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ARTICLE INFO ABSTRACT

Keywords: COVID-19 is a global threat for the healthcare systems due to the rapid spread of the pathogen that causes it.
COVID-19 In such situation, the clinicians must take important decisions, in an environment where medical resources can
Machine learning be insufficient. In this task, the computer-aided diagnosis systems can be very useful not only in the task of
g::;::::;:acﬁon supporting the clinical decisions but also to perform relevant analyses, allowing them to understand better the
Classification disease and the factors that can identify the high risk patients. For those purposes, in this work, we use several

machine learning algorithms to estimate the outcome of COVID-19 patients given their clinical information.
Particularly, we perform 2 different studies: the first one estimates whether the patient is at low or at high risk
of death whereas the second estimates if the patient needs hospitalization or not. The results of the analyses of
this work show the most relevant features for each studied scenario, as well as the classification performance
of the considered machine learning models. In particular, the XGBoost algorithm is able to estimate the need
for hospitalization of a patient with an AUC-ROC of 0.8415+0.0217 while it can also estimate the risk of death
with an AUC-ROC of 0.7992+0.0104. Results have demonstrated the great potential of the proposal to determine
those patients that need a greater amount of medical resources for being at a higher risk. This provides the
healthcare services with a tool to better manage their resources.

1. In uction Therefore, this information is crucial for the clinicians to pay special

attention to those who have a greater risk of experiencing a severe form
of the disease and/or that present a greater risk of death.

When a patient with COVID-19 needs medical attendance, the
healthcare workers must have the clinical information of each patient
to determine those cases that need more attention. The clinical data

The COVID-19 is an infectious disease declared as global pandemic
by the World Health Organization (WHO) in 11th March 2020 [1]. Due
to its rapid spread, this disease has emerged as a challenge for the
healthcare systems worldwide. This challenge is even greater during
the most critical moments of the pandemic, as the great hospital and

ICU admission rates can lead to a lack of medical resources surpassing
the capacity of the health systems [2]. When this occurs, the clinicians
must take important decisions, giving more attention to those patients
that seem to need more personalized clinical care and monitoring.
The COVID-19 is characterized for being usually more threatening to
those patients that have previous pathological conditions, as well as
for those patients of a higher age [3]. In the same way, it tends to
be more dangerous for those patients that have an immunosuppression
condition, as they present a reduced capacity to attack the pathogen.

should include previous relevant conditions of the person (such as
previous diseases) as well as other parameters that evaluate the state of
the patient at a particular moment (such as measurements of a blood
test) [4]. In the same way, healthcare workers usually register the
outcome of the patient and some descriptive information of their stay
at the medical center indicating the death or survival of the patient,
the time spent at the hospital if necessary, the need for mechanical
ventilation or the stay at ICU for the most severe cases. This allows the
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healthcare systems to gather significant amounts of these clinical data,
that can be used for retrospective studies. Thus, these datasets can be
used to develop Computer-Aided Diagnosis (CAD) systems [5], in order
to help the healthcare workers to take decisions on their daily practice,
an aspect that is especially helpful during the most critical moments of
the pandemic [6-9]. Furthermore, these retrospective studies are useful
for clinicians to have a better understanding of the disease and the way
the different variables worsen or improve the expected evolution of
each patient.

During the last years, the machine learning strategies have emerged
as powerful techniques to solve problems of classification and regres-
sion with large amounts of data, thanks to their great capability to find
patterns and infer the most probable output [10]. However, most of
the machine learning models act as black boxes, meaning that they are
unable to explain the followed rules to obtain the output given a certain
input information. This hinders the process of carrying the algorithmic
solution to the daily clinical practice and makes it impossible to un-
derstand the weight that each feature impact has in the output. In the
same way, there is a possibility that some features are redundant and
even useless, aspects that could lead the model to lose effectiveness.
These situations are more complex when the number of features is rel-
atively high, making it impossible to perform a manual analysis. In this
scope, alongside the machine learning approaches, many algorithms of
feature selection have been proposed during the last years [11]. These
algorithms were created with the aim of analyzing the importance of
each feature and to reduce the dimensionality of the original dataset,
removing the useless and the less important features. This aspect also
allows reducing the computational requirements in terms of time and
resources, making the problem more affordable.

The estimation of the outcome of the patients is a critical task that
has been assessed in many scenarios. Among all of them, it is remark-
able that some works have proposed the estimation of the outcome
for patients that suffer from heart conditions, such as heart failure and
stroke, as reference, the work from Tripoliti et al. [12] and the work
from Asadi et al. [13]. On the other hand, the work from Alizadeh
et al. [14] proposes the application of machine leaming models to
predict the outcome of neurosurgery procedures, using representative
variables of the patient, such as age, gender or comorbidities among
others. Nascimben et al. [15] use gene expression data from patients
with bladder cancer to estimate the tumor stage and the risk of death,
applying machine leamning models and bio-statistical techniques. Fi-
nally, in the work of Yuan et al. [16], the authors use machine learning
to estimate the risk of survival/death in patients with lung cancer using
a longitudinal cohort of patients given their corresponding electronic
health records.

In the case of the COVID-19 disease, its study is very relevant under
the current situation and, therefore, we can find several contributions
that work with clinical variables to estimate the evolution of the
patients. As reference, the work from Aktar et al. [17] proposes the
application of different machine leaming algorithms to estimate if
hospitalized patients require intensive care or if they can be shifted
to a normal ward using relevant clinical data provided by blood tests.
The work from Ali et al. [18] develops a methodology that applies
several machine learning algorithms in 2 different COVID-19 datasets.
The first one is composed of attributes that can be obtained without
performing any kind of laboratory analysis such as the age group of
the patient, the gender, the race, the ethnicity, potential symptoms, stay
in hospital or stay in ICU, among others. The second one is a clinical
dataset that is composed of relevant markers obtained after a blood
test such as red blood cells, hemoglobin, leukocytes, or potassium,
among many others. The aim of training the models using the first
dataset is to estimate the most probable outcome of a patient: survival
or death. In the case of the second dataset, the purpose is to classify
patients as COVID-19 positive or negative using the provided clinical
data. Regarding the contribution of Dominguez-Olmedo et al. [19], the
authors propose the use of machine learning to estimate the risk of
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death of patients given their clinical data provided by the laboratory
tests. Magunia et al. [20] perform a study that uses several machine
learning algorithms to estimate the outcome of hospitalized patients
that need to be admitted to the ICU. This analysis also allows the
authors to understand which are the most relevant features to estimate
that outcome. Hernandez-Pereira et al. [21] propose the application of
several machine learning algorithms and feature selection methods to
estimate the risk that a patient has of requiring hospitalization or ICU
admission.

