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ABSTRACT
The Deep Learning (DL) community found in pruning techniques
a good way to reduce the models’ resource and energy consump-
tion. These techniques lead to smaller sparse models, but sparse
computations in GPUs only outperform their dense counterparts
for extremely high levels of sparsity. However, pruning up to such
sparsity levels can seriously harm the accuracy of the Neural Net-
works (NNs). To alleviate this, novel performance-aware pruning
techniques favor the generation of more regular sparse matrices
that can improve the exploitation of the underlying hardware. Nev-
ertheless, an important drawback is that these techniques heavily
condition the location of the non-pruned values, which can strongly
degrade the accuracy of the models.

This paper focuses on improving the performance of the SpMM
routine onDLworkloads by combining performance-aware pruning
with pruning-independent SpMM kernels to relax input-format con-
straints. We start with a microarchitecture-level performance study
of SOTA SpMM implementations to identify their main bottlenecks
and flaws. Then, the paper centers on maximizing the performance
of the routine by adjusting the parameters of performance-aware
pruning techniques to the hardware properties. This second study
explains the intrinsic causes of the observed performance results.
We show that, following this approach, a generic SpMM routine can
perform up to 49% and 77% better for half and single precision, re-
spectively, than using non-performance-aware pruning, providing
speedups over cuBlas of up to 1.87× and 4.20×, respectively. Addi-
tionally, the performance achieved on half precision is boosted with
a new Ampere-ready specialized implementation for the column-
vector sparse format, CLASP, which achieves a 2.42× speedup over
cuBlas. Finally, we also introduce ad-colPrune, a novel pruning tech-
nique that widens the design space of possible trade-offs between
performance and accuracy.
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guages; Machine learning; • Computer systems organization
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1 INTRODUCTION
Sparse computation can be used in Machine Learning (ML) to re-
duce the models’ size without harming the accuracy. However,
existing research on sparse computing for scientific applications is
not fully portable to ML because the characteristics of both types
of workloads are different. For instance, while in scientific applica-
tions sparsity levels can reach values close to 100%, in ML they are
usually significantly below that ratio, as otherwise accuracy could
be seriously affected [15]. Furthermore, in ML there are additional
relevant factors to consider such as the pruning technique that
generates the sparsity, and the architecture of the pruned models.

In Deep Learning (DL), the usage of GPUs to speed up linear
algebra kernels is the norm [38]. In addition, new generations of
GPUs are equipped with specialized hardware that targets the core
computations of this type of workloads, such as Tensor Core Units
(TCUs) [37]. Thus, the design of kernels that exploit such hardware
is critical to achieve good performance. Although there has been
progress on sparsity for ML, it is mainly focused on the design of
new pruning techniques. The contributions focused on optimizing
sparse computation to address the peculiarities of ML workloads
are scarce and very recent.

The usage of sparse computation in the context of ML seeks to
reduce the operation count, the memory accesses and the memory
consumption. Previous works have shown that the sparsity level,
the size of the original input matrices, the mean row length and the
load imbalance between rows are key factors in the performance of
these kernels [8]. One way to optimize sparse computation in ML
is to design hardware-aware pruning techniques, i.e., techniques
created to generate more regular hardware-optimized sparsity pat-
terns, such as pre-defined shapes of groups of non-zero elements
(e.g., vertical/column vectors) or removing whole components to
keep the computation dense. However, forcing this regularity can
harm the accuracy of the resulting network as this conditions, to a
certain extent, the location of the non-zeros [18, 21]. Thus, balanc-
ing performance and accuracy is key to properly exploit sparsity in
DL.

This paper tests a solution based on combining hardware-aware
pruning techniques with pruning-independent SpMM kernels, i.e.,
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kernels with no input sparsity-pattern constraints. The hypothesis
is that tuning some pruning techniques’ configuration parameters
to favor hardware utilization can boost SOTA SpMM implemen-
tations’ performance. This would not only enable more flexible
weight selection heuristics and the reuse of CUDA kernels, but it
would also allow modulating the balance between performance and
accuracy at pruning time. Our main contributions are:
(1) A microarchitecture-level study of the performance of SOTA

pruning-independent SpMM implementations on genuine ML
workloads. It focuses on the efficiency of the routines on sparse
matrices generated by non-hardware-aware pruning techniques
and unveils the main flaws of that implementations.

(2) An in-depth study on hardware-aware pruning techniques’
configuration parameters, their linkage with microarchitecture
aspects, and their effect on pruning-independent SpMM ker-
nels. We show that hardware-optimized sparse matrices can
provide up to 49% (half) and 77% (single) larger speedups than
non-optimized ones without modifying the SpMM code.

(3) A new column-vector pruning-aware implementation of the
SpMM routine that supports the characteristics of the Ampere
platform, achieving up to 2.42× speedup w.r.t. cuBlas 1.

(4) A novel hardware-aware pruning technique built on top of
the conclusions of the two initial studies, which increases the
design space of possible performance-accuracy trade-offs.

2 BACKGROUND
This section introduces the technical background of the paper, con-
sisting of an overview of the weight network pruning techniques
and the most relevant aspects of the Nvidia Ampere architecture.
We assume the reader is generally familiar with GPGPU program-
ming concepts and terminology (see [23] for an overview).

2.1 Network pruning
Network pruning techniques focus on removing some connections
of neural networks to speed up network inference, shorten training
time and reduce memory usage, while avoiding accuracy degrada-
tion. This is relevant for mobile devices or to shrink huge network
architectures such as GPT-3 [3] or Megatron-Turing NLG [1].

Weight pruning algorithms can be classified according to the
size of the parts of the network that are preserved into fine-grained
and coarse-grained ones. At one end of the scale, fine-grained al-
gorithms eliminate individual connections (weights) of a network
in a non-structured way. While this is more flexible, the resulting
sparse matrices are more irregular and they prevent sparse kernels
from efficiently exploiting the hardware resources [12, 33].

In the middle of the scale, group-level pruning algorithms select
medium-sized groups of elements rather than individual ones. Ac-
cording to the group’s dimension, there are vector-level (1D) and
kernel-level (2D) methods. Furthermore, vector-level pruning can
be separated into column-vector and row-vector pruning depending
on whether the elements are aligned in the vertical or horizontal
dimension, respectively. This approach sacrifices flexibility, and
thereby accuracy, for performance, as the resulting sparse matrices
are more regular, which enhances data reuse, and as a result sparse
kernels perform better on them [2, 39].
1Code available at: https://github.com/UDC-GAC/CLASP

Method Scheme Drop
random pruning none 𝑤𝑖, 𝑗 ∈𝑅 𝑊

magnitude pruning data-free |𝑤𝑖, 𝑗 | ≤ 𝑡ℎ𝑟𝑒𝑠ℎ

variational dropout training-aware 𝑙𝑜𝑔 𝛼 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ;𝑤𝑖, 𝑗 ∼ N(𝑤𝑖, 𝑗 |𝜃, 𝛼𝜃2)
𝐿0 regularization training-aware 𝛽 | |𝑤𝑖, 𝑗 | |0

Table 1: Comparison of different pruning methods, being𝑊 a NN, 𝑤
each individual weight, (𝜃 , 𝛼) NN parameters, and 𝛽 a penalty term

At the other end of the scale, coarse-grained algorithms modify
the structure of the network by removing whole filters, neurons or
heads [17]. For this reason, these algorithms are also called struc-
tural pruning, in opposition to the two previous types, which are
referred to as non-structural approaches. After applying structural
pruning computation remains dense, making it possible to use exist-
ing optimized libraries such as cuDNN [5]. However, this approach
can seriously harm the accuracy of the pruned network [21]. This
paper focuses on non-structured pruning techniques, both fine-
grained and group-level ones.

