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A B S T R A C T

This paper presents a methodology to optimize the cable system in cable-stayed bridges, whose main novelty is
to take into account the accidental breakage of one cable within the design process. To this end, a multi-model
optimization strategy is proposed by establishing design constraints on both the intact and damaged models.
The dynamic effect of cable breakage is accounted for in the damaged models by the application of impact
loads at the tower and deck anchorages. The objective function is to minimize the steel volume in the cable
system by varying the cable anchor positions on the deck, the number of cables, the cross sectional areas
and prestressing forces. This approach is applied to the Queensferry Crossing Bridge, the longest three-tower
cable-stayed bridge in the world and also the largest with crossing cables in the central spans. The fail-safe
optimization of the cable system leads to a different layout than the optimum design without considering cable
breakage, with more cables and smaller areas, having a minimum penalty in steel volume.
. Introduction

Cable-stayed bridges have earned a reputation in the civil engineer-
ng field for their elegance and ability to span long distances. As a
esult, the development of optimization techniques applied to these
tructures has gained prominence in the research community. While
here are several papers focused on optimizing the shape or thicknesses
f the deck as well as the cable area and prestressing forces [1–8], other
esearchers have concentrated their efforts on minimizing the weight
nd arrangement of the cable system. The reason is that a reduction in
he steel volume of the cable system can lead to considerable savings,
ince it represents approximately 10% of the total cost of the bridge,
s presented by Sun et al. [9]. In this sense, the determination of the
ptimum distribution of cable forces has been thoroughly studied [10–
1]. Among these works, Baldomir et al. [15,19] obtained the cable
reas for long span bridges by minimizing the volume of cables through
gradient-based optimization algorithm considering fixed anchor po-

itions. Later, Cid et al. [22] proposed a methodology to define the
ptimum cable system in multi-span cable-stayed bridges, allowing
rossed cables in the main spans, different number of cables at each
ide of the towers and different cable areas. A comprehensive summary
f the state of the art in cable-stayed bridge optimization was presented
y Martins et al. [23] through an extensive literature survey, where 90
rticles were chosen for a detailed review.

Recently, several accidents have occurred associated with a cable
upture, such as the Morandi Bridge [24], [25] or the Nanfang’ao
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Bridge [26]. In both cases, the broken cables were badly damaged due
to corrosion in the moment of the collapse, which could indicate that
it was the cause of the accident. However, in none of these references
it is explicitly stated that corrosion was the cause of the collapse.
Nowadays, codes and regulations state that bridges must be safe against
accidental failure, since structural damage may lead to a catastrophic
event. In this sense, the Post-Tensioning Institute (PTI) [27] specifies
that ‘‘cable-stayed bridges shall be capable of withstanding the loss of any
one cable without the occurrence of structural instability’’. Most countries
have included these recommendations for the design of cable-stayed
bridges in their respective regulations. This is the case of the Rego das
Lamas Viaduct (Spain), Taney Bridge (Ireland) and Champlain Bridge
(Canada). For instance, as stated in the documentary A Giant On The
River [28] ‘‘the Champlain Bridge was designed for the loss of up to three
stays, simultaneously or consecutively, at any point in the structure [...].
The bridge may not be in sufficiently good condition to permit its use, but the
bridge will withstand and can be repaired’’. A design capable of sustaining
possible damage is referred to in the literature as a fail-safe design.

Safe-life, fail-safety and damage tolerance are design philosophies
that emerged in the aerospace engineering field, aiming for aircraft
safety and reliability [29]. In particular, fail-safety aims to design
aircraft in which significant structural damage can appear during flight
without incurring in a catastrophic event. It is defined in the AC 25.571-
1D [30] as ‘‘the attribute of the structure that permits it to retain its required
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residual strength for a period of unrepaired used after the failure or partial
failure of a principal structural element ’’. The general requirement is that
the remaining structure is able to sustain limit loads after failure of any
principal structural element, regardless of the source of origin, such as
fatigue, cracking, corrosion, accidental damage, manufacturing defects,
environmental conditions, and discrete events, such as collisions. In this
work, we apply this concept to the civil engineering field, to refer to
a bridge design capable of sustaining possible damage. The design that
takes this into account is considered to be fail-safe if the remaining
structure was conceived to withstand such damage, thus ensuring
an adequate redistribution of internal forces. This design philosophy
inevitably leads to an increase in structural weight with respect to the
conventional design, which will be referred to as penalty weight in this
work.

