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a b s t r a c t 

A memetic version between an evolutionary algorithm (differential evolution) and the local search provided by 
protein fragment replacements was defined for protein structure prediction. In this problem, it is intended to find 
the global minimum in a high-dimensional energy landscape to discover the native structure of the protein. This 
problem presents a multimodal energy landscape which can additionally present deceptiveness when searching 
for the protein structure with minimum energy. One strategy is to try to obtain a diverse set of optimized and 
different protein conformations, which can be located in different local minima of the energy landscape. For this 
purpose, different niching methods (crowding, fitness sharing and speciation) were integrated into the memetic 
algorithm. The integration of niching makes it possible to obtain in a straightforward way a diverse set of opti- 
mized and structurally different protein conformations. Compared to previous studies, as well as to the widely 
used Rosetta protein structure prediction method, the potential solutions offered here present a diverse set of 
folds with different distances (RMSD) from the real native conformation, with wide RMSD distributions, and 
obtaining conformations closer to the native structure (in RMSD values) in some proteins. 
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. Introduction and previous work 

Since the biological function of proteins is related to their three-
imensional structure, knowledge of the structure of proteins can pro-
ide information about their functional role, and for this reason there is
 vast amount of research on laboratory and computational methods for
etermining the native state of proteins. However, traditional laboratory
ethods used for determining this native folded structure, like X-ray
rystallography and NMR spectroscopy (which require specific protocols
n each case), are expensive and time-consuming. Additionally, there
s an increasing gap between the number of known protein sequences
the result of many modern, large-scale DNA sequencing projects) and
roteins with known structures. Different computational methods have
een defined to reduce this “sequence/structure gap ”. There are compu-
ational methods that rely on knowing the three-dimensional structure
f the homologous proteins of the target protein (homology modeling)
nd on finding the best fit of the target protein to some fold in a library
f structures (protein threading) [1] . The problem is that these methods
equire the existence of protein template structures, such as proteins
ith similar sequences and known structures for homology modeling,
hich is not the case for many novel protein sequences. 
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Hence, there has been considerable research using computational
ab initio ” or “de novo ” methods, which only use the protein primary
tructure (protein sequence of amino acids) as input information, with
he aim of accurately determining the final native state of the protein,
hich is a formidable challenge in computational biology. It is assumed
hat the protein’s amino acid sequence is the only relevant informa-
ion that determines the final folded structure, as shown by Anfinsen
2] (Anfinsen’s dogma). In this computational Protein Structure Predic-
ion (PSP), it is also assumed that the protein’s native state corresponds
o the one with the lowest Gibbs free energy [2] . Consequently, the prob-
em of the folded structure prediction becomes a search or optimization
roblem in an energy landscape associated with possible protein confor-
ations, since the goal is to find the global minimum in the energy land-
cape, minimum that is assumed to correspond to the native structure of
he protein. The energy landscape takes into account the simplifications
nd constraints of the lattice (the protein components are located in the
ites of a lattice model) or off-lattice model (amino acids and their atoms
an be located without that restriction) used to represent a protein con-
ormation. This energy minimization approach in PSP is different from
he alternative deep learning-based prediction of the resolved protein
tructure (usually the crystallized structure), in the latter case with its
. 
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ependence on multiple sequence alignment information from the input
equence [3] . 
In such a search, the ability to pursue global exploration of evolu-

ionary methods (and population-based methods in general) reduces the
hance of the search becoming stuck at local minima [4–7] . The energy
andscapes associated with protein structure are full of local minima and
re usually regarded as “funnel-like ” [6] . As Zhang et al. [8] state, “Pro-
ein structure prediction involves an extremely expensive to evaluate en-
rgy model which has thousands of degrees of freedom, and a highly de-
enerate energy hyperspace owing to its massive local minima and large
egions of unfeasible conformations ”. There has been extensive research
n the use of evolutionary methods and other bio-inspired algorithms
n protein structure prediction using lattice models for protein repre-
entation [5,7,9–15] , including hybrid or memetic solutions [16] that
ntegrate the combination with a local search or a procedure that re-
nes unfeasible protein conformations to legal ones [17–21] . However,
here has been limited research on the use of evolutionary methods with
ff-lattice protein representation models [22–24] and, in particular, the
idely used model of the Rosetta software environment for computa-
ional modeling and analysis of protein structures [25,26] . 
Rosetta [25] is one of the most successful software environments for

rotein design, widely used for PSP and validated during CASP (Criti-
al Assessment of Structure Prediction) competitions [27] as one of the
eading approaches. For determining the native structure, the Rosetta
b initio protocol [25,26] basically uses a local search technique with
ts low-resolution protein representation, based on a Metropolis Monte
arlo procedure with the use of a fragment replacement technique (ex-
lained in Section 2.1 ) [26,28] . The procedure is repeated thousands of
imes due to the stochasticity of the process, and some of the final con-
ormations of this phase ( “decoys ”) can be used in a second “ab initio
elax ” procedure that uses the Rosetta’s full atomic model. In the Rosetta
ystem there are inaccuracies in its energy formulation, especially given
ts “knowledge-based ” nature ( Section 2.1 ), in which the lowest energy
tructures are not necessarily the most native-like [29] . That is, the en-
rgy function is not accurate enough to differentiate between the actual
ative structures of proteins and the conformations structurally close to
he native state. The Rosetta system employs the decoy set, obtained in
ts first search with the low-resolution model, to increase the probability
f obtaining solutions close to the native one. 
Different studies used evolutionary algorithms with the low-

esolution model of Rosetta and also with the fragment replacement
echnique [22,30] . Moreover, given the deceptiveness of the Rosetta en-
rgy landscape, in the sense that the global minimum is not necessarily
he one that corresponds to the native structure, previous work has fo-
used on increasing the diversity of the conformations maintained in the
enetic population, with the aim of addressing the problem by obtaining
 diverse set of native-like structures. 
Thus, Garza-Fabre et al. [31] defined a multistage memetic algorithm

hich incorporates Rosetta fragment replacements as a local search rou-
ine. Their analysis showed that specialized genetic operators (adapted
ecombination and crossover), applied only in residues located at pre-
icted loop regions, increase the exploration in such loop regions in
rder to discover different protein folds. Moreover, the authors used
 stochastic ranking-based survival selection with two selecting criteria
energy and diversity), where the latter aims to improve the exploration
nd preservation of different protein folds throughout the evolution-
ry process. In a later study, Kandathil et al. [32] developed two sam-
ling protocols (bilevel optimization and iterated local search) to im-
rove the exploration capability of protein conformations. Their bilevel
rotocol allows “Perturbation steps ” in (predicted) loop regions, while
LocalSearch ” steps are applied in the rest of the protein. Comparisons
ith the Rosetta ab initio method indicate that their protocols more
requently generate native-like predictions for many targets than in the
ase of Rosetta. 
Other examples focused on increasing the diversity of optimized con-

ormations include the selection strategy of Zhang et al. [8] , in which
2 
olutions with worse energy but more “reasonable structure ” (in the
uthors’ words) can be selected for the next generation of their evolu-
ionary algorithm. Their results showed that their strategy allowed sam-
ling near-native conformations more effectively than Rosetta in most
f the benchmark proteins used. In Simoncini et al. [33] , a cluster-based
cheme for protein model selection in a population-based metaheuristic
lso tends to explore more diverse low-energy protein folds. Finally, in
he memetic algorithm approach of Corrêa et al. [34] , the authors en-
orced structural diversity by maintaining subpopulations with different
acking degrees of the protein structures, these degrees being measured
ith the protein radius of gyration. 
Nevertheless, there is an unexplored possibility when evolutionary
ethods are used in protein structure prediction: the explicit use of
iching methods for the simultaneous search for the best solutions in
 multimodal fitness landscape, with the aim of obtaining a set of diver-
ified conformational folds. Niching refers to the possibility of clustering
he population around promising solutions in the search space. For this
eason, several techniques for generating niches during the evolution-
ry process were developed in the evolutionary computation field, espe-
ially when dealing with a multimodal fitness landscape and when the
bjective is the simultaneous location of the fitness peaks or local max-
ma/minima (or at least the highest/lowest peaks as well as the global
ptimum). Consequently, our study employs niching methods with the
bjective of directly enforcing structural diversity in the conformations,
hich can be located at different peaks of the multimodal fitness land-
cape, this objective being the main contribution of our study. 
It should be noted that the aim of the present paper is not to compare

ifferent niching methods in the application. Thus, standard and widely
sed niching methods (crowding, fitness sharing and speciation) were
elected with the aim of enhancing structural diversity in the popula-
ion of protein conformations during the evolutionary search process,
oncentrating the search for protein conformations on those promising
reas or niches found by the evolutionary algorithm, with the objective
f improving the probability of obtaining native-like solutions. The in-
orporation of niching has two effects: i) there is an inherent diversity
n the population, since the individuals are searching in different ar-
as of the landscape that correspond with different protein folds and,
i) given the inaccuracies of the fitness/energy landscape of knowledge-
ased energy formulations like the one used in Rosetta, in which the
ative conformation is not necessarily located in the energy minimum,
he location of solutions in different promising areas can increase the
robability of obtaining solutions close to the native structure. Contrary
o previous studies that used niching methods in PSP considering the
rst effect [35,36] (avoiding premature convergence), our current study
akes advantage of both effects to obtain the required diversified set of
ptimized folds. 
Differential Evolution (DE) [37,38] was selected as the evolution-

ry algorithm for the search for optimized protein conformations. It
hould also be noted that this study is not a comparison between dif-
erent evolutionary algorithms or other metaheuristics or DE versions.
tandard DE was chosen as it is one of the best contrasted methods
n evolutionary computation and with few tuning parameters [39,40] ,
nd also has better results in PSP with the simple HP lattice model
ompared to approaches based on genetic algorithms (GAs) [19,41] .
oreover, in a preliminary study [42] we combined DE [37,38] with
osetta’s fragment replacements. This hybrid version DE/fragment re-
lacements [42] obtained better results in terms of energy, with respect
o the Rosetta ab initio procedure and other solutions with evolutionary
lgorithms, and under the same number of fitness evaluations. How-
ver, although the hybrid version of the evolutionary algorithm has a
etter ability to sample the energy landscape in order to find solutions
ith minimized energy [42] , this is not a guarantee of finding the best
ative-like conformations for the target protein, due to the inaccuracies
f the knowledge-based energy formulation of Rosetta. Therefore, we
ested the integration of a memetic version of differential evolution and
he aforementioned classic niching methods, in this context of protein
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(  
tructure prediction with the Rosetta atomic off-lattice model, trying
o obtain a diversified set of folds. The memetic combination allows
ncorporating the advantage of both methods: the global search of DE
ith the problem-specific local search (provided by fragment replace-
ents for local refinement of protein structures), integration that allows
 more efficient sampling of the energy landscape. Moreover, the incor-
oration of the niching methods into the memetic version aims to obtain
iversified and optimized protein structures. 
There has been ample research integrating niching techniques into

volutionary algorithms [43,44] and, more specifically, with DE [45–
7] . In the case of crowding [48] , the standard integration with DE
efined by Thomsen [49] was followed in the present study ( Crowd-
ngDE ), extending DE with the classic crowding scheme. In CrowdingDE
ach trial individual competes with its nearest member of the popula-
ion in order to preserve diversity and the location of promising solu-
ions ( Section 2.3 ). Some preliminary results with CrowdingDE in PSP
ere published in [50,51] using a limited set of proteins. In this study
n extension of the results is provided, with an ample protein dataset
nd with a comparison with different Rosetta-based ab initio protocols.
Fitness Sharing (FS) [52,53] was another of the methods integrated