2.1.1 Candidate selection for removal. The policy to choose the
elements to prune is the core of network pruning methods. Random
selection can be quite effective in some settings [20, 25]. Another
very general, simple and effective method is magnitude pruning
(MP), which picks weights whose absolute value is below a thresh-
old. This is a data-free scheme, meaning that it bases its decisions
only on the network structure. MP has shown SOTA performance
and high compression rates with minimal accuracy loss [7]. There
are also training-aware schemes, which perform a full training
for candidate selection. Some examples are 𝐿0 regularization and
variational dropout, which rely on the 𝐿0 norm and a Bayesian ap-
proach of the weights, respectively, to select candidates [15]. Table 1
summarizes these concepts.

2.2 Ampere architecture
This section introduces relevant details of the Ampere architecture
focusing on the Nvidia RTX 3090 GPU [27] used in this paper.

The Nvidia Ampere GPU architecture has an array of 82 Stream-
ing Multiprocessor (SMs) elements that share a 6MB L2 cache and
24GB of DRAM. Each SM is divided in partitions of four processing
blocks, each one with its corresponding warp scheduler, Register
File (RF), dispatch unit and L0 instruction cache. The four blocks
share a 128KB L1 cache that can be partially used as SharedMEMory
(SMEM). Each of those processing blocks is equipped with different
sub-core units. In total, a SM contains 128 Floating-Point Units
(FPUs) and 4 Tensor-Core Units (TCUs), which in this architecture
also incorporate Sparse Tensor Cores. Let us now introduce the
different types of the aforementioned sub-core units:
• Floating-Point Units (FPU). Traditional CUDA Cores that
carry out FP32 operations. FPUs can perform up to one single
precision multiply-and-accumulate operation (FMA) per cycle.
The Ampere SMs have been redesigned to support double-speed
processing, delivering a 2𝑥 speedup w.r.t. the Turing generation.
• Tensor-Core Units (TCU). First introduced in the Volta archi-
tecture, Tensor-cores are able to carry out one matrix multiply-
and-accumulate operation (MMA) per cycle, peaking 8𝑥 more
performance than FPUs. Ampere delivers third-generation ten-
sor cores that double the performance of the Turing generation.
– Sparse Tensor Cores (SPTCU). The aforementioned third-
generation tensor cores introduced in Ampere support sparse

https://github.com/UDC-GAC/CLASP
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computation and take advantage of these workloads to accel-
erate math operations by up to 2𝑥 .

3 RELATED WORK
3.1 Software resources
The Sparse matrix-dense Matrix Multiplication (SpMM) and Sample
Dense-Dense Matrix Multiplication (SDDMM) are the main opera-
tions used in deep neural networks’ forward and backpropagation
steps. The main available implementations of these routines are:

• Nvidia cuSparse [28] is a library that implements several basic
linear algebra subroutines for sparse matrices. It was originally
designed for scientific workloads and it offers three formats to
represent sparse matrices in the SpMM routine: COO, CSR and
Blocked-Ellpack.
• Sputnik [8] is a library designed from scratch for sparsity in
Deep Learning. It focuses on gaining flexibility on workload
scheduling by defining a one-dimensional tiling scheme. It stores
sparse matrices in CSR format.
• Vector-Sparse [4] is an evolution of Sputnik focused on ex-
ploiting Tensor-Core Units. It takes advantage of 1D groups of
elements to improve locality. Matrices are stored in the Column-
Vector Sparse Encoding format.
• Nvidia cuSparseLt [29] is a new library from Nvidia that sup-
ports Sparse-Tensor Cores. It focuses on general matrix-matrix
operations where at least one of the operands is sparse. It uses a
new format to represent sparse matrices called N:M.

3.2 Performance-aware pruning on GPUs
Fine-grained pruning can preserve the original network accuracy
and achieve high compression ratios [11, 13] but usually at the cost
of performance [14, 36]. Hence the emergence of group-level prun-
ing techniques [4, 19, 35] that seek to generate more regular sparse
matrices has lead to the proliferation of new custom sparse repre-
sentation formats [32]. As an example, the Blocked-Ell format [28],
introduced to encode 2D blocks of non-zero elements, enables more
regular memory accesses and improves data reuse. However, it
has low performance with block sizes smaller than 8. Additionally,
larger block sizes have been proved to seriously degrade network
accuracy [21]. Alternatively, the N:M format enables the usage of
sparse tensor cores, which can provide up to 2𝑥 speedup over the
dense counterpart without harming accuracy [16, 24, 40]. How-
ever we have observed that the performance gain using SPTCU
only starts to arise with big models or when large batch sizes are
considered.

A new way to improve sparse computation performance is to
transfer part of the hardware knowledge to the pruning phase, in
order to design performance-aware pruning techniques [4, 18, 22,
32]. However, our general view is that the constraints established
in these works are still too rigid. This paper seeks to demystify the
most relevant microarchitecture aspects on the most recent Nvidia
GPU architecture in order to define more flexible weight selection
heuristics without sacrificing performance.

4 PERFORMANCE OPPORTUNITIES WITH
PRUNING-AGNOSTIC SPMM KERNELS

This section describes the microarchitecture-level benchmarking
of the SpMM routine on existing pruning-independent SOTA im-
plementations using sparse matrices obtained after applying fine-
grained pruning techniques, which are not hardware-aware. The
contenders are cuBLAS, taken as a dense reference implementation,
and Sputnik and cuSparse as the sparse references. In the case of
cuSparse, we consider the performance separately using the COO
and CSR formats. In the following, wewill call pruning-independent
or pruning-agnostic SpMM implementation to one whose code does
not make any assumption about the input distribution of non-zero
elements. Thus, it has not been optimized for a particular pattern
(e.g., column-vector). The sparse input matrices used in this study
and through the paper belong to the DLMC dataset [10] and come
from different ResNet-50 sparse models trained on the ImageNet
dataset [6], sparsified with: (1) variational dropout, (2) random prun-
ing, (3) magnitude pruning and (4) extended magnitude pruning
methods [7]. The testing hardware platform is a RTX 3090 Nvidia
GPU belonging to the latest Nvidia Ampere architecture with CUDA
11.5.

Firstly, we analyzed the overall performance of the SpMM rou-
tine for single and half precision, for different sparsity levels and
using different compressed storage formats in the case of cuSparse.
The analysis showed that Sputnik outperforms cuBLAS for sparsity
levels above 80% and 95% for single precision and half precision,
respectively. However, cuSparse does it in single precision for spar-
sity levels above 99% and never for half precision. In cuSparse, COO
performs better than CSR, especially in single precision. This pre-
liminary study confirms the cuSparse limitations on ML workloads
since it is optimized for scientific ones. However, although Sputnik
was designed from scratch for ML problems, it also does not sur-
pass cuBLas until relatively high sparsity levels, especially for half
precision.

Now, we perform a study focused on identifying opportunities
in these libraries for hardware usage improvement at the microar-
chitecture level.

4.1 Microarchitecture study definition
The study is based on metrics related to memory usage and others
related to computation that have been obtained using the Nvidia
Nsight Compute kernel profiler [30].