In this regard, two important issues must be taken into account:
(1) when designing a fail-safe structure, there is usually a tendency
to oversize the final solution, and (2) the aforementioned optimization
strategies for cable-stayed bridges do not currently include this design
philosophy in their formulation. Thus, finding an improved cable ar-
rangement that can withstand this accidental situation could result in
significant cost savings. In this context, the idea of this research was
born, which aims to answer the following question: Is there an optimum
cable arrangement that could resist the breakage of one cable?

The breakage of a cable produces a dynamic effect that cannot
be disregarded in the structural response of the bridge. Therefore, a
nonlinear dynamic analysis would be necessary to accurately capture
the effect of the cable breakage. However, current guidelines and codes
propose a simplification to obtain an approximation of the dynamic
response by means of a quasi-static analysis. This requires knowing
the force on the cable before breakage and applying that force on the
deck and tower multiplied by a dynamic amplification factor (DAF).
In this quasi-static analysis, the DAF value is the same for each cable,
so the fluctuation of the DAF is not taken into account. In this regard,
several authors have conducted comprehensive studies to determine the
most adequate value for the DAF. Zoli and Woodward [31] analyzed a
tied arch bridge subjected to the loss of a cable and found DAF values
between 0.5 and 0.81 for tie girder and arch rib peak stress. Starossek
and Wolff [32,33] studied the dynamic response of a two-tower cable-
stayed bridge with fan distribution in case of a cable breakage. They
found that the DAF strongly depends on the location and type of the
cable breakage, as well as the response considered (deflections, bending
moments, etc.). They concluded that a conservative value of 2.0 can
be used to determine axial forces in cables and bending moments
in the deck. However, bending moments in the pylons can produce
significantly higher DAFs, so a dynamic analysis should be performed
for this case. Cai et al. [34] supported the use of conservative DAF of
2.0 although in this study only deck displacements and cable forces
were considered. On the other hand, other authors [35–38] concluded
that a DAF higher than 2.0 can be reached in some cases.

To answer the above question, it will be necessary to apply a fail-
safe optimization methodology. In that regard, several investigations
were carried out in recent years, which can be classified into fail-safe
topology and fail-safe size optimization. Fail-safe topology optimization
pursues to minimize the compliance of a conceptual design that can
sustain damage. It has an enormous potential in early stages of the
design process of a structure. Some researchers have analyzed the local
failure for truss structures, where the local failure can be modeled
straightforwardly by removing one bar from the truss, since a clear def-
inition of a structural member exists [39–41]. Another research line is
focused on the fail-safe topology optimization of continuum structures.
In this case, the first limitation is the absence of discrete structural
elements to be eliminated, as members emerge after performing the
optimization process. Thus, damage scenarios are defined in the design
domain by eliminating areas or patches of a given size [42–50]. In
general, this approach leads to conceptual designs that must be defined
2

in detail in later design phases. It is at this point that size optimization t
methods gain prominence since they allow minimizing the weight of
the structure by determining the mechanical properties of its compo-
nents. In this case, the topology is not modified, i.e. the connectivity
of the elements remains unchanged. What is done is to reinforce the
original structure without incorporating additional structural elements.
First works in fail-safe size optimization of structures were applied to
bar structures [51–54]. Fail-safe size optimization was firstly applied
to shell structures by Baldomir et al. [55]. Other relevant works can be
found in Refs. [56–62].

This paper presents for the first time a strategy to minimize the
weight of cables in cable-stayed bridges considering the dynamic effect
of the breakage of any of its cables. As a result the bridge must
withstand the loss of any cable without compromising its structural
integrity.

The remainder of the paper is organized as follows: Section 2.1
summarizes the general formulation of the fail-safe optimization, and
Section 2.2 introduces the simplified approach to represent the cable
loss. Then, Section 3.1 presents the FEM used in this research and
Section 3.2 formulates the fail-safe optimization of the cable system
under cable breakage, providing a detailed description of the method.
Section 4 applies the proposed methodology to the Queensferry Cross-
ing bridge, analyzes the optimum cable arrangement and compares it
with the optimum solution without considering a sudden cable loss.
Finally, Section 5 offers concluding remarks.