In addition to all the previous reference works, we can also mention
the methodology proposed by Xu et al. [22], that predicts in-hospital
mortality and other relevant outcomes like ICU transfer using different
machine leaming algorithms (Least absolute shrinkage and selection
operator (LASSO), Elastic net logistic regression (LR) and eXtreme
Gradient Boosting (XGBoost)). On the other hand, the contribution of
Polilli et al. [23] uses logistic regression and Cox modeling to predict
the risk of hospitalization, death, the need for oxygen support and the
need for intensive therapy (the last 2 in patients younger than 70 years
old). In the case of Pishgar et al. [24], the authors include process min-
ing in their methodology to exploit available time information. Van der
Velde et al. [25] present a model called APOP (Acute Presenting Older
Patient) that computes the in-hospital mortality risk of older people.
The data include comorbidities and other important characteristics of
the patients that could put them on a higher risk of death. It is also
remarkable the work from Bendavid et al. [26], that proposes the use
of the XGBoost algorithm to predict respiratory failure and invasive
mechanical ventilation in patients with COVID-19 based on clinical
features.

Nevertheless, diagnosing and estimating the outcome of a patient
can also be done using other types of data (such as imaging data).
Given that the main affectation of the COVID-19 is located in the lungs,
chest imaging modalities are very useful in this scope. As reference,
Chamberlin et al. [27] propose a deep learning model to automatically
diagnose and prognosticate the evolution of COVID-19 using chest X-
ray images. The work from Chaudhary et al. [28] proposes the use
of the Fourier-Bessel series expansion-based decomposition method to
extract features from chest X-ray and CT images that feed a classifier
trained to perform an automatic diagnosis of COVID-19. Moreover,
the work from Bermejo-Peldez et al. [29] segments the extension of
different lesion subtypes in CT images. Then, this information is used
to predict the outcome of COVID-19 patients. De Moura et al. [30,31]
study the separability among 3 different classes (control cases, patients
with pulmonary pathologies others than COVID-19 and COVID-19)
using datasets of images captured by fixed and portable X-ray devices.
To this end, authors consider 6 different network architectures, with
2 types of DenseNet, 2 types of ResNet and 2 types of VGG. Finally,
it is also remarkable that some works combine the features extracted
from images with clinical features. In particular, as reference, the
methodology proposed by Sinha et al. [32] merges features extracted
from CT images with clinical parameters to prognosticate the need for
invasive mechanical ventilation using machine leaming algorithms.

These works have some interesting results for the health community
as they provide statistical analyses of the available datasets, exhaustive
experiments with several machine learning algorithms and metrics as
well as analyses of the importance of each feature. However, these
works lack of an exhaustive analysis of how the amount of used features
impact the performance. Given the significant gap in the literature,
in this work, we propose the use of several machine learning models
(Support Vector Machine, Decision Tree, XGBoost, k Nearest Neighbor
and Multilayer Perceptron) to perform several retrospective studies
on clinical data of COVID-19 patients. To do so, we use a dataset
provided by the Complexo Hospitalario Universitario de A Coruiia
(CHUAC) that was specifically designed for the purposes of this study.
We perform an exhaustive analysis of the available variables, using 3
relevant feature selection methods that provide the importance of each
feature on the inference process: Fisher Scoring, Mutual Information
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Table 1
Description of the basic information variables that exist in the dataset for each
patient.
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Table 2
Description of the previous conditions that are present in the dataset for each
patient.

Variable Description Variable Description
Exitus Indicates if the patient died or survived AHT AHT is associated with a higher risk
Cohort Non-Hospitalized or Hospitalized Diabetes Diabetes is associated with a higher risk
Age Range Older ages are related with higher risk COPD Patients with COPD suffer from breathing problems
Age The same as the previous one Asthma Asthma directly affects breathing capabilities
Sex Pathology affects differently males and females LD It can affect certain organic mechanisms to fight the COVID-19
Height Height of the patient Leukemia Pati with leukemia are often immun d
Weight Overweight and obesity mean with higher risk Lymphoma Patients with lymphoma are often immunosupressed
BMI Higher BMI is associated with higher weight Neoplasm Patients with neoplasm are often immunosupressed
HIV Patients with HIV are often immunosupressed
Transpl Pati with plant are often immunosupressed
Chemotherapy Patients under chemotherapy are often immunosupressed
and a Variance-based Ranking. In the same way, we also performed Biological Patients under biological treatments are often immunosupressed
. CcCcs Patients treated with CCS often i ed
several experiments to understand how the number of used features aflen ated wi are often fmmunosupress
impact in the performance of the classification models. One of the most
outstanding points of our contribution is that we have selected the Table 3
e . . . a
2 _mDSt critical Scmanm lIl the case of a severe C(_)V]D'lg mfe{‘:tlon, Description of the clinical variables that are ilable in the dataset for each patient.
with regard to_hosplta]fzatlon a‘nd the health E\{olutlon of the p«:itlﬁ[lm. Variable Description
Overall, the aim of this work is to study the impact of the different P %) © of Iymphooyt e indicative of an fline
. . . . . . . ow coun [ymy es can be indicative of an £
vanabl‘es included in the dataset to make estimations in the 2 following LYMP (pet) The same as the previous one
SCenarios: D-Dimer Test This variable is related with blood coagulation
LDH This variable can be indicative of damage in certain body tissues
+ Given a patient that comes into emergencies, estimate the need Creatinine This variable can be indicative of kidney disorders
for hospitalization. GFR The same as the previous one
- Given a patient that is admitted to the hospital, estimate the risk CRP This "“ﬂ; presents ahnormalities when the patient has an
of death. Ferritin This variable is related with the amount of blood iron
A A A o -6 The results of an IL-6 test are linked with immune response
In summary, the analyses provided in this contribution are useful to
determine the most relevant features for each studied scenario and the
performance that the different machine learning models can achieve
while addressing the considered problems. Under a clinical point of 2. Materials

view, the results help to understand which are the most important
features to estimate the outcome of a patient and therefore allowing to
manage the resources more efficiently, prioritizing those cases of higher
risk. In particular, the analyses show that age variables are notably
relevant for both the first scenario and the second scenario, as well
as the Arterial Hypertension and the Diabetes, 2 prevalent conditions
in the studied datasets. Furthermore, indicators of renal activity are
also important to determine the outcome of the patients. The main
difference between scenarios is that, for the second one, the previous
conditions related with cancer are much more relevant than in the
first scenario. Regarding the novelty of the work, these are the most
remarkable key points of our contribution:

+ 2 critical scenarios are studied to estimate the outcome of COVID-
19 patients, supported by an exhaustive experimentation that
is performed using 5 different state-of-the-art machine learning
models.

3 different feature selection methods are used to rank from the
most important features to the least important. This ranking was
then used to thoroughly study how the amount of features impacts
the performance of the models.

