SN,

Computer methods

ﬁ in applied
ﬁ mechanics and
engineering
ELSEVIER Comput. Methods Appl. Mech. Engrg. 191 (2002) 5899-5922

www.elsevier.com/locate/cma

SUPG stabilized finite element resolution of the
Navier—Stokes equations
Applications to water treatment engineering

P. Vellando **, J. Puertas °, I. Colominas 2

* Group of Numerical Methods in Engineering (GNME), Dpto. de Méiodos Matemdticos y de Representacion,
ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de La Coruna, Campus de Elvina, 15071 La Coruna, Spain
® Area de Ingenieria Hidrdulica, Dpto. de Métodos Mateméticos y de Representacion, ETS de Ingenieros de Caminos,
Canales y Puertos, Universidad de La Coruna, Campus de Elvinia, 15071 La Corunia, Spain

Received 5 June 2002; received in revised form 8 August 2002

Abstract

In this paper an analysis of the viscous incompressible flow has been carried out, from the very definition of the
governing equations, up to the resolution of some practical problems, passing through the comprehensive study of the
stabilized finite element techniques used in their resolution. As a consequence of this analysis, a code based upon a
realistic interpretation of the forces has been written, which allows for the modelling of the open channel flow, with
optimum results in the resolution of some benchmark and real flow problems related with the wastewater industry.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The finite element method was first developed in the fifties by Turner et al. so as to solve some structural
problems of the aeronautical industry [42]. The application of the finite element method to the resolution of
the flow problems requires some modifications with respect to the formulation used for the structural stress
analysis problems that were its first application. Some of these modifications have been borrowed from the
finite difference or finite volume approaches, and many others have been specifically developed for finite
elements. In the early seventies we find many works regarding not only the mere existence and consistency
of the solution to these flow problems [3,6,29] but also many works that give a finite element solution to
the Navier-Stokes equations [31,39,47]. Since then, the finite element method is a powerful tool for the
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resolution of the Navier—Stokes equations, which will be used in this work to solve the viscous incom-
pressible flow.

The material we are going to deal with when solving the flow problems, is of a fluid nature, and therefore
it has not a fixed shape, which is instead a function of time. In addition to Newton’s second law, that
rules any dynamic problem, an equation that ensures for the conservation of mass should be verified.
Moreover, the Navier-Stokes equations are a set of differential equations with respect to space and time in
which both the pressure and the velocity are the unknowns. As a consequence, the finite element formu-
lation used for the conventional structural analysis cannot be applied straightforwardly.

When applying the finite element analysis to the problems of the rigid body, the weighted residual
method can be exclusively applied to Newton’s second law, which for statics clearly turns out to be the
equilibrium equation. On the contrary, when dealing with fluids, the shape is not any more conserved, and
apart from stating the equilibrium of momentum, we have to ensure for the continuity of mass. Conse-
quently, we have two equations to be verified at the same time, and the finite element formulation should
also account for the verification of both. The only set of unknowns in the conventional structural analysis is
that of the displacements; as a consequence, the system obtained thanks to the application of the finite
element method gives the displacements in the structure depending on the stiffness matrix (that features the
structure), and the load vector. In the flow problems, we are headed towards the so-called mixed finite
clement method, in which both the velocity and the pressure set of unknowns have to be treated simul-
taneously.

Depending on how these two sets of equations and unknowns are tackled, several different approaches
have been developed. Some authors [9,26] agree to classify the different approaches to solve the viscous
incompressible flow by the finite element method into three different categories: these are the mixed (or
velocity—pressure integrated), the penalty and the segregated methods. The mixed method is the most in-
tuitive of these approaches, and is based upon carrying out a similar analysis for the continuity equation to
that used for the momentum equation, keeping both velocity and pressure as the unknowns up to the end of
the problem. This apparently straightforward way of dealing with our equations is not as simple as it
appears to be, and it may be the reason of the obtaining of a meaningless solution when used in connection
with a faulty basic element as shown in the early works by some authors [39]. The so-called mixed for-
mulation leads to some consistency problems in the obtaining of the solution when a wrong choice in the
basic functions has been made. As a consequence, the penalty and segregated methods have been developed
to overcome these difficulties. In this work, a 2D algorithm of each of those three different types will be
developed, verified and used in the analysis of some practical problems and discussed.

The 2D Navier-Stokes equations assume a flow that takes place on a two-dimensional plane, and it is
therefore laminar in that sense. A fully 3D resolution of the flow, apart from leading us to tough memory
requirements, both in storing memory and in CPU time, would involve some problems in the modelling of
the free water surface. The shallow water formulation has been considered as a way of including the third
dimension in the model, being able to give a meaningful solution for flows in which the depth is small
compared to the horizontal dimension. The integration in depth of the 3D Navier—Stokes formulation
causes the dependence of the continuity equation with respect to depth, and consequently the appearance of
some quasi-non-linear terms that depend on both the velocity and the depth. These equations are solved by
means of a newly developed iterative algorithm, which will be solved on a mixed formulation basis to be
described later in the text.

The use of a Galerkin formulation, that takes weighting functions equal to trial functions when solving
the Navier—Stokes equations, may lead to some problems of instability in the solution of the flow problems
by the finite element method. To avoid this difficulty, some so-called stabilization procedures have been
released since the MAFELAP conference in 1975 [17,18,47]. The stiffness matrix resulting from conven-
tional structural finite element analysis is symmetric, instead the ‘stiffness’ matrix obtained for fluids is non-
symmetric and the use of symmetric weighting functions may lead to some instability problems. The faster



P. Vellando et al. | Comput. Methods Appl. Mech. Engrg. 191 (2002) 5899-5922 5901

the flow turns, the more non-symmetric the coefficient matrix becomes. In practice, this is featured by the
appearance of some spurious node-to-node oscillations also known as ‘wiggles’. One way of avoiding these
oscillations is to carry out a refinement in the mesh, such that convection no longer dominates on an ele-
ment level, but this refinement turns to be a memory resources sink. This source of instability can be
avoided by using a stabilization technique, being the streamline upwinding Petrov—Galerkin (SUPG) [21]
and Galerkin least squares (GLS) [23] the most commonly used of these methods.