2. Background

2.1. General approach for fail-safe optimization

A general methodology for fail-safe optimization was presented by
Baldomir et al. [55]. In that work, a generic FEM and 𝐷 damaged
configurations of the structure were defined, as shown in Fig. 1. An
identifier code 𝑀𝑖 is assigned to each model, where 𝑖 = 0 corresponds
o the intact model and 𝑖 = 1, 2,… , 𝐷 are the damaged configurations.
he vector of design variables is denoted by 𝐱, taking the same value

n each configuration. In other words, the intact and damaged configu-
ations 𝑀𝑖 (𝑖 = 1,… , 𝐷) have the same assignment of design variables.
herefore, when a design variable of the intact model is modified by
he optimization algorithm, the same modification is done in the dam-
ged configurations. The main idea is to include into the optimization
roblem a set of design constraints from both the intact and damaged
odels. The solution to this problem provides an optimum design that

atisfies the constraints in the intact and the entire set of damaged
odels simultaneously with a minimum penalty weight.

The general formulation of the fail-safe optimization problem is
xpressed in Eq. (1), where 𝐹 is the function to be minimized, 𝐱 is the
ector of design variables, 𝑔𝑀𝑖

𝑗 ≤ 0 refers to the 𝑗th constraint in the
odel 𝑀𝑖 and 𝑚𝑀𝑖 corresponds to the number of constraints applied to
𝑖.

min 𝐹 (𝐱) (1a)

. t. 𝑔𝑀𝑖
𝑗 (𝐱) ⩽ 0 𝑗 = 1,… , 𝑚𝑀𝑖 (1b)

𝑖 = 0,… , 𝐷

.2. Cable breakage

The structural response of a cable-stayed bridge due to the sudden
oss of a cable can be calculated either by a non-linear dynamic analysis
r by a quasi-static approach. The latter takes into account the dynamic
ffects by a Dynamic Amplification Factor (DAF), which is defined as
he dimensionless ratio between the dynamic response and the static
esponse [63]. Therefore, the cable breakage can be represented in a
implified manner by the static force of the broken cable (𝐹 ) applied

o the deck and tower multiplied by the DAF, as shown in Fig. 2.
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Fig. 1. General definition of the intact model and damaged configurations [55].
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Fig. 2. Impact loads due to the loss of a cable.

Due to its simplicity, the existing codes and guidelines have adopted
his quasi-static approach in the design of bridges. Among them, the
ost-Tensioning Institute (PTI) [27] establishes the load combination
o be used in case of accidental cable rupture as well as a DAF equal
o 2.0 to represent the cable loss. This value is assumed to be constant,
hich according to the state-of-the-art is conservative in most cases.

.1 ⋅𝐷𝐶 + 1.35 ⋅𝐷𝑊 + 0.75 ⋅ 𝐿𝐿 + 1.1 ⋅ 𝑃𝑆 + 1.1 ⋅𝐷𝐴𝐹 ⋅ 𝐹
⏟⏞⏞⏟⏞⏞⏟

𝐶𝐿𝐷𝐹

(2)

here 𝐷𝐶 represents the dead load of structural components and non-
tructural attachments, 𝐷𝑊 is the dead load of wearing surfaces and
tilities, 𝐿𝐿 the vehicular live load, 𝑃𝑆 the prestressing forces of cables
nd 𝐶𝐿𝐷𝐹 the equivalent static force due to a cable loss. This load
ombination has been used in this work to simulate the cable loss.

. Methodology

.1. Bridge and cable system description

A generic three tower cable-stayed bridge with crossing cables
n main spans has been adopted as base model for the formulation
f the fail-safe optimization problem. The bridge geometry and the
omenclature used are shown in Figs. 3 and 4. This model was de-
eloped in a previous work [22] whose aim was to find the optimum
able system that minimizes the steel volume, considering as design
ariables the cable anchor positions on the deck, cross-sectional areas
nd prestressing forces.

