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Abstract
This paper investigates the small area estimation of population averages of unit-level
compositional data. The newmethodology transforms the compositions into vectors of
Rm and assumes that the vectors follow a multivariate nested error regression model.
Empirical best predictors of domain indicators are derived from the fitted model, and
theirmean squared errors are estimatedbyparametric bootstrap.The empirical analysis
of the behavior of the introduced predictors is investigated by means of simulation
experiments. An application to real data from the Spanish household budget survey
is given. The target is to estimate the average of proportions of annual household
expenditures on food, housing and others, by Spanish provinces.
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1 Introduction

Official statistics contain estimates of socioeconomic indicators at different levels of
aggregation. Inmany sampling designs, small sample sizes do not allow accurate direct
estimators to be calculated at low levels of aggregation. These territories or population
groups are called small areas. Small Area Estimation (SAE) gives a solution to this
problem by incorporating auxiliary information to the data analysis and by introducing
model-based predictors. The books ofRao andMolina (2015) andMorales et al. (2021)
give a general description of SAE.

The Spanish household budget survey (SHBS) provides information about the
nature and destination of the consumption household expenses, as well as on vari-
ous characteristics related to the conditions of household life. Spain is hierarchically
partitioned in 17 autonomous communities and 50 provinces, plus 2 autonomous cities.
The sampling design and the sample sizes of the SHBS are developed to provide esti-
mates for the 17 autonomous communities level, but not for the provinces. The direct
estimates at the province level have a low accuracy and, therefore, estimating SHBS
indicators at that level is a SAE problem. This paper has two objectives. The first
one is to model the unit-level proportions of annual household expenditures on food,
housing and others. The second one is to estimate the average of these proportions, by
Spanish provinces.

Under area-level models, we find some more proposals for estimating domain pro-
portions and counts. For example, Esteban et al. (2012), Marhuenda et al. (2013,
2014) and Morales et al. (2015) derived predictors based on linear mixed models and
(Chambers et al. 2014; Dreassi et al. 2014; Tzavidis et al. 2015) and (Boubeta et al.
2017, 2016) applied binomial, negative binomial or Poisson regression models. There
are also methodologies for estimating proportions and counts in the setup of contin-
gency tables or multinomial regression models. Without being exhaustive, we find the
papers of Zhang and Chambers (2004), Berg and Fuller (2014) for contingency tables,
and the papers of Ferrante and Trivisano (2010), Souza and Moura (2016), Fabrizi
et al. (2016), Saei and Chambers (2003), Molina et al. (2007) and López-Vizcaíno
et al. (2013, 2015) for multinomial regression models. However, in the household
survey samples, some variables of interest and domain indicators are compositions.
This is to say, they are positive quantities summing up to one or to a known integer
number. Concerning area-level model for compositional data, Esteban et al. (2020)
and Krause et al. (2022) transformed compositions into target vectors of multivariate
Fay-Herriot models in order to make model-based predictions, like the ones described
by González-Manteiga et al. (2008a), Benavent and Morales (2016), Benavent and
Morales (2021) or Arima et al. (2017).

The statistical literature presents some contributions to small area estimation of
proportions and counts under unit-level models for binary outcomes. For example,
Chambers et al. (2016), Hobza and Morales (2016), Hobza et al. (2018) and Bur-
gard et al. (2021) derived predictors under M-quantile or binomial-logit models for
binary outcomes. These approaches are based on univariate models and not in models
for compositional data that consider the possibility of jointly estimating the counts
or proportions of all the categories of a classification variable. This issue was faced
by Scealy and Welsh (2017), which introduced a directional mixed effects model for
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compositional data and predicted the proportions of total weekly expenditure on food
and housing costs for households in a chosen set of domains. A different approach was
employed by Hijazi and Jernigan (2009), Camargo et al. (2012), Tsagris and Stew-
art (2018), Morais et al. (2018), which modelled compositional data using Dirichlet
regression models. This manuscript also deals with unit-level compositional data, but
it proposes to fit multivariate linear mixed models to logratio transformations of com-
positions. Some references on the foundations of compositional data analysis are the
books (Aitchison 1986) and (Pawlowsky-Glahn and Buccianti 2011) and the papers
(Egozcue et al. 2003) and (Egozcue and Pawlowsky-Glahn 2019), where some basic
transformations of compositions are studied.

This paper introduces small area predictors of averages of unit-level vectors of
compositions. For this sake, the paper considers three logratio transformations of
compositions into vectors of Rm . They are the additive, centered and isometric logra-
tio transformations. We propose a multivariate nested error regression (MNER) model
for analyzing the transformed SHBS compositional data, where the vectors of random
effects and the vector of model errors have unstructured covariance matrices with
unknown components. The estimates of the MNERmodel parameters are obtained by
using the residual maximum likelihood (REML) estimation method, as it is described
in Esteban et al. (2022a). The fitted model is then used to predict averages of pro-
portions of annual household expenditures on food, housing and others, by Spanish
provinces. The empirical best and plug-in predictors of small area compositional
parameters are derived similarly as in Esteban et al. (2022b).

The estimation of the mean squared error (MSE) of a model-based predictor is an
important issue that has no easy solution. Under nonlinear models, the problem is even
more difficult. We follow the resampling approach appearing in González-Manteiga
et al. (2007, 2008b) to implement a parametric bootstrap procedure.

This paper introduces statistical methodology that is new in four main aspects:
(1) the employment of three transformations of unit-level compositional survey data,
(2) the use of MNER models with unstructured covariance matrix for modelling the
transformed data and capturing the sample correlations, (3) the derivation of domain-
level predictors of averages of compositions based on the MNER model fitted to the
transformed unit-level data, and (4) the introduction of parametric bootstrap estimators
of the MSEs of the new predictors.

The remainder of the paper is organized as follows: Section2 establishes the prob-
abilistic framework, describes the SAE problem of interest and presents the MNER
model. Section3 derives empirical best predictors (EBP) and plug-in predictors of
average compositions and gives a parametric bootstrap method for estimating the
MSEs of the EBPs. Section4 presents three simulation experiments. The target of
Simulation 1 is to check the behavior of the REML algorithm for fitting the MNER
model. Simulation 2 investigates the performance of the EBPs and plug-in predictors,
and Simulation 3 analyzes the parametric bootstrap estimator of the MSEs. Section5
applies the proposed methodology to data from the SHBS of 2016 in Spain. Sec-
tion6 gives some conclusions. The paper contains four appendices in a supplementary
material file. Appendix A describes the additive, centered and isometric logratio trans-
formations of compositions. Appendix B gives further simulation results. Appendix
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C analyzes the SHBS data with different transformations. Appendix D performs the
application to SHBS data without applying logratio transformations of compositions.