A stabilization technique of the SUPG type will be used for all the algorithms considered in this work.
These technique, first developed by Hughes and Brooks [7,21,22], succeeds in eliminating the spurious
velocity field oscilations, without carrying out a severe refinement in the mesh, by considering weighting
functions that differ from trial functions in an upwinding term. This method was first released for the
transport equation, and its generalization to the Navier—Stokes equations brings an additional problem;
that is the appearance of an excessive diffusion normal to the flow. The SUPG method eliminates this
spurious crosswind diffusion by considering an artificial diffusion that acts only in the direction of the flow.
All the particulars regarded in this introduction and some others will be further considered in the following
chapters.

2. Governing equations

The dynamic and the continuity equations make up the so-called Navier-Stokes equations, that govern
the viscous incompressible flow. These equations are named after their discoverer, the French civil engineer
Claude-Louis Navier (1785-1836), who in 1821 formulated the equations that rule the incompressible flow.
The Navier-Stokes equations also bear the name of the Irish mathematician George Gabriel Stokes (1819—
1903), who not knowing the previous discoveries made by Navier, Poisson and Saint-Venant, re-obtained
the Navier-Stokes equations for slightly different assumptions, and published these works in 1845.

Using the indicial we can express the Navier—Stokes equations as

1 .
u,—yt—i—uju,-,j = —;py,——i—vuiyjj —!—f; Ui =0inQ (1)

together with the boundary and initial conditions
wlp, =bi  oynlp, =14, @)
u;(xj, 0) = w(x;),

where u; is the velocity, p is the pressure, f; is the body force per unit mass, p is density, v is the cinematic

viscosity, I'; and I, are two non-overlapping subsets of the piecewise smooth domain boundary I', b; is the

velocity vector prescribed in Iy, ¢; is the traction vector prescribed on I', g;; is the stress along the boundary

I';, and n; is the outward unit vector normal to I's.

The 2D Navier—Stokes equations will be used in this work to solve some benchmark problems with very
good results, as will become clear later in the text. The 2D or laminar (in the sense of planar) Navier—Stokes
equations do not take into account the third dimension in space, and provide with the velocities and
pressures of a theoretical planar flow. Nevertheless, for many real flow problems, the third dimension in
space is very important and the 3D Navier-Stokes equations should be considered. The three-dimensional
Navier-Stokes equations result in a very large-dimensioned system of equations that involves tough
computational requirements. Moreover, the 3D schemes present a great difficulty in the treatment of the
free surface. For flows in which the horizontal dimension is small compared to depth, the shallow water
formulation can be successfully employed as a simplification of the 3D Navier-Stokes equations [45]. This
simplification can be used when the main direction of the flow is the horizontal one and the distribution of
the horizontal velocity along the vertical direction can be assumed as uniform. The shallow water equations
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assume that the vertical acceleration of the fluid is negligible and that a hydrostatic distribution of the
pressure can be adopted. When the 2D Navier—Stokes equations are used, no attention is paid to the third
dimension in space, and the continuity equation is only held on a 2D basis. So as to get the adequate
information about the variations in depth along the flow, either a 3D Navier-Stokes equation or the
shallow water equations should be used.

The shallow water equations are used in this work to solve same problems in which the flow can be
assumed as shallow. Integrating in depth the 3D Navier-Stokes equations the shallow water equations are
obtained as

hy+hu; +uh; =0, 3)
wie + upy; = —gh + vis ;; + g(So — Sp),
where £ is the depth, g is the gravity force and Sy, and S;; are the geometric and friction slopes. Let us make
sorme comments on the evaluation of the friction slope.

All the flows found in civil engineering practice can be featured by the Reynolds number (UL/v, where U
and L are the characteristic velocity and length of the flow and v is the kinematic viscosity that depends on
the fluid nature). For small Reynolds numbers, the flow can be regarded as laminar, and the streamlines are
parallel to each other. As the Reynolds number is increased, a chaotic, random and intrinsically unsteady
type of motion appears. If these turbulent effects are to be solved by using the Navier-Stokes equations, a
very refined mesh would be required to capture the eddies taking place on a wide range of length scales, and
a special attention should be devoted to the unsteady resolution of the turbulent phenomena, that take
place at a very high frequency [44]. The mesh refinement and the time step required for this purpose are not
yet computationally affordable. Consequently, a turbulence model should be implemented in order to
evaluate these turbulent eddies. Most of these turbulence models are based upon decomposing the involved
variables into a mean value (within a time increment) and a fluctuating term that depends on time. As a
consequence of this approach, a term that evaluates the turbulent losses as a function of a so-called ‘eddy
viscosity’ v;, is obtained. To evaluate this eddy or turbulent viscosity, a specific turbulence model such as the
k—¢ model should be introduced. Making use of these turbulence models, the turbulent viscosity is calcu-
lated for each time step and position, allowing for the capturing of these eddies [16,24,28,38].

The turbulent effects can also be evaluated on an overall basis. The evaluation of the friction slope on a
Manning basis [43] permits to evaluate empirically the overall energy losses taking place in the fluid flow,
including those related with the turbulent effects. This formulation does not capture the turbulent eddies
taking place within the fluid flow but takes into account the overall turbulent energy losses, moreover keeps
the full Navier—Stokes formulation, being ready to incorporate a two-equations turbulence model. By
doing so, the frictional slope can be evaluated as

Sp = 4)

R
h
where Ry, is the hydraulic radius and » is the Manning coefficient.

The use of this formulation allows for a realistic interpretation of the forces taking place within the flow
and provides a meaningful tool for the resolution of some practical flows as will be seen in the examples.

3. Finite element formulation

3.1. Mixed laminar formulation

This formulation is directly obtained from the application of the weighted residuals method on both the
dynamic and continuity equations. In the Galerkin method, the test functions are taken equal to the trial
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functions, in terms of which the unknowns are interpolated. We are going to introduce a SUPG stabili-
zation of the algorithm by considering an additive term p; in the weighting functions. Applying the weighted
residuals method in this way on both the dynamic and continuity Navier—Stokes equations, it is obtained

1
Rk o b h h h
/ka,.(ui’t—i—ujuilj—ﬁ)dQ—i—v/Qhwf’JuinQ—; wipdQ

[

1
~ [ trars S [ (ot -y 2t 57 a0 =0 )
2 e Q.