As can be seen in Fig. 4, the half of the bridge was divided into
our regions: side span, main span tower 1, main span crossing zone,
nd main span tower 2, where the number of cables in each region
an take any value within the interval between square brackets. The
umber of cables in the half-length of the bridge is represented by 𝑁𝐶 ,
hich corresponds to the sum of cables in the side span (𝑁𝑆 ) and cables

n the main span (𝑁𝑀 = 𝑁𝑀1 + 𝑁𝑀𝐶1 + 𝑁𝑀𝐶2 + 𝑁𝑀2). Therefore,
he total number of cables in the bridge is 𝑁𝑇 = 2 ⋅𝑁𝐶 . Cables in the
rossing zone are grouped by pairs, sharing the same anchor position
n the deck.

A generic 2D finite element model was defined by using the com-
ercial software Abaqus [64] through a Python script. The structural
3

analysis type adopted for the Abaqus FE model was nonlinear, with
large displacements (known as P-𝛥 effect) and considering cable sag
effect.

The connections between cables-deck and cables-tower were de-
signed as tie constraints. In this manner, the connections are indepen-
dent of the mesh, making it possible that each cable anchor position
on the deck can be considered as a design variable without having to
update node connectivities.

3.2. Fail-safe optimization applied to cable-stayed bridges

This section proposes a new methodology to obtain the optimum
cable system in cable-stayed bridges under cable breakage. This means
that any cable can suddenly break and none of the design constraints
will be violated. For this purpose, the fail-safe methodology described
in Section 2.1 is now applied to the work presented by Cid et al. [22],
taking into account the dynamic effect of cable breakage described in
Section 2.2. A total number of 𝐷 damaged configurations has been
defined as a result of the breakage of a single cable, as shown in Fig. 5.
Thus, the number of damaged configurations would be 𝐷 = 𝑁𝑇 .

The cable rupture has been modeled in the FEM by reducing its
tiffness to a low value (𝐸 = 1 MPa) and setting a zero density value

(𝜌 = 0 t/m3). In this way, the cable anchor nodes are maintained in
the model and the impact forces due to the sudden rupture of the
cable can be assigned more easily than removing the cable element.
As commented in Section 2.2, the structural response in the damaged
models must include the dynamic effect of cable breakage, which in
this case will be considered by a DAF of 2.0. To do so, the axial force
for each cable (𝑘) and load case (𝑙) without partial safety coefficients
have to be previously computed in the intact model, 𝐹𝑀0,𝑙

𝑐𝑎𝑏𝑙𝑒,𝑘. These
alues will be used to obtain the 𝐶𝐿𝐷𝐹 to be applied in damaged
onfigurations.

The optimization problem aim to find a configuration that mini-
izes the steel volume of the cable system subject to structural design

onstraints. The general formulation of the optimization problem is
xpressed in Eq. (3), being 𝑉 the volume of steel in the cable system.

min 𝑉 = 2 ⋅
𝑁𝐶
∑

𝑘=1

(

𝑥𝐴𝑘 ⋅ 𝐿𝑘
(

𝑥𝑃𝑘
))

(3a)

. t. 𝑔𝑀𝑖,𝑙
𝑗

(

𝑥𝑃𝑘 , 𝑥
𝐴
𝑘 , 𝑥

𝐹
𝑘
)

⩽ 0 𝑘 = 1,… , 𝑁𝐶 (3b)

𝑗 = 1,… , 𝑚𝑀𝑖

𝑖 = 0,… , 𝐷

The design variables are the cable anchor positions (𝑥𝑃𝑘 ), cross
sectional areas (𝑥𝐴𝑘 ), and prestressing forces (𝑥𝐹𝑘 ). 𝐿𝑘 is the total length
of the cable, which depends on the anchor position on the deck. The
constraints 𝑔𝑀𝑖

𝑗 refers to the 𝑗th design constraint of the configuration
𝑀𝑖. The total number of constraints in each configuration is expressed
by 𝑚𝑀𝑖 .