The most appropriate model is objectively selected for each anal-
ysis scenario. It is remarkable that a high performance is obtained
despite the difficulty of the problem that is being proposed.

The analyses and the developed systems presented in this con-
tribution are useful for the clinicians to take decisions in the 2
critical scenarios that are described. These decisions support a
better management of the health resources.

.

.

.

The manuscript is structured as follows: in Section 2, we describe
the used dataset, while in Section 3 we describe the steps of the
proposed methodology. Lately, in Section 4, we present the results
obtained and their discussion after the experimental validation was
performed. Finally, Section 5 summarizes the main conclusions that can
be extracted after the development of the work.

In this section, we firstly describe the dataset that was used for the
purposes of this work in Section 2.1. After that, we explain in detail
the software and hardware resources necessary for the development of
this work in Section 2.2,

2.1. COVID-19 CHUAC dataset

This dataset was specifically designed for the purposes of this work,
and it was provided by the Complexo Hospitalario Universitario de
A Corunia (CHUAC). It is important to remark that the selection of
the most relevant and useful variables to characterize each patient to
make the studies herein proposed was done in accordance with the
Head of Infectious Diseases Department of the mentioned institution.
In particular, the dataset is composed of 2067 unique patients where,
for each patient, the dataset provides the variables Exitus, Cohort, Age
Range, Age, Sex, Height, Weight and Body Mass Index (abbreviated as
BMI) whose detailed description can be seen in Table 1.

Apart from that, the dataset also includes attributes that indi-
cate if the patient has relevant previous conditions (ie., diseases or
treatments that a patient can have). These conditions are Arterial
Hypertension (abbreviated as AHT) [33], Diabetes Mellitus (abbrevi-
ated as Diabetes) [34], Chronic Obstructive Pulmonary Disease (ab-
breviated as COPD) [35], Asthma [36], Liver Disease (abbreviated as
LD) [37], 3 cancer conditions as is the case of Leukemia, Lymphoma
and Neoplasm [38], Human Immunodeficiency Disease (abbreviated as
HIV) [39], Solid Organ Transplant (abbreviated as Transplant) [40],
Chemotherapy within the last 3 months (abbreviated as Chemother-
apy) [41], Biological Treatment within the last 3 months (abbreviated
as Biological) [42] and Corticosteroids (abbreviated as CCS) [43]. Each
condition is more deeply explained in Table 2.

Finally, there are some other relevant clinical measurements, as
is the case of the Count of Lymphocytes (abbreviated as LYMP) and
Percentage of Lymphocytes (abbreviated as LYMP (pct.)) [44], D-Dimer
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Table 4
List of the libraries used in this work, with their version and their description.

Name Version Description

matplotlib 3.5.1  Library used for graphical visualizations of the data

numpy 1.21.4 Library that allows to create and work with arrays in Python
pandas 1.3.5  Python library for data analysis

scikit-learn 1.0.1  Library that allows to create machine learning models
xgboost 1.5.2  Python implementation of the XGBoost algorithm

Table 5
Description in detail of the hardware resources that were used for the purposes of this
work.

Name Description

0s Ubuntu 20.04.3 LTS (Focal Fossa)

Kernel Linux 5.13.0-41-generic

Architecture x86-64

CPU 11th Gen Intel(R) Core(TM) i7-11700K @ 3.60 GHz

Motherboard Gigabyte Z590 AORUS ELITE

RAM 2 x 32GiB DIMM DDR4 Synchronous 3200 MT/s CRUCIAL
BL32G32C16U4BL.M16FB

SSD Western Digital WDS100T1X0E-00AFY (1 TB)

HDD Seagate IronWolf ST4000VN008-2DR16 (4 TB)

Test [45], Lactate Dehydrogenase (abbreviated as LDH) [46], Cre-
atinine and Glomerular Filtration Rate (abbreviated as GFR) [47],
C-Reactive Protein test (abbreviated as CRP) [48], Ferritin [49] and
IL-6 protein test (abbreviated as IL-6) [50]. Each of these variables is
detailed in Table 3.

2.2. Software and hardware resources

The implementation that was made for the purposes of this work
has been done in Python 3 (version 3.8.10) using several libraries that
are detailed in Table 4. Regarding the hardware resources used for the
development of the work, the particular specifications can be seen in
Table 5.

3. Methodology

In this work, we propose 2 different analysis scenarios that are more
deeply explained in Section 3.1: the estimation of the risk of hospi-
talization and the estimation of the risk of death for a given patient.
For that aim, we have developed an exhaustive analysis procedure
that is common for both scenarios that, however, is able to perform
each independent estimation working with different versions of the
dataset and extracting the correspondent conclusions for each case. In
particular, this methodology, whose pipeline can be graphically seen
in Fig. 1, is divided in several steps, where each step is detailed in a
different subsection. Specifically, the methodology starts with a data
processing (detailed in Section 3.2) to ensure that the quality of the
input dataset is satisfactory. This is followed by a feature selection
process (detailed in Section 3.3) that chooses the best set of features
to characterize the problem, reducing its dimensionality and allowing
to understand which are the most important features. Finally, the
dataset is used to train the classification models (a process detailed in
Section 3.4), providing the validation results of the work. To finish this
section, we also briefly describe the metrics that were used to validate
our methodological proposal.

3.1. Description of the analyses

In this work, we conduct 2 analyses with different versions of the
original COVID-19 CHUAC dataset. The description of each experiment
is detailed below.

Analysis 1. Estimation of Non-Hospitalized/Hospitalized pa-
tients. In this first scenario, we build a version of the dataset using
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Cohort as the output of the classification model. For this particular
problem, we consider Non-Hospitalized as the negative class and Hos-
pitalized as the positive class. In this version of the dataset, we included
the patients of the Non-Hospitalized cohort and the Hospitalized cohort,
having a total of 2067 unique patients. This analysis exposes which are
the most important features to estimate the risk of hospitalization for
a given patient, an aspect that can help the expert clinicians to make a
more efficient management of the available health resources.

Analysis I1. Estimation of Survival/Death. In this second scenario,
we build a different version of the dataset, where the variable that
indicates the death or the survival of the patient is chosen as the output
of the classification model. For this version of the dataset, we only
included those patients of the Hospitalized cohort, thus having a total of
1783 unique patients. In this particular problem, Survival is considered
as the negative class and Death as the positive class. This analysis
can help both to understand which are the most relevant features to
determine the death risk of a patient and to focus more on those cases
that need a greater monitoring and health care.

3.2. Data processing

Given that the dataset was built in a real clinical scenario context,
it is necessary to deal with common issues, such as the missing values.
Considering that the dataset is composed of both discrete and numerical
variables, the way of dealing with missing values must be different for
each case. On one hand, with regard to discrete variables, we filled the
missing values with a zero-padding. On the other hand, it is slightly
different in the case of the numeric variables. In the latter context, a 0
could refer to a meaningless situation (as, for example, it is impossible
for a patient to have 0 leukocytes). Thus, we decided to fill these cells
applying a padding with —1.