2 The probabilistic framework

Let U be a population of size N partitioned into D domains or areas U1, . . . ,UD

of sizes N1, . . . , ND , respectively. Let N = ∑D
j=1 Nd be the global population size.

Let us consider the probability vector a+
d j = (ad j1, . . . , ad jm+1)

′ ∈ Rm+1 repre-
senting proportions associated with the m + 1 categories of a classification variable
that is defined on the sample unit j of domain d , d = 1, . . . , D, j = 1, . . . , Nd .
For example, a+

d j may contain the proportions of annual household expenditures in

the different expense categories. The components of a+
d j are nonnegative and fulfill

the constraint a1 + . . . + am+1 = 1. These vectors a+
d j are called compositions or

(m + 1)-part compositions, and vectors ad j = (ad j1, . . . , ad jm)′ are called m-part
compositions. Compositional data, consisting of compositions, play an important role
in public statistics. Compositions take values in the simplex embedded in Rm+1

Sm
e = {

(a1, . . . , am+1)
′ ∈ Rm+1 : a1 > 0, . . . , am+1 > 0, a1 + . . . + am+1 = 1

}
,

and m-part compositions take values in the m-dimensional simplex defined by

Sm = {
(a1, . . . , am)′ ∈ Rm : a1 > 0, . . . , am > 0, a1 + . . . + am < 1

}
.

This paper deals with the problem of predicting domain average compositions

Adk = 1

Nd

Nd∑

j=1

ad jk, d = 1, . . . , D, k = 1, . . . ,m + 1, (2.1)

under a compositional data analysis approach. This is to say, we apply a one-to-
one transformation, h = (h1, . . . , hm)′ : Sm �→ Rm , to m-part compositions and we
assume that the transformed vectors follow amultivariate regression model. Appendix
A presents three widely employed transformations. They are the additive, centered
and isometric logratio transformations. The components of the transformed vectors
yd j = h(ad j ) = (yd j1, . . . , yd jm)′ are continuous variables measured on the sample
unit j of domain d, d = 1, . . . , D, j = 1, . . . , Nd .

For k = 1, . . . ,m, let xd jk = (xd jk1, . . . , xd jkpk ) be a row vector containing
pk explanatory variables and let Xd j = diag

(
xd j1, . . . , xd jm

)
m×p with p = p1 +

. . . + pm . Let βk be a column vector of size pk containing regression parameters and
let β = (

β ′
1, . . . , β

′
m

)′
p×1. We assume that the transformed vectors yd j ’s follow the

population MNER model

yd j = Xd jβ + ud + ed j , d = 1, . . . , D, j = 1, . . . , Nd , (2.2)
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where the vectors of random effects ud ’s and random errors ed j ’s are independent with
multivariate normal distributions

ud = (ud1, . . . , udm)′ ∼ Nm(0, Vud), ed j = (ed j1, . . . , ed jm)′ ∼ Nm(0, Ved j ).

Them×m covariance matrices Vud depend on q = m(m+1)/2 unknown parameters,
denoted by

θu = (θu1, . . . , θuq)
′ = (σ 2

u1, σ
2
u2, . . . , σ

2
um, ρu12, ρu13, . . . , ρu23, ρu24, . . . , ρum−1,m)′.

The matrix Vud is

Vud =

⎛

⎜
⎜
⎜
⎝

σ 2
u1 ρu12σu1σu2 · · · ρu1mσu1σum

ρu12σu1σu2 σ 2
u2 · · · ρu2mσu2σum

...
...

. . .
...

ρu1mσu1σum ρu2mσu2σum . . . σ 2
um

⎞

⎟
⎟
⎟
⎠

.

The m × m covariance matrices Ved j depend on q unknown parameters, i.e.

θe = (θe1, . . . , θeq)
′ = (σ 2

e1, σ
2
e2, . . . , σ

2
em, ρe12, ρe13, . . . , ρe23, ρe24, . . . , ρem−1,m)′.

The matrix Ved j is

Ved j =

⎛

⎜
⎜
⎜
⎝

σ 2
e1 ρe12σe1σe2 · · · ρe1mσe1σem

ρe12σe1σe2 σ 2
e2 · · · ρe2mσe2σem

...
...

. . .
...

ρe1mσe1σem ρe2mσe2σem . . . σ 2
em

⎞

⎟
⎟
⎟
⎠

.

The 2q×1 vector of variance component parameters is θ = (θ ′
u, θ

′
e)

′. The (p+2q)×1
vector of model parameters is ψ = (β ′, θ ′)′. Let Ia be the a × a identity matrix. We
define the mNd × 1 vectors yd and ed , the mNd × p matrix Xd and the mNd × m
matrix Zd as follows:

yd = col
1≤ j≤Nd

(yd j ), ed = col
1≤ j≤Nd

(ed j ), Xd = col
1≤ j≤Nd

(Xd j ), Zd = col
1≤ j≤Nd

(Im).

Model (2.2) can be written in the domain-level form

yd = Xdβ + Zdud + ed , d = 1, . . . , D, (2.3)

where the vectors ud and ed ∼ NmNd (0, Ved) are independent and Ved =
diag

1≤ j≤Nd

(Ved j ). We define the mN × 1 vectors y and e, the mD × 1 vector u, the

mN × p matrix X and mN × mD matrix Z as follows:

y = col
1≤d≤D

(yd), e = col
1≤d≤D

(ed), u = col
1≤d≤D

(ud), X = col
1≤d≤D

(Xd),
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Z = diag
1≤d≤D

(Zd).

Model (2.2) can be written in the linear mixed model form

y = Xβ + Zu + e. (2.4)

where u ∼ NmD(0, Vu), e ∼ NmN (0, Ved) are independent, Vu = diag
1≤d≤D

(Vud) and

Ve = diag
1≤d≤D

(Ved).

Under the predictive approach to inference in finite populations, statistical pro-
cedures are based on a fixed subset (called sample), s = ∪D

d=1sd , of the finite
population U . Let nd be the size of the domain subset sd ⊂ Ud , d = 1, . . . , D,
and let n = n1 + . . . + nD be the total sample size. The complementary domain
subsets are rd = Ud − sd , d = 1, . . . , D. Let ys and yds be the sub-vectors of y
and yd corresponding to sample elements and yr ydr the sub-vectors of y and yd cor-
responding to the out-of-sample elements. Without lack of generality, we can write
yd = (y′

ds, y
′
dr )

′. Define also the corresponding decompositions of Xd , Zd and Vd .
As we assume that sample indexes are fixed, then the sample sub-vectors yds follow
the marginal models derived from the population model (2.3), i.e.

yds = Xdsβ + Zdsud + eds, d = 1, . . . , D, (2.5)

where ud ∼ Nm(0, Vud), eds ∼ Nmnd (0, Veds) are independent and Veds =
diag

1≤ j≤nd
(Ved j ). The vectors yds are independent with yds ∼ Nnd (μds, Vds), μds =

Xdsβ, Vds = ZdsVud Z ′
ds + Veds .