Memory aspects. An analysis of open-source SpMM implemen-
tations shows that sparse matrices are usually stored in SMEM due
to frequent memory accesses while the dense matrix values are
directly moved from GMEM to registers. Thus, data locality promo-
tion is key to reduce costly Global MEMory (GMEM) accesses. Let
us recall that the minimum memory transaction unit is the sector
(32 𝑏𝑦𝑡𝑒𝑠). Furthermore, GMEM accesses cached both in L1 and L2
are serviced with 128-byte transactions (4 sectors). Therefore, if the
word size is larger than 4 bytes, each GMEM request is split into in-
dependent 128-byte memory requests: 2 memory requests, one per
half-warp, for float2 or 4 memory requests, one per quarter-warp,
for float4. The metrics selected to assess the memory behavior are:
• The number of L1 missed sectors, which is used to measure
the unified L1/TEXture (TEX) cache performance.
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(a) Sputnik (b) cuSparse COO (c) cuSparse CSR

Figure 1: L1 missed sectors of Sputnik, cuSparse and cuBlas (left y-
axis) and speedup of Sputnik and cuSparse over cuBlas (right y-axis)

• The ratio of Sectors/Requests, to evaluate the efficiency of
memory transactions. High ratios could indicate possible un-
coalesced memory accesses. For instance, a value of 32 on float
loads means that each thread of a warp is accessing a different
4-byte word in a different sector.

Compute aspects. Arithmetic intensity and efficiency are criti-
cal in order to hide memory latency with computation. To assess
this, the following metrics have been selected.
• The number of arithmetic instructions, which directly af-
fects the computation time and computational load. It can also
affect the usage and performance of the L0 instruction cache.
• The Branch efficiency, that indicates the ratio of branches
where all the active threads select the same branch target. It
is used to detect thread divergence.

4.2 Performance analysis and evaluation on
non-hardware-optimized sparse matrices

In our performance study, sparse methods outperformed their dense
counterparts at lower sparsity levels for single precision data than
for half precision. Still, this happened at relatively high sparsity
levels, considering that pruning a model by more than 80% can
start to impact its accuracy [31]. Let us analyze the causes for the
observed performance for single and half precision separately.

4.2.1 Single precision. Figure 1 shows the evolution of the number
of L1 missed sectors for Sputnik (CSR) and cuSparse (COO and
CSR formats) for input matrices with increasing sparsity levels. The
figure also shows the overall performance speedup they achieve
w.r.t. cuBLAS. We can see that the number of missed sectors in
Sputnik and cuSparse+COO is similar for low sparsity levels (50%),
while it is much larger for cuSparse+CSR.

At 50% of sparsity, Sputnik’s missed sectors are around twice
those of cuBLAS, but they evolve favorably with sparsity. In fact,
Sputnik outperforms cuBLAS when the number of missed sectors in
both libraries is similar, at a sparsity level of 90%. In cuSparse+COO,
while the number of missed sectors is substantially better than in
Sputnik at 70% and 80% sparsity levels, the transition to higher levels
of sparsity is not so favorable. The improvement of this metric is
only evident when the sparsity reaches 98%. In cuSparse+CSR, the
metric evolves promisingly with the sparsity level, but it starts from
a much higher initial value, and thus cuSparse does not generate
fewer missed sectors than cuBLAS until a sparsity level of 98%.

Figure 2 shows the ratio of Sectors to Requests. The Sputnik
routine starts with 13 sectors per request since its implementation
can use 128-bit LoaDs from Global memory instructions (LDG.128),
float4 datatypes, which is quite close to the ideal value of 16 (see

(a) Sputnik (b) cuSparse COO (c) cuSparse CSR

Figure 2: Sectors to Request ratio of Sputnik, cuSparse and cuBlas
(left y-axis) and speedups of the first two over cuBlas (right y-axis)

Section 5.2). The theoretical peak is not reached in this case because
residual values are loaded using LDG.32 instructions. As sparsity
increases, residue values tend to have a bigger impact since it is
more difficult to hide their processing with full tiles of non-zero
values, leading to intra-warp load imbalance and to worsen the sec-
tor to requests ratio. Relatedly, an analysis of the Shader ASSembly
(SASS) code of cuSparse shows that this routine always uses 32-bit
loads, which implies that this metric should have a value close to 4.
However, in cuSparse+COO the value is around 8, and it slightly
increases with the sparsity level, which denotes a problem of poor
memory coalescence among the threads of the same warp. The
cuSparse+CSR version shows a much higher ratio, as it reaches 20
sectors per request for the highest sparsity level. This implies that,
in this case, the coalescence problem is even worse.

library/Sparsity 0.5 0.7 0.8 0.9 0.95 0.98

cuSparse+COO 91.47 91.35 91.01 88.90 86.14 84.11
cuSparse+CSR 50.91 50.20 49.20 39.19 35.45 35.85

Sputnik 92.95 90.87 90.58 90.56 91.07 90.74

Table 2: Brach Efficiency of Sputnik and cuSparse

Table 2 shows the branch efficiency metric for the three sparse
routines and different sparsity levels: the lower this metric, the
more thread divergence. Thread efficiency is expected to worsen
as the sparsity level increases. This effect is especially noticeable
in cuSparse+CSR, which could explain the observations made in
Figure 2. However, we observed that Sputnik yields relatively high
ratios in this metric with some fluctuations for high sparsity levels.
This is achieved with an internal workload balance strategy.

(a) Sputnik (b) cuSparse COO (c) cuSparse CSR

Figure 3: FMA instructions executed by Spunik, cuSparse and cuBlas
(left y-axis) and speedups of the first two over cuBlas (right y-axis)

Figure 3 shows the evolution of the number of FMA instructions
executed by each routine. Sputnik executes almost half as many
FMAs as the dense version with a sparsity of 50%, near the theoreti-
cal instruction count reduction. Furthermore, this reduction evolves
adequately with the sparsity level. Nevertheless, cuSparse+COO
uses about twice the number of FMAs as the dense code at 50% of
sparsity, the difference being even larger using CSR. The reason
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for the different behavior between both libraries is that in Sputnik,
techniques like subwarp-tiling and Reverse Offset Memory Align-
ment (ROMA) [8] increase the opportunities to use vector memory
instructions, which reduces the number of instructions required.

4.2.2 Half precision. The same tests were conducted for the half
precision routines, most of the conclusions being analogous to those
in single precision. Due to space limitations, we briefly discuss the
most important differences observed for half precision:

(1) L1 cache misses: The observations for Sputnik and cuSparse
are equivalent but with larger differences w.r.t. cuBLAS. In Sputnik,
the number of missed sectors is halved since we pass from single
to half precision. In cuBlas, the value of this metric is reduced by
eight on average because it benefits from data reuse, and it loads the
information to SMEM directly using the newAmpere asynchronous
copy instruction LDGSTS [26]. This instruction bypasses L1 and
RF and copies data directly from L2 to SMEM.

(2) Math instructions executed: This metric drops dramatically in
the case of cuBlas, achieving a lower number of math instructions
executed than the sparse routines for all the considered sparsity
levels. While in cuBlas multiple FMA instructions are fused into
a single HMMA, executed in Tensor-Cores, both Sputnik and cuS-
parse continue to use the FPU. In Sputnik, this happens because
internally it uses mixed-precision despite the input/output data
being 16-bit floating-point values. Hence, Sputnik converts FP16
data to FP32, in order to reduce the accumulation error. Since cuS-
parse is not open-source, we cannot be sure of the reason behind
its behavior, so we assume it to be the same as for Sputnik.