/ qhuﬁ’,i dQ =0,
@

where W; = w; + p; are the SUPG weighting functions for the dynamic equation and g are the weighting
functions for the continuity equation. The / superscript stands for the discretization being carried out in
our formulation, which will be made in terms of a Q1P0 basic element.

This formulation should verify in addition to the governing equations, some consistency conditions, the
most restrictive of which is the Ladyzhenskaya—Babuska—Brezzi (LBB), or divergence—stability condition
[6]. A wrong election in this basic element may fail to verify this condition and prevent the whole algorithm
from converging. The Q1P0 basic element, used in connection with the present formulation, even not being
strictly divergence—stability stable, has shown to produce stable and efficient solutions.

Once the elementary matrices are evaluated and assembled, the integral equation (5) can be expressed in
matrix notation as

@
ot
BTQ = 03

M, —+ C,(u,v)v+vA,p — Bp =1,

(6)

where M, is the mass matrix, C,(u,v) is the convective matrix, A, is the viscous matrix, B is the pressure
matrix, f is the external forces vector, p is the pressure vector, u is the velocity vector in the x-direction, v is
the velocity vector in the y-direction and p is the velocity vector [43].

For the derivatives with respect to time included in the first term of the first equation in (6), a finite
difference backward differencing approach will be used in order to transform our partial differential system
into an algebraic one.

The convective term C,(u, v)v that appears in (6), is not the product of a coefficient matrix times a vector
of unknowns, but a non-linear velocity-dependent function. This term should be eliminated in order to
transform the resulting system into a linear system of equations. The numerical scheme to be used for this
transformation is going to be a so-called successive approximation method, that can be mathematically
expressed as

Qp Qp

and has shown to provide with good results in the resolution of the Navier—Stokes equations [13]. This
method converges linearly to the solution in opposition to some others, like the Newton—Raphson method,
which do it in a quadratic way in the vicinity of the solution. Still, the necessity of an appropriate initial
guess in the Newton—Raphson method may prevent the solutions from converging [25], and a continuation
technique, is often required.

The mixed formulation so-implemented is still quite expensive in terms of storing memory requirements,
with the associated coefficient matrix of the resulting system being 2M + N dimensional, where A and N are
the number of the velocity and pressure unknowns respectively.
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3.2. Penalty laminar formulation

The main difficulty found when obtaining a numerical solution for the Navier-Stokes equations is that
apart from verifying the dynamic constitutive equation, the solutions must satisfy in addition the incom-
pressibility condition. The mixed finite element formulation leads to a system in which both velocity and
pressure are taken as unknowns. Nonetheless, besides the problems entailed in the clection of the basic
elements in order to allow for the divergence—stability condition to be held, mixed methods result in a large-
dimensioned system of equations. Therefore, not only a larger dimension has to be handled with its cor-
responding increased memory requirements, but also the stiffness matrix is found to be radically different to
the narrow-band type of matrix, which is preferred for the direct resolution of the systems of equations. To
overcome these shortcomings, the penalty formulation was proposed by Zienkiewicz [46], based upon the
variational calculus theory, and was soon extended and applied by many authors [7,19,20,40]. The penalty
formulation provides with the possibility of imposing the incompressibility constraint without solving an
auxiliary pressure equation, by replacing the continuity equation with the expression

Ui; = —&p, (8)

where the so-called penalty parameter ¢ is a number close to zero. This equation is incorporated into the
dynamic equation, and therefore a system that depends on both velocity and pressure is transformed into a
velocity-dependant single equation, that converges to the fully incompressible problem as ¢ approaches
zero. Once we have applied the weighted residuals method, the following integral dynamic equation is
obtained:

/wh(u —|—uju” f)d.Q—l-v/ wf.”juf?JdQ—i—/ %u”w”d.Q /tf’wdez
Q Q Iy

2y
1
+Z/Pl (u +ulu), — V"f-’.;j—;(uf’,,-),,»—ﬁ)dﬂzo )

which is solved for pressure. Once the velocity field has been obtained, the pressure field can be calculated
as a post-processing result, by using the formula

[ (10)

The solution to equation (9) will approximate that of the initial problem as ¢ tends to zero, provided that
the penalty consistency condition is verified. If not, the use of the penalty formulation could lead to the
obtaining of a non-singular coefficient matrix associated to the penalty term. As ¢ tends to zero, this term
may dominate the system of equations, therefore the whole problem could be over-constrained, and the
only possible solution could be the trivial one. When carrying out an exact integration of the penalty term,
‘locking’ occurs and the only possible solution is the trivial one. The discrete formulation in (9) would not be
consistent and the algorithm would not achieve convergence [20].

This problem can be avoided by making a so-called selective reduced integration of the elementary ma-
trices involved in the resolution of the problem. A reduced numerical integration consists in using a
quadrature rule that is not exact for the polynomials considered. The use of a one point Gauss quadrature
rule for the integration of the quadratic functions in the penalty term, transforms the associated ‘penalty’
matrix into a rank deficient matrix and consequently ‘unlocks’ the obtaining of a non-trivial solution. For
more details on this topic you can refer to [8].

Once the elementary matrices are evaluated and assembled, the integral equation in (9) can be expressed
in matrix notation as
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M,,%-{-CD(U,V)Q—FVAUQ-F%BEQZf, (11)
where M, is the mass matrix, C,(u,v) is the convective matrix, A, is the viscous matrix, B, is the penalty
matrix, u is the velocity vector in the x-direction, v is the velocity vector in the y-direction, f is external forces
vector and v is the velocity vector. The non-linearities and the derivatives with respect to time are solved by
using a successive approximation method and a backward differencing scheme, in the same way as we
proceeded for the mixed formulation [43].