When the variance component parameters are known, the best linear unbiased
estimator (BLUE) of β and the best linear unbiased predictor (BLUP) of ud , d =
1, . . . , D, are

β̂B =
( D∑

d=1

X ′
dsV

−1
ds Xds

)−1 D∑

d=1

X ′
dsV

−1
ds yds, û Bd = Vud Z

′
dsV

−1
ds

(
yds − Xds β̂B

)
.

Let θ̂ be the REML estimator of θ , then the empirical BLUE (BLUE) of β and the
empirical BLUP (EBLUP) of ud , d = 1, . . . , D, are

β̂ =
( D∑

d=1

X ′
ds V̂

−1
ds Xds

)−1 D∑

d=1

X ′
ds V̂

−1
ds yds, ûd = V̂ud Z

′
ds V̂

−1
ds

(
yds − Xds β̂

)
,

where V̂ds and V̂ud are obtained by substituting θ by θ̂ in Vds and Vud , respectively.
We calculate the inverse of Vds = Veds + ZdsVud Z ′

ds = A + BCD by applying the
formula

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1.
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As Z ′
dsV

−1
eds Zds = ∑nd

j=1 V
−1
ed j = ndV

−1
ed j , we obtain

V−1
ds = V−1

eds − V−1
eds Zds

(
V−1
ud + Z ′

dsV
−1
eds Zds

)−1
Z ′
dsV

−1
eds

= V−1
eds − V−1

eds Zds

(
V−1
ud + ndV

−1
ed j

)−1
Z ′
dsV

−1
eds .

As the sample indexes are fixed, the out-of-sample sub-vectors ydr follow the
marginal models derived from the population model (2.3), i.e.

ydr = Xdrβ + Zdrud + edr , d = 1, . . . , D,

where ud ∼ Nm(0, Vud), edr ∼ Nm(Nd−nd )(0, Veds) are independent and Vedr =
diag

nd+1≤ j≤Nd

(Ved j ). The vectors ydr are independent with ydr ∼ NNd−nd (μdr , Vdr ),

μdr = Xdrβ, Vdr = Zdr Vud Z ′
dr + Vedr . The covariance matrix between ydr and yds

is

Vdrs = cov(ydr , yds) = cov(Xdrβ + Zdrud + edr , Xdsβ + Zdsud + eds)

= Zdrvar(ud)Z
′
ds = Zdr Vud Z

′
ds .

The distribution of ydr , given the sample data ys , is

ydr |ys ∼ ydr |yds ∼ N (μdr |s, Vdr |s).

The conditional (Nd − nd) × 1 mean vector is

μdr |s = μdr + VdrsV
−1
ds (yds − μds) = Xdrβ + Zdr Vud Z

′
dsV

−1
ds (yds − Xdsβ)

= Xdrβ + Zdr Vud Z
′
ds

{
V−1
eds − V−1

eds Zds
(
V−1
ud + ndV

−1
ed j

)−1
Z ′
dsV

−1
eds

}
(yds − Xdsβ).

The conditional covariance matrix is

Vdr |s = Vdr − VdrsV
−1
ds Vdsr = Zdr Vud Z

′
dr + Vedr − Zdr Vud Z

′
dsV

−1
ds ZdsVud Z

′
dr

= Zdr Vud Z
′
dr + Vedr − Zdr Vud Z

′
ds

{
V−1
eds − V−1

eds Zds

(
V−1
ud + ndV

−1
ed j

)−1
Z ′
dsV

−1
eds

}
ZdsVud Z

′
dr

= Zdr Vud Z
′
dr + Vedr − nd Zdr VudV

−1
ed j Vud Z

′
dr + n2d Zdr VudV

−1
ed j

(
V−1
ud + ndV

−1
ed j

)−1
V−1
ed j Vud Z

′
dr .

Note that

Z ′
dsV

−1
eds (yds − Xdsβ) =

nd∑

j=1

V−1
ed j (yd j − Xd jβ),

If nd 
= 0 and j ∈ rd , j > nd , the conditional m × 1 mean vector is

μd j |s = Xd jβ + Vud Z
′
ds

{
V−1
eds − V−1

eds Zds
(
V−1
ud + ndV

−1
ed j

)−1
Z ′
dsV

−1
eds

}
(yds − Xdsβ)
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= Xd jβ + Vud
{
Im − ndV

−1
ed j

(
V−1
ud + ndV

−1
ed j

)−1
} nd∑

j=1

V−1
ed j (yd j − Xd jβ).

If nd = 0 and j ∈ rd , the conditional m × 1 mean vector is

μd j |s = Xd jβ.

If nd 
= 0 and j ∈ rd , j > nd , the conditional m × m covariance matrix is

Vd j |s = Vd|s = Vud + Ved j − ndVudV
−1
ed j Vud + n2dVudV

−1
ed j

(
V−1
ud + ndV

−1
ed j

)−1
V−1
ed j Vud .

If nd = 0 and j ∈ rd , the conditional m × m covariance matrix is

Vd j |s = Vd|s = Vud + Ved j .

3 Predictors of average compositions

This section deals with the problem of predicting the domain average composi-
tions Adk , d = 1, . . . , D, k = 1, . . . ,m + 1, defined in (2.1). As explained
in Sect. 2 and Appendix A, we first transform the m-part compositions ad j =
(ad j1, . . . , ad jm)′ into vectors of Rm . This is done by applying a one-to-one function
h = (h1, . . . , hm)′ : Sm �→ Rm . The transformed vectors yd j = h(ad j ) have compo-
nents yd j1 = h1(ad j ), . . . , yd jm = hm(ad j ). Let h−1 = (h−1

1 , . . . , h−1
m )′ : Rm �→ Sm

be the inverse function of h, so that ad j1 = h−1
1 (yd j ), . . . , ad jm = h−1

m (yd j ).
For estimating Adk , k = 1, . . . ,m + 1, we assume that yd j = (yd j1, . . . , yd jm)′

follows a multivariate nested error regression (MNER) model. For d = 1, . . . , D, the
target parameters are additive, i.e

Adk = 1

Nd

Nd∑

j=1

h−1
k (yd j ), k = 1, . . . ,m; Adm+1 = 1 − Ad1 − . . . − Adm,

The EBP of Adk is

Âeb
dk = 1

Nd

{ ∑

j∈sd
h−1
k (yd j ) +

∑

j∈rd
Eyr

[
h−1
k (yd j )|ys; ˆ

ψ
]}

, k = 1, . . . ,m; Âeb
dm+1

= 1 − Âeb
d1 − . . . − Âeb

dm .

