ∈

(

Kd − {ki}

w − 1

)

}

,

that is, for each keyword (ki) of the document’s keywords set (Kd), we compute
its positive samples (Kps

d ), which are the combinations of size w − 1 of the
document’s keywords set excluding the target keyword (Kd − {ki}). Finally, for
each positive samples set (K

psj
d ) we obtain a pair (ki,K

psj
d ).

As for the negative samples for each document (Kns
d ) we have followed the

subsequent novel approach. First, we build the aforementioned keywords co-
occurrence graph for the collection and compute its connected components.
Then, for each pair (ki,K

psj
d ) we select as negative samples ns keywords be-

longing to a different connected component than the target keyword (ki).
To adapt the previous process to our FastKeywords model, we have to gen-

erate n-grams for each context keyword (positive samples and negative samples)
following the strategy explained before.

The FastKeywords model has two main advantages over Keywords2Vec be-
cause of the use of subword information:

– It will perform significantly better on large collections.
– It will be able to generate embeddings for keywords that are not in the

training corpus.

Figure 3 shows the FastKeywords model’s architecture. As we may see, it
follows the classic CBOW strategy where several context samples are fed to the
model in order to predict the target keyword.

4 Experimental Setup

This section describes the datasets used during the training and evaluation of
the models, the baselines used to compare our model, the evaluation process and
metrics, and finally, the parameters and setup used to train our models.

Our objective is to suggest similar keywords to the user input in the search
process. With this in mind, we designed two experiments that approach the key-
word suggestion problem as a keyword ranking task. In particular, the evaluation
considers if the model can find keywords that belong to the same document as
the target keyword. The rationale for this evaluation is that keywords with which
the authors annotate a document tend to be semantically related. Alternatively,
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Fig. 3. FastKeywords model high-level architecture diagram.

we may perform user studies to evaluate the perceived quality of the suggestions.
We leave that for future work.

4.1 Datasets

We selected two datasets commonly used on the classical keyword extraction
task: the Inspec [11] and the KP20k [18] collections.

Inspec This collection consists of 2,000 titles and abstracts from scientific jour-
nal papers. The annotators assigned two sets of keywords to each document in
this collection: controlled keywords that occur in the Inspec thesaurus and un-
controlled keywords that can be any suitable terms. We will only use the uncon-
trolled keywords created by professional indexers in our experiments, following
the standard approach in the keyword extraction task.

KP20k This dataset is a keyword generation collection that includes 567,830
articles of the computer science domain obtained from various online digital
libraries, including ACM Digital Library, ScienceDirect, Wiley and Web of Sci-
ence. In this case, the authors made no differentiation during the annotation
process, so we used all of the keywords in both training and testing.

4.2 Baselines

We include five baselines in our evaluation to compare our embedding models
against other models that have already proven their effectiveness in capturing
words or sentence syntax and semantic information.
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The first baseline is the Word2Vec model trained in the Google News dataset
and further tuned on each dataset to learn their vocabulary. That process was
performed using the keywords set as a sentence so that the model could learn
the contextual relationships between them.

The second baseline is the pre-trained SBERT all-mpnet-base-v2 3 model fine-
tuned in the evaluation datasets for the sentence similarity task. To fine-tune
the model, we served as inputs pairs of keywords and a binary value of similarity
(1 if keywords belong to the same document and 0 if they do not).

The other three baselines were not trained for the task. These baselines are:

– The pre-trained SBERT model, all-mpnet-base-v2.
– The pre-trained SciBERT model that uses the uncased version of the vocab-

ulary.
– The English FastText model trained on Common Crawl4 and Wikipedia5.

4.3 Evaluation

As we mentioned before, to assess our models’ performance in the keyword sug-
gestion task, we devise two evaluation strategies representing two specific cases
in the academic search field.

The first task consists of retrieving all the keywords with which a document
was annotated, given one of them. The keyword retrieval is done via cosine
similarity between the query keyword and all the other keywords. Then, we
compute each average precision and aggregate all the results to compute the
MAP (Mean Average Precision). Specifically, we calculate MAP@20.

The second task we propose follows a masking problem. For each document,
we mask one keyword from the keywords set and then use the remaining key-
words to try to find the masked one. For each of the remaining keywords, we
retrieve the most similar ones using cosine similarity. Then, combining the scores
of all the non-masked keywords, we compute the final ranking. Finally, we com-
pute each masked keyword’s reciprocal rank to calculate the MRR (Mean Re-
ciprocal Rank). Precisely, we compute MRR@100. Note that for this evaluation
method, we only used 50 random documents from the test split of each dataset.

Regarding methodologies, we evaluated both tasks under all-items and test-
items approaches. In the all-items fashion, the keywords to be ranked are the
whole set of keywords in the dataset, while in the test-items indexing approach,
only the keywords in the test subset are ranked.