Moreover, in this step, we also needed to analyze the format of
the variables, to know in which manner they should be converted.
Therefore, for that aim, it was necessary to ensure that all the numerical
variables had the same format to be converted to either decimal or
integer. In the same way, it was also necessary to make sure that all
the discrete variables had the proper format to be converted to a binary
format. This refers to the precondition variables, as the dataset specifies
if the patient has a given precondition or not.

3.3. Feature selection

With the aim of reducing the dimensionality of the original dataset
and analyzing the impact of each future on the performance of the
models, we use 3 different methods of feature selection. The use of
several methods aims at offering a greater perspective of which are the
most relevant features to estimate the outcome on each scenario. It is
important to remark that the feature selection algorithms are actually
based on statistical measures to score the correlation or dependence
between input variables that can be filtered to choose the most relevant
features. Generally speaking, each method will give a score to each
feature that will be used to build a ranking where the most important
features will be placed at the top positions while the less important
features will be placed at the bottom positions. In particular, we use
the method of Fisher Scoring [51] and Mutual Information [52], that
were previously used in other similar clinical problems with satisfactory
results. Moreover, we also use a ranking based on the variance of each
feature (namely, Variance-based Ranking) to include a more exhaustive
analysis of the feature selection process.

Overall, the 3 chosen feature selection methods can be divided
in 2 main categories. Fisher Scoring and Mutual Information can be
described as 2 methods that consider the correlation between each indi-
vidual feature and the target output, while the Variance-based Ranking
method only focuses on variability regarding each individual feature
without taking into account its correlation against the target output.
Thus, it is important to remark that Variance-based Ranking tends to
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Fig. 1. Overall description of the pipeline of the proposed methodology.

give higher scores to numerical variables over discrete variables, as
the numerical variables usually have a greater variability. Each of the
selected methods is described more deeply below:

Fisher Scoring: this statistical method can be easily applied to
classification problems. Given the values of a feature f and a set of m
classes denoted as C = {¢,¢;,¢3, ..., ¢, ], the Fisher Score is computed
using the mathematical expression stated in Eq. (1):

(ep — us)

: m

Scorey = Z n,

ceC Oef
where n, refers to the number of samples per class, u s refers to the
mean value of the feature f considering only the samples that belong
to the class ¢, u f] refers to the overall mean value of the feature and o, r
denotes the standard deviation of the feature given only the samples
that belong to the class c.

Mutual Information: in this context, Mutual Information explains
the uncertainty that exists in a classification problem given the infor-
mation provided by a particular feature, as it is based in the concept
of entropy. Therefore, the mutual information value will be higher
with a stronger dependency between the feature and the target output
(i.e., reduction of uncertainty). In order to define the Mutual Informa-
tion, firstly, we need to state the mathematical expression of entropy.
Given a feature X and denoting its entropy as H(X), this statistical
measurement is calculated as can be seen in Eq. (2).

H(X)=-) P(x)logP(x;) @)
i=1

On the other hand, we need to define the conditional entropy.
Denoting Y as the target output, the conditional entropy is expressed
as can be seen in Eq. (3):

P(xp.'r'j)

HX|Y)=- ) P(x;y;)log o)

)

(3)

Finally, once defined these 2 concepts, the mutual information I
between a feature X and a target output ¥ can be defined as is stated
in Eq. (4):

I(X,Y)= H(X)- H(X|Y) 4

Variance-based Ranking: this approach assumes that the features
with a greater variance provide a greater amount of information.
Therefore, the score value given by this method is the variance V ar(X)

of the feature X itself as stated by the mathematical expression that
can be seen in Eq. (5):

Var() = - Y0~ ) ®)
i=1

Once the ranking of features is built with the obtained scores and
given a specific selection method, the features are fed to the machine
learning models as the last step of the methodology.

3.4. Machine learning models training

For validation purposes, after the data is processed and the most
important features are identified, the dataset is divided in a random
Holdout fashion, having a 70% of the samples for training and the
remaining 30% of the samples for testing. Moreover, to overcome the
considerable imbalance of the 2 analysis scenarios that are proposed
in this work, a random balancing is applied on the training set. This
process is described in Fig. 2 and is performed as follows: given a
majority class with N samples and a minority class with M samples,
the difference is computed. Then, a random subset of N — M samples
is selected from the minority class. Finally, the obtained random subset
is appended to the minority class. As result, the new generated dataset
will contain the same amount of samples for both classes. In addition
to this, another important detail is that, to have a better understanding
of the behavior of the model, the training process is repeated 5 times,
allowing to calculate the mean and the standard deviation values. Once
the dataset is split, we use 5 different machine learning models that
were also used in a previous state-of-the-art work that performs a
similar task [19]: Support Vector Machine (SVM) [53], Decision Tree
(DT) [54], XGBoost algorithm [55], k Nearest Neighbors (kNN) [56]
and Multlayer Perceptron (MLP) [57]. Given the feature rankings that
are obtained in the previous step of the methodology, we propose
a forward training approach. This means that the model is trained
with the most important feature of the ranking, then with the 2 most
important features, then with the 3 most important features...until
reaching the whole number of features. This procedure is necessary
to understand the impact that the number of features makes on the
performance of the classification models.

Regarding the setup of the classifiers, a range of parameters was
empirically selected to find a high-performing combination for each of
them. In the case of the SVM, several kemel functions were considered,
in particular, linear, polynomial and radial basis function, being the
latest the one that obtained the highest performance. In the case of
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Fig. 2. Description of the method that was used to address the problem of imbalancing that exists in the original dataset.

the Decision Tree, different values of maximum depth were considered,
being 3 the one that achieved the highest performance. Moreover,
XGBoost was proven with different boosting strategies, retrieving the
highest performance using the Dropouts meet Multiple Additive Regres-
sion Trees (DART) method [58] that was set up with a learning rate of
0.1. In the matter of kNN, different number of neighbors were taken
into account, being 5 the specific chosen number. Finally, with regard
to MLP, the maximum number of training iterations was set to 300,
given that this was the highest-performing configuration. It is important
to remark that the rest of parameters were set with the default values
that are specified by the used software library.

3.5. Evaluation metrics

To evaluate the performance of the trained models to solve the 2
proposed tasks, we use some of the most common classification metrics
that are used in the state-of-the-art. Denoting TP as true positives, TN
as true negatives, FP as false positives and FN as false negatives, the
sensitivity and specificity are defined as can be seen in Egs. (6) and
(7), respectively.