4.3 Challenges and opportunities
Sputnik showed the best hardware utilization among all the con-
tenders of the SpMM routine, proving to scale relatively well as spar-
sity increases. Therefore, we will consider Sputnik as the pruning-
agnostic SpMM reference for ML workloads. Based on the previous
analysis, the next step consists in using hardware-aware pruning
techniques to boost the performance of Sputnik without modifying
the routine code, addressing, from the pruning technique perspec-
tive, different problems of this implementation:

• The L1 cache usage can be enhanced for lower sparsity levels.
Although it evolves well with the sparsity, L1 misses are much
higher than cuBLAS despite having a substantial theoretical
operation count reduction w.r.t dense computation.
• The memory transactions efficiency can be improved in two
different ways: (1) selecting the widest memory instructions
whenever it is possible, and (2) alleviating the MIO (Memory In-
put/Output) instructions queue pressure by reducing the number
of global memory requests.
• The thread load balance can be enhanced, as the irregularity of
fine-grained-based sparse matrices prevents Sputnik’s branch
efficiency from getting higher ratios. Hence, despite implement-
ing workload balance, non-hardware-optimized sparse matrices
structure can severely limit its effectiveness in this metric.

Finally, the Sputnik’s implementation for half precision presents
a high math instruction count and this must be corrected at CUDA
level. This issue will be addressed separately in Section 6.

Figure 4: Different possibilities of non zeros distribution across a
sparse matrix considering different storage formats on dense one

5 EXPLORING HARDWARE-OPTIMIZED
SPARSE MATRICES FOR
PRUNING-AGNOSTIC SPMM KERNELS

The shape and distribution of sparse matrices affects the perfor-
mance of the SpMMoperation. This section explores the use of exist-
ing hardware-aware pruning methods to improve the performance
of Sputnik, a SOTA pruning-agnostic SpMM implementation.

5.1 Problem description
Let us first decide the matrices layout to be used. Figure 4 rep-
resents three situations that differ in the location, but not in the
number, of non-zero values in the sparse matrix (A) and the cor-
responding positions affected in the dense input matrix (B). The
situation represented on the left is cache-unaware, while the other
two ones implement some kind of cache-awareness: the one in
the middle uses a typical 1-D vertical vector tiling scheme called
“column-vector” in the literature, while the rightmost one uses the
equivalent “row-vector” scheme. The vector-based techniques dif-
fer in the order in which the dense matrix B is stored, row-major
(middle) or column-major (right). Storing B in column-major order
can maximize locality in tile traversals and mitigate the impact of
non-coalesced or unaligned memory accesses when output matrix
(C) is computed in column-major order. That is why a few previous
works prefer the column-major order for the SpMM routine [18, 22].
However, as ML datasets and SOTA pruning-agnostic SpMM im-
plementations rely on the row-major order, we selected this layout
because it represents the most realistic and practical situation.

The microarchitecture study of the previous section identified
data locality, memory efficiency, thread load balance, and math in-
struction count as the four most crucial factors for the performance
of the SpMM routine. In this section we will cover the first three
ones, making an in-depth study of how these hardware aspects can
be improved by tuning the pruning configuration parameters, and
following with the measurement of their performance impact.

5.2 Analysis of the pruning impact on data
locality and memory transactions efficiency

This section covers the data locality and memory transactions effi-
ciency aspects. We will explore the use of the column-vector pat-
tern as a way to (1) improve the L1 cache usage and (2) reduce
the number of GMEM requests per instruction. Concerning mem-
ory efficiency, we will cover the MIO instructions queue pressure
reduction.

Terminology and scenarios. Figure 5 represents the behav-
ior of the L1 and L2 caches within the scope of a warp when we
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Figure 5: L1 cache behavior with different memory access patterns

pruned following a fine-grained (left figure) or a column-vector-
based (right) policy. The two scenarios of this figure correspond
to the first two situations shown in Figure 4, respectively. We as-
sume that the widest GMEM instructions are used, LDG.128. Hence,
in Figure 5, each 128-byte cache line is divided into four sectors
(32 bytes). Remember that if the word size is larger than 4 bytes,
eachmemory request is split into several 128-byte memory requests,
that is, four memory requests issued independently, one per quarter-
warp, for 128-bit instructions (float4 datatypes). In the left situation
of the figure (fine-grained), each quarter-warp accesses a different
row of a matrix, meaning that 8-thread groups access consecutive
and independent 128-bytes in a fully coalesced manner. In the sec-
ond situation (column-vector), the four quarter-warps access the
same 128-byte line, distributing lanes across it equally balanced
and coalesced. For each one of the two scenarios, the bottom part
of the figure summarizes the final state of the microarchitecture:
L1/TEX cache hits and misses, number of sectors, number of exe-
cuted instructions, memory requests per instruction to L1 and L2,
and number of sectors transferred from L2 to L1 cache, assuming
that caches are initially empty.

Microarchitecture impact of fine-grained pruning. In the
fine-grained sparse matrix, each warp retrieves 16 (= 4𝑥4) sectors
with a single LDG.128 instruction. This generates one request to L1
that results in 16 missed sectors since no data is cached. Next, there
are four 128-byte memory requests to the L2 cache that result in a
new cache miss each. Therefore, there are no hits in either L1 or L2,
which means that the 16 sectors must be fetched from GMEM. The
loaded data is cached in L1 and L2 since data must return to RF.

Microarchitecture impact of column-vector pruning. In the
column-vector-based matrix, each quarter-warp accesses different
parts of the same 4 sectors. As a result, after missing in L1, a single
request is generated to L2 instead of four, thus reducing the memory
pipeline pressure. A new cache miss is obtained, but only 4 sectors
must be fetched from GMEM and returned to RF. Notice that we
are not exploiting the L1 benefits yet (no cache hits). Instead, we
are taking advantage of the GPU capability to detect four identical
quarter-warp memory requests and perform just one of them (Sec-
tors/Requests = 4). Thus, there is room for further improvement if
we also exploit L1 data locality. This can be done, for instance, by:
(1) using lower-width memory operations (e.g., residual elements)
and processing rows iteratively, (2) using a smaller column-vector
length than the number of rows processed by a warp (e.g., different
groups of threads access the same GMEM elements but in a different
order), (3) using a column-vector length larger than the number of
rows processed by a warp (e.g., different warps sharing the same
SM access the same elements). Thus, as we can see, there exists a

set of tunable parameters that must be carefully and simultaneously
selected on our pruning algorithms (e.g., vector length) and SpMM
implementations (e.g., tiling scheme, memory instructions width,
GPU thread-block scheduling policy). Next, let us go deeper into the
symbiosis between the pruning technique and the SpMM kernel’s
configuration, taking Sputnik’s code as a reference.