The penalty method succeeds in solving the Navier-Stokes equations with great memory savings due to
the smaller number of equations to be solved, producing meaningful and stable solutions thanks to the use
of the so-called reduced integration as seen in the previous section. Anyhow, the accurateness of the method
depends on the election of the parameter ¢. For very small values of ¢, the weight of the penalty term in the
stiffness matrix happens to cancel the amount of information contributed by the viscous term, which is very
small in comparison. This information is consequently truncated and dropped from the equations. The
penalty parameter should consequently be chosen depending on the word length of the computer. On the
other hand, if the selected penalty parameter is too large, this choice may spoil the whole procedure, as ¢ is
wanted to tend to zero so as to allow for convergence. Consequently, the choice of ¢ is not a trivial task, and
a wrong selection in the parameter may lead to a meaningless solution. Moreover, the penalty formulation
achieves a great reduction in the storing requirements, compared to the mixed formulation (the 2N + M
equations in the mixed formulation are reduced to a 2N dimensioned system in the penalty formulation).
Still, the stiffness matrix is far from being a narrow band type of matrix despite the renumbering of the
nodes. Interesting and more recent SUPG penalty formulations can be found in [10,15,43].

3.3. Segregated laminar formulation

To overcome the drawbacks arising from the resolution of the integrated velocity—pressure and penalty
formulations of the viscous flow, the so-called ‘segregated methods’ have been proposed in order to reduce
the memory requirements when solving the Navier-Stokes equations. Some of the most commonly used of
these segregated methods, that obtain the flow variables in a sequential way, are the fractional step method
[11,33], and those based upon a SIMPLE algorithm [4,34,36] followed by [9,41,48] among others. An al-
gorithm based upon the SIMPLE method is described in this section.

Many of these shortcomings are not present in the so-called segregated methods, which are broadly
employed by many authors so as to solve the Navier-Stokes equations. Following the success of the finite
volume method [32], several authors adopted the formulation in the SIMPLE and SIMPLEST methods to
the finite element approach. These segregated finite element schemes give solution to the problem of the
viscous incompressible flow, by employing a procedure in which the velocity and pressure unknowns are
not obtained simultancously but in a sequential way. The segregated formulations calculate velocities and
pressures in an alternative iterative sequence, requiring much less storing needs than the mixed methods.
Moreover, these algorithms not only achieve a greater reduction in the number of equations compared to
the penalty method (in this formulation the dimension of the system to be solved is equal to the number of
nodes), but also allow for the production of narrow band stiffness matrices, when a proper renumbering of
the nodes has been carried out. The segregated method also avoids the use of the sometimes inconvenient
penalty parameter.

Another gain of these segregated algorithms is that a mixed-order interpolation can be used. As has
already been said, the mixed and penalty methods require a velocity approximation different from that of
the pressure. The easier-to-implement discretization of the domain in terms of the same basic functions for
both velocity and pressure in connection with this kind of segregated formulations leads to oscillation-free
solutions and the tendency to produce the checkerboard pressure distribution is consequently eliminated.
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The use of the weighted residuals method on the steady dynamic equation gives the equation

/wﬁ‘(ujfuf'd._fl_h)dQ—i—v/wﬁ‘,jul}.’JdQ+/w;'pf;dQ— whdr,
Q Q Q

Iy
+> / iaf’(uj?u vl + Pl — f) de=0. (12)
e Y
The matrix version of the dynamic system can be written as
C(u,v)u+vAu=Gu=f{, — / w,aip]dQ
o  Ox
aN, (13)
C(u,v)v+ vAv=Gv =1, — / w,—Lp;dQ,
e Oy

where the right-hand side member of these equations is considered as a given value and will be taken as zero
for the first iteration. We can rewrite now equation (12) as

ON;
giilli = _Zgijuj + fui —‘/Wz o de-Q

=
! . (14)

iV = — ifbj P T _i_l ,dQ,

giil ;gjuj+fy, /Qw ayp]

where g;; is the coefficient matrix of the dynamic system. Now we can express the velocities as

1 _
U; :; (—Zg,ju]—i—f)a—/gwlgp]d.(?),

J#
ON;

v; g0+ fi — / W —L p;dQ

gu ( ; iV T Iy oy

A set of ‘intermediate’ velocities, the pseudo-velocities #; and #;, are defined as follows:

- |
u = ( Zgz,u, -l-fxz> U =— ( - Zgijvj +fyi>- (16)

&ii i#j &ii i#f

The velocities can be now approximated in terms of the pseudo-velocities by using the expressions

oN; - ON;
U~ '—Kpa—Pp U R D; —ng;jpj, (17)
where the velocity—pressure coupling coefficients K7 are given by the equation
1
K= [made. (18)
&ii
Using the weighted residuals method in the continuity equation we obtain
/ W de / wlu]nj’dIE—-O (19)
o) r
or in expanded form
ow; ON; ow; ON; ow; ow;
Nk N Nk S p dQ = [ TN 4 et N5 AR — / wi(Njujny, + Nyvyn,) dI.
., Ox Ox oy dy , Ox oy o

(20)
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Once the velocity system (13) has been calculated, the pressure system (20) is obtained and solved, the
velocities are then corrected by using the following expression:

0 1
u; = i; — gl” w; aﬁpj dQ v =0 — g,, wl 66N p;dQ (21)
to ensure continuity.

The iterative process is based upon assuming a zero pressure field as a first guess in the resolution of the
dynamic equation, providing the velocity field as the output. Once the pseudo-velocities (16) and the
pressure—velocity coupling coefficients (18) have been calculated, the continuity system (20) is assembled
and solved, and thus the values for the pressure field are obtained. Finally, the velocities are updated,
making use of the newly determined pressure field (21), and with both the new velocities and pressures the
dynamic equations are reassembled, solved and the same procedure is repeated until convergence is
achieved.