TP
Sensitivity = ——— 6
MY = TP Y FN ©)
TN
Specificity = TN+ FP 7

In the same way, we also provide the value of AUC-ROC. To define
this metric, we first need to determine the expression of True Positive
Rate (TPR) and False Positive Rate (FPR). The TPR is equivalent to the
already defined expression of Sensitivity, while the FPR can be defined
as 1-Specificity. Given those definitions of TPR and FPR, and denoting
d(F PR) as the derivative of the False Positive Rate, the expression of
the AUC-ROC can be seen in Eq. (8).

1
AUC — ROC = / TPR - d(FPR) (8)
0

Table 6
Analysis of the distribution of 3 relevant features in the dataset built for the experiment

I (estimation of Non-Hospitalization/Hospitalization), given by the absolute numbers
and the percentages.
Feature
<65 875 (42.33%)
Age [65, 80] 727 (35.17%)
>80 465 (22.50%)
Sex Male 1173 (56.75%)
Female 894 (43.25%)
Non-Hospitalized 284 (13.74%)
Qutcom
© Hospitalized 1783 (86.26%)

4. Results and discussion

For the validation purposes of this work, 2 different experiments are
performed, one for each of the analyses described in Section 3.1. In this
way, the experiment I is conducted to estimate the risk of hospitaliza-
tion for a given patient (Estimation of Non-Hospitalized/Hospitalized)
while the experiment II is performed to estimate the risk of death
(Estimation of Survival/Death). Hence, in this section, we discuss the
results of the experiment I (Section 4.1) and the experiment II (Sec-
tion 4.2). Finally, in Section 4.3, we compare the results of our proposal
with those obtained in the main works of the state-of-the-art. It is
important to note that each scenario has particular circumstances that
lead to independent conclusions, an aspect that requires to perform an
individual data and feature selection analysis for each particular case.

4.1. Experiment I. Estimation of non-hospitalized/hospitalized patients

The overall analysis of the distribution of 3 relevant features in
the dataset can be seen in Table 6 as is the case of the Age, Sex, and
Qutcome, while Table 7 shows the statistical distribution of the clinical
variables given the median, the first quartile and the third quartile.
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Table 7
Statistical analysis of the numerical variables for the dataset built in the experiment I
(estimation of Non-Hospitalized /Hospitalized).

Feature Q1 Median Q3
Height (cm) 156.00 163.00 170.00
Weight (kg) 68.65 80.00 90.00
BMI [kg/mz) 26.67 29.74 3291
LYMP (10°/L) 0.70 1.00 1.46
LYMP (%) 11.30 17.30 25.60
D-Dimer (ng/mL) 466.25 750.00 1300.75
LDH (U/L) 202.00 264.00 362.00
Creatinine (mg/dL) 0.76 0.94 1.19
GFR (mL/min) 52.13 78.50 110.76
CRP (mg/L) 1.69 548 11.73
Ferritin (ng/mL) 147.50 413.50 812.75
IL-6 (ng/L) 7.60 18.85 47.05
Table 8

Analysis of the distribution of the values for each discrete
available variable in the dataset built for the experiment I
(estimation of Non-Hospitalization/Hospitalization) providing

both the absolute bers and the percentag

Variable Count (pct.)
Asthma 130 (6.29%)
Biological 18 (0.87%)
ccs 68 (3.29%)
Diabetes 355 (17.17%)
COPD 138 (6.68%)
LD 43 (2.08%)
HIV 4 (0.19%)
AHT 772 (37.35%)
Leukemia 12 (0.58%)
Lymphoma 18 (0.87%)
Neoplasm 210 (10.16%)
Chemotherapy 23 (1.11%)
Transplant 14 (0.68%)

Firstly, the distribution of the age of the patients is very similar among
ranges, having the greatest amount between the ages of 0 and 65 (875
samples) that decreases as the age increases (727 samples between the
ages of 65 and 80 and 465 samples for the ages greater than 80). On
the other hand, the number of male patients is higher than the number
of female patients, having 1173 males against 894 females.

With regard to the outcome, it can be concluded that the classes
are imbalanced. In this particular case, where we have the class Non-
Hospitalized alongside the class Hospitalized, the number of Hospi-
talized cases (1783 patients, that corresponds to the 86.26% of the
dataset) is considerably greater than Non-Hospitalized (with 284 pa-
tients, that corresponds to the remaining 13.74% of the dataset), as
expected. This is due to the fact that the health workers tend to register
more data when the patient needs hospitalization, because they usually
need more clinical testing during their hospital stay. This is the opposite
in the case of the Non-Hospitalized cohort, as many of these patients
are quickly released without any kind of additional testing.

On the other hand, when looking at the previous conditions of the
patients, the imbalance is also noticeable, due to the fact that only
few patients present a particular condition. In fact, as can be seen in
Table 8, the most balanced variables are the AHT (where the 37.35%
of the patients have this condition), the Diabetes (where the 17.17%
of the patients have the condition) and the Neoplasm (with a 10.16%
of patients that have this condition) while for the rest of the variables,
the ratio of patients that have the condition is always lower than 10%.
The most significant case of imbalance is the HIV, with only a 0.19%
of patients that have the condition (just 4 samples). Nevertheless,
despite dealing with such imbalance problems, the methodology shows
to have a great robustness for this issue. This analysis shows that
the selected samples are representative of the selected population, as
hypertension [59] and diabetes [60] are 2 common previous conditions
in western societies, explaining the high incidence of both disorders.
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Moreover, the fact that a great percentage of the patients are of an
older age, makes them prone to suffer from more previous conditions,
an aspect that is also reflected in the dataset.

Additionally, the results using the whole set of features can be seen
in Table 9, with a comparison among the different used machine leamn-
ing algorithms: SVM, DT, XGBoost, kNN and MLP. These results show
that XGBoost obtains the best performance in terms of AUC-ROC, with
a value of 0.8415+0.00217. Regarding the individual metrics, the Sensi-
tivity shows a high performance for this case, classifying correctly the
85.75% of the positive cases while shows a worse performance for the
Specificity, as the XGBoost model only classifies correctly the 60.44%
of the negative cases. However, it can be seen as a useful model, able
to estimate the patients that need for hospitalization satisfactorily, as
sensitivity is the most relevant metric to take into account for this
particular case. In general, it can be seen that the results are satisfactory
given the complexity of the estimation problem that is being solved.
To analyze this last model more deeply, Fig. 3 shows a representative
confusion matrix obtained when using the most appropriate algorithm
for this experiment as reference (XGBoost) and the ROC curves of all
the classifiers after training with the whole set of features. In particular,
regarding the cases that were correctly classified, this confusion matrix
shows 304 true positives and 40 true negatives. With regard to cases
that were misclassified, it shows 56 false negatives (Hospitalized cases
that were classified as Non-Hospitalized) and 14 false positives (Non-
Hospitalized cases that were classified as Hospitalized). In terms of ROC
curves, the performances among classifier models are quite similar,
where XGBoost obtains the highest value. However, it is remarkable
that kNN achieves a notable lower effectiveness, as reflected in the
previous Table.