nto evolutionary algorithms, and specifically into DE [49,54] . The basic
dea in FS is to punish individuals that occupy the same area of the
earch space, rescaling the fitness of each encoded solution taking into
ccount the number of individuals in its neighborhood ( Section 2.4 ). The
ersion called SharingDE and defined by Thomsen [49] , with the direct
ntegration of FS with DE, is the one that we followed here (explained
n Section 2.4 ). 
Finally, in speciation, each of the “species ” is built around a domi-

ating species’ seed. All individuals that fall within the radius from the
pecies seed are identified as the same species. Since DE mutation is
arried out within each species, the technique has the ability to main-
ain high diversity and stable niches over generations [45] . The Species-
ased DE ( SDE ) defined by Li [55] was used as a base in our approach,
xplained in Section 2.5 . 
Therefore, taking into account all these considerations and previ-

us work, the objectives of our study are the following: i) To test the
bility of the memetic version of DE to obtain protein structures with
inimal energy and to compare its search capability with the state-of-
he-art Rosetta ab initio protocol (and recent variants thereof), both as
nergy minimization approaches in PSP. ii) To explore the incorporation
f niching to address possible deceptiveness in the energy model. For
his purpose, standard niching methods are integrated into the memetic
lgorithm, with a detailed analysis of the capabilities of this incorpo-
ation and the dependence of the results on the defining parameters of
he niching methods. iii) Finally, a key aspect to explore is the ability
f niching to provide an optimized, but also structurally diverse set of
roteins. 
The remainder of this article is structured as follows. Section 2 details

he methods used: a summary of the Rosetta software environment, our
pproach to sampling the energy landscape based on a combination of
ifferential evolution and Rosetta’s fragment replacements, detailing the
ncoding of protein conformations in the genetic population, the pop-
lation initialization and the different stages considered in the hybrid
volutionary algorithm. Section 2 also explains in detail the integration
f the considered niching methods into the hybrid DE algorithm. Finally,
n this section, the protein sequences used as benchmarks in the study
re detailed. In Section 3 , the experimental results with the different
iching alternatives are presented, while in Section 4 a final discussion
s provided together with the main conclusions. 

. Methods 

.1. Main aspects of Rosetta 

Rosetta uses two off-lattice protein representations: coarse-grained
nd all-atom. In the low-resolution coarse-grained representation, only
3 
he main atoms of the backbone chain are represented (with their dihe-
ral angles), whereas the side chains are described by a centroid located
t their center of mass ( Fig. 1 ). Therefore, protein conformations are
efined in the dihedral space, and a protein chain has three degrees of
reedom ( 𝜙, 𝜓 and 𝜔 ) for each amino acid residue. The all-atom repre-
entation also includes rotation Chi angles for side chains. All the other
nternal degrees of freedom are fixed to “ideal ” values (e.g., all bond
engths and bond angles are fixed) [56] . 
Rosetta ab initio protocol [25,26] , with the low-resolution protein

epresentation, employs a search technique in which a Monte Carlo pro-
edure decides whether the dihedral angles of small protein fragments
an replace the original ones [26,28] . A structural fragment is a continu-
us subset of the residues of a protein. Those fragments are drawn from
xperimentally determined structures (a non-redundant set of proteins).
he selection of those fragments is based on the sequence similarity be-
ween the fragment and the region (window of amino acids) of the target
equence where it is going to be inserted. That position for fragment in-
ertion in the target is randomly chosen. Rosetta uses fragment regions
f 3 and 9 residues long. Those fragments are extracted for each position
n the target, a process that is prior to the ab initio run, and it generates a
ibrary of fragments (particular to each target protein). Typically, there
re many fragments in the library for each position in the target (e.g.,
osetta’s fragment libraries contain around 200 fragments per position)
The decision regarding whether the dihedral angles of a selected

ragment replace the ones in the target protein is based on the Metropo-
is criterion [57] . This criterion always accepts the changes that improve
he energy (lower values), while occasionally accepting dihedral angle
hanges that worsen the energy (energy increase), following a Boltz-
ann energy distribution for a given temperature. This procedure makes
t more likely that the search of protein conformations with the fragment
eplacement technique can escape from local minima. 
Regarding the energy model, Rosetta uses physics and knowledge-

ased energy terms [58] . Knowledge-based potential [59] refers to the
mpirical energy terms derived from the statistics of the resolved struc-
ures deposited in the Protein Data Bank [60] . The interesting property is
hat these knowledge-based terms require less computational time. Com-
on physics-based energy terms [61] are associated with bond lengths,
ngles, torsion angles, van der Waals and electrostatic interactions. 
The Rosetta energy score associated with a protein conformation is

efined as a linear weighted combination of such terms that models
olecular forces that act on and between all atoms in that conforma-
ion. These scoring terms are, in most cases, knowledge-based. There
re energy terms such as solvation and electrostatics effects, repulsion
nd hydrogen bonding, as well as secondary structure scores like strand
airing and helix-strand packing. Steric overlap of backbone atoms and
ide-chain centroids is penalized, but favorable van der Waals interac-
ions are modeled only by rewarding globally compact structures [26] .
he Rosetta score function which takes into account all energy com-
onents, called score3 , corresponds to the full coarse-grained energy
unction. Nevertheless, Rosetta changes the weight set depending on
he stage of its ab initio protocol, as detailed in what follows. 
It is well-known that the Rosetta’s knowledge-based energy model

s inaccurate since the native conformation is not necessarily located
n the minimum of energy. For example, the results of Shmygelska and
evitt [29] reveal some of the deficiencies of the existing energy terms
n Rosetta, including the presence of false local minima and a general
atness of the energy landscape near the native states. 
To search through the conformational space, many rounds of
etropolis Monte Carlo are performed. For this purpose, the Rosetta ab
nitio protocol is divided into four stages. Through these stages, Rosetta
ses the coarse-grained protein representation and its fragment inser-
ion technique, together with the Metropolis criterion [57] , to generate
ew decoys. Table 1 includes a short summary of each stage with the
ost important details. 
Moreover, the number of fragment insertion attempts in each stage

 Table 1 ) can be modified with the Rosetta parameter increase_cycles ,
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Fig. 1. Low-level coarse-grained representa- 
tion of Rosetta. Only the main backbone atoms 
are considered, while the lateral chains are rep- 
resented with a pseudo-atom. Each protein con- 
formation is encoded with the dihedral angles 
of the different amino acids: 𝜔 (between atoms 
of the peptide bond), 𝜙 and 𝜓 . 

Table 1 

Main aspects of Rosetta ab initio stages. 

S1 Begins with a fully extended chain and inserts 9-mer fragments until all the backbone angles are modified at least once and with a maximum of 2000 cycles 
(fragment insertion attempts). During this stage, the energy function (called score0 ) only considers the steric-clash term to prevent overlapping between backbone 
atoms and side-chain centroids. 

S2 Employs 9-mer fragment insertions over 2000 cycles, but uses a more complex score function, score1 , which adds terms such as hydrophobic burial and specific pair 
interactions, as well as secondary structure scores. 

S3 Runs 10 iterations of 2000 cycles of 9-mer fragment insertion attempts. Rosetta combines in this stage two score functions, score2 and score5 . These focus on 
compactness and secondary structure terms. A convergence check determines the structural similarity of the current conformation with respect to a reference one, 
regularly updated. If there is not enough structural variation after 100 fragment insertions are accepted, stage 3 ends. 

S4 Employs 3-mer fragment insertions over 12,000 cycles, split into 3 iterations of 4000 cycles for each one. In this stage, score3 (which takes into account all energy 
components) is used. 
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hich multiplies the default values of cycles in the different stages. This
b initio procedure, with the four stages, is repeated thousands of times
ue to the stochasticity of the process. Some of the final conformations
 “decoys ”) of this phase (where a clustering process can be used to de-
ipher the most representative decoy set), can be subjected to a refine-
ent, with the side chain reconstruction and all-atom energy minimiza-
ion, in a second “ab initio relax ” procedure that uses the full Rosetta’s
tomic model. 

.2. Hybrid DE using different Rosetta phases and energy functions 

The same structure for the combination between an evolutionary
lgorithm and the Rosetta ab initio search defined by Garza-Fabre et al.
31] was followed. Those authors used a memetic algorithm, combining
 genetic algorithm with the local refinements provided by fragment
eplacements [31] . 
In our case, Differential Evolution [37,38] was used as evolutionary

lgorithm (with the next incorporation of niching into the evolutionary
rocess). DE is a population-based search method that creates new can-
idate solutions by combining existing ones, according to a simple for-
ula of vector crossover and mutation, and then keeping whichever can-
idate solution has the best score or fitness on the optimization problem
t hand. The central idea of the algorithm is the use of difference vec-
ors for generating perturbations in a population of vectors. DE needs a
educed number of parameters to define its implementation. Apart from
he population size, the parameters are 𝐹 or differential weight and 𝐶𝑅

r crossover probability. The weight factor 𝐹 (usually in [0,2]) is applied
ver the vector resulting from the difference between pairs of vectors ( 𝑥 ′2 
nd 𝑥 ′3 in Algorithm 2.1 ). 𝐶𝑅 is the probability of crossing over a given
ector of the population (target vector 𝑥 ′) and a “mutant ” vector cre-
ted from the weighted difference of two vectors ( 𝑥 ′1 + 𝐹 ( 𝑥 ′2 − 𝑥 ′3 ) ). The
most usual) “binomial ” crossover (specified in Algorithm 2.1 ) was used
or defining the value of the “trial ” vector ( 𝑦 ) in each vector component
r position 𝑖 [39] . The index 𝑅 guarantees that at least one of the vector
arameters will be changed in the generation of the trial solution. 
In this protein structure prediction problem, the solutions of the pop-

lation encode protein conformations. Each solution is encoded with
he three dihedral angles, 𝜙, 𝜓 and 𝜔 , for each amino acid. The appli-
ation of forward kinematics to this angular representation obtains the
4 
patial information of the protein conformation. DE individuals code
he dihedral angles in the range [-1,1], which are decoded to the inter-
al [ −180 ◦, 180 ◦] (degrees). The angles 𝜙 and 𝜓 are evolved with DE
hereas the third dihedral angle, 𝜔 , is not evolved. This last angle is
nly changed by fragment replacements, as detailed below, this being
he case because this angle can only have two configurations of 180 ◦ or
180 ◦. 
DE was combined with the local refinement procedure provided by

he Rosetta ab initio stages with their fragment replacements, defin-
ng the hybrid DE version in the application. The pseudo-code of
lgorithm 2.1 summarizes the procedure of the hybrid DE version. The
nitialization of the population is defined with Stage 1 of Rosetta (using
core0 as energy), that is, applying fragment replacements over the ini-
ial extended conformation in order to provide a diversified set of struc-
ures. Then, the hybrid DE version employs 3 sequential stages (Stage
, Stage 3 and Stage 4) with the same number of evolutionary genera-
ions ( 𝑀 𝐴𝑋 _ 𝐺𝐸𝑁 ), using in each stage the corresponding Rosetta score
unctions ( Table 1 ). 
In the first generation of each stage, no trial individuals are gener-

ted. In generation 1, all the individuals are refined with the Rosetta
eplacement procedure of the corresponding stage, that is, with the cor-
esponding score function, number of fragment insertion attempts and
ragment lengths ( Section 2.1, Table 1 ). Each individual 𝑥 is therefore
efined to an individual 𝑥 ′. The next generations are standard DE genera-
ions since, for each target individual 𝑥 ′, a trial individual 𝑦 is defined af-
er the DE mutation and crossover operators. The Rosetta replacements
re now applied (with the corresponding score function and fragment
ycles of the current Rosetta stage) only to the trial individuals 𝑦 , gen-
rating refined trial individuals 𝑦 ′. As in standard DE, the fitness of the
nal trial individual 𝑦 ′ is compared with the fitness of the correspond-
ng target individual 𝑥 ′, to determine which one enters the population
n the next generation. 
When defining the “mutant ” vector, the DE scheme that chooses the