For a general function h, the expected values above might be not tractable analytically.
When this occurs, the following Monte Carlo procedure can be applied.

(a) Estimate the unknown parameter ψ = (β ′, θ ′)′ using sample data (ys, Xs).
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(b) Replacing ψ = (β ′, θ ′)′ by the estimate ψ̂ = (β̂ ′, θ̂ ′)′ obtained in (a), draw L
copies of each out-of-sample variable yd j as

y(�)
d j ∼ N2(μ̂d j |s, V̂d|s), j ∈ rd , d = 1, . . . , D, � = 1, . . . , L.

where

μ̂d j |s =
⎧
⎨

⎩
Xd j β̂ + V̂ud Z ′

ds

{
V̂−1
eds − V̂−1

eds Zds

(
V̂−1
ud + nd V̂

−1
ed j

)−1
Z ′
ds V̂

−1
eds

}
(yds − Xds β̂) if nd 
= 0,

Xd j β̂ if nd = 0,

and

V̂d|s =
⎧
⎨

⎩
V̂ud + V̂ed j − nd V̂ud V̂

−1
ed j V̂ud + n2d V̂ud V̂

−1
ed j

(
V̂−1
ud + nd V̂

−1
ed j

)−1
V̂−1
ed j V̂ud if nd 
= 0,

V̂ud + V̂ed j if nd = 0.

(c) The Monte Carlo approximation of the expected value is

Eyr

[
h−1
k (yd j )|ys; ψ̂

] ≈ 1

L

L∑

�=1

h−1
k (y(�)

d j ), j ∈ rd , d = 1, . . . , D.

The Monte Carlo approximation of the EBP of Adk is

Âeb
dk ≈ 1

L

L∑

�=1

A(�)
dk , A(�)

dk = 1

Nd

( ∑

j∈sd
h−1
k (yd j ) +

∑

j∈rd
h−1
k (y(�)

d j )

)

, k = 1, . . . ,m.

The plug-in estimator of Adk is

Âin
dk = 1

Nd

∑

j∈Ud

h−1
k (ŷebd j ) = 1

Nd

{ ∑

j∈sd
h−1
k (yd j ) +

∑

j∈rd
h−1
k (μ̂d j |s)

}

, k = 1, . . . ,m,

and Âin
dm+1 = 1 − Âin

d1 − . . . − Âin
dm .

Remark 3.1 In many practical cases, the values of the auxiliary variables are not
available for all the population units. If in addition some of the variables are con-
tinuous, the EBP method is not applicable. An important particular case, where this
method is applicable, is when the number of values of the vector of auxiliary vari-
ables is finite. More concretely, suppose that the covariates are categorical such that
Xd j ∈ {X01, . . . , X0T }, then we can calculate A(�)

dk as

A(�)
dk = 1

Nd

⎡

⎣
nd∑

j=1

h−1
k (yd j ) +

T∑

t=1

Ndt−ndt∑

j=1

h−1
k (y(�)

d j )

⎤

⎦ ,
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where Ndt = #{ j ∈ Ud : Xd j = X0t } is available from external data sources (aggre-

gated auxiliary information), ndt = #{ j ∈ sd : Xd j = X0t }, y(�)
dt j ∼ N2(μ̂dt |s, V̂d|s),

d = 1, . . . , D, j = 1, . . . , Ndt − ndt , t = 1, . . . , T , � = 1, . . . , L , and

μ̂d j |s =
⎧
⎨

⎩
X0t β̂ + V̂ud Z ′

ds

{
V̂−1
eds − V̂−1

eds Zds

(
V̂−1
ud + nd V̂

−1
ed j

)−1
Z ′
ds V̂

−1
eds

}
(yds − Xds β̂) if nd 
= 0,

X0t β̂ if nd = 0,

and V̂d|s was defined in Step (b) of the above Monte Carlo procedure.

Remark 3.2 If some auxiliary variables are continuous, we can use the Hájek-type
approximation to A(�)

dk , i.e.

A(�)
dk ≈ 1

Nd

∑

j∈sd
wd j h

−1
k (y(�)

d j ).

where wd j is the sample weight of unit j of domain d. A GREG-type approximation

to A(�)
dk is

A(�)
dk ≈ 1

Nd

( ∑

j∈sd

{
h−1
k (yd j ) − h−1

k (y(�)
d j )

} +
∑

j∈sd
w̃d j h

−1
k (y(�)

d j )

)

,

where w̃d j = wd j Nd/N̂d , N̂d = ∑
j∈sd wd j .

Analytical approximations to the MSE are difficult to derive in the case of complex
parameters. We therefore propose a parametric bootstrap MSE estimator by following
the bootstrap method for finite populations of González-Manteiga et al. (2008b). The
steps for implementing this method are

1. Fit themodel (2.5) to sample data (ys, Xs) and calculate an estimator ψ̂ = (β̂ ′, θ̂ ′)′
of ψ = (β ′, θ ′)′.

2. For d = 1, . . . , D, j = 1, . . . , Nd , generate independently u∗
d ∼ N (0, V̂ud) and

e∗
d j ∼ N (0, V̂ed j ), where V̂ud = Vud(θ̂) and V̂ed j = Ved j (θ̂).

3. Construct the bootstrap superpopulation model ξ∗ using {u∗
d}, {e∗

d j }, {Xd j } and β̂,
i.e

ξ∗ : y∗
d j = Xd j β̂ + u∗

d + e∗
d j , d = 1, . . . , D, j = 1, . . . , Nd . (3.1)

4. Under the bootstrap superpopulation model (3.1), generate a large number B of
i.i.d. bootstrap populations {y∗(b)

d j : d = 1, . . . , D, j = 1, . . . , Nd} and calculate
the bootstrap population parameters

A∗(b)
dk = 1

Nd

Nd∑

j=1

hk(y
∗(b)
d j ), k = 1, . . . ,m, b = 1, . . . , B.
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5. From each bootstrap population b generated in Step 4, take the sample with the
same indices s ⊂ U as the initial sample, and calculate the bootstrapEBPs, Âeb∗(b)

dk ,
k = 1, . . . ,m, as described in Sect. 3, using the bootstrap sample vector y∗

s and
the known values Xd j .