When employing a segregated algorithm, the use of uncoupled velocity and pressure fields may lead to
the divergence of the whole process. To avoid this problem, an under-relaxation of the unknowns can be
introduced so as to guarantee the convergence of the process. The momentum equations are also under-
relaxed making use of an inertial relaxation factor r; defined as

Vi = / Wi dQ (22)
Q
with r; being added to the terms in the diagonal of the dynamic coefficient matrix as follows:

ON; e
(gn +ri)ul + ;g,j = fu— / W; a—xjpj dQ 4+ ru] 1

ON;
(gzz+r1 U +thjj fw /wi———]pde—{—riUl'f*l
J# Oy
with 4"~! and v"~" being the values of the velocities obtained in the previous iteration.
The use of this formulation, leads to a N-dimensioned narrow band coefficient matrix, and consequently
to further memory savings in the resolution of the Navier—Stokes equations.

(23)

3.4. Shallow water formulation

Although any of the previously explained types of finite elements formulations could be used in the
implementation of the shallow water equations, we will only present here the mixed formulation. The mixed
finite element approach will share the same advantages and shortcomings of that of the laminar mixed
formulation explained before. If we apply the weighted residuals method on both the dynamic and con-
tinuity shallow water equations, we obtain
WG, + i, — g(St — S1))dR +v / Wil e — g [ wirhde

Q @

h. h h h h _
_/rgzl.wi dF2+Ze:/erl ul, + il — vl + gl — g (St — S))dQ2 =0, (24)

/ G+ R+ ) dQ = 0.
Q

But now we have a new difficulty that did not appear in the numerical approach to the 2D Navier-Stokes
equations presented previously: we have the depth itself and the gradient of depth being included as part of
the continuity equation. In fact, the inclusion of the depth and the gradient of depth in the continuity
equation, allows for the verification of the conservation of mass in a pseudo-3D basis and not on a 2D
laminar sense, as a consequence of having carried out an integration in depth of the Navier-Stokes



5908 P. Vellando et al. | Comput. Methods Appl. Mech. Engrg. 191 (2002) 5899-5922

equations. As a consequence, some pseudo-non-linearities show up in the continuity equation, which
should be considered in addition to the non-linearities resulting from the convective quadratic term. The
shallow water equations will be integrated in order to cope with this problem.

Let us introduce the following approach: we are going to assume that the depth values in the continuity
equation are going to be constant all over the domain for the first iteration, and equal to the outflow given
depth. In the following iterations carried out in order to solve the convection, the depths and gradients of
depth in the continuity equation will be evaluated from the results of the former iteration, and this evaluation
will be carried out in terms of a finite difference approach. Since a non-equal order interpolation of the
unknowns must be used to achieve converge, the velocities and the depths are calculated on a different mesh.
The depths to be re-fed in the continuity equation for the second and the following iterations are going to be
evaluated on the velocity mesh points. Recall that the basic element used in this formulation is the Q1PO
basic element, or in other words, the velocity is interpolated in terms of bilinear continuous functions with
respect to a four-nodded basic element, and the depth is interpolated in terms of constant discontinuous
functions within the basic element. The depth at a velocity node %} will be taken as the mean value of the
depths for the former iteration in the surrounding basic elements, and the gradients of depth on the velocity
mesh h*, will be evaluated from the star depths 4’ on a finite difference basis. For more details see [43].

After each iteration for convection has been solved, the star depths and star gradients of depth are
calculated and re-fed into the continuity equation. The use of this algorithm developed by the authors in the
resolution of the shallow water equations achieves very good numerical results as will be seen in the nu-
merical examples. The general procedure for the obtaining of the system of differential equations could be
written in its matrix form as

MD% +Cy(u,v)p +vA,0 —Bh =1,
D(h*)p +E(h*)p =0,

where M, is the mass matrix, 7 is the time, C,(u, v) is the convective matrix, A, is the viscous matrix, B is the
depth matrix, f is external forces vector, D(h*) is the star depth matrix, E(h*) is the star gradient of depth
matrix, f is the external forces vector, h is the depth vector and v is the velocity vector.

(25)

3.5. SUPG stabilization of the algorithms

The above formulations include a SUPG term in the dynamic weighting functions. This SUPG contri-
bution will affect all the terms in the dynamic equation and will be based upon an optimal rule function for
the obtaining of the multi-dimensional diffusion coefficient. The SUPG formulation will be the following:

kitw”, w
Wi:Wi+]_7[ with pfl:M U; = d
[ [[ul

where the multi-dimensional definition of the diffusion coefficient & is given by

~

wll® = uis, (26)

Eulths + nul by

k= 3 : 27)
where
E={ cotho: — i 7 = ( coth >
= & % n= Oy %
"he "
o = 2% oy = (28)
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Fig. 1. Characteristic basic-element lengths and unit vectors. Optimal rule for the approximation of £ and 7.

where h;, h, and ey, e,; are the characteristic basic-element lengths and unit vectors in the direction of the
local axes ¢ and 5 (see Fig. 1). The parameters «: and a, are the directional Reynolds numbers of the basic
element, «” is the velocity in the interior of the element and v is the kinematic viscosity of the fluid. Different
versions of the streamline upwind formulation have been used by other authors and can be found in
[9,12,35,48]. For the present work, the stabilization technique will be based upon the SUPG weighting
functions as defined in (26)-(28). These weighting functions will be applied on the formulation as specified
in formulas (5), (9), (12) and (24), with very good results as will be seen in the numerical examples shown
in the following section.

4. Benchmark numerical results

Once we have presented the algorithms to be used in this work, we are going to proceed to validate them
by using the cavity flow and the Backward-facing step benchmark problems.

4.1. The cavity flow benchmark problem

The driven cavity flow is a classical test used by many authors to check the quality of the methodology
employed in the resolution of the 2D Navier—Stokes equations. This benchmark problem is based upon the
analysis of the flow in a square cavity with prescribed horizontal velocity in the upper side and solid
boundaries in the lateral and bottom sides. This is a challenging problem due to the presence of several re-
circulating regions in which the solution changes rapidly, and because of the pressure singularities that
show up in the upper corners.