ase vector 𝑥 ′1 randomly was used (variant 𝐷𝐸 ∕ 𝑟𝑎𝑛𝑑 ∕1∕ 𝑏𝑖𝑛 , where 1
enotes the number of differences involved in the construction of the
utant vector, and 𝑏𝑖𝑛 denotes the crossover type), which provides the
owest selective pressure. Note that the fundamental idea of DE is to
dapt the step length ( 𝐹 ( 𝑥 ′2 − 𝑥 ′3 ) ) intrinsically along the evolutionary
rocess [40] . At the beginning of generations the step length is large,
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Algorithm 2.1: Hybrid Differential Evolution and CrowdingDE 
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ecause individuals are far away from each other. As the evolution con-
inues, the population converges and the step length becomes smaller
nd smaller, providing in this way an automatic balance between ex-
loration and exploitation in the search. 
The refinement procedure can be considered as a local search since it

efines the dihedral angles of a protein for obtaining a better (in energy
erms) conformation. This inclusion of a sequence of consecutive back-
one dihedral angles (fragment) simultaneously simplifies the process
f generating physically-realistic conformations with respect to angle
alues sampled uniformly at random [22] . Therefore, the combination
rovides a more efficient search, integrating the advantages of DE as
 global search method with the problem-specific local search of short
onformations provided by fragment replacements. The refinement pro-
edure is applied to the encoded conformations of the population (in
eneration 1 of the three stages) and to the trial individuals defined by
he DE genetic operators. Since the refined individuals replace the orig-
nal ones (in the case of trials it depends on whether these improve the
nergy of their target individuals) the hybrid DE version is a Lamar-
kian combination [62] . However, since the new refined genetic mate-
ial only replaces the original one in the first generation, together with
he stochasticity of the Monte Carlo refinement process, it allows us to
vercome the possibility of a fast loss of genetic variability, a problem
nherent to a Lamarckian strategy [62] . 
5 
Fig. 2 (uppert part) illustrates the workflow of the optimization pro-
ess with the memetic algorithm, along with an example of the fitness
volution in the evolutionary process with the three sequential stages.
t shows the best fitness and the average fitness of the population across
enerations (bottom part). In the example, the encoded protein confor-
ations (population of 100 individuals) evolved through 100 genera-
ions in each of the three evolutionary stages, that is, a total of 300
enerations. Note that the fitness evolution presents different ranges in
he transition between the evolutionary stages, since the energy/fitness
orresponds to the particular score definition in the same Rosetta stage.
his use of different score functions in different consecutive stages, as
n Rosetta ab initio, allows the progressive refinement of conformations.
he Results section describes the setup of the different parameters for
he appropriate comparison between the hybrid DE version and Rosetta.

.3. Crowding and CrowdingDE 

In our application, we used the same integration employed by Thom-
en [49] of the classic crowding niching method [48] of evolutionary
omputation with the differential evolution algorithm [37] . 
Crowding, introduced by De Jong [48] , is one of the most widely

sed niching methods for dealing with multimodal optimization prob-
ems in evolutionary computation. Since the goal of niching methods is
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Fig. 2. Upper part: Workflow of the optimization 
process to obtain protein structures with mini- 
mum energy. Bottom part: Fitness evolution in the 
hybrid DE approach: each of the three sequen- 
tial evolutionary stages corresponds to the same 
Rosetta stage, since the same fragment lengths 
and score energy functions of the correspond- 
ing Rosetta stage were used in each evolutionary 
phase. The graphs correspond to the evolution of 
the energy/fitness of the best individual (red line) 
and the average energy/fitness of the population 
(green line) in a run with protein 1c9oA as target. 
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o simultaneously search within the most promising areas of a multi-
odal fitness landscape, the simple idea behind crowding is the preser-
ation of genetic diversity, where an offspring individual replaces the
ost similar individual in the population if it has a better fitness. That
most similar) individual is selected among a randomly chosen subset of
he population, where the size of the subset is determined by a param-
ter called Crowding Factor ( 𝐶𝐹 ). 
A distance measure between two protein conformations must be de-

ned for this purpose. It can be the root mean square deviation between
he 𝑐 𝛼 carbons of the backbone chains or alternative measures, such as
he one which we will defined below ( Section 2.6 ). 
The integration with DE ( CrowdingDE ) 1 is simple [49] , extending DE

in our case hybrid DE) with the classic crowding scheme. With respect
o the hybrid DE version defined in the previous section, the only mod-
1 The code of the different niching methods integrated with the defined hy- 
rid DE version can be downloaded from https://github.com/danielvarela/ 
osettaEvolution . The code was parallelized in MPI (Message Passage Interface), 
ith a main master process that distributes the population of individuals, in 
qual size chunks, to different slave processes in order to evaluate the fitness of 
ach individual. 
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6 
fication in CrowdingDE is that now each refined trial individual in DE
s compared to its nearest (most similar) neighbor among that subset
𝐹 of the population, to decide which one enters the next generation
see the final comment in Algorithm 2.1 ). If the refined trial individ-
al ( 𝑓 ( 𝑦 ′) ) is fitter, then it replaces the closest one from the subset 𝐶𝐹 .
hat is, Algorithm 2.1 is the same for the hybrid DE version and Crowd-
ngDE except for the final comparison between the DE refined trial vec-
ors and the corresponding target vector ( 𝑥 ′ in the case of hybrid DE,
he most similar vector in the subset CF in the case of CrowdingDE).
lgorithm 2.1 illustrates this aspect in the final comment of the pseudo-
ode. 
With low 𝐶𝐹 values, the offspring (in CrowdingDE , the refined trial

ndividuals) can replace an individual of the population that is not very
imilar to the new offspring, resulting in so-called crowding replace-
ent errors. Such replacement errors lower the population diversity
nd, consequently, favor premature convergence. Although there are
lternatives to reduce replacement errors [45] , the simplest one (used
ere and in [49] ) is to consider 𝐶𝐹 as the whole population. In this
ase, the complexity is 𝑂( 𝑁 

2 ) , with 𝑁 being the population size, since
he distance of each of the 𝑁 trials to the whole population must be
alculated. 

https://github.com/danielvarela/RosettaEvolution
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.4. Fitness sharing and SharingDE 

Fitness sharing is also a classic technique in evolutionary compu-
ation for dividing the population into different subgroups according
o the similarity of the individuals. This concept of fitness sharing was
ntroduced by Holland [52] and expanded by Goldberg and Richarson
53] . The shared fitness for the 𝑖 th individual is defined as: 

 𝑠ℎ𝑎𝑟𝑒𝑑 ( 𝑖 ) = 

𝑓 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 ( 𝑖 ) ∑𝑁 

𝑗=1 𝑠ℎ ( 𝑑 𝑖𝑗 ) 
(1)

here the sharing function is calculated as: 

ℎ ( 𝑑 𝑖𝑗 ) = 

{ 

1 − 

(
𝑑 𝑖𝑗 

𝜎𝑠ℎ𝑎𝑟𝑒 

)𝛼

𝑖𝑓 𝑑 𝑖𝑗 < 𝜎𝑠ℎ𝑎𝑟𝑒 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(2)

eing 𝑑 𝑖𝑗 the distance between individuals 𝑖 and 𝑗, 𝜎𝑠ℎ𝑎𝑟𝑒 the sharing
adius, 𝑁 the population size, and 𝛼 a constant called the sharing level.
Finally, if the application requires the minimization of the fitness

ather than its maximization, the formula in Eq. 1 is a multiplication
etween the two terms. 
In this way, fitness sharing modifies the search landscape by reduc-

ng the payoff in densely populated regions. The main drawback of the
echnique is its complexity, 𝑂( 𝑁 

2 ) , because of the calculation of inter-
istances. On the other hand, two important properties result from the
ncorporation of FS into the DE algorithm: i) Fitness sharing tends to
ncourage searches in unexplored regions of the space and favors the
ormation of stable subpopulations [63] ; ii) Since the optimization ca-
ability of DE depends extensively on the diversity between vectors, if
he diversity of the population descends too fast, it may lead to a high
ossibility of obtaining a local optimal solution [54] . The incorporation
f FS makes such a situation of diversity loss more difficult, since FS
ends to locate individuals in different areas of the search landscape. 
With the inclusion of FS in the DE functioning, the same SharingDE

ersion described in [49] ( Algorithm 2.2 ) was followed. In standard DE,
ach generated trial or candidate individual is compared with the target
ector ( Algorithm 2.1 ). In SharingDE , for a population of 𝑁 individuals,
trials are generated (with the same mutation and crossover procedure
s standard DE) and are added to the population, enlarging the popu-
ation by a factor of two. As in CrowdingDE, SharingDE incorporates the
ybridization with the fragment replacement procedure, since these 𝑁
rials are refined with fragment insertions. 
In such a doubled population, the FS technique is applied, since the

tness of the 2 𝑁 individuals is rescaled according to Eq. 1 . The enlarged
opulation is then sorted with respect to that effective fitness. The final
tep is removing the worst half of the enlarged population, so that the
opulation size is maintained constant. In this way, a trial that enters an
rea that is not largely populated can survive, since it has better effec-
ive fitness with respect to other individuals with better original fitness
ut that are located in a densely populated region. Algorithm 2.2 sum-
arizes the approach, where the lines that imply a change with respect
o the hybrid DE version without fitness sharing ( Algorithm 2.1 ) are
mphasized in bold. 
Moreover, it should be noted that, because of such a fitness scaling,

litism is needed to preserve the overall best solution found, so the best
olution (regarding the original fitness) replaces the worst individual in
he new population in the case that the best individual was removed
uring the selection process in the doubled population. 
Finally, regarding these niching methods, there is a reason why the

ocal search with the fragment replacement procedure is not applied
n all generations (only in generation 1 of the three stages, Algorithms
.1 and 2.2 ) to refine the individuals of the population. The local search
an change a fold to another one which is already present in the current
opulation, so it can “destroy ” the work of the niching method that
onserves individuals in different niches (different folds). However, that
pplication of the local search to the whole population is useful since
t can refine all the individuals to better positions (in energy terms),
specially poor individuals that are isolated and which can never be
7 
elected, for example, as the nearest ones in CrowdingDE . Therefore, the
pplication of the local search to the individuals of the whole population
s maintained, but only in the first generations of the three evolutionary
tages. 

.5. Speciation and Species-based DE (SDE) 

The final niching method considered is speciation [55,64,65] . In bi-
logy, a species is defined as a group of individuals of similar biological
eatures capable of interbreeding among themselves, but not with in-
ividuals from a different group. It is a concept obviously interrelated
ith the niching concept, although, as Horn [66] states “A niche can be
efined generally as a subset of resources in the environment. A species,
n the other hand, can be defined as a type or class of individuals that
akes advantage of a particular niche. Thus, niches are divisions of an
nvironment, while species are divisions of the population ”. 
The Species-based DE ( SDE ) defined by Li [55] was used as a base.

DE incorporates the speciation concept to handle multimodal land-
capes, since it locates different optima simultaneously through an adap-
ive formation of species. One important aspect of SDE is that each
pecies is evolved through its own DE process, which seeks to succes-
ively improve itself. 
Algorithm 2.3 shows the steps for determining the species seeds.

uch species are treated as subpopulations running DE (hybrid DE in
ur case) independently themselves, that is, applying the DE operators
regarding the generation of mutant and trial vectors) only with the in-
ividuals of the same species. However, contrary to Li’s version [55] ,
hich allows a variable number of species and a variable number of
ssociated individuals across the evolutionary process, the number of
pecies and their subpopulation size remain fixed. The reason for this
s that our version facilitates the parallelization of the code, with sub-
opulations (species) with the same number of individuals that can run
heir DE processes in parallel. 
The SDE method depends on a radius parameter 𝑟 𝑠 , which measures

he distance from the center of a species (called the seed) to its boundary.
he center of the species or seed is always the fittest individual of the
pecies. Individuals that fall within the radius from the species seed are
generally) identified as the same species, so each of the species is built
round the dominating species’ seed. The different steps in SDE can be
ummarized as: 

1. Generate the initial population with randomly generated individu-
als. 

2. Evaluate all individuals in the population. 
3. Sort all individuals in descending order of their fitness values (i.e.,
from the best-fit to least-fit ones). 