We also perform statistical significance tests for all the evaluations. On the
one hand, for comparing more than two systems, we use the Randomised Tukey
HSD Test [8,23]. On the other hand, we follow the classic permutation test
approach when comparing a pair of systems. These tests verify that the family-
wise error does not exceed the confidence level α.

3 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
4 https://commoncrawl.org/
5 https://dumps.wikimedia.org/

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://commoncrawl.org/
https://dumps.wikimedia.org/


10 J. Gabín et al.

Table 1. Models’ training parameters on the Inspec and KP20k datasets.

Model
Inspec KP20k

Batch Epochs Dim. w ns Batch Epochs Dim. w ns

Word2Vec - early stopping 300 6 - - 20 300 6 -

SBERT 29 early stopping 768 - 4 29 20 768 - 4

Keywords2Vec 217 early stopping 300 3 4 217 20 300 3 4

FastKeywords 215 early stopping 300 3 4 215 20 300 3 4

4.4 Experimental Settings

This section will describe the parameters used to train the baselines and our
proposed models. Table 1 shows a summary of the models’ training parameters
detailed hereunder.

To train the Word2Vec model, we followed an early-stopping strategy for the
Inspec dataset, while for KP20k, we trained the model for 20 epochs. For both
datasets, the selected embedding size was 300. Finally, we used a window size of
6 and 1 as the minimum count (lowest frequency of a word to be considered).

On the other hand, as we mentioned before, we fine-tuned the SBERT model
in the sentence similarity task. For each positive sample (two keywords that
co-occur in a document), we selected four negative samples (two keywords that
never co-occur in a document). Again, we followed an early-stopping strategy
for the Inspec dataset, while for KP20k, we trained the model for 20 epochs. For
both datasets, we used a batch size of 29 and an embedding size of 768.

We trained both our models using an early-stopping strategy for the Inspec
dataset. On the other hand, when using the KP20k dataset, we trained each
model for 20 epochs. Regarding the batch size, the Keywords2Vec model was
trained with a batch size of 217 on both datasets, while for the FastKeywords

model, we used a batch size of 215 on Inspec and KP20k. Also, both were trained
to generate embeddings of size 300. The combination size and the number of
selected negative samples were the same for both models on both datasets, 2
(w = 3) and 4, respectively. Finally, regarding FastKeywords parameters, we
used a minimum n-gram size of 3, a maximum n-gram size of 6 and a maximum
number of n-grams of 20.

When trained, we used the whole set of document keywords from the dataset
in the tuning process of the models6. When not trained, we used the default
pre-trained models for the baselines. In the evaluation process, we selected a
subset of documents on which we performed the aforementioned tasks.

6 All experiments were run on an NVIDIA A100 GPU with 80GB of memory.
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Table 2. MAP@20 for the document’s keywords identification task. Statistically sig-
nificant improvements according to the Randomized Tukey HSD test (permutations =

100, 000; α = 0.05) are superscripted.

Model
Inspec KP20K

All items Test items All items Test items

SBERT (no train) (†) 0.0323 0.0544⊎ 0.0039 0.0134⊎

SciBERT (no train) (‡) 0.0205 0.0345 0.0040 0.0110

FastText (no train) (⊎) 0.0147 0.0217 0.0039 0.0095

Word2Vec (∓) 0.0463⊎ 0.0832†‡⊎ 0.0048 0.0130‡⊎

SBERT (±) 0.1481†‡⊎∓ 0.5880†‡⊎∓ 0.0072†‡⊎∓ 0.0182†‡⊎∓

Keywords2Vec (⊗) 0.8634†‡⊎∓± 0.9090†‡⊎∓± 0.0690†‡⊎∓± 0.0918†‡⊎∓±

FastKeywords (⊙) 0.8659†‡⊎∓± 0.9161†‡⊎∓± 0.0762†‡⊎∓±⊗ 0.1060†‡⊎∓±⊗

5 Results

This section reports how Keywords2Vec and FastKeywords perform against the
selected baselines and how they perform against each other. As we mentioned in
Section 4.3 we report results using two tasks and two evaluation techniques.

Table 2 shows the results for the document’s keywords identification task.
We can see that our models significantly outperform the established baselines
in both datasets and evaluation approaches. This is especially remarkable in the
case of the state-of-the-art sentence BERT model, which, even for the fine-tuned
scenario and using embeddings with twice the dimensions, lies quite behind our
proposals. As expected, using the test-items strategy produces better results
since the keyword set where the search is performed is much smaller.

Moreover, we can see that the dataset size is a determinant factor in this
task. A much larger set of keywords (this is the case of the KP20k dataset
versus the Inspec dataset) greatly impacts the final score. This makes sense
because increasing the keyword set size makes finding the ones we are looking
for more challenging (something analogous happens to a lesser degree between
the all-items and test-items results).