Dissecting Sputnik’s tunability. Work distribution of rows
among threads dramatically influences the final performance and
must be carefully chosen. Furthermore, it indirectly affects the mem-
ory instructions width, one of the aspects to improve according to
our preliminary study. To analyze this, let us consider as an example
the three predefined thread-blocks that are configured in Sputnik:
32𝑥1, 16𝑥2 and 8𝑥4 threads. The Subwarp Tiling technique breaks
down each warp (32 threads) into different dimensions. The dense
matrix tile size processed by each one of the previous configura-
tions is, per K-dim iteration, following a 𝑟𝑜𝑤𝑠 𝑥 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 notation:
1𝑥32, 2𝑥32 and 4𝑥32, respectively. This enables the usage of 4, 8 and
16-byte words to load those different tile sizes in a single instruction
(LDG.32, LDG.64 and LDG.128, respectively). Hence, according to
how local/global memory transactions work in GPUs (Figure 5), we
should try to promote the usage of the 8𝑥4 thread-block configu-
ration since, it not only uses wider instructions but it also enables
the usage of longer column-vectors inside a warp, which reduces
the number of GMEM requests per instruction.

General guidelines on vector-length selection. There are
two aspects of a CUDA kernel that can affect the performance of
SpMM when using column-vector pruned matrices: (1) the number
of rows of the sparse matrix that each thread-block will process
(thread-block dimension) and (2) the dense matrix tile size; both in
conjunction with the memory instructions width to be used. Note
that (1) will determine the maximum length 𝑣 of column-vectors
within the scope of a warp. Thus, processing a single row of 𝐴 with
a 32𝑥1 thread-block size and LDG.32 instructions will not imply an
improvement of data locality despite considering column-vector
pruning with 𝑣 > 1. If two rows of 𝐴 were processed using a block
size of 16𝑥2 and a single LDG.64, or if two rows were processed by a
thread-block of size 32𝑥1with two sequential LDG.32 instructions, 𝑣
could be extended up to 2. With a 8𝑥4 thread-block size and a single
LDG.128, 𝑣 could be expanded up to 4. All these considerations
are done to optimize memory transactions and L1 cache locality
within a warp’s scope. However, let us recall that in an Nvidia GPU
the global L2 cache is shared among all the SMs, while the L1 is
private to each one of them, meaning that it is only accessible from
the threads belonging to the same SM. That means that 𝑣 could be
further extended beyond the warp’s scope if we knew beforehand
which thread-blocks will share the same SM, but that depends on
the GPU thread-block scheduler policy.

Pushing vector-length to the limit. The policy of the Ampere
thread-block scheduler is not public, so we have reverse-engineered
it following the same approach as [34]. In general terms for our
study case the expression that describes how thread blocks are
assigned to SMs in the first wave, using CUDA-like notation, is:

𝑆𝑀 (𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥) =
(
2
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where:

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑥 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑦 ∗ 𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑥
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Figure 6: Load balance assuming a vector length of 2 elements

and where the 82 is the number of SMs in the RTX 3090 GPU. Over-
all, it corresponds to a block-cyclic distribution of the thread blocks
on the SMs in blocks of two. Also, while the scheduler can behave
slightly different depending on the SM’s local resource availability
when assigning thread-blocks to SMs [9], we have verified that this
does not happen during the execution of sparse workloads using
the Sputnik SpMM implementation.

As a result of this scheduler’s knowledge, we can double the
vector length defined in the previous section (to 8 in Sputnik), since
two consecutive blocks are assigned to the same SM, sharing the
same L1 cache space and opening up opportunities for inter-warp
data reuse. Further increasing 𝑣 could improve the locality of the L2
cache, but it should be considered whether the performance gain is
worth the accuracy impact. The convenience of this L2 optimization
will be discussed later.

5.3 Load Balancing
This section covers the load balancing problem detected in Sec-
tion 4.3. We analyze the intra and inter-warp load imbalance as
crucial factors for the performance of the SpMM routine since:

(1) Intra-warp load imbalance can damage the Instruction-
Level-Parallelism since it generates divergence between threads,
which causes hardware underutilization of resources and bandwidth
both of the memory and compute pipelines.

(2) Inter-warp load imbalance can cause that some SMs are
busy while others are idle, damaging the Thread-Level-Parallelism.

To tackle this, we defined a variant of the Row Swizzle tech-
nique [8]. The idea is to see the groups of rows that form the
column-vectors as a block. Then, we assign a weight to each block
based on the sum of its row lengths. This preserves the formed
blocks and prevents destructuring them. Finally, we sort the row
indices by block weight in decreasing order.

Figure 6 illustrates the aforementioned heuristic. It shows, from
left to right, (1) an input sparse matrix in column-vector format
using a vector length 𝑣 = 2, (2) the application of our reorder tech-
nique variant to that input matrix and (3) the per-warp distribution
of the row bundles, considering that each warp will process 2 rows.

This strategy enhances the inter-warp load balance since the first
wave of blocks will be distributed cyclically across the SMs. Then,
the remaining ones will be assigned to the idle SMs in decreasing
order of weight. Regarding intra-warp load balance, the column-
vector format ensures that all the threads within a warp will have
the same number of elements to process, excluding residual values.

5.4 Hardware-optimized sparse matrices design
Our previous microarchitecture-level study helped us to:

(1) Define the optimal range of vector lengths 𝑣 to maximize the
hardware utilization according to our SpMM kernel configuration.

For instance, in Sputnik, 𝑣 should take the values 2 and 4. A 𝑣 value
of 4, 128-bit instructions and an 8𝑥4 thread-block size is expected
to provide the best performance in a warp’s scope.

(2) Reverse-engineer the Ampere scheduler and suggest doubling
𝑣 (to 8) in order to push the L1 usage to the limit.

(3) Advise that further increasing the 𝑣 value may enhance the
L2 cache usage, although we must check whether the performance
gain is worth it depending on the accuracy impact it may imply.

(4) Propose a load balancing technique to improve the intra and
inter-warp load balance.

Section 5.5 will rely on the contributions above to configure
hardware-aware pruners that raise the performance of pruning-
agnostic SpMM kernels, taking Sputnik as a reference.

5.5 Performance evaluation on
hardware-optimized sparse input matrices

We first evaluate the performance of using matrices generated with
the column-vector pruning technique on pruning-agnostic SpMM
kernels, taking Sputnik as the reference SpMM implementation.
The evaluation is based on the same ResNet-50 architecture trained
on ImageNet used in Section 4.

Column-vector pruning is applied with five vectors lengths 𝑣 :
2, 4, 8, 16 and 32. Figure 7 shows the speedups of Sputnik w.r.t.
cuBLAS using this kind of matrices as inputs for different sparsity
levels and for single (left) and half (right) precision. "Sputnik-lp" is
the result of using hardware-unaware sparse matrices generated by
a variant of magnitude-pruning called level-pruning [41]. Instead
of receiving a threshold magnitude 𝛼 , it gets a target sparsity level
to accomplish and automatically selects the 𝛼 value accordingly.
This case is a baseline to put into perspective the performance gain
obtained using each vector length.

For single precision (Figure 7a), the vectors lengths 2, 4 and
8 are the most interesting choices, as they keep the accuracy of
the network at reasonable levels, while being up to 32%, 62%, and
71% faster, respectively, than level pruning. For vector lengths 16
and 32, the loss in accuracy is not compensated by a significant
performance gain. The stabilization of this performance gain when
𝑣 > 8 confirms our hypothesis that increasing 𝑣 beyond that value
will not improve the L1/TEX cache usage.

Notice also that using a sparse matrix pruned following a column-
vector approach with a vector length 𝑣 > 2 and a 80% of sparsity
performs better than a non-hardware-optimizedmatrix prunedwith
a 90% sparsity. Furthermore, in that specific situation, for 𝑣 = 4 the
accuracy achieved is 0.2%worse than using a fine-grained approach.
This could imply that pruning less but following a column-vector
strategy can yield a better performance-accuracy trade-off than
pruning more using a fine-grained strategy. However, a systematic
validation of this hypothesis is out of the scope of this paper.