4. Determine the species seeds for the current population
( Algorithm 2.3 ). 

5. Each species is filled, first, with the nearest individuals (to the seed)
from the whole population (except the seeds of other species) with
distances lower than 𝑟 𝑠 . 

6. The remaining individuals, not assigned in the previous step to a
species, are associated with the (not completed) species whose seed
is the closest. This implies that a species can have associated individ-
uals with higher distances than 𝑟 𝑠 to the species seed, but this also
allows an increase in exploration. 

7. If an individual is very close, in energy terms, to the corresponding
seed (a small threshold is used), then the individual is randomized
(as in [55] ). 

8. For each species, a basic hybrid DE ( Algorithm 2.1 ) is run for a given
number of generations ( NUMBER_GEN ). 

9. Go back to step 2, unless the termination criterion is met. 

Note that, if 𝑟 𝑠 is too small ( Algorithm 2.3 ), then the species seeds
an correspond to the individuals with the best fitness, but these can be
ery close to each other, which is not the aim with niching. On the con-
rary, with large values of 𝑟 , the seeds will correspond to progressively
𝑠 
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Algorithm 2.2: Hybrid Differential Evolution - SharingDE 
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oorer individuals, which can make the evolutionary progression of the
opulation more difficult. 
Therefore, the individuals of the population are classified into dif-

erent groups (species) according to their similarity. As explained by Li
t al. [64] , SDE complexity is 𝑂( 𝑁) in the best case and 𝑂( 𝑁 

2 ) in the
orst case. The main advantage of speciation is its ability to maintain
igh diversity and stable niches over generations, while the main disad-
antage is the selection of the radius parameter 𝑟 𝑠 [45] . 

.6. Structural diversity measure 

The protein structural diversity measure defined by Garza-Fabre
t al. [31] was used. This structural measure defined by those authors
escribes (coarsely) the relative position of each pair of Secondary Struc-
8 
ure Elements (SSEs) with respect to each other. Distances are computed
etween the 𝐶 𝛼 atoms of the amino acid residues at the center of the
SEs, as Fig. 3 illustrates. For a given protein conformation with 𝐸 SSEs,
he set of interdistances between each pair of SSEs is calculated (the
umber of interdistances is 

(𝐸 

2 

)
for a protein with 𝐸 SSEs). Each inter-

istance is normalized considering half of its maximum distance when
he protein conformation is fully extended (as indicated by Garza-Fabre
t al. [31] , practically all the explored conformations in their study cor-
esponded to values within 50% of that upper bound). Such SSEs are
etermined, for a given protein sequence, with a predictor (PSIPRED
67] ), a process that is prior to the evolutionary search. 
Finally, to measure the structural difference between two protein

olded conformations, the Root Mean Square Error (RMSE) between the
ets of interdistances of the two proteins is calculated (Garza-Fabre et al.



D. Varela and J. Santos Swarm and Evolutionary Computation 71 (2022) 101062 

Algorithm 2.3: Algorithm for determining species seeds in SDE 

Fig. 3. Interdistances between pairs of secondary structure elements in hypo- 
thetical proteins. Left: protein with 2 strands and 1 helix - 3 interdistances be- 
tween SSEs. Right: protein with 4 strands and 1 helix - 10 interdistances between 
SSEs. The interdistance set coarsely describes the protein conformational fold. 
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31] considered, for this final measure, the interdistances between the
tart and final points of the SSEs). This simple procedure is appropriate
or the purpose of the comparison of the folds of two proteins, and does
ot have the problems of calculating the best superposition or alignment
etween two proteins when the RMSD (Root Mean Square Deviation) be-
ween the atom positions of the two proteins is considered as measure of
tructural difference. This final RMSE is used for measuring the distance
etween encoded protein conformations in the niching methods. 

.7. Protein sequences 

In the experiments, 30 different PDB proteins were used, the same
mployed in [31] , in order to facilitate comparisons with previous stud-
es that used algorithmic solutions to enforce diversity of folds in genetic
opulations. The main features of these proteins are set out in Table 2 .
he fragment libraries correspond to the first set of fragments used in
32] . 

. Results 

.1. Results with CrowdingDE 

.1.1. Setup 

The experiments with CrowdingDE , using the set of PDB proteins
pecified above, are designed to draw a comparison with the Rosetta
 G  

9 
b initio protocol for obtaining a diversified set of protein folds. The
osetta ab initio protocol is selected for comparison with all memetic
pproaches as it is a successful and widely used approach to address
he PSP optimization problem when looking for protein structures with
inimal energy. The experiments are also selected to illustrate the ca-
abilities of the incorporation of niching for the hybrid evolutionary
lgorithm in the present problem. 
In the experiments, regarding the DE algorithm, the DE strat-

gy DE/rand/1/bin was used, which selects the base vector 𝑥 ′1 
 Algorithm 2.1 ) randomly and which implies the lowest selective pres-
ure. The parameter values of DE genetic operators are: 𝐶𝑅 = 0 . 99 and
 = 0 . 025 . These values were experimentally tuned to provide the best
esults for most proteins, that is, for providing the best energy results
n the given number of generations (and corresponding energy/fitness
valuations). The reason for the low value of 𝐹 is that it generates small
erturbations in the dihedral angles of the mutant vectors. In the same
ense, the high 𝐶𝑅 value ensures few changes in the final trial vector
ith respect to the mutant vector, so the trial vectors are small varia-
ions of the base vector. On the contrary, with large variations, there
ould be many conflicts (atoms in the same position) in the resulting
andidate vectors. 
Moreover, the comparison of results must imply that both ap-

roaches ( CrowdingDE and Rosetta ab initio) use the same number of
ragment insertion attempts (which require an energy test per attempt).
onsequently, both methods would use the same number of energy cal-
ulations. In the evolutionary algorithm there are no extra fitness calcu-
ations, since the fitness is given by the final energy calculation in the
nal fragment insertion attempt in the encoded protein of the genetic
opulation or in the candidate vectors. 
In the case of Rosetta, for each target protein, Rosetta was run to

enerate a set of 1000 candidate conformations (the same number used
n [31] ), given its stochastic nature in each run. This number of runs
eans that the obtained RMSD (from the native structure) distributions
o not vary significantly between sets of runs [31] . That is, the Rosetta
b initio protocol was run 1000 times, where each run produced a single
nal conformation or decoy. Rosetta recommended parameter settings
25] were considered in all runs. Moreover, as in [31] , the Rosetta pa-
ameter increase_cycles was set to 10; that is, the default values of cycles
fragment insertion attempts) in the different Rosetta stages ( Table 1 in
ection 2.1 ) are multiplied by that value. 
In CrowdingDE , a population of 100 individuals was used (as in

arza-Fabre et al. [31] with their hybrid GA), and 10 independent runs
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Table 2 

PDB proteins used in the experiments. The columns correspond to the protein PDB Id, its 
amino acid number, and its native fold topology. 

PDB Size Fold topol. PDB id Size Fold topol. PDB id Size Fold topol. 

1acf 125 𝛼 − 𝛽 1bgf 118 𝛼 1bkrA 108 𝛼

1c8cA 62 𝛼 − 𝛽 1c9oA 66 𝛽 1cg5B 141 𝛼

1ctf 68 𝛼 − 𝛽 1dhn 121 𝛼 − 𝛽 1elwA 117 𝛼

1eyvA 131 𝛼 1fna 91 𝛽 1gvp 87 𝛽

1hz6A 61 𝛼 − 𝛽 1iibA 103 𝛼 − 𝛽 1kpeA 108 𝛼 − 𝛽
1lis 125 𝛼 1npsA 88 𝛼 − 𝛽 1opd 85 𝛼 − 𝛽
1rnbA 109 𝛼 − 𝛽 1ten 89 𝛽 1tig 88 𝛼 − 𝛽
1tit 89 𝛽 1tul 102 𝛼 − 𝛽 1vcc 77 𝛼 − 𝛽
1who 94 𝛽 1wit 93 𝛽 256bA 106 𝛼

2chf 128 𝛼 − 𝛽 2ci2I 62 𝛼 − 𝛽 2vik 122 𝛼 − 𝛽
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f the hybrid evolutionary algorithm were used for generating the same
000 final solutions 2 In CrowdingDE , the fragment insertion attempts
re applied to the candidate individuals to refine them to better confor-
ations and to the encoded conformations of the population in genera-
ion 1 of the three evolutionary stages ( Algorithm 2.1 ), and the evolu-
ionary algorithm is run over 100 generations in those three sequential
tages. Consequently, the number of fragment insertion attempts for re-
ning each candidate solution/encoded conformation must be limited.
he total number of fragment insertion attempts is the same in both ap-
roaches, since Rosetta used increase_cycles = 10, and the evolutionary al-
orithm used increase_cycles = 0.1, but with 100 individuals and over 100
enerations working with the same Rosetta stages, evolutionary process
hich was repeated 10 times. In other words, each of the 1000 solu-
ions/DE candidates considered in the pool of solutions, uses only 1%
f the Rosetta fragment insertion attempts, since the same process is
epeated in 100 generations. 

.1.2. Comparison with Rosetta ab initio 

Fig. 4 shows a comparison of the results of Rosetta against the re-
ults of CrowdingDE , using two values for the parameter 𝐶𝐹 , which de-
ermines the percentage of individuals of the population that are con-
idered when DE trial individuals are compared with their similar ones
n the population ( Algorithm 2.1 ). Additionally, to test the capability
f CrowdingDE to maintain diversity in the population without loss of
enetic variability, the comparison includes the results of 10 hybrid DE
uns without using crowding (the trial vector is compared with its corre-
ponding target as in standard DE, Algorithm 2.1 ), again using the low-
st selective pressure (scheme DE/rand/1/bin ). Thus, the results with
ybrid DE without crowding allow us to see the effect of the inclusion
f the niching technique. Fig. 4 includes the results with half of the pro-
eins, whereas Supplementary Material includes the figures with all the
roteins. 
Fig. 4 shows the normalized energy value ( score3 ) on axis 𝑦 , whereas

n axis 𝑥 the RMSD value (from the native structure) is shown. These
tandard graphs in PSP provide the information necessary to assess the
istribution of distances (RMSD) of the optimized protein conforma-
ions, together with the optimization (in energy terms) obtained in those
nal solutions. The score3 energy values were normalized between 0 and
, taking into account the lowest and highest values obtained by the 4
onsidered approaches. Note that the PDB proteins act as benchmarks,
ince the native structure is known. Note also that the objective is to ob-
ain folds close to the native structure (RMSD close to 0), and as diverse
s possible, given the inaccuracies of the energy landscape, which will
e described in what follows. 
2 Typical computing times are 55 min for each of the parallelized 10 indepen- 
ent CrowdingDE runs (protein 1c9oA as target). The experiments were run in 
he Supercomputing Center of Galicia (www.cesga.es), with Intel Xeon E5-2680 
3 processors at 2.50GHz, each one with 12 cores (24 threads) and 1GB of RAM. 