With regard to the feature selection process, the ranking of the most
important features for each method can be seen in Fig. 4. From these
rankings, some interesting aspects can be concluded. Firstly, in the case
of the Fisher Scoring, it can be seen that the 2 most important features
are Age and Age Range. This demonstrates that the main clinical
criteria to decide if a patient needs to be admitted to the hospital or
not is the age. A similar conclusion extracts the Mutual Information
method, as the Age is considered as the most important feature and the
Age Range is included within the top 4 of the ranking. Apart from the
age variables, AHT also shows to be significant, as Fisher Scoring places
it within the top 3, the Mutual Information within the top 6 and the
Variance-based Ranking method as the third most important discrete
variable. Moreover, GFR, a descriptor of the patient renal activity, is
given a high score by the 3 methods, as is placed within the top 7 by
the Fisher Scoring, within the top 2 by the Mutual Information method
and within the top 5 by the Variance-based Ranking method.

The feature selection methods give also a great importance to BMI
and Weight. In particular, Fisher Scoring places Weight and BMI at
the fourth and sixth position, respectively, while Mutual Information as
the third and the seventh most important features, in the same order.
Moreover, in the case of the Variance-based method, both variables
are placed within the top 10 of the ranking. Furthermore, the CRP
is also given a great importance, being always within the top 11 of
the ranking for the 3 feature selection methods. LDH also seems to be
another relevant feature (top 9 for the Fisher Scoring method, top 10
for Mutual Information and top 3 for Variance-based Ranking). Finally,
Diabetes, an important previous condition, is also remarkable given
that it is placed within the top 10 by the Fisher Scoring method, within
the top 11 by the Mutual Information method and as the fourth most
important discrete variable by the Variance-based Ranking method.

In the particular case of Mutual Information, the features CCS,
Chemotherapy, HIV, Leukemia, Lymphoma, LYMP and Sex are given
a negligible score. Therefore, it is shown that the values of these
variables are unable to precisely determine the outcome of the patient.
Regarding the variable Sex, despite being placed by the Variance-based
Ranking method as the second most important discrete variable, the
other 2 methods give a low position to this feature, meaning that the
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Table 9
Results obtained after t g the models to estimate the output Non-Hospitalized /Hospitalized (experiment I) using all the features,
SVM DT XGBoost kNN MLP
AUC-ROC 0.7975 + 0.0262 07912 + 0.0115 0.8415 + 0.0217 0.6976 + 0.0303 0.8170 + 0.0157
Sensitivity 44.88% + 4.33% 79.55% + 20.38% 85.75% + 5.02% 72.45% + 1.50% 76.37% + 3.20%
Specificity 90.78% + 4.82% 58.47% + 18.78% 60.44% + 5.61% 61.58% + 3.70% 71.53% + 3.51%
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correlation between the values of Sex and the need for hospitalization
has a great uncertainty. From this study, we can extract that the age
of patient is an important variable to determine if a person needs
hospitalization or not. Similarly, it can be seen that those variables
related with weight also have a strong correlation with the necessity
of hospitalization. In addition, those features that have a relationship
with prevalent previous conditions (in this case, AHT and Diabetes) are
significant, too. Finally, we can find some other important features that
determine important organic processes as well, such as the renal and
liver activity (LDH and GFR) and inflammation (as is the case of the
CRP variable). This is a valuable conclusion, given that COVID-19 is a
multi-organic disease that can affect the previously mentioned organs,

because it provides a global picture of the pathology severity. In the
same way, any variable related with inflammation can also help to
understand the extent of the pathological condition.

In terms of the performance evolution given the used number of
features from the dataset, Fig. 5 shows that there is a trend of im-
provement as the number of features increases when using the model
with the best global performance, which in this case is provided by the
XGBoost algorithm. This improvement is more noticeable when adding
the first top features to the dataset, while it starts to stabilize from a
certain amount of features onwards. In fact, for this scenario, it can be
seen that the performance starts to flatten at around 10 features using
all the feature selection methods. Another interesting aspect is that
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Table 10

Analysis of the distribution of 3 relevant features in the dataset built for the
experiment II (estimation of Survival/Death), given by the absolute numbers and the
percentages.

Feature
<65 672 (37.69%)
Age (65, 80] 670 (37.58%)
>80 441 (24.73%)
o Male 1031 (57.82%)
Female 752 (42.18%)
Survival 1357 (76.11%)
Outco
utcome Death 426 (23.89%)

Fisher Scoring and Mutual Information have a similar behavior, while
the Variance-based Ranking method starts with a lower performance,
but matches the other methods when the number of features is 8.
This occurs when the feature Age is initially included in the subset,
being significant of the importance that the attribute implies in this
particular problem. It is interesting to remark that these results are one
of the main strong points of our work, as this study can be useful to
understand which are the most important features and to comprehend
the behavior of the model as the amount of features is increased.

4.2. Experiment II. Estimation of the Survival/Death

An overall analysis of the age ranges, sex and outcome of the
patients in the dataset built for this experiment can be seen in Table 10
and the distribution of the clinical variables in terms of median, first
quartile and third quartile can be seen in Table 11. Firstly, we can
observe that the distribution of the age ranges is very similar as in the
experiment I (i.e., the amount of patients is higher for the youngest
ranges and decreases as the age increases). With regard to the sex
of the patients, the 57.82% are males, while the remaining 42.18%
are females. Finally, the dataset shows a 76.11% of survival ratio
and a 23.89% of death ratio. This is significant that the dataset for
this experiment also experiences a significant imbalance. However, the
proposed methodology presents a satisfactory robustness to deal with
this issue.

On the other hand, the analysis of the values distribution of the
discrete variables is shown in Table 12. As expected, the data is very

pitalized (experiment I) given the number of features using the XGBoost algorithm.

Table 11
Analysis of the numerical variables of the dataset built for the experiment II (estimation
of Survival/Death).

Feature Q1 Median Q3
Height (cm) 156.00 163.00 170.00
Weight (kg) 68.55 80.00 90.00
BMI (kg/m?) 26.62 29.73 32.87
LYMP (10°/L) 0.70 1.00 1.45
LYMP (%) 10.80 17.00 25.30
D-Dimer (ng/mL) 461.50 758.00 1324.25
LDH (U/L) 209.00 272.00 372.00
Creatinine (mg/dL) 0.77 0.94 1.20
GFR (mL/min) 51.91 78.50 109.94
CRP (mg/L) 1.91 5.95 12.20
Ferritin (ng/mL) 157.00 419.00 821.00
IL-6 (mg/L) 7.60 19.10 48.80

similar to the previous case, with only slight differences. Once again,
the most balanced variables are AHT (having a 41.45% of patients that
present this condition), Diabetes (having a 19.24% of patients with this
condition), and Neoplasm (having an 11.55% of the patients with the
condition) while the rest of the variables have less than 10% of the
patients with each condition. Once again, the most imbalanced variable
is HIV, as only the 0.17% of the patients present this condition (just 3
samples in the dataset). In this experiment II, given that the dataset
is very similar to the dataset of the experiment I, the selected samples
are also representative of the population with a greater incidence of
hypertension and diabetes, an aspect that is partially explained by the
fact that many patients are of an older age.