As each pair of cables in the crossing zone share the same anchor
position on the deck, their coordinates are represented by a single de-
sign variable. Therefore, the number of design variables related to the
cable anchor position corresponds to 𝑁 = 𝑁 −𝑁 . Consequently,
𝑃 𝐶 𝑀𝐶1
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Fig. 3. Geometry of the generic finite element model [22].
Fig. 4. Nomenclature used for the bridge model [22].
the total number of design variables is 𝑁𝐷𝑉 = 𝑁𝑃 +2𝑁𝐶 , grouped in a
vector 𝐱 as follows:

𝐱 = [ 𝑥1,… , 𝑥𝑁𝑃
⏟⏞⏞⏞⏟⏞⏞⏞⏟

Cable anchor Position (𝑥𝑃𝑘 )

, 𝑥𝑁𝑃 +1,… , 𝑥𝑁𝑃 +𝑁𝐶
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cable Area (𝑥𝐴𝑘 )

, 𝑥𝑁𝑃 +𝑁𝐶+1,… , 𝑥𝑁𝑃 +2⋅𝑁𝐶
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cable prestressing Force (𝑥𝐹𝑘 )

] (4)

As the objective is to find the optimum cable system, the number of
cables in each region of the deck should be a design variable, but they
have not been included in Eq. (4). The reason is that it would involve
discrete variables coexisting with continuous variables, and would have
to be solved with a Mixed-Integer Nonlinear Programming (MINLP)
algorithm. It has been shown that for a large number of variables,
these algorithms are not efficient and it is better to opt for a gradient
method. An indirect way to modify the number of cables into the
optimization process is to allow their area values to reach practically
zero values, which has been set to 10−6 m2 in this work. This approach
was successfully implemented in the previous work [22]. This approach
requires defining a sufficiently large initial number of cables. In this
way, the areas of the unnecessary cables will converge to negligible
values as the objective is to minimize their steel volume. This directly
influences the cost of the cable system, since apart from minimizing the
volume of material, the number of anchorages will also be reduced.

A MATLAB code was implemented to perform the optimization
process. Initially, the code defines the input data of the Python script,
which generates the 𝐷 + 1 finite elements models (mechanical prop-
erties, geometry, meshing and design variables), and the optimization
parameters. Then, the optimization is carried out using the Sequential
Quadratic Programming (SQP) algorithm implemented in the MATLAB
function fmincon. During the optimization process, the Python script
is externally run through the Abaqus software to obtain the structural
4

responses and evaluate the design constraints. The intact model has to
be analyzed first in order to obtain the internal forces of the cables
𝐹𝑀0,𝑙

cable,𝑘; 𝑘 = 1,… , 𝑁𝑇 . After the analysis of the intact model, the impact
forces can be computed and applied to the damaged models, which
are launched in parallel to evaluate their design constraints. After this
process, the optimum design is reached if all design constraints are
satisfied and the objective function converges. Otherwise, the design
variables x are updated by the algorithm and a new iteration starts. The
sensitivity analysis needed for this gradient-based optimization algo-
rithm was carried out using the finite difference method, by performing
a fully nonlinear analysis for each perturbation of design variables.
A flowchart of the methodology used for the fail-safe optimization is
shown in Fig. 6.

As mentioned earlier, a lower bound for the cross-sectional area
equal to 10−6 m2 was set in order to avoid the use of discrete design
variables. Although mathematically the final design would be feasible,
from an engineering point of view, the cross-sectional area of some
cables may be so low that their manufacture would not be feasible.
Therefore, a limit must be established at which the cross-sectional area
is considered workable (𝑙𝑏𝑊 ). After the optimization process, a new
analysis of all configurations removing the cables whose areas are lower
than 𝑙𝑏𝑊 must be done in order to recheck the design constraints.

4. Application example: The Queensferry Crossing bridge

The fail-safe optimization strategy described in Section 3.2 is ap-
plied to the cable-stayed part of the Queensferry Crossing bridge,
also known as Forth Replacement Crossing. The bridge, with a total
length of 2.64 km, is the longest three-tower cable-stayed bridge in
the world and also the largest one that features crossed cables in the
mid-spans. The cable-stayed part comprises three reinforced concrete

towers around 200 m high and a multi-cell steel box girder deck 1950 m
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Fig. 5. Intact and damaged configurations in a generic cable-stayed bridge.