a  

u
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10 
Clearly, CrowdingDE improves the energy values of the solutions ob-
ained in all proteins with respect to Rosetta. At the same time, Crowd-
ngDE maintains a diverse set of folds in the final populations, even with
he energy improvement in most solutions compared to the Rosetta solu-
ions (a high improvement in the average energy in proteins like 1hz6A,
kpeA, 1lis and 256bA 3 ). The lowest RMSD values are similar in both
pproaches ( CrowdingDE and Rosetta) in most proteins, except for pro-
ein 1kpeA , in which CrowdingDE clearly outperforms Rosetta. The main
ifference between the two approaches with CrowdingDE is that, with
𝐹 = 10% , the energies obtained, in most proteins, are better (with re-
pect to 𝐶𝐹 = 100% ), especially considering the average energy. This
s logical since, with 𝐶𝐹 = 10% , several solutions can fall in the same
andscape area, which contributes to a better exploitation and to such
etter (or slightly better) energy results. 
In hybrid DE without crowding, the final solutions (in each of the 10

ndependent runs) tend to be located in the same area, even with the
ow selective pressure applied. The increased exploitation (with respect
o CrowdingDE ) implies that the best energy values are similar (or even
lightly better) with respect to the ones obtained with CrowdingDE . Re-
arding RMSD distributions, without crowding, hybrid DE clearly gen-
rates worse values in terms of RMSD dispersion with respect to the pre-
ious runs with CrowdingDE , and also with respect to Rosetta ab initio.
he loss of genetic variability in the hybrid DE runs (without niching)
mplies that the population is easily concentrated in the different runs. 
Tables S1/S2 (in Supplementary Material) show the best

MSD/energy values obtained with the different approaches. Never-
heless, even with the clear energy improvement in the conformations
btained with CrowdingDE , the RMSD results (from the native structure)
re not necessarily better compared to the final Rosetta solutions with
orse energies. However, CrowdingDE improves the energy without
ocusing on a particular area of the conformational space, as the RMSD
ispersions in Fig. 4 show. Three patterns can be seen regarding the
nergy/RMSD distribution plots: 

i The areas of better energy in proteins like 1fna, 1hz6A, 1kpeA, 1rnbA
and 1tig tend to correspond to folds closer to the native structure. 

ii Several proteins (such as 1c9oA, 1ctf, 1dhn, 1eyvA and 1ten ) present
areas with clearly different local minima and different RMSD dis-
tances to the native structure. 

iii Contrary to the first case ( i ), proteins such as 1lis, 1opd, 1tul and
1wit are examples of the deceptive nature of the Rosetta energy land-
scape, where the area of low energy values does not correspond to
the conformations closest to the native structure. 

A comparison with the values reported in [31] is difficult, since the
uthors used different fragment libraries in their Rosetta ab initio runs,
3 The tables in Supplementary Material include information with the best val- 
es, average values, and standard deviation regarding energy values and RMSD 
from the native structure) in the different experiments. 
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Fig. 4. Scaled energy vs. RMSD (from the native structure, in Ȧ ) with PDB proteins of Table 2 . Gray: Rosetta results, Red: CrowdingDE (CF = 100%), Blue: CrowdingDE 
(CF = 10%), Green: Hybrid DE (without niching). 
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nd the RMSD and energies that can be obtained depend to a large ex-
ent on that library (as remarked in [32] ). Nevertheless, CrowdingDE
btains wide RMSD distributions independently of the protein. Note
hat this is the aim with niching, since the diversity of folds implies
ide RMSD distributions. On the contrary, the RMSD distributions with
he memetic algorithm of Garza-Fabre et al. [31] depend to a large
xtent on the GA variant used. For example, with protein 1hz6A , the
MSD standard deviation values reported in [31] , with 3 strategies/GA
ariants, are 0.34, 2.02 and 2.76, whereas the standard deviations of
he final solutions with CrowdingDE are 2.69 ( 𝐶𝐹 = 100% ) and 3.47
 𝐶𝐹 = 10% ). With protein 1kpeA, CrowdingDE RMSD standard devia-
ions are 2.58 ( 𝐶𝐹 = 100% ) and 3.02 ( 𝐶𝐹 = 10% ), while the values in
31] are 1.03, 2.30 and 2.74, and with protein 1opd , the values of the
A variants [31] are 0.38, 0.90 and 1.65, while with CrowdingDE are
 m  

11 
.03 ( 𝐶𝐹 = 100% ) and 1.61 ( 𝐶𝐹 = 10% ) (Table S1 in Supplementary
aterial). 

.1.3. Comparison with other approaches 

The protocols defined by Kandathil et al. [32] were also used for
omparison with CrowdingDE and Rosetta ab initio. These protocols, It-
rated Local Search (ILS) and bilevel protocol [32] , are a modification
f Rosetta ab initio in stages 2 and 3. As noted in the Introduction, their
ilevel protocol allows “Perturbation steps ” in (predicted) loop regions,
hile “LocalSearch ” steps are applied in the rest of the protein. The
eason for performing more exploration in loop regions is that fragment
ibraries are less enriched for native-like structural features in those loop
egions [32] . The Perturbation steps can perform large moves in confor-
ational space, since the perturbed structure is accepted regardless of
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Fig. 5. Violin plots of energy ( score3 ) distribution 
(left) and violin plots of RMSD (from the native 
structure, in Ȧ ) distribution (right) of the solutions 
with 5 different strategies. Upper figure: protein 
1rnbA , without a deceptive landscape; Figure in 
the middle: protein 1dhn , with a multimodal land- 
scape. Bottom figure: protein 1lis with a decep- 
tive landscape. Yellow: Iterated Local Search (ILS) 
[32] , Pink: Bilevel protocol [32] , Red: CrowdingDE 
(CF = 100%), Blue: CrowdingDE (CF = 10%), Gray: 
Rosetta ab initio. Light blue marks in violin plots 
of energy/RMSD distributions: solutions with the 
best RMSD/energy. 
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ter RMSDs. 
nergy changes (contrary to the LocalSearch). In ILS both steps are iter-
tively applied in the whole protein: in one ILS iteration, one or more
erturbations are applied, and subsequent fragment insertion attempts
re performed using what is now greedy optimization. The code of both
rotocols was used to run these alternatives with the same fragment li-
rary employed in the other approaches and for obtaining once again
000 final solutions using the same number of fragment insertion at-
empts. 
Using the same setup specified by the authors [32] , trajectories of the

ilevel and ILS protocols were run with the parameter increase_cycles set
o 100. Moreover, both protocols use an external archive to store 10 of
he lowest-scoring structures in stages 2 and 3. In both protocols, the fi-
al stage (4) is applied to each archived structure and, consequently, the
ength of stage 4 is reduced by a factor of 10 [32] . 100 independent runs
ere applied with both protocols. Since the archiving strategy stores 10
f the lowest-energy solutions seen during each run, a set of 100 runs
ith each of the protocols returns 1000 decoy structures in total. 
Therefore, the number of scoring function evaluations used per de-

oy is the same in these protocols (bilevel and ILS) and in Rosetta ab
nitio (with the Rosetta ab initio parameter setup explained previously).
s we noted above, CrowdingDE runs also use the same number of scor-
ng function evaluations for obtaining the evolved 1000 solutions. 
Three proteins were selected to illustrate the results of the different

pproaches regarding their search behavior in different protein energy
andscapes, although tables S1 and S2 in Supplementary Material in-
lude the results with the whole protein set (as well as figures with
ore proteins). Fig. 5 include the results with those proteins, showing
he distributions (violin plots) of energy and RMSD of the final 1000
olutions with CrowdingDE and the Rosetta-based protocols. The (light
lue) marks in the violin plots of the RMSD distribution show where
he best solution (for each search alternative) is in energy terms and,
ikewise, the same marks in the violin plots of energy distribution show
here the best solution is with respect to RMSD. The different behaviors
f the distributions correspond to the same categorization used previ-
usly: 
12 
i Fig. 5 includes an example of a protein ( 1rnbA ) with an energy land-
scape which is not deceptive, in the sense that obtaining better en-
ergies implies that better RMSDs are also obtained. The (light blue)
marks in the violin plots show the tendency that the best solution
in energy terms is close to the best solution in RMSD terms and vice
versa. 
Note again that the best approach (in energy terms) is CrowdingDE
with CF = 10%, since it obtains the best energy results compared with
the other approaches considered (as can clearly be seen with the
average energy of the final solutions). However, even with the ten-
dency of the correlation between better energies and better RMSDs,
this does not guarantee that CrowdingDE (CF = 10%) obtains the best
results in RMSD terms. 

ii The final solutions in protein 1dhn tend to be located in different
areas that correspond to different local minima ( Fig. 5 ). 
In the violin graphs, with protein 1dhn , it can be seen how the solu-
tions are concentrated mainly in two local minima and with all the
approaches (as shown in the RMSD distributions). Moreover, in the
violin plots of RMSD distribution, it can be seen how the best solu-
tions in energy terms (light blue marks) can be located in different
areas of these local minima. 

iii The Rosetta energy landscape in proteins like 1lis is clearly deceptive
( Fig. 5 ). CrowdingDE approaches present a clear energy improvement
with respect to the Rosetta-based protocols and Rosetta ab initio, and
at the same time their optimized solutions tend to change to distant
folds of the native state, as the RMSD distributions show. 
It should be noted that Rosetta presents the best results in RMSD
terms (considering the average RMSD of the solutions), while the
best approaches in energy terms ( CrowdingDE ) correspond to the
worst approaches considering the average RMSD. This shows the
clear deceptiveness of the energy landscape, where an improvement
in energy tends to move the solutions to areas far from the native
structure. The light blue marks in the violin plots also show, for most
approaches, the lack of correlation between better energies and bet-
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4 The number of individuals (96), instead of 100 as in previous cases, is be- 
cause it is a multiple of 8 species, with the same number of individuals (12) in 
every species. 
Figures S2a, S2b and S2c in Supplementary Material (Additional Fig-
ures) contain more examples of these three categories regarding the
nature of the protein energy landscape. 

Regarding the energies obtained, CrowdingDE is clearly the best ap-
roach, in most proteins, to sample the energy landscape in order to
btain the best energy optimized solutions that correspond with areas
f different minima. The violin distributions in Fig. 5 , as well as the
esults shown in Table S2 in Supplementary Material with all proteins,
how how the CrowdingDE alternatives clearly outperform the others in
erms of energy. In particular, CrowdingDE (CF = 10%) generally obtains
he best results in energy terms, in most cases considering the average
nergy and also the best (minimized) energy. The Rosetta-based mod-
fied protocols of Kandathil et al. [32] also provide better energies in
heir final solutions with respect to Rosetta ab initio in practically all
roteins. 
With respect to the RMSD distributions, there is no one approach

hat outperforms the others in all proteins. The comparison between the
osetta-based protocols of Kandathil et al. [32] shows that, in most pro-
eins, ILS provides better performance than the bilevel protocol, in terms
f energy and average RMSD, which agrees with the results specified in
32] with two different fragment library sets. The authors explain this
y the fact that the bilevel protocol may be misguided by inaccurate sec-
ndary structure predictions (of the loop regions). Finally, CrowdingDE
olutions tend to present worse RMSD distributions only in proteins with
 clear deceptive fitness landscape ( Fig. 5 ). In this case where the area
f best energies tends to move away from the native structure, the nich-
ng effect is not enough to retain the folds close to the native structure
hat could be present in the genetic population during the evolutionary
rocess. 