This benchmark test will be used, to validate the algorithms developed in this thesis by its comparison
with the results obtained by other authors. These results to compare with, will be those of Ghia et al. [14]
obtained by employing a mesh of 129 x 129 nodes; Hannani et al. [15] with non-uniform meshes of 32 x 32,
45 x 45 and 80 x 80 QI1PQ basic elements; and the results by Kondo [27], making use of a 40 x 40 element
mesh of four-node, non-regular basic elements. All of them can be considered as reference results, specially
those of Ghia et al., that are commonly employed to check the validity of the algorithms by most of the
authors in the related bibliography.

The boundary conditions used for this problem have been of the Dirichlet type in all the boundaries. A
unitary horizontal velocity heading towards the right-hand side has been prescribed for the top side (in-
cluding the upper corners), and the no-slip condition has been considered for the rest of the boundary. The
discretized domain used in the calculations has been a 1681-node non-regular mesh with 1600 Q1P0 ele-
ments (see Fig. 2).

The results for all the formulations considered have been the same and can be seen in Figs. 3—6. This
benchmark problem has been solved by making use of the mixed, penalty and segregated algorithms and
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Fig. 4. Cavity flow: velocity field, streamlines, and pressure field Re = 1000.

the Reynolds numbers used have been 100, 1000, 5000 and 10 000. The Reynolds number has been defined
as Re = UL /v, where U is the velocity in the upper side, L is the length of the side of the square domain, and
v is the kinematic viscosity. The value of Reynolds = 10000 is considered as a limit for the steady cavity
flow calculations, since it has been shown through detailed numerical experiments {37] that above this
bound, the stationary solution ceases to be stable.

The most commonly used comparison results for this benchmark problem are the horizontal velocities
along a central vertical line, which have been plotted in Figs. 7 and 8.

The horizontal velocity profiles along a central vertical line adjust to the reference values of [14], with a
much finer mesh and are also substantially better than those of [15] and [27], for a mesh with a similar
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refinement and even a finer one. No substantial differences are observed among the results of the three
formulations used for the velocity field results nor for the pressure field results, which are also in good
agreement with the benchmark solutions of the problem obtained by those authors.

The good results obtained in the velocity profiles have made useless the employment of a finer mesh,
which would necessitate a much longer CPU time. The calculation times are shorter for the mixed algo-
rithm and of increasing magnitude for the penalty and segregated method. For the penalty solution, the
introduction of the penalty parameter makes the linear system of equations more difficult to be solve, since
the penalty parameter tends to zero. This computational time can be reduced, anyhow, by the use of a
properly weighted penalty parameter.

The algorithms implemented have proved to give very accurate results even for a less refined mesh,
showing that the upwind weighting implemented in the numerical scheme is a powerful tool to solve some
flow problems without using very refined meshes, and with no wiggles in the so-obtained solution.

4.2. The backward-facing step benchmark problem

The laminar Backward Facing Step benchmark problem is presented next, as one of the most commonly
used benchmark problems in the literature, in order to validate the algorithms that give solution to the
Navier-Stokes equations. The backward step is based upon a simple geometry where flow separation and
reattachment occur. Experimental data for this problem can be found in [2], who also solved this problem
numerically by using a control-volume-based finite difference method. The probiem of the backward step
flow will be solved in this section by using the penalty algorithm and its results will be compared with those
of Armaly et al., which are generally used as verification data.

The geometry and boundary conditions considered for this benchmark problem have been those used in
[2]. An expansion ratio of 1:1.94 has been considered for the widening of the channel, which has a total
length of 50 so as to allow for the vortices to take place. The inlet boundary has been located at 3.5 step
heights upstream of the expansion corner. The domain has been split into 2850 Q1P0 basic non-regular
elements with 3021 nodes. The mesh is coarser at the outlet and more refined at the left-hand side of
the channel, so as to allow for a better accuracy in the regions where the primary vortices occur. A bias
parameter of 0.5 has been used for this purpose along the x-axis, therefore the width of the basic elements at
the inlet is one half of that of the elements at the outlet, and the height of the basic elements is uniform
within the whole domain. The mesh can be seen in Fig. 9, where a magnifying factor of 2 has been used for
the y-axis. A parabolic horizontal velocity profile has been imposed at the inlet with a maximum velocity of
1, and the velocity is equal to zero at the boundaries. The lateral sides have been considered as solid
boundaries and the no-slip condition has been imposed on them. Finally, a zero traction condition has been
imposed at the outlet.

The flow has been obtained for a Reynolds number between 100 and 1200 (Figs. 10-12). The Reynolds
number has been defined as Re = uD/v, where u is the average inlet velocity, D is the hydraulic diameter and
the kinematic viscosity v has been altered so as to make the Reynolds number vary. As foretold by the
experimental results in [2], there exists a single re-circulation zone at the expansion corner up to a Reynolds

0 5 1o 1s 20 E] 2 = 0 3 5
x

Fig. 9. Backward facing step—mesh.
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Fig. 10. Flow in a backward facing step, streamlines for Re = 400.
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Fig. 11. Flow in a backward facing step, streamlines for Re = 500.
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Fig. 12. Flow in a backward facing step, streamlines for Re = 1200.

number of about 450, beyond which a second vortex shows up at the top boundary, and gets bigger as the
Reynolds number is increased.

The size of the reattachment zones s; versus the Reynolds number is compared with the experimental and
numerical results by Armaly; these results can be seen in Figs. 14-16. The reattachment locations of the
vortices are defined as follows; s; is the reattachment location of the primary vortex, s, is the separation
location of the secondary top boundary vortex and s; is the reattachment location of the secondary vortex.
All of them have been measured from the expansion corner, as depicted in Fig. 13.

As seen in Figs. 14-16, the computed results obtained in the present work compare more favourably with
experimental data than the numerical results from Armaly. Although the present results are totally anal-
ogous to the experimental data in [2] for s; and for all the Reynolds numbers considered, when taking about
s, and specially s, the experimental data differ from the calculated results beyond a Reynolds number of
about 400. This difference between measured and calculated values is not only shown in the numerical
results by Armaly et al., but also in the results by Kim [26] among many others. The differences in these
values are due to the fact that the 3D effect becomes very important as the Reynolds number is increased.
As pointed out by Armaly, these effects became predominant beyond a Reynolds number of 1300.
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Fig. 13. Flow over a backward facing step: sketch of the recirculation lengths s;.
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Fig. 16. Reattachment length s; versus Reynolds number for the backward facing step.