6. A Monte Carlo approximation to the theoretical bootstrap estimator

MSE∗( Âeb∗
dk ) = Eξ∗

[
( Âeb∗

dk − A∗
dk)( Â

eb∗
dk − A∗

dk)
′], k = 1, . . . ,m,

is

mse∗( Âeb∗
dk ) = 1

B

B∑

b=1

( Âeb∗(b)
dk − A∗(b)

dk )( Âeb∗(b)
dk − A∗(b)

dk )′, k = 1, . . . ,m.

(3.2)

The estimator (3.2) is used to estimate MSE( Âeb
dk), k = 1, . . . ,m.

4 Simulations

The simulation experiments empirically investigate the asymptotic behavior of: (1)
the REML estimators of model parameters in Sect. 4.1 and Appendix B.1, (2) the EBP
and plug-in predictors of domain average compositions in Sect. 4.2 and Appendix B.2,
and (3) the parametric bootstrap MSE estimators in Sect. 4.3 and Appendix B.3.

To meet these three objectives, we consider a basic scenario in which we run
simulations for different sample sizes. Take m = 2, p1 = p2 = 2, p = 4, β1 =
(β11, β12)

′ = (10, 10)′, β2 = (β21, β22)
′ = (10, 10)′, For k = 1, 2, d = 1, . . . , D,

j = 1, . . . , nd , generate Xd j = diag(xd j1, xd j2)2×4, where xd j1 = (xd j11, xd j12),
xd j2 = (xd j21, xd j22) and

xd j11 = xd j21 = 1, xd j12 ∼ Bin(1, 1/2), xd j22 ∼ Bin(1, 1/2),

For d = 1, . . . , D, simulate ud ∼ N2(0, Vud) and ed j ∼ N2(0, Ved j ), where

Vud =
(

θ1 θ3
√

θ1
√

θ2
θ3

√
θ1

√
θ2 θ2

)

, Ved =
(

θ4 θ6
√

θ4
√

θ5
θ6

√
θ4

√
θ5 θ5

)

.

where θ1 = 0.75, θ2 = 0.75, θ4 = 0.5, θ5 = 0.5 and θ3 = −0.4, θ6 = 0.4. Simulation
1 generates only 4 different matrices Xd j . They are

Xd j =
(
xd j11 xd j12 0 0
0 0 xd j21 xd j22

)

∈ {
X01, X02, X03, X04

}
,

where

X01 =
(
1 0 0 0
0 0 1 0

)

, X02 =
(
1 0 0 0
0 0 1 1

)

, X03 =
(
1 1 0 0
0 0 1 0

)

, X04 =
(
1 1 0 0
0 0 1 1

)

.
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Table 1 RB(η̂) (left) and RRE(η̂) (right) with nd = 10

η D = 25 D = 50 D = 100 D = 25 D = 50 D = 100

β11 − 1 − 2.02 1.47 0.82 17.44 12.38 8.87

β12 1 0.18 0.32 0.26 8.23 5.82 4.20

β21 − 1 2.12 0.27 − 0.24 17.00 13.62 9.18

β22 1 0.26 − 0.61 0.15 8.42 6.71 4.32

θ1 0.75 0.89 1.62 − 1.24 20.66 17.20 10.62

θ2 0.75 − 1.39 0.78 − 1.31 22.72 15.83 10.45

θ4 0.5 − 0.12 − 0.19 − 0.09 4.26 3.39 2.33

θ5 0.5 0.36 0.21 − 0.03 4.59 3.31 2.17

θ3 − 0.4 1.80 1.09 0.34 19.56 13.75 8.76

θ6 0.4 − 0.11 0.17 0.07 5.68 4.21 2.81

Table 2 RB(η̂) (left) and RRE(η̂) (right) with D = 50

η nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

β11 − 1 1.47 0.12 0.19 0.04 12.38 12.85 11.86 13.39

β12 1 0.32 0.53 − 0.12 − 0.12 5.82 3.83 2.73 1.86

β21 − 1 0.27 − 0.43 1.84 0.80 13.62 12.27 13.02 13.05

β22 1 − 0.61 − 0.11 0.08 0.01 6.71 3.71 2.52 1.81

θ1 0.75 1.62 0.66 − 0.19 − 0.07 17.20 15.14 14.88 14.95

θ2 0.75 0.78 0.55 − 0.54 1.01 15.83 16.54 14.28 13.82

θ4 0.5 − 0.19 − 0.09 − 0.08 − 0.13 3.39 1.99 1.39 0.93

θ5 0.5 0.21 − 0.05 0.02 − 0.01 4.21 2.12 1.41 0.99

θ3 − 0.4 1.09 0.13 0.62 1.44 13.75 11.65 12.39 11.61

θ6 0.4 0.17 0.03 0.12 0.06 4.21 2.37 1.59 1.05

4.1 Simulation 1 for REML estimators

The target of Simulation 1 is to check the behavior of the REML algorithm for fit-
ting the MNER model (2.5). This simulation runs I = 200 iterations. Appendix B.1
gives the steps of Simulation 1 and the definitions of the absolute and relative per-
formance measures. For every REML estimator η̂ ∈ {β̂11, β̂12, β̂21, β̂22, θ̂1, . . . , θ̂6},
Tables 1 and 2 present the relative bias RB(η̂) and the relative root-mean-squared error
RRE(η̂) in%.Appendix B.1 gives the corresponding absolute performancemeasures.
Simulation 1 shows that the REML Fisher-scoring algorithm works properly because
RB(η̂) and RRE(η̂) decrease as nd or D increase.