.2. Results with SharingDE 

The DE version with fitness sharing ( SharingDE , Algorithm 2.2 in
ection 2.4 ) is here tested with the same setup, regarding the DE pa-
ameters ( 𝐶𝑅 = 0 . 99 , 𝐹 = 0 . 025 ), as in the previous experiments. The
E strategy 𝐷𝐸 ∕ 𝑟𝑎𝑛𝑑 ∕1∕ 𝑏𝑖𝑛 was again used to define the DE trial vec-
ors. Regarding the FS parameters, the value of the sharing level ( 𝛼) in
q. 2 was set to 1 (as in most applications with FS), while the sharing
adius ( 𝜎𝑠ℎ𝑎𝑟𝑒 ) was set to different values. 
Three proteins were selected to test the results with SharingDE . The

ame methodology for comparison with Rosetta ab initio from previous
xperiments was followed, with 10 independent runs of the SharingDE
lgorithm (population of 100 individuals), comparing the final popula-
ions to 1000 independent Rosetta ab initio runs. 
Fig. 6 shows the results when SharingDE used five different values for

he parameter sharing radius ( 𝜎𝑠ℎ𝑎𝑟𝑒 , Section 2.4 ), in order to define the
icinity of each encoded conformation. The values of 𝜎𝑠ℎ𝑎𝑟𝑒 correspond
o different orders of magnitude, from the highest value 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 001
o the lowest value 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 00001 (the measure of fold difference, de-
ned in Section 2.6 , is normalized and varies within a small range).
igures S3a and S3b in Supplementary Material (Additional Figures) in-
lude the results with more proteins. 
The results with the proteins employed in Fig. 6 shows different as-

ects: 

i With lower values for parameter 𝜎𝑠ℎ𝑎𝑟𝑒 , the energies obtained tend
to be lower. This is logical since it is more difficult to find a confor-
mation in the vicinity when the distance threshold defined by 𝜎𝑠ℎ𝑎𝑟𝑒 

is decreased. Therefore, the evolutionary process tends to be similar
to a standard DE evolution without niching. In fact, with the low-
est value ( 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 00001 ), the best energies are not necessarily the
best ones, which means that there is a premature convergence that
the niching method does not avoid. 
On the contrary, with the highest value in 𝜎𝑠ℎ𝑎𝑟𝑒 , the wide neighbor-
hood for each conformation means that most conformations have a
large number of neighbors during the evolutionary process, which
13 
makes the progression towards the local minima more difficult, pre-
senting average energy values even worse with respect to Rosetta in
most proteins (detailed values in Table S4 in Supplementary Mate-
rial). 
Fig. 7 illustrates this last effect, showing the fitness evolution in par-
ticular runs of SharingDE with protein 1c9oA and 3 different 𝜎𝑠ℎ𝑎𝑟𝑒 

values. With the largest value (left part of Fig. 7 ), there are persis-
tent fluctuations in the average fitness, since several individuals can
worsen their (effective) fitness if these fall in the same close area.
In contrast, with the lowest value of 𝜎𝑠ℎ𝑎𝑟𝑒 , there is more exploita-
tion, as can be seen by the fact that the average fitness is closer to
the best fitness. Note that the fitness of the best individual does not
present fluctuations, since elitism of the best individual was used
( Algorithm 2.2, Section 2.4 ). 

ii The concentration of the population in fewer local minima, when
𝜎𝑠ℎ𝑎𝑟𝑒 decreases, tends to decrease the RMSD dispersion of the final
solutions. 
However, even with very low values of the defining parameter, the
incorporation of niching allows the population to cover different lo-
cal minima, as shown in the selected proteins. 

iii Therefore, the most important decision with SharingDE is the value
for 𝜎𝑠ℎ𝑎𝑟𝑒 , since it requires prior knowledge of the fitness landscape.
With that knowledge, an appropriate value would be the one that
separates adjacent local minima. Since this knowledge is not known
in advance, it is also the main drawback of this niching method (in
addition to its computational complexity). 

The comparison with the results of CrowdingDE in Fig. 4 with the
elected proteins shows that CrowdingDE presents a more continuous
istribution (in RMSD terms) than the solutions optimized with Shar-
ngDE . The continuous distributions are present in the solutions with
haringDE , but with the highest value of 𝜎𝑠ℎ𝑎𝑟𝑒 and, consequently, with-
ut being optimized in energy terms. The same patterns regarding the
nergy/RMSD distribution in the solutions (discussed in Section 3.1 ) are
resent; for example, the different behavior with the deceptiveness in
he landscape with protein 1wit and the opposite behavior with protein
56bA since, in the latter case, the minimization of energy moves the
olutions towards the native structure. Protein 1c9oA is an example of
nergy landscape with different local minima, as shown both in the dis-
ribution of solutions in Fig. 6 (with low values in 𝜎𝑠ℎ𝑎𝑟𝑒 ) and Fig. 4 for
he same proteins. 

.3. Results with species-based DE ( SDE ) 

Finally, the species-based DE niching alternative ( SDE ), described in
ection 2.5 , was tested with a subset of 6 proteins. 
Fig. 8 shows results with SDE using three different 𝑟 𝑠 values for defin-

ng the distance between the seeds of species (and the individuals asso-
iated with the species), as explained in Algorithm 2.3 in Section 2.5 .
he distance between folds is again calculated with the measure defined
n Section 2.6 . In the SDE runs, 8 species were used, all with the same
umber of associated individuals. In these runs, the population was 96
ndividuals 4 , so every species has 12 individuals. Once the species are
efined, each of the species is evolved with an independent (hybrid)
E run ( Section 2.5 ). In these runs, 5 DE generations are used ( NUM-
ER_GEN in Section 2.5 ). The setup of DE parameters is the same as in
he previous case with SharingDE . Fig. 8 corresponds to the final popu-
ations (in generation 300) in 10 independent runs. 
The energy threshold to decide whether a species individual is ran-

omized was set to a small value (5). That is, if the difference of energy
etween a species individual and the species seed is lower than that
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Fig. 6. Energy ( score3 , axis y ) vs. RMSD (from the native structure, axis x , in Ȧ ) for 3 proteins when SharingDE is used with 5 different values of the sharing radius 
( 𝜎𝑠ℎ𝑎𝑟𝑒 ). From upper to bottom rows: 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 001 , 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 0005 , 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 0001 , 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 00005 and 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 00001 . The Rosetta results of 1000 runs are shown 
in gray for comparison. 
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alue, the individual is randomized (with the same general procedure
o initialize the individuals of the initial population). 
Each of the three evolutionary stages (with the corresponding

osetta score) implies 100 generations. Therefore, there are 20 recal-
ulations of the species seeds (and associated individuals) in those 100
enerations (once the DE runs of each of the species is finished after
 generations), and a total number of 60 recalculations in the whole
volutionary process. 
Wide RMSD distributions are once again obtained in the final popu-

ations. With the lowest 𝑟 𝑠 value used (right subfigures in Fig. 8 ) there
re some individuals with higher energy with respect to the larger 𝑟 𝑠 
alues. With a small 𝑟 𝑠 value the seeds can correspond to very close
alues ( Algorithm 2.3 in Section 2.5 ). Consequently, with that lowest
alue in 𝑟 and even with the low energy threshold (5) to decide if an
𝑠 

14 
ndividual in a species is randomized, many individuals in final gener-
tions tend to be randomized by the functioning of SDE given the high
xploitation around the seeds, which implies the higher energies in part
f the population. 
The distributions of the solutions present the same behavior as in

he previous approaches ( Sections 3.1 and 3.2 ) for the different pro-
eins. The protein landscape of protein 1wit is, once again, the one that
resents a clear deceptiveness, since SDE concentrates the search in the
est area in terms of energy minimization, area that tends to move the
opulation away from the native structure. The opposite behavior is
resent, once more, with the energy landscapes of proteins 1kpeA and
56bA that, even with their multimodal nature, the best energy area also
ends to correspond to the area closest to the native structure. The other
hree proteins, 1c9oA, 1elwA and 1hz6A , present energy landscapes with
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Fig. 7. SharingDE fitness evolution 
through generations and the 3 stages of 
the evolutionary algorithm ( Section 2.2 ), 
using protein 1c9oA as target and 3 
different radii. Left - 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 001 , Center 
- 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 0005 , Right - 𝜎𝑠ℎ𝑎𝑟𝑒 = 0 . 00001 . 
Green line - average fitness, Red line - best 
fitness. 
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ifferent local minima with different depths, without a clear area in en-
rgy terms in which to concentrate most of the solutions. 
Finally, Figure S4 in Supplementary Material illustrates the same ef-

ect of 𝑟 𝑠 values with two target proteins, but when no randomized indi-
iduals are incorporated into the subpopulations of species. In addition,
igure S5 in Supplementary Material shows the effect on the results of
he number of species using the previous 6 proteins. 

. Discussion and conclusions 

Anfinsen’s dogma states that the amino acid sequence acts as the
lueprint for determining protein folding to its native structure, and
hat the native conformation corresponds to the minimum of the Gibbs
ree energy [2] . Therefore, the protein structure prediction problem can
e treated as an optimization problem, since the energy minimum of a
efined energy model must be found to discover the conformation of the
ative structure. However, in atomic models of protein representation,
 problem arises when that energy minimum does not necessarily cor-
espond to the real native structure, as in the case of the Rosetta energy
odel, especially given its knowledge-based nature. 
Given the ruggedness and deceptiveness of the Rosetta energy land-

cape, as well as the known inaccuracies in its energy model which make
t difficult to correctly distinguish between the quality of folds in differ-
nt local optima [31] , one possibility to address the problem is to ob-
ain a diversified set of decoys or conformations with different folds. As
tated by Akhter et al., “It is highly desirable for the decoy generation
tage to obtain an unbiased and uniformly-dense view of the landscape,
o that obtained decoys cover the multitude of basins possibly present in
 protein energy landscape and not miss basins containing native confor-
ations ” [68] . And also, as stated by Garza-Fabre et al., [31] “it seems
hat a successful search technique for fragment assembly will have to
ncorporate improved mechanisms to generate and retain low-energy
tructures that correspond to distinctly different folds ”. 
With that goal in mind, we integrated niching methods (crowding,

tness sharing and speciation) into a hybrid combination between an
volutionary algorithm (DE) and a local search based on the fragment
nsertion technique. Unlike previous studies with the same aim, which
nalyzed the effect of different genetic operators for obtaining diverse
olds, the integration of niching allows us to straightforwardly obtain
uch a desired and diverse set of folds in the optimized solutions of the
enetic populations. The first benefit of using niching is the most dif-
cult premature convergence of the evolutionary algorithm. As noted
y Li et al., [44] , “Seeking multiple good solutions in different regions
f the search space may help with keeping a diverse population, coun-
eracting the effect of genetic drift ”. Nevertheless, this is not the main
enefit in the current problem, since the most interesting aspect is to si-
ultaneously obtain a population of optimized solutions corresponding
o different folds. 
In this integration of niching, the structure of the evolutionary pro-

ess followed the previous study by Garza-Fabre et al. [31] , in which
he individuals of the population were optimized through different gen-
rations that correspond to the different Rosetta ab initio phases. The
volutionary process presents three different phases, and in each of these
volutionary phases we used the Rosetta fitness score, cycles of fragment
nsertion attempts, and fragment lengths of the corresponding Rosetta
15 
hase. This means that the solutions of the population can be progres-
ively refined with the same methodology of Rosetta ab initio, and also
llows for a direct comparison with Rosetta ab initio results under the
ame number of fragment insertion attempts. Moreover, since niching
ethods rely on a distance measure between individuals, protein con-
ormations in the current problem, a measure for calculating the dis-
ance (structural difference) between two folds has to be considered.
he measure defined by Garza-Fabre et al. [31] was employed in the
resent study, which takes into account the interdistances of the sec-
ndary structure elements in order to describe the conformational fold.
From the experiments performed with the niching methods consid-

red, several conclusions can be drawn: 

i The hybrid evolutionary algorithm (with and without the integration
of niching methods) performs better for sampling the energy land-
scape to obtain optimized solutions in energy terms, compared to
Rosetta ab initio and to two Rosetta-based protocols (ILS and bilevel
protocols [32] ), as shown with the energy distributions of final solu-
tions in most proteins. This enhanced search capability of a memetic
algorithm is not novel in evolutionary computation, but it demon-
strates that, also in PSP approaches based on energy minimization,
the combination of the global DE search and the local refinement
capability of the fragment insertion technique is useful. 
From this initial memetic combination between the fragment re-
placement technique and standard DE, the use of self-adaptive ver-
sions of DE [69] should be checked, with a strict comparison be-
tween DE variants [70,71] . In particular, versions such as L-SHADE
[72] to overcome the parameter tuning, also integrating a neighbor-
hood mutation [45] to further strengthen the niching effect. 