Fig. 6. Flowchart of the optimization problem.
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Fig. 7. Geometry of the generic finite element model [22].
Table 1
Distribution of cable pairs along the bridge.
𝑁𝐶 Side span (𝑁𝑆 ) Main span (𝑁𝑀 )

𝑁𝑀1 𝑁𝑀𝐶1 𝑁𝑀𝐶2 𝑁𝑀2

72 24 14 10 10 14

long, being the latter composed of a back span of 221 m and one
approach viaduct of 104 m. Twenty-four pairs of cables extend from
each side of the tower heads to their anchorage on the deck. The cable
pairs are spaced about five meters apart in the transverse direction and
anchored on the deck with a longitudinal spacing of 16.2 m, resulting
in 144 pairs of stays. At mid-span, the cables overlap by a length of
𝐿𝑀𝐶 = 146 m, which provides longitudinal stability to the central tower
thus reducing the bending moments on the foundation of the tower
and deck deflections under asymmetrical live loads in the main spans.
According to the notation used in Section 3.1, the number of cable pairs
in each deck region is listed in Table 1.

As commented before, this work uses the FEM of the Queensferry
Crossing Bridge developed by Cid et al. [22]. The geometry definition
of the FEM with the cable arrangement of the current bridge is shown
in Fig. 7. As the FEM used is 2D, the cables of the model represent the
two cable planes of the real bridge. Thus, the breakage of one cable
in the model represents the breakage of a pair of cables of the real
bridge. Since the cables are anchored in the center of the deck, the
effect of the torsion generated by the breakage of a single cable is of
minor relevance. However, in bridges with cables externally anchored
to the deck, torsional effects are significant [65], and a 3D model is
needed to consider them in the optimization problem.

The length of the crossing zone (𝐿𝑀𝐶 ) was set to 640 m, as the
results presented in Ref. [22] show that longer crossing lengths reduce
the weight of the cable system. The FEM was modeled in Abaqus using
beam elements (B21) for the deck, towers and cables. The mesh size of
deck elements was 2 m, while cables were discretized into 12 elements
with a low value of bending stiffness and a density value of 7.85 t/m3

to simulate the cable behavior. Cross-section of the deck and towers
are shown in Figs. 8 and 9, respectively. The box girder deck section is
41.6 m wide and 4.8 m deep. The dimensions of the tower vary linearly
between the sections at the base (C–C), at the deck level (B–B) and at
the top of the tower (A–A). As a result, the towers were defined through
beam elements of 2 m length with variable section. For that purpose,
the Python script that generates the FEM computes the cross-section
properties each 2 m and the corresponding variable cross-section is
assigned to each beam element. The main mechanical and material
properties are summarized in Table 2. The material used for deck and
cables is steel with 𝐸 = 200 GPa and 𝜈 = 0.3, while for the towers has
been concrete with 𝐸 = 35 GPa and 𝜈 = 0.2.

The loads considered are the dead load (𝐷𝐿), live load (𝐿𝐿), cable
prestressing forces (𝑃𝑆) and cable loss dynamic forces (𝐶𝐿𝐷𝐹 ), the
latter only applied in the damaged configurations. The 𝐷𝐿 and 𝐿𝐿
were defined as uniform loads applied on the deck with the values
of 200 kN/m and 102.5 kN/m, respectively. However, in order to
apply the load combination stated by the PTI in Eq. (2), the 𝐷𝐿 was
defined as a combination of the dead load of structural components
6

Table 2
Mechanical properties of the bridge model.

Tower top Tower deck Tower base Cables Deck
(A–A) height (B–B) (C–C)

𝐴 (m2) 22.1 32.81 56.65 Design variable 2.00
𝐼𝑧 (m4) 118.83 411.61 1658.71 – 200.00
𝐼𝑦 (m4) 57.91 193.21 1386.67 – 7.60

Fig. 8. Cross section of the deck. Units in meters [22].

Fig. 9. Cross section of the towers. The local 𝑦-axis corresponds to the global
longitudinal axis of the bridge. Units in meters [22].