4.2 Simulation 2 for EBPs

Simulation 2 investigates the EBP and plug-in predictors, Âeb
dk and Âin

dk , respectively,
k = 1, 2, 3. It takes I = 200 iterations and generates L = 200 random vectors for
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Table 3 RABk (left) and RREk (right) for clr with D = 50

Âdk nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

Âebd1 1.1680 0.6938 0.5031 0.3548 19.4109 12.1619 8.2437 4.9351

Âind1 5.0306 4.6955 4.0220 2.4395 23.6714 16.6757 13.0039 8.2716

Âebd2 1.1390 0.7501 0.4865 0.2508 19.2729 12.3950 8.1939 4.8637

Âind2 5.5594 4.3595 4.0676 2.4828 23.3680 17.0513 13.0109 8.1814

Âebd3 0.6798 0.4789 0.3080 0.1774 11.8003 7.5792 5.0246 2.9736

Âind3 4.0433 3.4835 3.0912 1.8774 14.8722 10.9202 8.4756 5.3553

Table 4 RABk (left) and RREk (right) for alr with D = 50

Âdk nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

Âebd1 0.6672 0.3614 0.2709 0.1694 10.9320 6.7357 4.4970 2.6389

Âind1 0.6226 0.6225 0.4622 0.2987 11.4034 7.2562 5.0881 3.0810

Âebd2 0.6735 0.3903 0.2963 0.1369 11.0080 6.8462 4.4879 2.6031

Âind2 0.9609 0.5758 0.5536 0.3087 11.4535 7.4184 5.1074 3.0540

Âebd3 0.5419 0.3860 0.2492 0.1373 9.1757 5.8458 3.8838 2.2651

Âind3 0.9445 0.7637 0.7149 0.4164 9.5444 6.2760 4.3598 2.6019

Table 5 RABk (left) and RREk (right) for ilr with D = 50

Âdk nd = 10 nd = 25 nd = 50 nd = 100 nd = 10 nd = 25 nd = 50 nd = 100

Âebd1 1.0411 0.7943 0.5048 0.2696 18.5707 11.9505 7.8420 4.6657

Âind1 10.6431 9.2562 7.9828 5.1322 21.9423 15.6805 11.8124 7.3526

Âebd2 0.5424 0.3580 0.2541 0.0992 9.9159 6.1886 4.0830 2.3988

Âind2 3.4303 2.8141 2.4114 1.5490 11.4624 7.9513 5.8924 3.6645

Âebd3 0.6043 0.3826 0.2850 0.1311 10.1898 6.3440 4.1874 2.4775

Âind3 2.2682 2.1507 1.8451 1.1882 11.4280 7.7876 5.7255 3.5466

the Monte Carlo approximations of integrals. The population sizes are Nd = 200
and D = 50. Let h be the clr, alr or ilr transformation. Appendix B.2 gives the
steps of Simulation 2 and the definitions of the absolute and relative performance
measures. Tables 3, 4 and 5 present the relative absolute bias RABk and the relative
root-mean-squared error RREk in%, k = 1, 2, 3, for the clr, alr and ilr transformations,
respectively. Appendix B.2 gives the corresponding absolute performance measures.

The performances measures decrease as the sample sizes, nd ’s, increase and the
EBP gets better results (RAB and RRE) than the plug-in predictor. Note that for
each transformation, the data generation, and therefore the true underlying model, is
different. For this reason, the results in Tables 3, 4 and 5 are not comparable. It is
curious to observe that if the data are generated by the MNER model derived from
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Table 6 RABk (left) and RREk (right) for clr with D = 50 and nd = 10

B 50 100 200 300 400 50 100 200 300 400

Âebd1 12.09 12.26 12.09 12.13 12.38 32.42 25.28 22.51 19.94 20.40

Âind1 32.15 32.15 32.12 31.82 29.64 38.68 35.77 34.68 33.61 31.63

Âebd2 13.76 14.82 13.34 13.65 13.30 31.57 27.90 23.25 21.00 19.60

Âind2 31.24 27.15 30.45 27.89 33.45 37.13 31.86 33.16 29.99 34.84

Âebd3 9.22 9.81 8.80 9.31 8.53 23.13 18.66 15.46 14.02 12.89

Âind3 35.98 34.99 36.36 34.61 35.81 38.42 36.37 37.14 35.14 36.23

Table 7 RABk (left) and RREk (right) for alr with D = 50 and nd = 10

B 50 100 200 300 400 50 100 200 300 400

Âebd1 6.73 6.55 5.43 5.69 5.12 26.64 20.09 15.58 14.25 13.33

Âind1 9.91 10.51 7.44 10.75 7.98 26.03 20.82 15.65 16.44 13.98

Âebd2 7.53 6.15 5.98 5.55 6.25 24.88 19.53 15.70 12.76 13.52

Âind2 11.19 9.75 10.00 9.19 11.97 25.13 20.02 17.07 14.27 16.49

Âebd3 5.69 4.97 4.34 4.05 4.41 21.67 16.55 13.13 11.00 9.74

Âind3 10.16 10.11 9.51 8.95 9.94 22.22 18.06 15.20 13.32 13.02

the alr transformation and its corresponding EBP is used, the results are slightly better
than in the clr and ilr cases.

4.3 Simulation 3 for MSEs

Simulation 3 investigates the MSE estimators of predictors Âeb
dk and Âin

dk , k = 1, 2, 3.
One of the goals is to give a recommendation on the number of bootstrap replicates
B to implement. The simulation takes I = 200 iterations and generates L = 200
random vectors for the Monte Carlo approximations of integrals. The population sizes
are Nd = 200 and D = 50. Let h be the clr, alr or ilr transformation. Appendix
B.3 gives the steps of Simulation 3 and the definitions of the absolute and relative
performance measures.

Tables 6, 7 and 8 present the relative absolute bias RABk and the relative root-
mean-squared error RREk in %, k = 1, 2, 3, for the clr, alr and ilr transformations,
respectively. The number of bootstrap replicates is B = 50, 100, 200, 300, 400.
Appendix B.3 gives the corresponding absolute performance measures. As in Simu-
lation 2, we remark that the results in Tables 6, 7 and 8 are not comparable because
the data generation is different. Nevertheless, we observe that if the data are generated
by the MNER model derived from the alr transformation and its corresponding EBP
is used, Simulation 3 gives slightly better results than in the clr or ilr cases. That is,
the functional form of the transformation plays a non-negligible role. In any case, the
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Table 8 RABk (left) and RREk (right) for ilr with D = 50 and nd = 10

B 50 100 200 300 400 50 100 200 300 400

Âebd1 10.91 11.61 11.52 10.62 10.18 28.34 24.10 21.27 17.66 16.34

Âind1 27.67 23.95 26.22 25.36 28.87 33.62 28.68 29.28 27.27 30.23

Âebd2 9.13 9.07 8.82 8.77 8.85 26.55 20.47 16.61 15.63 14.60

Âind2 24.63 27.58 24.17 26.05 23.23 31.44 30.98 26.57 27.88 24.95

Âebd3 11.18 10.18 10.47 9.57 9.34 25.69 20.16 17.91 14.55 14.10

Âind3 19.77 18.85 16.86 20.88 21.03 27.76 24.08 21.01 22.85 22.84

selection of the transformation in an application to real data must be made based on
the diagnosis of the corresponding MNER model that we select.