Figure 7b shows the results for half precision. The main differ-
ence w.r.t. to single precision is that the performance gain is more
limited, since Sputnik uses FPU instead of TCU for half precision,
with the already mentioned limitations that it imposes. Further-
more, as will be discussed later, hardware-optimized sparse matrices
cannot avoid this effect since this can only be done by changing
the underlying kernel implementation (Section 8.1). However, the
other conclusions of the analysis of Figure 7a apply to this one.
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(a) Single precision (b) Half precision

Figure 7: Speedup of Sputnik over cuBlas for different fine-grained
based input matrices (“Sputnik-lp” ) and column-vector based ones
of different 𝑣 lengths (“Sputnik-cvp𝑣”).

Now, we proceed to verify that the observed behavior matches
some of the microarchitecture effects hypothesized through this
section. Figure 8 shows the evolution of the number of L1/TEX
missed sectors. The less relevant 𝑣 values are omitted to simplify
the figure. In single precision, shown in Figure 8a, the number is
almost halved when moving from fine-grained pruning to column-
vector pruning with 𝑣 = 2. For example, for 70% of sparsity, it
is reduced from 4𝑒6 missed sectors to almost 2𝑒6. For 𝑣 = 8, the
reduction is almost 4𝑥 ; around 1𝑒6 for 70% of sparsity. Confirming
previous observations, we can see that the reduction is negligible
between 𝑣 = 8 and 𝑣 = 32. The same observations apply to the half
precision case (Figure 8b).

(a) Single precision (b) Half precision

Figure 8: Number of L1/TEX missed sectors for different vec-
tor lengths and sparsity levels. X-axis labels follow the notation
𝑣/sparsity[%], 𝑣 being the vector length and sparsity[%] the sparsity
level. The case 𝑣 = 1 corresponds to fine-grained pruning.

Figure 9 shows the evolution of the "Sectors-to-Request ratio"
metric for different vector sizes and sparsity levels. The initial value
is around 16 (residue values preclude reaching the best theoretical
value) and it begins to converge to 4 as 𝑣 ≥ 4, where it stabilizes. The
reasons for this behavior have already been discussed in Figure 5.
Table in Figure 9 shows the reduction of L1 and L2 missed sectors
w.r.t the usage of 𝑣 = 1. The L1 missed sectors metric clearly drops
until when 𝑣 = 8, where it stabilizes, which matches previous
observations. The evolution of the L2 missed sectors metric is the
opposite. Let us recall that the L2 cache is shared by all the SMs.
Thus, for a vector length above 8, if two blocks access the same
global memory position despite being assigned to different SMs,
they can still find that information in L2, and that is why L2 cache
gets more relevant for 𝑣 > 8. This is one of the reasons behind the
small performance gain for vector lengths of 16 and 32 in Figure 7.

L1 Misses L2 Misses
V/Precision Single Half Single Half

2 -41.56% -35.57% -0.03% -0%
4 -66.04% -60.68% -0.20% -0.56%
8 -74.99% -65.51% -2.26% -5.02%
16 -74.65% -65.64% -6.87% -16.76%
32 -74.34% -65.56% -18.27% -31.44%

Figure 9 & Table 3: On the left, the Sectors/Requests ratio following
the same notation as Figure 8. On the right, the reduction percentage
of L1 and L2 missed sectors w.r.t. the baseline 𝑣 = 1.

Table 4 shows the evolution of the branch efficiency metric for
different vector lengths. For single and half precision, the larger
the vector the higher the branch efficiency. The biggest increase
happens when going from 𝑣 = 1 to 𝑣 = 4, that is, within the
scope of a warp (intra-warp load balance). Remember that with
column-vector-based sparse matrices, if 𝑣 = 4 and 128-bit memory
instructions are used, each quarter-warp processes exactly the same
number of elements. These considerations are equivalent for single
and half precision. However, residual values can slightly degrade
the theoretical efficiency ratio and half precision kernels seem to be
more affected by this. When 𝑣 > 4we can appreciate a more modest
increase in branch efficiency. This is because once we are out of
the scope of a warp (inter-warp load balance), i.e. 𝑣 ≥ 8, blocks
of threads with the same workload will be generated; however it
demonstrates to have a smaller impact.

v 1 2 4 8 16 32

Single 94.86 96.55 99.19 99.80 99.86 100
Half 93.88 94.62 95.48 95.88 96.10 95.40

Table 4: Brach Efficiency percentage for single and half precision

Conclusions. This study and its associated experiments prove
our hypothesis that using hardware-optimized matrices on pruning-
agnostic SpMM kernels can raise performance. However, this re-
quires the parameters of the pruning technique and the SpMM
implementation to be carefully tuned to maximize hardware utiliza-
tion. We have proved that our guidelines can help to appropriately
tune these parameters, and that our microarchitecture analysis can
explain the performance variations observed in the experiments.

6 CLASP: COLUMN-VECTOR
PRUNING-AWARE SPMM KERNEL

One way to fully prioritize the performance of sparse routines is to
design specialized kernels that take advantage of the knowledge
of the pruning technique used to generated the input sparse ma-
trix (e.g. column-vector). An implementation of this kind of the
SpMM routine has been proposed targeting the Volta Nvidia archi-
tecture [4], but it does not support the newest Ampere generation.
The reason is that the Volta implementation extensively relies on
the mma.m8n8k4 instruction forming a mapping between the warp
tile and the TCU at Octet thread level, while the Ampere architec-
ture does not support the 8𝑥8𝑥4 matrix instruction size on 16-bit
precision. As a result, when this Volta-ready implementation is
used on Ampere, each𝑚𝑚𝑎.𝑚8𝑛8𝑘4 is decomposed into multiple
FMA instructions, yielding an important performance drop.
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Figure 10: SpMM kernel design for column-vector input matrices

We propose an Ampere-ready kernel design based on the new
mapping shown in Figure 10, which can be implemented using
the 16𝑥8𝑥8 matrix instructions size, available on Ampere. It also
removes Sputnik’s limitation related to FPU usage on FP16 precision.
This implies a reduction of the generated SASS code from 4328 lines
using the Volta-ready implementation to just 512. Each block of the
dense tile (middle top of the figure) is composed by 64𝑥8 elements,
while for the sparse matrix tile the block size is 𝑣𝑥8 (left and below
the dense tile), 𝑣 being the vector length. The first step 1 loads the
sparse matrix blocks from GMEM to SMEM. Each thread loads 8
continuous elements of the sparse matrix, which enables the usage
of LDG.128 instructions. The storage to SMEM 2 is done using
STS.128 instructions. At this point, all the threads in a warp retrieve
their part of the data from shared memory to registers following
the thread mapping represented in B . Note that the loaded sparse
block will change from being the LHS (Left-Hand-Side) fragment
on SpMM to be the RHS (Right-Hand-Side) one in the TCU scope.
For this reason, it is stored in shared memory as a column-major
matrix, to match the initial data layout order.

Step 3 consists in moving the dense block directly to registers
using two LDG.128 instructions. Each warp processes a complete
tile in Tile_K/8 steps. Next, step 4 shows how the different lanes
are mapped to the 64𝑥8 dense block in order to collaborate in the
load, maximizing memory bandwidth. As can be seen, 16 elements
are assigned to each thread, which are processed in 4 rounds of
16𝑥8𝑥8 each. For each one of those steps 5 , ( A ) represents the
LHS fragment in TCU with the corresponding thread mapping.