5. Application to some wastewater treatment problems

Once the code has been checked on some well-known benchmark problems with optimum results, it has
been used to solve some real flow problems related with the civil engineering technology and in particular
with the wastewater treatment industry.

Some authors have used the potential flow equations to evaluate the flow in clarifiers and other
wastewater treatment basins. When we use these simplifications, we can obtain an approximation of the
flow for slow creeping conditions, but only the resolution of the all-term-including Navier-Stokes equations
will allow us to detect the real streamlines and the vortices that show up even for very slow water flows. Let
us now use the previously explained formulations in the resolution of the flow in some wastewater treat-
ment basins.
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5.1. Flow in a water distribution chamber

The flow that takes place in a chamber that splits the incoming flow of water into three different outlets is
observed. This type of water distribution basins can be commonly found in many hydraulic plants.

Let us regard the problem of a cavity in which we had a normal lateral inflow to be split into three
outflows, one of them on the opposite side (exit number 3 in Fig. 17) and the other two on the adjacent sides
(exits 1 and 2). A wall is placed between outlets one and two so as to observe the influence of this structure
in the distribution of the water flow. A typology similar to this one can be found in many water distribution
tanks in wastewater treatment plants [1].

The geometry used for this simulation has been a rectangular domain 400 cm high and 300 cm wide, split
into a regular 1200-node mesh with 1131 basic Q1/P0 elements. The inflow channel and outlet number 3
have a width of 100 cm, whereas outlets 1 and 2 spread over the whole bottom side. The distribution wall is
placed on abscise 145 cm and has a height of 100 cm. These geometrical proportions are similar to those
found in a conventional chamber for distributing a single wastewater flow among three different outlets,
such as those used in the As Pontes treatment plant (powered by ENDESA).

A unitary, normal and constant inflow is considered at the inlet. The no-slip condition has been imposed
on the solid boundaries and the velocity at the outlets has been considered as an unknown and a zero-
traction condition has been imposed on it. The flow has been solved for a Reynolds number that takes the
value of 30, 60, 100 and 300 and the results can be seen in Figs. 18 and 19. The Reynolds number has been
taken as the quotient of the inflow velocity times the width of the rectangle over the kinematic viscosity of
the fluid.

— k&
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Fig. 17. Flow in a water distribution chamber, sketch of the chamber.
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Fig. 18. Flow in a distribution chamber, streamlines and velocities for Re 30 and 60.
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Fig. 19. Flow in a distribution chamber, streamlines and velocities for Re 100 and 300.

The primary vortex (see Fig. 17), shows up for the flow featured by a Reynolds number of 30. In this
case, the secondary vortex is not yet well formed. With the increasing value of the Reynolds number,
vortices I and II are progressively developed and vortex I happens to ‘obstruct’ the outlet number 1. For the
largest Reynolds number considered, the flow turns to head inwards in gate number one.

The results obtained for the flow cases considered are in good agreement with the hydraulic behaviour of
the chamber as can be seen in the experimental results obtained for a similar scale model of a distribution
basin, carried out in the Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de La
Coruna [5].

Fig. 20 shows the vertical component of the velocity for outlets one and two and the horizontal com-
ponent for outlet three. In the first plot we can see how the vertical component of the flow coming out of
gate one, gets smaller as the Reynolds number is increased, up to a point in which the direction of the flow
is inverted, when the primary vortex happens to reach the splitting wall. Meanwhile, the flow going out
through outlet number two is progressively increased as the Reynolds gets bigger, and in outlet number
three the flow is sent towards the lower side of the gate.

In all the calculations carried out up to this point, no contributions have been added to the source term in
order to account for the energy losses caused by the friction with the boundary. For the following calcu-
lations a Manning coefficient equal to 2.5 x 1073, 5 x 1073, and 7.5 x 107> ecm~'/3s has been used, where the
last of those corresponds to a smooth concrete bed. All the computations have been carried out for a
Reynolds number of 100. For this Reynolds number the primary vortex is well formed and therefore the
decrease in its size can be more easily observed as the Manning coefficient is increased. The results for this
analysis are shown in Fig. 21.

As it can be seen from the plots, the effects of considering the friction with the bed are similar to the
energy losses caused by the consideration of a bigger viscosity, and consequently the imposition of a greater

Outlet 1 Outlet 2 Outlet 3

Fig. 20. Vertical, vertical and horizontal components of the velocity through gates 1, 2 and 3 for Reynolds numbers 30, 60, 100 and
300.
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friction among particles. As a result, the streamline map of the flow for the harder roughness conditions, is
similar to the one obtained for Re = 30 instead of 100. As a conclusion, the consideration of the Manning
term, gives a more practical evaluation of the energy losses taking place in a real flow, which as explained
before allows for the consideration of the turbulent effects as a whole and is in good agreement with the
experimental results by [5].

The analysis of the flow distribution in the chamber can give a hint on the designing of the basin. The so-
defined geometry results in the appearance of two energy dissipating vortices, which get bigger as the
Reynolds number is increased. The appearance of these recirculation zones can be a wanted feature in order
to dissipate some energy, and allow for particle settlement in these zones. On the contrary for some other
purposes it can be an unwanted effect that happens to obstruct the left-hand side outlet, resulting in an
unequal distribution among the three outlets. Anyway, the numerical evaluation of the flow in the chamber,
forecasting the behaviour of the water, is without any doubt a powerful tool for its designing.

5.2. Flow in rectangular and circular clarification basins

In this section, the flow of water in a rectangular and circular conventional clarification basins has been
considered. Clarification has two main applications in the water treatment processes. Its most usual aim is
to reduce the solids load after coagulation and flocculation have taken place. Its second application is the
removal of heavy settleable solids from a turbid source to lessen the solids load in water. The aim of a good
clarification basin design is the obtaining of a sufficiently stable flow, so as to achieve a better sedimen-
tation. There is a large number of non-conventional devices for high rate clarification, such as tube or plate
settlers, dissolved air flotation clarifiers, sludge blanket or slurry recirculation clarifiers. The choice of one
of those depends on the features of the inflow water, the outflow water requirements, time, space and
budget availability to carry out the purification of the water. The description of the flow may be a powerful
tool to attain an optimum shape in the designing of these structures, in order to make the most of the plant
resources.