Figures 1 and 2 show the boxplots of RREdk and RABdk for the predictors Âeb
dk ,

k = 1, 2, 3, with the clr transformation. From the obtained performance measures, we
recommend to implement the bootstrap algorithm with at least B = 300 iterations.
Appendix B.3 give the same recommendation for the alr and ilr transformations.

5 The Spanish Household Budget Survey (SHBS)

The SHBS is annually carried out by the “Instituto Nacional de Estadística” (INE),
with the objective of obtaining information on the nature and destination of the con-
sumption expenses, as well as on various characteristics related to the conditions of
household life. In the Spanish economy, it is important to have good estimates of con-
sume spending, since this spending represents, approximately, 60% of gross domestic
product. However, global political measures are not often satisfactory for regional
authorities, which can also develop their own economic strategies. They need some
tools to determine, with precision and reliability, the main variables and consume
indicators in order to implement their strategies. Among the main consume indicators
are the proportions of food and housing annual expenses of households. This section
presents an application of the new statistical methodology to the estimation of domain
parameters defined as average of proportions of annual household expenditures. We
take data from the SHBS of 2016. The domains are the 50 Spanish provinces plus the
autonomous cities Ceuta and Melilla, so that D = 52.

Let ad j1, ad j2 and ad j3 be the proportions of annual expenditures on food, housing
and other for household j of domain d . Housing includes expenditure on current
housing costs, water, electricity, gas and other fuels. Food includes both food and
nonalcoholic beverages and other represent the remaining expenditures. The vectors
ad j = (ad j1, ad j2)′ ∈ R2 are 2-part compositions that can be transformed into vectors
yd j = h(ad j ) of R2 by one of the transformations h described in Appendix A. Let
xd jk , d = 1, . . . , D, j = 1, . . . , nd , k = 1, 2, be the 4 × 1 vector whose components
are the binary auxiliary variables that indicate the composition of the household to
which household j belongs in domain d . As auxiliary variables, we thus consider the
household composition HC with categories
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Table 9 Regression parameters y x-variable Estimate z-value St.Error p-value

y1 Intercept − 0.66 55.78 0.012 0.00

HC1 0.46 54.78 0.001 0.00

HC2 0.01 0.70 0.008 0.48

HC3 − 0.16 18.82 0.008 0.00

y2 Intercept − 0.41 37.85 0.011 0.00

HC1 − 0.24 31.57 0.008 0.00

HC2 − 0.30 38.88 0.008 0.00

HC3 − 0.03 4.45 0.008 0.00

Table 10 Variance and
correlation parameters

Parameter Estimate L.CI U.CI

σ 2
u1 0.006 0.003 0.008

σ 2
u2 0.005 0.003 0.007

ρu − 0.695 − 0.865 − 0.524

σ 2
e1 0.210 0.206 0.214

σ 2
e2 0.174 0.171 0.177

ρe − 0.347 − 0.359 − 0.336

HC1: Single person or adult couple with at least one members with age over 65,
HC2: Other compositions with a single person or a couple without children,
HC3: Couple with children under 16 years old or adult with children under 16 years

old,
HC4: Other households.

The variable HC is treated as a factor with reference category HC4.
For calculating the EBPs of the domain parameters of interest, we need the true

population sizes, Ndt , of the crossings of provinces with the categories of the variable
HC.We calculate these sizes by using the samplingweights of the Spanish Labor Force
Survey (SLFS). The SLFS sampling weights are calibrated to the population sizes of
the provinces crossed with sex and age groups. These demographic quantities come
from the INE population projection system and they are considered the most accurate
demographic figures in Spain. On the other hand, the SHBS sampling weights are
calibrated to the population sizes of the autonomous community (NUTS 2) crossed
with sex and age groups, which are not the domains of interest.

This section presents an statistical analysis by applying the centered logratio trans-
formation. This choice is due to the good fit of the MNER model to the transformed
data. For the sake of completeness, Appendix C presents the corresponding data anal-
ysis for the alr and ilr transformations. Table 9 presents the estimates of the regression
parameters, the z-values, the standard errors and the asymptotic p-values. The factor
HC is significative for y1 and y2. Table 10 presents the asymptotic 95% confidence
intervals (L.CI, U.CI) for the variance component parameters. None of them contains
the zero.

123



Small area estimation of average compositions under…

Density u1

st.random.effects
−2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4
Density u2

st.random.effects
−2 −1 0 1 2

0.0
0.1

0.2
0.3

0.4
0.5

Fig. 3 Histograms of standardized random effects

For calculating the asymptotic p-values and confidence intervals of Tables 9 and 10,
we take the asymptotic distributions of the REML estimators θ̂ and β̂, i.e.

θ̂ ∼ N6(θ, F−1
s (θ)), β̂ ∼ Np(β, (X ′

sV
−1
s Xs)

−1),

where Fs is the REMLFisher informationmatrix. For β̂i = β0, the asymptotic p-value
for testing the hypothesis H0 : βi = 0 is

p-value = 2PH0(β̂i > |β0|) = 2P(N (0, 1) > |β0|/√qii ).

where (X ′V−1(θ̂)X)−1 = (qi j )i, j=1,...,p and βi denotes the i-th component of the
vector β. The asymptotic (1− α)-level confidence intervals for the components θ� of
θ are

θ̂� ± zα/2 ν
1/2
�� , � = 1, . . . , 6,

where F−1(θ̂) = (νab)a,b=1,...,6 and zα is the α-quantile of the N (0, 1) distribution.
Figure 3 plots the histograms of the D = 52 standardized EBPs of the random

effects of the fitted MNER model for food (left) and housing (right) expenditures. It
also prints the corresponding probability density function estimates. The shapes of the
densities are quite symmetrical, which indicates that the distributions of the random
effects are not very far from the normal distributions. Since D is too small to obtain a
good nonparametric estimate of the density functions, the definitive conclusions can
not be drawn.

Figure 4 gives the histograms of standardized residuals for components y1 and
y2. It also prints the corresponding probability density function estimates. We do not
appreciate a large deviation from the normal distribution.

Figure 5 presents the dispersion plots of standardized residuals versus predicted
values (in 104 euros). Most standardized residuals fall within the interval (−3, 3),
so we consider that outliers do not play a relevant role in the performance of the
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Fig. 5 Standardized residuals versus predicted values (in 104 euros)

EBPs. Appendix C of the supplementary material gives the corresponding plots for the
additive and isometric logratio transformations. The corresponding plots are similar to
the ones shown inFigs. 4 and5 for the centered logratio transformation.However, Fig. 5
presents more uniform clouds of points in both components than the corresponding
figures for the two other transformations. From this graphical diagnosis, we finally
prefer doing the data analysis with the centered logratio transformation. However,
since the choice of the clr transformation can be debatable, Appendix C presents the
full analysis of the data under the two other transformations.