Finally each thread stores its partial results using two STG.128
instructions following C ’s mapping, so that memory bandwidth
is maximized in every single access to global memory.

7 AD-COLPRUNER: ADAPTIVE
COLUMN-VECTOR PRUNER

While column-vector pruning can generate hardware-optimized
sparse matrices that improve the performance of the SpMM rou-
tine, it can also have a negative effect on accuracy. Some of the
constraints that the original column-vector pruning imposes are:
the vector length is fixed and it is picked among a limited set of
"good" values (e.g. 2,4,8), all the elements within a vector must be
non-zeros and the vectors must be aligned w.r.t. the vector length.

Algorithm 1 Sparse Mask selection.
1: Inputs: layer 𝛼 to be pruned, list 𝜏 of triplets (𝑘 ,𝑣 ,𝑝) to guide

the pruning, and number 𝑛𝑛𝑧 of 𝛼 ’s weights to preserve.
2: ⊲ 𝜏 is sorted in decreasing order of 𝑘’s length
3: for each (𝑘𝑖 , 𝑣𝑖 , 𝑝𝑖 ) ∈ 𝜏 do
4: 𝑛𝑛𝑧′ ← 𝑝𝑖 ∗ 𝑛𝑛𝑧 ⊲ elements belonging to 𝜏𝑖 config.
5: 𝛿𝜃 ← Set of column-vectors from 𝛼 of size 𝑘𝑖 , aligned, and

non-overlapped
6: for each 𝑣𝑒𝑐𝑡𝑜𝑟 ∈ 𝛿𝜃 do
7: Calculate the sum of 𝑣𝑖 largest elements (absolute value)
8: end for
9: Pick the best 𝑛𝑛𝑧′/𝑣𝑖 vectors and flag their 𝑣𝑖 selected

weights to avoid considering them again
10: Update binary mask values
11: end for

This paper proposes an intermediate approach between fine-
grained and column-vector pruning that allows a better balance
between performance and accuracy. This approach is based on
(1) grouping the sparse matrix in vectors but with a non-constant
length, where (2) not necessarily all the elements within a vec-
tor must be non-zeros and thus, enabling the appearance of (3)
unaligned sub-column-vectors.

One of the advantages of pruning-agnostic kernels is that they
do not assume a specific distribution of the non-zero elements,
thus supporting more flexible column-vector variants that balance
performance and accuracy such as the one we propose.

The aforementioned relaxed constraints of our approach allow
us to initially pick virtual windows of 𝑘 consecutive elements and
then to keep just the 𝑣 more significant ones, even if they are
not consecutive. Notice that 𝑣 ≤ 𝑘 . This process can be applied
iteratively for different pairs of 𝑘 and 𝑣 , which can give place to
vectors of different sizes 𝑣 within the same pruned sparse matrix.

The implementation of such a technique starts with a pruning
configuration consisting on several triplets of the form (𝑘𝑖 , 𝑣𝑖 , 𝑝𝑖 ),
where for the 𝑖 − 𝑡ℎ iteration of the process, 𝑘𝑖 is the length of each
initial virtual window of consecutive elements, 𝑣𝑖 is the number of
possibly non-consecutive elements selected among those 𝑘𝑖 , and 𝑝𝑖
is the percentage of the dense elements of the sparse matrix picked
with a 𝑘𝑖 and 𝑣𝑖 combination. This process is applied iteratively for
all the triplets. Algorithm 1 presents the pseudocode for this idea.

8 EVALUATION
This section evaluates the performance of CLASP on different DL
workflows and assesses the ad-colPruner method on real-world
computer vision models.

8.1 Ampere-ready pruning-aware CLASP kernel
Figure 11 shows the speedup achieved by the original Sputnik im-
plementation using our hardware-aware pruning guidelines, the
original non-Ampere-ready VectorSparse proposal [4], our CLASP
approach, and cuSparseLt, the baseline being cuBLAS. For this
evaluation, problems extracted from two real-world applications
are considered, one from computer vision (ResNet-50 on the Im-
ageNet dataset) and the other from natural language processing
(Transformer on the WMT English-German 2014 dataset).
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Excepting cuSparseLt, which follows a 2 : 4 pattern, the in-
put data are column-vector-based sparse matrices. Two different
numbers of columns 𝑁 for the dense matrix are considered for
ResNet-50. For Transformers only the 𝑁 = 256 case was tested, as
it is the most common one and this makes the figure more readable.
Let us remember that custom SpMM implementations supporting
column-vector sparse encoding must set a private vector length 𝑣 .
Our implementation supports three different values for 𝑣 : 2, 4 and
8. Hence, the input matrices must be generated using the same
vector lengths 𝑡 , that is 𝑡 = 2, 4 and 8. However, since 𝑣 is private to
warp-level, we can further extend 𝑡 to 16 in order to improve the
L1/TEX locality when 𝑣 = 8, as two consecutive thread-blocks will
be assigned to the same SM, according to the Ampere scheduler
policy. We have also considered 𝑡 = 32 to evaluate the impact on
the L2 and load balance. In order to support matrices with 𝑡 = 16, 32
despite not having a 1:1 relation in our custom implementation,
they have been encoded as matrices with 𝑡 = 8.

Note that the number of matrices with different shapes is larger
in ResNet-50 than in Transformers. That is why the results show a
large variability in ResNet-50 but not in Transformer.

The results show that the original vector-sparse implementa-
tion [4] only performs better than the dense routine in Ampere
when a 98% of sparsity is reached on ResNet-50, and 95% on Trans-
former. The reason is that, since mma.m8n8k4 instructions do not
exist in Ampere for half precision, they are decomposed into multi-
ple FMAs, increasing the total number of instructions and promot-
ing L0 cache instruction overflow.

Despite using the new SPTCU units, cuSparseLt achieves a poor
performance in our experiments. We found that this library is mem-
ory bound and it requires larger matrix sizes [24] to achieve perfor-
mance gains. The reason is that the memory pipeline is much more
heavily used than the compute one because of inefficient accesses to
L1 and L2, representing a bottleneck in the computation. Increasing
the GEMM size relaxes this situation, as memory accesses are better
overlapped with computation. While batch computation could be
used to increase the problem size, this is out of the scope of this
paper. Furthermore, this workaround is not always possible; for
instance, in online inference applications (e.g., self-driving cars),
whose batch size is usually 1.

We can see that our implementation outperforms the original
Sputnik implementation for column-vector-generated input matri-
ces, and that the performance difference increases with the value
of 𝑣 . The performance of our implementation surpasses the dense
one from sparsity levels of 70%.

While our implementation does not support 𝑣 = 16 and 𝑣 = 32,
we demonstrate that our guideline to generate hardware-aware
sparse matrices can also be beneficial in ad-hoc solutions intro-
ducing a new abstraction layer: 𝑡 = 16 significantly increases the
performance obtained since the L1 cache usage is improved by
two consecutive blocks of threads that share the same SM. Further-
more, the use of 𝑡 = 32 only benefits the L2 cache, which has a
significantly lower impact on performance.