ii With the incorporation of the niching methods, the solutions of the
final generations of the evolutionary process present a diverse set of
folds with different distances (RMSD) from the real native conforma-
tion. The solutions present wider RMSD distributions with respect
to the use of the evolutionary algorithm without niching, obtain-
ing conformations closer to the native structure (in RMSD values) in
some proteins with respect to Rosetta ab initio. 

iii Regarding the different niching methods employed, in the case of
CrowdingDE , its main advantage is that it only needs a parameter
in its implementation (crowding factor 𝐶𝐹 ), which can control the
selective pressure, as shown in the runs with different 𝐶𝐹 values. 
The main drawback with fitness sharing in SharingDE was to set the
parameter 𝜎𝑠ℎ𝑎𝑟𝑒 , which defines the vicinity of a conformation in
order to recalculate its effective fitness. The ideal parameter value
could be the distance that separates two adjacent local minima in
the fitness landscape, which obviously requires prior knowledge of
the landscape. The experimentation with different values of 𝜎𝑠ℎ𝑎𝑟𝑒 

showed the high dependence of the results (final conformations) on
the value of that parameter. Something similar can be said about the
speciation niching method ( SDE ), which again requires the appropri-
ate value for defining the vicinity of species around their seeds, as
well as the tuning of the number of species. Moreover, premature
convergence must be addressed in the small subpopulations of each
species, as is done with the incorporation of randomized individuals.
Since crowding does not require a parameter to decide a distance
or threshold that separates local minima, CrowdingDE was found to
be the most useful niching technique in the current problem, espe-
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Fig. 8. Energy ( score3 , axis y ) vs. RMSD (from the native structure, axis x , in Ȧ ) for 6 proteins and with 3 thresholds ( 𝑟 𝑠 ) for defining the species seeds in SDE . Left: 
𝑟 𝑠 = 0 . 05 , Center: 𝑟 𝑠 = 0 . 01 , Right: 𝑟 𝑠 = 0 . 001 . The Rosetta results of 1000 runs are shown in gray for comparison. 

 

 

 

 

 

 

 

 

 

 

 

cially given the parameter decision process in the other two niching
methods. 
Other niching strategies should be explored as future work. For ex-
ample, recent DE niching strategies based on niching competition
[73] . Also, as noted above, an interesting approach is the integra-
tion of a neighborhood mutation into the DE process, as done by Qu
16 
et al. [45] , to reinforce the niching effect. In neighborhood mutation,
the generation of difference vectors is limited to nearby individuals.
With its integration into standard niching methods, neighborhood
mutation was able to induce stable niching behavior in DE, providing
better and more consistent performance than other multimodal opti-
mization algorithms on different benchmark functions [45] . There-
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fore, the neighborhood mutation should also be explored in the PSP
problem. 

iv In the comparison of results of all the alternatives there is no one
approach that outperforms the others in all proteins regarding the
lowest RMSD. However, the Rosetta-based ILS and bilevel protocols
[32] present the lowest RMSD or lowest average RMSD in more pro-
teins than the other approaches, as the results show in the Supple-
mentary Material tables. Consequently, an alternative worth explor-
ing is the integration of crowding (and the other niching methods)
with the greater explorative capability provided by the perturbation
steps of the ILS/bilevel protocols. 

v The results illustrate the large degree of deceptiveness in the Rosetta
energy landscape for many proteins. The hybrid evolutionary ver-
sions defined here clearly present a better ability to sample the en-
ergy landscape with respect to the Rosetta-based protocols in order
to find optimized solutions with minimized energy, but this does not
guarantee the best results in terms of solutions closer to the native
structure. This is explained by the deceptiveness of the landscape, in
which the area of best energies moves away from the native struc-
ture. 

In conclusion, then, the incorporation of niching represents a
traightforward alternative to address the problem of deceptiveness
n such protein energy landscapes, although each niching method has
ts own problems regarding computational complexity and parame-
er setup. The solutions obtained present wide RMSD distributions, al-
hough this does not resolve the problem with proteins with a clear
eceptive energy landscape, such as the specific examples discussed in
he experiments described here. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper. 

RediT authorship contribution statement 

Daniel Varela: Methodology, Software, Validation, Investigation,
ata curation, Writing – original draft, Writing – review & editing. José
antos: Conceptualization, Methodology, Validation, Writing – original
raft, Writing – review & editing, Project administration, Funding ac-
uisition. 

cknowledgments 

This study was funded by the Xunta de Galicia and the European
nion (European Regional Development Fund - Galicia 2014–2020 Pro-
ram), with grants CITIC (ED431G 2019/01), GPC ED431B 2019/03
nd IN845D-02 (funded by the “Agencia Gallega de Innovación ”, co-
nanced by Feder funds, supported by the “Consellería de Economía,
mpleo e Industria ” of Xunta de Galicia), and by the Spanish Ministry
f Science and Innovation (project PID2020-116201GB-I00). 

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.swevo.2022.101062 . 

eferences 

[1] A. Tramontano , Protein Structure Prediction. Concepts and Applications, Wi-
ley-VCH, 2006 . 

[2] C. Anfinsen , Principles that govern the folding of proteins, Science 181 (96) (1973)
223–230 . 

[3] A. Senior, R. Evans, J. Jumper, et al., Improved protein structure pre-
diction using potentials from deep-learning, Nature 577 (2020) 706–710,
doi: 10.1038/s41586-019-1923-7 . 
17 
[4] A. Márquez-Chamorro , G. Asencio-Cortés , C. Santiesteban-Toca , J. Aguilar-Ruiz , Soft
computing methods for the prediction of protein tertiary structures: a survey, Appl.
Soft. Comput. 35 (2015) 398–410 . 

[5] N. Krasnogor , W. Hart , J. Smith , D. Pelta , Protein structure prediction with evolu-
tionary algorithms, in: Proceedings GECCO’99 - Conference on Genetic and Evolu-
tionary Computation, 1999, pp. 1596–1601 . 

[6] X. Zhao , Advances on protein folding simulations based on the lattice HP models
with natural computing, Appl. Soft Comput. 8 (2008) 1029–1040 . 

[7] R. Unger , The genetic algorithm approach to protein structure prediction, Struct.
Bond. 110 (2004) 153–175 . 

[8] G. Zhang , X. Zhou , X. Yu , X. Hao , L. Yu , Enhancing protein conformational space
sampling using distance profile-guided differential evolution, IEEE/ACM Trans.
Comput. Biol. Bioinf. 14 (6) (2017) 1288–1301 . 

[9] V. Cutello , G. Nicosia , M. Pavone , J. Timmis , Immune algorithm for protein structure
prediction on lattice models, IEEE Trans. Evol. Comput. 11 (1) (2007) 101–117 . 

[10] S. Fidanova , 3D HP protein folding problem using ant algorithm, in: Proceedings of
BioPS’06 International Conference, 2006, pp. 19–26 . 

[11] M. Garza-Fabre , E. Rodriguez-Tello , G. Toscano-Pulido , Comparative analysis of dif-
ferent evaluation functions for protein structure prediction under the HP model, J.
Comput. Sci. Technol. 28 (5) (2013) 868–889 . 

[12] H. Lopes , M. Scapin , An enhanced genetic algorithm for protein structure predic-
tion using the 2D hydrophobic-polar model, Lect. Notes Comput. Sci. 3871 (2006)
238–246 . 

[13] W. Patton , W. Punch , E. Goldman , A standard genetic algorithm approach to native
protein conformation prediction, in: Proceedings of 6th International Conference on
Genetic Algorithms, 1995, pp. 574–581 . 

[14] S. Shatabda , M. Newton , M. Rashid , A. Sattar , An efficient encoding for simplified
protein structure prediction using genetic algorithms, in: Proceedings IEEE Congress
on Evolutionary Computation - IEEE-CEC 2013, 2013, pp. 1217–1224 . 

[15] A. Shmygelska , H. Hoos , An ant colony optimisation algorithm for the 2D and 3D
hydrophobic polar protein folding problem, Bioinformatics 6 (2005) 30 . 

[16] F. Neri , C. Cotta , Memetic algorithms and memetic computing optimization: a liter-
ature review, Swarm Evol. Comput. 2 (2012) 1–14 . 

[17] C. Cotta , Protein structure prediction using evolutionary algorithms hybridized with
backtracking, Lect. Notes Comput. Sci. 2687 (2003) 321–328 . 

[18] N. Krasnogor , B. Blackburne , E. Burke , J. Hirst , Multimeme algorithms for protein
structure prediction, Lect. Notes Comput. Sci. 2439 (2002) 769–778 . 

[19] J. Santos , M. Diéguez , Differential evolution for protein structure prediction using
the HP model, Lect. Notes Comput. Sci. 6686 (2011) . 323–323 

[20] M. Rashid , F. Khatib , M. Hoque , A. Sattar , An enhanced genetic algorithm for ab ini-
tio protein structure prediction, IEEE Trans. Evol. Comput. 20 (4) (2018) 627–644 .

[21] N. Boumedine , S. Bouroubi , A new hybrid genetic algorithm for protein structure
prediction on the 2D triangular lattice, Comput. Sci. Math. (2019) 1907.04190 . 

[22] B. Olson , K. De-Jong , A. Shehu , Off-lattice protein structure prediction with homol-
ogous crossover, in: Proceedings GECCO 2013 - Conference on Genetic and Evolu-
tionary Computation, 2013, pp. 287–294 . 

[23] L. Corrêa , B. Borguesan , C. Farfán , M. Inostroza-Ponta , M. Dorn , A memetic algo-
rithm for 3D protein structure prediction problem, IEEE/ACM Trans. Comput. Biol.
Bioinf. 15 (3) (2018) 690–704 . 

[24] L. Corrêa, M. Dorn, A multi-population memetic algorithm for the 3-D
protein structure prediction problem, Swarm Evol. Comput. 55 (2020),
doi: 10.1016/j.swevo.2020.100677 . 

[25] Rosetta, Rosetta system, ( http://www.rosettacommons.org ). 
[26] C. Rohl , C. Strauss , K. Misura , D. Baker , Protein structure prediction using rosetta,

Meth. Enzymol. 383 (2004) 66–93 . 
[27] CASP, Protein structure prediction center, ( http://predictioncenter.org/ ). 
[28] K. Kaufmann , G. Lemmon , S. DeLuca , J. Sheehan , J. Meiler , Practically useful:

what the rosetta protein modeling suite can do for you, Biochemistry 49 (2010)
2987–2998 . 

[29] A. Shmygelska , M. Levitt , Generalized ensemble methods for de novo structure pre-
diction, PNAS 106 (5) (2009) 1415–1420 . 

[30] S. Saleh , B. Olson , A. Shehu , A population-based evolutionary search approach to
the multiple minima problem in de novo protein structure prediction, BMC Struct.
Biol. 13 (1) (2013) S4 . 

[31] M. Garza-Fabre , S. Kandathil , J. Handl , J. Knowles , S. Lovell , Generating, maintain-
ing, and exploiting diversity in a memetic algorithm for protein structure prediction,
Evol Comput 24 (4) (2016) 577–607 . 