In terms of comparing FastKeywords against Keywords2Vec we can see that
the former performs better and that the more considerable difference between
them appears when the keyword set is the biggest (KP20k dataset). The main
reason behind this relies on the capability of FastKeywords to leverage subword
information to build the keywords embeddings.

Table 3 shows results for the masked keyword discovering task. These results
confirm what we had already seen in the first one: our models significantly out-
perform all the established baselines in every experiment we performed. Again,
we can see that increasing the keyword set length produces worse results as the
task becomes more and more challenging. Again, when comparing the proposed
models against each other on this task, we can see that FastKeywords performs
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Table 3. MRR@100 for the masked keyword discovering task. Statistically signifi-
cant improvements according to the Randomized Tukey HSD test (permutations =

1, 000, 000; α = 0.05) are superscripted.

Model
Inspec KP20K

All items Test items All items Test items

SBERT no train (†) 0.0342 0.0479 0.0018 0.0152

SciBERT no train (‡) 0.0220 0.0345 0.0056 0.0129

FastText no train (⊎) 0.0068 0.0097 0.0023 0.0047

Word2Vec (∓) 0.0751 0.1187⊎ 0.0008 0.0079

SBERT (±) 0.1688†‡⊎ 0.5890†‡⊎∓ 0.0138 0.0448

Keywords2Vec (⊗) 0.8914†‡⊎∓± 0.9100†‡⊎∓± 0.0778†‡⊎∓± 0.0828†‡⊎∓

FastKeywords (⊙) 0.8988†‡⊎∓± 0.9102†‡⊎∓± 0.1402†‡⊎∓±⊗ 0.1467†‡⊎∓±⊗

Table 4. Negative sampling methods comparison on the Inspec dataset. Statisti-
cally significant improvements according to the permutation test (permutations =

1, 000, 000; α = 0.05) are superscripted.

Model
MAP@20 MRR@100

All items Test items All items Test items

FastKeywords random negative sampling (⊕) 0.8420 0.9093 0.8750 0.8890

FastKeywords (⊙) 0.8659⊕ 0.9161⊕ 0.8988 0.9102⊕

better than Keywords2Vec when increasing the dataset size, getting statistically
significant improvements over the Word2Vec-based method.

Table 4 shows the performance of the proposed negative sampling method,
comparing it with a FastKeywords model that uses a random negative sampling
strategy. The results ratify that the proposed method works significantly better
than a naive random approach in all cases except on MRR@100 using the all-
items indexing strategy. For this case, the p-value is 0.06.

Finally, for illustrative purposes, Table 5 shows the top 10 nearest neighbours
for the keyword “information retrieval ” on the KP20k collection retrieved by
both proposed models. We also show each keyword’s associated score, which
represents the similarity with the query keyword.

6 Conclusions

This paper explored the potential of keyword embedding models in the keyword
suggestion task. We also propose several baselines and new evaluation methods
to assess the performance of the models, as not much previous work has been
published for this task.

The proposed models adapt Word2Vec and FastText CBOW architectures to
compute keyword embeddings instead of word embeddings. Along with these two
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Table 5. Top 10 nearest neighbours for the keyword “information retrieval ” on the
KP20k collection (test-items index).

FastKeywords Keywords2Vec

keyword score keyword score

ranking 0.9133 retrieval model 0.6045

query expansion 0.9104 collection selection 0.5587

text classification 0.9067 link topic detection 0.5472

relevance 0.9044 dempstershafer evidence theory 0.5418

text mining 0.9018 retrospective evidence event detection 0.5371

information extraction 0.9012 instance based learning 0.5361

relevance feedback 0.8980 query expansion 0.5282

knowledge discovery 0.8979 terminology extraction 0.5260

document clustering 0.8971 viral marketing 0.5253

text categorization 0.8970 query formulation 0.5248

keyword embedding models, we present a novel strategy for the negative sam-
pling task, which leverages the potential of the keyword co-occurrence graph’s
connected components to perform a better selection of the negative samples.

Results show that our methods significantly outperform the selected baselines
on both evaluation datasets. We also demonstrated the potential of sub-keyword
and sub-word information to represent keywords as embeddings. In future work
we aim to:

– Use the designed weights system to give more relevance to full keywords and
words than to n-grams.

– Assess the models’ performance using popularity-based negative sampling.
– Combine negative samples extracted from the target keyword connected

component and from different connected components.
– Use special delimiters to differentiate if a word is a part of a keyword or a

keyword itself or if a n-gram is a part of a word or a word itself.
– Train and test the models on non-scientific keyword-style annotated data.
– Study how the offline findings of this work align with live user testing.
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