Figure 6 plots the plug-in and the EBP predictions of ad1 and ad2. The domains
are sorted by sample sizes and the sample size is printed in the axis OX. This figure
shows that both estimators follow a similar pattern. This information is completed by
Fig 7, which shows the relative root-MSEs (RRMSE).

Figure 8 (left) maps the proportions of the household annual expenditures in food
by Spanish provinces. Figure8 (right) maps the estimated RRMSE in%. These figures
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Fig. 6 Plug-in and EBP predictions of ad1 and ad2 in %
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Fig. 7 RRMSE of plug-in and EBP predictions of ad1 and ad2 in %

show that expenditures on food are rather variable between provinces. This happens
mostly in the autonomous regions of Andalucía, Aragón or Castilla León, where there
are many provinces and some of them are more deprived than others. In contrast, there
are other regions, such as Basque Country where the variability of the estimated ratios
is smaller. This information could be of great use to local governments in developing
economic plans aimed at households and improving the quality of life.

Figure 9 (left) maps the proportions of the household annual expenditures on hous-
ing by Spanish provinces. Figure9 (right) maps the estimated RRMSE in %. As is the
case with food expenditure, these figures show that expenditures on housing is rather
variable between provinces. This map shows clear differences between the north-
central regions, where the proportion of spending is higher, and the southern regions,
where household expenditures are lower.

Tables 11 and 12 present some condensed numerical results. The tables are con-
structed in two steps: First, the domains are sorted by sample size, starting by the
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Fig. 9 EBP predictions of ad2 by Spanish provinces in %

domain with the smallest sample size. Finally, a selection of 14 domains out of 52 is
done from the positions 1, 5, 9, . . . , 52. The name and code of provinces are labeled
by province and d, respectively, and the sample sizes by nd . Table 11 presents the
model-based predictions of food and housing expenditures by provinces and Table 12
displays the corresponding estimates of RRMSEs. The plug-in predictors are denoted
by in1 and in2 and the EBPs by ebp1 and ebp2.

6 Conclusions

Compositional data play an important role in public statistics. The proposed method-
ology is applied to estimate the proportions of annual household expenditures on food,
housing and others from the 2016 SHBS at the province level. This paper introduces
small area predictors of averages of unit-level vectors of compositions. For this pur-
pose, the manuscript considers the centered logratio transformations of compositions
into vectors of Rm . For the sake of completeness, Appendix C of the supplementary
material presents the corresponding statistical analysis under the additive and isometric
logratio transformations. A MNER model is proposed for analyzing the transformed
compositional data, where the vectors of random effects and the vector of model errors
have unstructured covariance matrices with unknown components. As usual in linear
mixed models, the parameter estimates of the MNER model are obtained using the
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Table 11 Predictions of ad1 and
ad2 in %

d nd in1 ebp1 in2 ebp2

Guadalajara 19 102 14.6 15.8 34.7 34.8

Palencia 34 118 19.5 20.6 35.1 34.8

Cuenca 16 123 16.0 17.1 37.8 37.4

Ourense 32 169 17.5 18.5 40.6 39.8

Burgos 9 187 16.0 17.1 36.5 36.2

Granada 18 198 14.6 15.8 35.1 35.1

Albacete 2 249 16.8 18.0 35.4 35.2

Ciudad Real 13 355 16.5 17.6 36.2 35.9

Pontevedra 36 463 16.4 17.5 35.0 34.9

A Coruña 15 536 15.9 17.0 33.8 33.8

Zaragoza 50 678 16.2 17.4 34.8 34.7

Cantabria 39 761 15.0 16.1 36.8 36.6

Murcia 30 913 16.8 18.0 30.7 31.0

Madrid 28 1653 12.9 14.0 37.3 37.3

Table 12 RRMSE estimates for
ad1 and ad2 in %

d nd in1 ebp1 in2 ebp2

Guadalajara 19 102 5.64 5.22 3.52 3.52

Palencia 34 118 3.60 3.42 3.41 3.44

Cuenca 16 123 4.56 4.27 2.96 2.99

Ourense 32 169 3.68 3.47 2.43 2.47

Burgos 9 187 3.90 3.64 2.86 2.88

Granada 18 198 4.24 3.93 2.78 2.78

Albacete 2 249 3.13 2.94 2.46 2.47

Ciudad Real 13 355 3.00 2.81 2.03 2.04

Pontevedra 36 463 2.57 2.40 1.98 1.99

A Coruña 15 536 2.37 2.21 1.78 1.77

Zaragoza 50 678 2.29 2.14 1.56 1.56

Cantabria 39 761 2.22 2.06 1.50 1.51

Murcia 30 913 1.97 1.84 1.51 1.49

Madrid 28 1653 1.78 1.64 0.97 0.97

REML method. The selection of the centered logratio transformation was motivated
by the interpretability and diagnosis of the selected MNER model. In this sense, we
followed the recommendations of Greenacre (2019). This is to say, we have tried to
provide a simple solution to a practical problem of compositional data.

Of the two proposed predictors, EBP and plug-in, EBP presents a slightly better
performance, as can be seen in the simulation study. For the calculation of theMSE,we
recommend a parametric bootstrap, following the ideas of González-Manteiga et al.
(2008a) and for a number of repetitions greater than B = 300.
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As a result of the statistical analysis for Spanish provinces, we conclude that
food expenditure in Spain accounts for 14.6% of total household expenditure and
presents great variability within autonomous communities. This happens mostly in
the Autonomous Regions of Andalucía, Aragón or Castilla León, where there are
many provinces and some of them are more deprived than others. In contrast, there are
other regions, such as Basque Country where the variability of the estimated propor-
tions is smaller. On the other hand, spending on housing in Spain accounts for 31% of
total household spending and there are important differences between the north-central
provinces (with higher incomes) and those in the south.

In this case, we applied the introduced methodology to the SHBS, but it is useful
in other topics of the official statistics, like the classification of the population by the
educational level and according to economic activity. In both situations, it is necessary
to take into account the simplex constraints.

We finally remind that there are other regression models for compositions, such as
directional mixed effects models or Dirichlet regression mixed models. These models
are likely to be adapted to the SAE context described in Sect. 2, including fitting
algorithms, predictors of domain quantities, MSE estimators, and so on. They can
be competitive options with respect to fitting a multivariate normal mixed model to
logratio transformations of compositions. We believe that these tasks are interesting
subjects for future research.
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