[32] S. Kandathil , M. Garza-Fabre , J. Handl , S. Lovell , Improved fragment-based protein
structure prediction by redesign of search heuristics, Sci Rep 8 (1) (2018) 13694 . 

[33] D. Simoncini , T. Schiex , K. Zhang , Balancing exploration and exploitation in popula-
tion-based sampling improves fragment-based de novo protein structure prediction,
Proteins Struct. Funct. Bioinf. 85 (2017) 852–858 . 

[34] L. Corrêa , B. Borguesan , M. Krause , M. Dorn , Three-dimensional protein structure
prediction based on memetic algorithms, Comput. Oper. Res. 91 (2018) 160–177 . 

[35] F. Custódio , H. Barbosa , L. Dardenne , A multiple minima genetic algorithm for pro-
tein structure prediction, Appl. Soft Comput. 15 (2014) 88–99 . 

[36] X. Wei , X. Zheng , Q. Zhang , C. Zhou , Improved niche genetic algorithm for pro-
tein structure prediction, in: Bio-Inspired Computing - Theories and Applications.
BIC-TA 2015. Communications in Computer and Information Science, 562, 2015,
pp. 475–492 . 

[37] K. Price , R. Storn , J. Lampinen , Differential Evolution. A Practical Approach to
Global Optimization, Springer - Natural Computing Series, 2005 . 

[38] R. Storn , K. Price , Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim. 11 (4) (1997) 341–359 . 

[39] S. Das , P. Suganthan , Differential evolution: a survey of the state-of-the-art, IEEE
Trans. Evol. Comput. 15 (1) (2011) 4–31 . 

https://doi.org/10.13039/501100010801
https://doi.org/10.1016/j.swevo.2022.101062
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0001
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0001
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0002
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0002
https://doi.org/10.1038/s41586-019-1923-7
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0004
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0005
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0006
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0006
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0007
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0008
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0009
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0010
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0010
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0011
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0012
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0012
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0012
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0013
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0014
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0015
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0016
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0017
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0017
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0018
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0019
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0020
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0021
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0022
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0023
https://doi.org/10.1016/j.swevo.2020.100677
http://www.rosettacommons.org
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0026
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0026
http://predictioncenter.org/
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0028
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0029
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0030
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0031
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0032
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0033
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0034
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0035
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0035
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0035
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0035
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0036
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0037
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0038
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0039
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0039


D. Varela and J. Santos Swarm and Evolutionary Computation 71 (2022) 101062 

[
[  

[  

 

 

[  

 

[  

 

[  

[  

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

c  

S  

t  

r

40] V. Feoktistov , Differential Evolution: In Search of Solutions, Springer, NY, 2006 . 
41] H. Lopes , R. Bitello , Differential evolution approach for protein folding using a lattice

model, J. Comput. Sci. Technol. 22 (6) (2007) 904–908 . 
42] D. Varela , J. Santos , Combination of differential evolution and fragment-based re-

placements for protein structure prediction, in: GECCO 2015 Proceedings Com-
panion, Workshop Evolutionary Computation in Computational Structural Biology,
2015, pp. 911–914 . 

43] S. Das , S. Maity , B. Qu , P. Suganthan , Real-parameter evolutionary multimodal opti-
mization - a survey of the state-of-the-art, Swarm Evol. Comput. 1 (2) (2011) 71–88 .

44] X. Li , M. Epitropakis , K. Deb , A. Engelbrecht , Seeking multiple solutions: an updated
survey on niching methods and their applications, IEEE Trans. Evol. Comput. 21 (4)
(2017) 518–538 . 

45] B. Qu , P. Suganthan , J. Liang , Differential evolution with neighborhood mutation
for multimodal optimization, IEEE Trans. Evol. Comput. 16 (5) (2012) 601–614 . 

46] M. Epitropakis , V. Plagianakos , M. Vrahatis , Finding multiple global optima exploit-
ing differential evolution’s niching capability, in: Proceedings IEEE Symposium on
Differential Evolution (SDE), 2011, pp. 1–8 . 

47] R. Mukherjee , G. Patra , R. Kundu , S. Das , Cluster-based differential evolution with
crowding archive for niching in dynamic environments, Inf. Sci. 267 (2014) 58–82 .

[48] K. De Jong , An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Doctoral Dissertation, University of Michigan, Ann Arbor, MI, 1975 . 

[49] R. Thomsen , Multimodal optimization using crowding-based differential evolution,
in: Proceedings IEEE Congress on Evolutionary Computation, 2004, pp. 1382–1389 .

[50] D. Varela , J. Santos , Crowding differential evolution for protein structure predic-
tion, in: Proceedings International Work-Conference on the Interplay between Nat-
ural and Artificial Computation - IWINAC 2019, Lecture Notes in Computer Science
11487, 2019, pp. 193–203 . 

[51] D. Varela, J. Santos, Protein structure prediction in an atomic model with differen-
tial evolution integrated with the crowding niching method, Nat. Comput. (2020),
doi: 10.1007/s11047-020-09801-7 . 

[52] J. Holland , Adaptation in Natural and Artificial Systems, An Arbor MI: University of
Michigan Press, Cambridge, MA, USA, 1975 . 

[53] D. Goldberg , J. Richarson , Genetic algorithms with sharing for multimodal function
optimization, in: Proceedings 2nd International Conference on Genetic Algorithms,
1987, pp. 41–49 . 

[54] G. Yang , Z. Dong , K. Wong , A modified differential evolution algorithm with fitness
sharing for power system planning, IEEE Trans. Power Syst. 23 (2) (2008) 514–522 .

[55] X. Li , Efficient differential evolution using speciation for multimodal function opti-
mization, in: Proceedings GECCO 2005 - Conference on Genetic and Evolutionary
Computation, 2005, pp. 873–880 . 

[56] S. Kmiecik , D. Gront , M. Kolinski , L. Wieteska , A. Dawid , A. Kolinski , Coarse-grained
protein models and their applications, Chem. Rev. 116 (2016) 7898–7936 . 

[57] N. Metropolis , A. Rosenbluth , M. Rosenbluth , A. Teller , E. Teller , Equation of state
calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953) 1087–
1092 . 

[58] J. Lee , S. Wu , Y. Zhang , Ab initio protein structure prediction, in: From Protein
Structure to Function with Bioinformatics, Springer-London, 2009, pp. 3–25 . 

[59] M. Sippl , Knowledge-based potentials for proteins, Curr. Opin. Struct. Biol. 5 (2)
(1995) 229–235 . 

[60] PDB, Protein Data Bank, ( http://www.wwpdb.org ). 
18 
[61] A. Hagler , S. Lifson , Energy functions for peptides and proteins, II: The amide hydro-
gen bond and calculation of amide crystal properties, J. Am. Chem. Soc. 96 (1974)
5319–5327 . 

[62] D. Whitley , V. Gordon , K. Mathias , Lamarckian evolution, the Baldwin Effect and
function optimization, Lect. Notes Comput. Sci. 866 (1994) 6–15 . 

[63] B. Sareni , L. Krähenbühl , Fitness sharing and niching methods revisited, IEEE Trans.
Evol. Comput. 2 (3) (1998) 97–106 . 

[64] J. Li , M. Balazs , G. Parks , P. Clarkson , A species conserving genetic algorithm for
multimodal function optimization, Evol. Comput. 10 (3) (2002) 207–234 . 

[65] A. Pétrowski , A clearing procedure as a niching method for genetic algorithms, in:
Proceedings 3rd IEEE International Conference on Evolutionary Computation, IEEE,
1996, pp. 798–803 . 

[66] J. Horn , The Nature of Niching: Genetic Algorithms and the Evolution of Optimal,
Cooperative Populations, Dept. Comput. Sci., University of Illinois at Urbana-Cham-
paign, Urbana, IL, USA, 1997 . Technical Report UIUCDCS-R-97-2000 

[67] D. Jones , Protein secondary structure prediction based on position-specific scoring
matrices, J. Mol. Biol. 292(2) (1999) 195–202 . 

[68] N. Akhter , W. Qiao , A. Shehu , An energy landscape treatment of decoy selection in
template-free protein structure prediction, Computation 6 (2) (2018) 39 . 

[69] S. Das, S. Mullick, P. Suganthan, Recent advances in differential evo-
lution - an updated survey, Swarm Evol. Comput. 27 (2016) 1–30,
doi: 10.1016/j.swevo.2016.01.004 . 

[70] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho,
S. Das, P.N. Suganthan, C.A. Coello Coello, F. Herrera, Bio-inspired computa-
tion: where we stand and what’s next, Swarm Evol. Comput. 48 (2019) 220–250,
doi: 10.1016/j.swevo.2019.04.008 . 

[71] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina, A. LaTorre, P.N. Sug-
anthan, C.A. Coello Coello, F. Herrera, A tutorial on the design, experimentation and
application of metaheuristic algorithms to real-world optimization problems, Swarm
Evol. Comput. 64 (2021) 100888, doi: 10.1016/j.swevo.2021.100888 . 

[72] R. Tanabe, A.S. Fukunaga, Improving the search performance of SHADE using linear
population size reduction, in: Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2014, Beijing, China, July 6–11, 2014, IEEE, 2014, pp. 1658–
1665, doi: 10.1109/CEC.2014.6900380 . 

[73] W. Sheng, X. Wang, Z. Wang, Q. Li, Y. Chen, Adaptive memetic differential evo-
lution with niching competition and supporting archive strategies for multimodal
optimization, Inf. Sci. 573 (2021) 316–331, doi: 10.1016/j.ins.2021.04.093 . 

Daniel Varela has a BSc (2012) and an MSc (2014) in Computer Science from the Uni-
versity of A Coruña (Spain). His PhD (2019) is from the Department of Computer Science
and Information Technologies of the same institution. His research interests include evo-
lutionary computation and computational biology. He is currently a postdoctoral fellow
at the University of Lund (Sweden). 

José Santos has an MSc in Physics (1989, specialization in Electronics) from the Univer-
ity of Santiago de Compostela (Spain), and a PhD from the same institution (1996, spe-
ialization in Artificial Intelligence). He is Full Professor in the Department of Computer
cience and Information Technologies, University of A Coruña (Spain). His research in-
erests include artificial life, neural computation, evolutionary computation, autonomous
obotics, and computational biology. 

http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0040
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0041
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0042
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0043
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0044
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0045
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0046
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0047
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0048
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0048
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0049
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0049
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0050
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0050
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0050
https://doi.org/10.1007/s11047-020-09801-7
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0052
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0053
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0053
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0053
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0054
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0055
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0055
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0056
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0057
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0058
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0059
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0059
http://www.wwpdb.org
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0061
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0062
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0062
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0062
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0062
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0063
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0063
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0063
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0064
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0065
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0065
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0066
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0066
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0066
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0067
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0067
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0068
http://refhub.elsevier.com/S2210-6502(22)00034-7/sbref0068
https://doi.org/10.1016/j.swevo.2016.01.004
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1016/j.swevo.2021.100888
https://doi.org/10.1109/CEC.2014.6900380
https://doi.org/10.1016/j.ins.2021.04.093

	Niching methods integrated with a differential evolution memetic algorithm for protein structure prediction
	1 Introduction and previous work
	2 Methods
	2.1 Main aspects of Rosetta
	2.2 Hybrid DE using different Rosetta phases and energy functions
	2.3 Crowding and CrowdingDE
	2.4 Fitness sharing and SharingDE
	2.5 Speciation and Species-based DE (SDE)
	2.6 Structural diversity measure
	2.7 Protein sequences

	3 Results
	3.1 Results with CrowdingDE
	3.1.1 Setup
	3.1.2 Comparison with Rosetta ab initio
	3.1.3 Comparison with other approaches

	3.2 Results with SharingDE
	3.3 Results with species-based DE (SDE)

	4 Discussion and conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgments
	Supplementary material
	References