Moreover, Table 13 shows the performance that was obtained using
the whole set of features for this experiment II. Overall, the XGBoost
is the method that achieves the best global performance with an AUC
of 0.7992 + 0.0104. These AUC values represent a high performance
that, however, are influenced by the fact that the studied variables are
relevant and useful but only able to partially characterize the complex
problem of estimation that is being addressed. In this case, with regard
to the individual metrics, the Specificity shows a satisfactory value
as the model is able to classify correctly the 80.08% of the negative
cases, while is considerably lower in the case of the Sensitivity, as
only the 56.28% of the positive cases are classified correctly. This is
an undesirable characteristic for this particular problem, as it is more
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Table 12

Analysis of the balance of each discrete variable in
the dataset built for the experiment I (estimation of
Non-Hospitalized /Hospitalized), depending on that if
the patients have a certain condition or not.

Variable Count (pct.)
Asthma 121 (6.79%)
Biological 17 (0.95%)
CCs 68 (3.81%)
Diabetes 343 (19.24%)
COFD 135 (7.57%)
LD 42 (2.36%)
HIV 3 (0.17%)
AHT 739 (41.45%)
Leukemia 12 (67.30%)
Lymphoma 17 (95.34%)
Neoplasm 206 (11.55%)
Chemotherapy 22 (1.23%)
Transplant 14 (0.79%)

critical to determine precisely which are the patients with a higher
risk of death. Therefore, despite providing a lower value of AUC-ROC,
the decision tree is more appropriate for this problem, as it obtains
the highest value of sensitivity, classifying correctly the 75.87% of the
positive cases. A more visual analysis of the performance can be seen
in Fig. 6, with a representative confusion matrix of the most suitable
algorithm in this experiment (Decision Tree) as well as the ROC curves
of all the classifiers using all the available features. The confusion
matrix shows an effectiveness of 62 true positives, 207 true negatives,
21 false negatives (cases of class Death that were classified as Survival)
and 67 false positives (cases classified as Death that actually belonged
to class Survival). Regarding the ROC curves, SVM, kNN and MLP
have a notably lower in performance compared with the remaining 2
algorithms, in the same line as stated in the Table.

With regard to the feature selection process, the ranking scores
of the top features for each method can be seen in Fig. 7. Firstly, it
can be seen that the Variance-based Ranking method is once again
considerably different, as numerical variables are at the top of the
ranking, while discrete variables are at the bottom. As the datasets
that were built for the experiment I and the experiment II are very
similar between them and given that this feature selection method
only focuses on features without taking into account the output classes,
the ranking and the scores are also very similar. With regard to the
obtained rankings of the features, both the Fisher Scoring and the
Mutual Information methods select the Age Range and the Age as the 2
most important features, in the same way as it happened in experiment
1. Similarly, Fisher Scoring also places AHT as the third most important
variable, while Mutual Information places it within the top 6 and
Variance-based Ranking as the third most important discrete variable.

Apart from that, other relevant feature is the Neoplasm, as is placed
within the top 3 in the case of the Fisher Scoring method, within
the top 11 for the Mutual Information method and as the fifth most
important discrete variable under the point of view of the Variance-
based Ranking method. Once again, the Diabetes also proves to be an
important feature (placed as eighth in the case of the Fisher Scoring
method, tenth in the case of the Mutual Information method and
as the fourth most important feature in the case of the Variance-
based Ranking). In addition, Chemotherapy can also be mentioned as
a remarkable variable, placed within the top 7 in the case of the Fisher
Scoring, within the top 9 in the case of the Mutual Information method
and within the top 10 of the discrete variables in the case of the
Variance-based Ranking method. In the case of the count of lympho-
cytes, it is remarkable that the percentage is much more important than
the absolute count. Given this percentage, Fisher Scoring gives it the
ninth position, Mutual Information gives it the fifth position, while the
Variance-based Ranking gives it the ninth position. Other significant
variables that can be mentioned are CCS (fifth position given the
Fisher Scoring algorithm, eighth position given the Mutual Information
method and the eighth position of the most relevant discrete variables
in the case of the Variance-based Ranking method) and Creatinine that,
despite being placed as the least important numerical variable due to
its lower variance, is given the top 4 by the Fisher Scoring algorithm
and the top 3 by Mutual Information. Finally, it can be seen that the
Mutual Information method gives a negligible score to Ferritin, Height,
Weight, BMI, CRP, Sex, Asthma, LD, Biological, Transplant, and HIV.

For this second experiment, there are several differences with regard
to the study of the features. Firstly, it can also be seen that age
and prevalent previous conditions (AHT and Diabetes) are relevant to
determine the death risk of a patient, similarly as in the experiment 1.
However, those variables related with Weight have less importance (in
fact, Fisher Scoring places them almost at the bottom of the ranking
and Mutual Information gives them negligible scores) despite the fact
that Variance-based method gives them high positions due to their
great variability. Similarly, the features LDH, GFR and CRP are given
less importance as well that, however, is considerably less noticeable
than in the previous case. On the other hand, Creatinine, a variable
that is significant of the renal filtration capabilities, gains a great
importance despite the drop of GFR. Once again, this demonstrates
the significance of the renal activity and the outcome of COVID-19
patients. Furthermore, Neoplasm and Chemotherapy (both related with
cancer scenarios) gain a great importance similarly as CCS (given that
corticosteroids reduce inflammation and affect immune system) and
LYMP (pct.), the last one due to the fact that amount of lymphocytes
is indicative of the immune system function.