The rectangular and circular basins are the most commonly used clarification devices. In spite of their
simplicity, they have achieved excellent results with scant maintenance costs. These basins were originally
designed with the capacity to store sludge for several months and were periodically taken out of service for
manual cleaning. Today, most of the clarification basins include a continuous cleaning mechanical
equipment, such as dragging chains that plow the sludge along the basin floor to hoppers. Nevertheless,
these mobile devices for cleaning and other purposes do not have an important influence in the streamline
distribution, and can be ignored when the flow is calculated (for further details on clarification basins you
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can refer to [30]). We are going to evaluate the flow features in the vertical section of a rectangular and
circular clarifiers, with the following dimensions and design parameters:

Clarifier Dimensions  Depth (m) Slope (%) Nodes and  Detention Surface load
(m) elements time (h) rate (m/h)
Rectangular W:9,L:24 33 1.2 1052, 949 3 1
Circular D: 17.5 3.65 0.8 817 x 2, 3 1
756 x 2

When working with clarifying basins, one of the criteria to be used in their definition is that of achieving
a maximum head loss at the inlet, so as not to disturb the slow flow of the water mass being treated.
Therefore, we should avoid turbulence by placing some kind of energy dissipating structure in the faster
zone, that is the inlet (see Fig. 22). One of these maze-looking dissipating structures has been considered for
the inlet of our clarifiers, being placed in the left-hand side for the rectangular one and in the centre of the
basin for the circular, where the respective inlets are. For the outlets (in the right-hand side for the rect-
angular one and in the perimeter for the circular one), a conventional overflow launder has been disposed.
The domain in which the flow takes place has been split into 949 Q1P0 basic elements with 1052 nodes for
the rectangular and 817 x 2 nodes and 756 x 2 elements for the circular, which has benefited from its
symmetry property. For the working parameters chosen, a velocity of 1 cm/s has been imposed at the inlet
in both of them. The no-slip condition has been imposed at the bottom and lateral sides, and the spillway
has been left free with a zero-traction boundary condition. For the topside, the vertical velocity has been
fixed as zero and the horizontal velocity has been left free. The results for the velocity and pressure fields
can be seen in Figs. 23 and 24.
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Fig. 22. Rectangular and circular clarifier with bottom sludge scraper—sketch.
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Fig. 23. Flow in a rectangular and circular clarifying basin—streamlines.
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Fig. 24. Flow in a rectangular and circular clarifying basin—pressures.

6. Conclusions

In this work, an exhaustive analysis of the incompressible flow has been carried out, from the very
definition of the governing equations, up to the resolution of some practical problems, passing through the
comprehensive study of the numerical techniques used in their resolution. As a direct consequence of this
study, a code has been written based upon this analysis, which allows for a modelling of the incompressible
flow based upon a realistic interpretation of the forces taking place within the flow, and giving optimum
results.

The three different approaches: mixed, penalty and segregated, have been implemented and their results
have been checked and verified by the comparison of the three of them among themselves and also against
some reference results. As a consequence, several conclusions have been reached. The first is that, as ex-
pected, the results obtained by the three of them in the resolution of some benchmark problems have been
identical, in a comparison study that had not been carried out prior to this work. The algorithm used does
not affect the accuracy of the solutions when an adequate selection of the numerical parameters has been
carried out. The second conclusion is that all the results compare very favourably with the reference nu-
merical and empirical results by other authors. As a consequence, the code not only enables a comparison
study of the available finite element numerical techniques for the resolution of the Navier—Stokes equations,
but also, as proved by the examples provided, contributes to a better and faster approach to these prob-
lems.

A newly developed algorithm for the resolution of the shallow water equation, making use of the finite
difference tools within the finite element frame, has been implemented with optimum results. The evaluation
of this friction term is based upon on a Manning type formula, which makes use of the empirically de-
termined Manning roughness coefficient. This term accounts not only for the energy losses that take place
because of the friction with the wetted perimeter, but also for the overall turbulent losses that take place
over the whole domain of integration. The turbulent eddies taking place within the flow are not detected,
but the turbulent energy losses are taken into account thanks to this empirically determined formula, which
provides a meaningful solution for practical flows.

Some of the most commonly used hydrodynamic models for the flow calculations, incorporate a tur-
bulence model featured by a constant eddy viscosity, which is not hydraulically speaking well justified. In
contrast, the shallow water algorithm developed by the author includes an empirically determined turbulent
losses term but also keeps the Navier—Stokes formulation of the problem, being ready to incorporate a two-
equations turbulence model that has been developed within the research group and provides an eddy
viscosity that varies in time and space.

The accuracy of the numerical solutions so-obtained has been checked by using some reference bench-
mark numerical and empirical solutions with great success, and once the program has been validated, it has
been used in the resolution of some wastewater treatment flow problems. The so defined code creates an
optimum frame for the evaluation of the flow in some wastewater treatment basins, which is an essential
tool in the designing of the wastewater treatment plants for the optimization of their behaviour. The
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evaluation of the pressure and velocity of the flow in these basins provides very useful information about
the flow properties. The data about the streamlines and velocity field distribution allows us to know where
the main recirculation regions are taking place. This information will be priceless for the purpose of ob-
taining the geometrical parameters of the basins in order to achieve a better performance for the treatment
plant. The obtaining of this optimum geometry will allow for a further recirculation, if the energy losses are
required; or will enable its avoidance if unwanted, modifying in this way the detention times within the
basin. The velocity and pressure fields also provide invaluable information about the distribution of the
discharge among the outlets, which again can be redefined in order to improve the behaviour of the plant.
Thanks to the information obtained by this numerical evaluation of the flow, the water treatment basins
and channels can consequently be designed to fit the requirements of the processes being carried out.
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