8.1.1 Portability of CLASP. Although the main target of this work
is the latest Nvidia Ampere architecture, CLASP can also be used
in other GPU architectures supporting the 16𝑥8𝑥8 matrix instruc-
tion size available from Turing. Hence, we have replicated our

Figure 11: Sputnik using hardware-aware pruning vs. VectorSparse
vs. CLASP vs. cuSparseLt

previous experiments on a Nvidia RTX 2080Ti Turing GPU. The
results reported a speedup of up to 2.67× on ResNet-50, slightly
larger than the one obtained on Ampere. Also, CLASP obtained
on Turing a speedup of up to 3.50× for Transformers, while it was
around 2.20× on Ampere. Furthermore, on Turing we get this per-
formance from a vector length greater than 4, yielding an incredible
performance boost from lower vector sizes. That translates into a
performance improvement on Turing of around 60% w.r.t. Sputnik
using hardware-optimized sparse matrices. The reason is that Tur-
ing’s architecture presents a lower ratio of computation capability
to memory bandwidth, which relaxes the data reuse demand.

8.2 ad-colPruner application: Computer Vision
A pruning-aware kernel is the best option to prioritize performance.
However, if we want to balance accuracy and performance, our
proposal of relaxing the constraints of the column-vector prun-
ing technique (Section 7) can be a good choice. We evaluated ad-
colPruner using two datasets and two Pytorch pre-trained dense
models widely used in computer vision problems: (1) CIFAR-10
dataset with a ResNet-20 model (Top-1 accuracy 92.54%) and (2)
ImageNet with ResNet-50 (Top-1 accuracy 76.2%).

Following the triplet notation presented in Section 7, Figures 12
and 13 show the results in terms of Top-1 error and execution time
latency for single (left) and half precision (right) using different
combinations of virtual window lengths 𝑘 , number of non-zeros
𝑣 to pick from those vectors and the percentage 𝑝 of the total
𝑛𝑛𝑧 elements assigned to a combination of 𝑘 and 𝑣 . For example,
𝑘8𝑣4𝑝30 + 𝑘4𝑣2𝑝70 uses a sparse matrix where 30% of the 𝑛𝑛𝑧 el-
ements were selected from the virtual column-vectors of size 8
that contain the largest 4-elements sum (absolute value) while the
other 70% were selected from those virtual column-vectors of size
4 with the largest 2-element sum. Recall that the 𝑣 elements are
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Figure 12: Accuracy and Latency on ResNet-20 at 90% of sparsity

Figure 13: Accuracy and Latency on ResNet-50 at 90% of sparsity

chosen with no location constraints within a virtual window of 𝑘
consecutive elements. Vectors of size 𝑘 are aligned and not over-
lapped. Original column-vector pruning (cvp) with vector lengths
𝑣 = 2, 4 and 8 and fine-grained pruning using the level-pruning
(lp) algorithm (magnitude pruning variant) are also represented in
these figures. Models have been pruned to a 90% of sparsity.

The ad-colPruner configurations follows the [7] heuristic that
achieves SOTA performance using magnitude pruning. Thus, ad-
colPruner also leaves the first convolutional layer fully dense and
restricts the final fully connected layer sparsity. We have verified
that [7] approach offers an effective solution for group-level pruning
and can preserve an almost homogeneous sparsity level across the
remaining layers.

The results show that our balanced pruning proposal can increase
the design space of existing pruning techniques: both for ResNet-
20 and ResNet-50, the newly proposed combinations (in red) are
able to fill the intermediate points in the accuracy-to-performance
map, providing intermediate solutions to achieve more balanced
alternatives. Moreover, what is even more relevant, some hybrid
configurations are able to not only reduce the Top-1 error with
respect to cvp, but also to reduce the execution time. This happens,
for example, in the 𝑘8𝑣4𝑝100 configuration compared to 𝑐𝑣𝑝_𝑣2:
while for single precision 𝑘8𝑣4𝑝100 achieves better accuracy in the
two considered models with a similar execution latency, for half
precision the execution time performance is even better than using
𝑐𝑣𝑝_𝑣2, specially in ResNet-20. The general conclusions are:
• Using a pruning-unaware SpMM implementation and transfer-
ring our hardware knowledge to the pruning phase can meaning-
fully improve performance and give more flexibility on weight
selection than using a custom implementation.
• When a warp processes a subset of 4 consecutive rows (a quarter-
warp per row), and 𝑣 < 4 is considered, non-zero elements do not
need to be in contiguous positions, since this will not enhance
data locality within that scope. The important point is having

Figure 14: ad-colPruner sparsity sensitivity on performance

the maximum possible number of non-zero elements per column
within that subset of 4 consecutive rows, independently of their
row position (GMEM instructions count reduction).
• Not selecting weights as described in the previous point would
lead to extra intra-warp load imbalance, since central rows will
tend to accumulate more non-zero elements.
• The same idea can be applied to 𝑘 = 8 with 𝑣 < 𝑘 since two
consecutive thread-blocks will share the same SM and hence,
the same L1 cache.
• A large 𝑘 with a small 𝑣 gives more flexibility on weight se-
lection, sacrificing performance. A 𝑣 close to 𝑘 yields a better
performance since data locality and load balance will improve.

8.2.1 Discussion. We discuss here the sparsity and pruning sen-
sitivity of our approach. The sparsity sensitivity of ad-colPruner
was analyzed by modifying the sparsity level and the previously
described pruning configurations. Observing the general trend as
sparsity increases, we found that the trade-off between accuracy
and performance obtained with our approach can be even better
for other sparsity levels, including its ability to outperform some
column-vector configurations (such as cvp_v2) even in absolute
terms. As an example of this, Figure 14 shows the speedups ob-
tained w.r.t. cuBLAS for half-precision on ResNet-50. The accuracy
aspect is not either affected by the sparsity variation. The points
representing the performance-accuracy relationships can be more
closer or distanced depending on the sparsity. The lower the spar-
sity, the closer are the points corresponding to column-vector and
level-pruning configurations, and viceversa. This means that high
sparsity levels widen the design space, which can be an interesting
property. Thus, we conclude that our method is not only robust
to sparsity variability, but it can also increase further the design
space and improve the column-vector pruning performance on
more flexible weight selection policies.

Regarding the impact of varying the pruning method, we found
that while magnitude-pruning and its variants can generate almost
constant sparsity levels for each layer with excellent performance-
accuracy tradeoffs, other techniques like variational dropout lead
to layers with a big sparsity variability (values between 0 to 100%)
that, on average, fulfill the target sparsity, which can degrade the
final performance. Thus, considering these results and the already
demonstrated ability of magnitude pruning to achieve the same
accuracy versus sparsity trade-off on ResNet-50 and Transformer
architectures [7], we finally chose this method.
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9 CONCLUSIONS
This work tested the idea of how tuning a hardware-aware prun-
ing technique can raise generic SOTA SpMM implementations’
performance for DL workloads. We experimentally proved this hy-
pothesis through exhaustive benchmarking, also identifying the
hardware causes that explain the performance fluctuations. This
combination of experimentation and hardware behavior analysis
certifies the robustness of our conclusions. The results show how
hardware-optimized sparse matrices can lead existing pruning-
unaware implementations to be up to 49% (for half precision) and
77% (single) faster without modifying their implementation. We
have also presented a new Ampere-ready SpMM kernel based on
the column-vector format that achieves up to 2.42𝑥 speedup over
cuBlas in half precision. Finally, we propose a novel hardware-aware
pruning technique, ad-colPruner, that balances performance and
accuracy. It enables hybrid configurations that are more accurate
and faster than the original column-vector-based sparse matrices.
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