In the case of training with the whole set of available features, for a
more straightforward interpretation of the results, we decided to focus
on those obtained by the model with the best overall performance, (in
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Table 13
Results obtained after training the models to estimate the output Survival/Death (experiment II) using all the available features.
SVM DT XGBoost kNN MLP
AUC-ROC 0.6715 + 0.0394 0.7839 + 0.0298 0.7992 + 0.0104 0.6261 + 0.0229 0.6882 + 0.0427
Sensitivity 2296% + 4.29% 75.87% + 8.26% 56.28% + 3.78% 52.94% + 3.67% 55.44% + 9.56%
Specificity 89.09% + 1.59% 69.54% + 7.44% 80.08% + 1.91% 64.34% + 2.50% T7.44% + 3.30%
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Table 14

[ Signal Pr ing and Control 84 (2023) 104818

Comparison of our proposal and the main works of the state-of-the-art. It must be taken into account that the used datasets and the conditions

of the experi ion can be considerably different.
Xu et al. [22] Polilli et al. [23] Pishgar et al. [24] Ali et al. [18] Ours
AUC-ROC - 0.9100 - - 0.8415
Risk of hospitalization Sensitivity - 80.00% - - 85.75%
Specificity - 87.00% - - 60.44%
AUC-ROC 0.8500 0.9100 0.9000 0.8100 0.7839
Risk of death Sensitivity 22.00% 89.00% 72.70% 83.00% 75.87%
Specificity 97.00% 79.00% 80.00% - 69.54%

this case, the XGBoost). Particularly, for the 2 first methods, the Age
Range and the Age variables show to be the most important features.
In the case of the Variance-based Ranking method, due to its nature,
the Age Range is lower at the ranking, but it is still at the top of the
discrete variables.

In terms of the performance evolution as the number of selected fea-
tures grows, we decided to select the most representative classification
model for such purpose, the XGBoost, which is the one that obtains
the best overall performance. In particular, Fig. 8 shows a tendency of
improvement when the amount of features is higher. This improvement
is slight in the case of Fisher Scoring and Mutual Information, but it
is considerably noticeable in the case of the Variance-ranking based
method. In the latter case, the performance is significantly lower when
the amount of selected features is small (in this case, less than 8
features). However, there is a performance peak while using 8 features,
an aspect that represents the importance of the Age variable, as this
is the first subset where the feature is added. From that number of
features onward, the performance improvement starts to flatten. Once
again, these results remark the strengths of our work, given that this
exhaustive experimentation explains the contribution of each feature on
the performance (which is a clinically relevant aspect) and the behavior
of the models with each subset of features.

4.3. Comparison with other contributions

When comparing our work with the rest of the state-of-the-art ap-
proaches, it is important to note that there is a lack of publicly available
data as it is difficult to find a consensus among the different criteria
that it is used in the healthcare services worldwide to diagnose COVID-
19 patients, hindering the process to obtain a general purpose public
dataset suitable for performing a broad range of different analyses.
Therefore, the available methods need to design ad-hoc datasets for
specific analyses, that are restricted to the available data. Globally,
we can point out that our contribution presents an exhaustive analysis
of the feature selection process, that evaluates how the performance
improves as the amount of features increases. Furthermore, apart from
the clinical relevance of the conclusions that are extracted from the
experiments, we also discuss the possible applicability of the method-
ology to the daily clinical practice, thanks to the trained classification
models and the most relevant and useful variables that were identified
during the feature selection process. We can also point out that the
statistical analysis of the variables of the dataset shows that we are
working with a representative dataset of the pathological conditions
that are more prevalent in modern Western societies as is the case
of hypertension, diabetes and other scenarios such as the overweight
or obesity. This makes the analysis more relevant as it evaluates the
correlation between these prevalent conditions and the increased risk
of the patients that suffer from them in a COVID-19 scenario.

However, despite the difficulty of comparing our proposal with the
methods found in the state-of-the-art, in this section we perform a dis-
cussion of these characteristics, pretending to be as fair as possible. In
particular, Table 14 shows the comparison among our proposal and the
main methods of the state-of-the-art. For our methodology, we selected
the most appropriate model for each experiment (i.e., XGBoost for
Experiment I and Decision Tree for Experiment II). With regard to risk

of hospitalization, it can be seen that the work from Polilli et al. [23]
outperforms our proposal in terms of AUC and specificity, but it is
worse in terms of sensitivity. As it was also explained in the discussion
of the Experiment II, sensitivity is an important and critical metric for
the problem that is being solved. In this sense, our work shows to be
more appropriate for that task. In the case of the risk of death, the AUC-
ROC of our method is the lowest among all the approaches. However,
the sensitivity obtained with our proposal is considerably higher than
the one obtained in the work of Xu et al. [22] and better than the
sensitivity achieved in the work of Pishgar et al. [24]. In general, this
demonstrates that the different approaches are appropriate to study the
risk of death of a COVID-19 patient. Moreover, in the case of Ali et al.,
the performance is close to the one obtained in our case in terms of
AUC-ROC and sensitivity. Once again, it is important to remark that
the datasets used in these works are considerably different, and that,
in this line, the discussion tried to be as fair as possible.

Regarding the set of features that is used in the works from the state-
of-the-art, a great heterogeneity is one of the most remarkable points
that can be mentioned. Overall, age and gender are usually present
in these datasets for their great importance not only in the case of
COVID-19 but in any clinical scenario. Some of the works presented in
this comparison consider only laboratory findings. Nevertheless, other
works contemplate the use of both laboratory findings and previous
clinical conditions of the patients, similarly as in our proposal. Overall,
it can be seen that some features are often shared among contributions,
for instance, the previously-mentioned age and gender, variables di-
rectly or indirectly related with red blood cells and white blood cells,
hypertension, diabetes, obesity, cardiovascular and respiratory issues
(such as asthma or COPD, among others), and variables directly related
with immunity.

5. Conclusions

Given that COVID-19 is a challenging disease for the healthcare
services worldwide, it is important to develop useful CAD systems
and provide useful information to help the clinicians to take decisions
in so critical environments. In this context, the clinical data of the
patients that are stored in form of electric records, can be exploited
in developing these automatic methods to perform relevant tasks. For
this work, we have selected 2 different study scenarios, the most critical
and relevant for both the healthcare services and patients with regard
to a COVID-19 severe infection: estimate if a COVID-19 patient needs
hospitalization or not and if a COVID-19 patient is at low or high risk of
death. This was performed using 4 different machine leaming models:
Support Vector Machine, Decision Tree, XGBoost, k Nearest Neighbors
and Multilayer Perceptron. On each task, we performed an exhaustive
statistical analysis of the most relevant aspects that can be derived from
the dataset, the study of the imbalance of each class and the features
that determine the previous conditions that the patients present. In the
same way, this contribution includes a detailed analysis of the feature
selection process using 3 different methods and the study of the impact
that has the number of features used to train on the performance of
the classification models. Moreover, in this manuscript, we thoroughly
analyze the performance of the machine learmming models used for the
tasks, training with the whole set of available features.
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As possible lines of future works, it could be relevant to perform
other different analyses of the provided dataset after discretizing each
clinical variable with its corresponding reference ranges. The analyses
herein presented could also be complemented using information pro-
vided by relevant medical imaging captures, such as X-ray or CT devices
with the aim to improve the performance of the classification models,
integrating information and analyses from a wider range of resources.
These imaging modalities are relevant as they could provide relevant
biomarkers indicative of how the disease will behave in a given patient.
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