(𝐷𝐶) and the dead load of non-structural components (𝐷𝑊 ). So, the
𝐷𝐶 and 𝐷𝑊 were defined as the 73% and 27% of the 𝐷𝐿, respectively,
following the same distribution as in Messina Bridge project [66]. The
𝑃𝑆, which are the design variables 𝑥𝐹𝑘 , are modeled as negative thermal
loads (𝛥𝑇cable,𝑘) as indicated in Eq. (5). Finally, the 𝐶𝐿𝐷𝐹 depends
on the static forces of the cables, so their values also vary during the
optimization process.

𝑥𝐹𝑘 = 𝛼 ⋅ 𝛥𝑇cable,𝑘 ⋅ 𝐸cable ⋅ 𝑥
𝐴
𝑘 with 𝛼 = 1 ⋅ 10−5

◦
C−1 (5)

Five load cases combining the dead load and live loads located
at different sections of the bridge were considered in the previous
work [22]. Among them, the load case with live loads applied on
alternate spans proved to be the most critical one. Therefore, only this
combination will be used in this research.

Considering that any cable of the bridge can break, the number of
damaged configurations (𝐷) should be equal to the number of cables
of the bridge (𝑁𝑇 ). However, due to the symmetry with respect to the
central tower, the number of damaged configurations can be reduced
to 𝐷 = 𝑁 , considering the symmetrical load case and the breakage of
𝐶



Engineering Structures 279 (2023) 115557N. Soto et al.

t
b

l
d
c

L

I

L

L

s

i
s
r

Fig. 10. Distribution of dead load and live load.

he symmetrical cable. This strategy reduces the number of models to
e analyzed.

The set of load cases is presented in Eq. (6), according with the
oad combinations stated by the AASTHO [67] and PTI [27], and the
istribution of dead and live loads is shown in Fig. 10. The Load Case 0
orresponds to the self-weight. The live load (𝐿𝐿) is applied in alternate

spans in the Load Case 1 (𝐿𝐿1) and in the symmetrical spans in the
oad Case 2 (𝐿𝐿2). Fig. 11 shows a sketch of the nomenclature used.

ntact model ∶

Load Case 0 (𝑙 = 0) SLS ∶ 1.00 ⋅𝐷𝐶 + 1.00 ⋅𝐷𝑊 + 1.00 ⋅ 𝑃𝑆 (6a)

ULS ∶ 1.25 ⋅𝐷𝐶 + 1.50 ⋅𝐷𝑊 + 1.25 ⋅ 𝑃𝑆 (6b)
oad Case 1 (𝑙 = 1) SLS ∶ 1.00 ⋅𝐷𝐶 + 1.00 ⋅𝐷𝑊 + 1.00 ⋅ 𝐿𝐿1 + 1.00 ⋅ 𝑃𝑆

(6c)
ULS ∶ 1.25 ⋅𝐷𝐶 + 1.50 ⋅𝐷𝑊 + 1.75 ⋅ 𝐿𝐿1 + 1.25 ⋅ 𝑃𝑆

(6d)
Damaged models ∶

Load Case 0 (𝑙 = 0) EELS ∶ 1.10 ⋅𝐷𝐶 + 1.35 ⋅𝐷𝑊 + 1.10 ⋅ 𝑃𝑆 + 1.10 ⋅ 𝐶𝐿𝐷𝐹
(6e)

oad Case 1 (𝑙 = 1) EELS ∶ 1.10 ⋅𝐷𝐶 + 1.35 ⋅𝐷𝑊 + 0.75 ⋅ 𝐿𝐿1

+ 1.10 ⋅ 𝑃𝑆 + 1.10 ⋅ 𝐶𝐿𝐷𝐹 (6f)
Load Case 2 (𝑙 = 2) EELS ∶ 1.10 ⋅𝐷𝐶 + 1.35 ⋅𝐷𝑊 + 0.75 ⋅ 𝐿𝐿2

+ 1.10 ⋅ 𝑃𝑆 + 1.10 ⋅ 𝐶𝐿𝐷𝐹 (6g)

According to design regulations, displacements must be evaluated
in the Serviceability Limit State (SLS), i.e., only in the intact model
(Eqs. (6a) and (6c)). On the other hand, cables and deck stresses have to
be evaluated in Ultimate Limit State (ULS) for the intact configuration
(Eqs. (6b) and (6d)) and in Extreme Event Limit State (EELS) for
damaged configurations (Eqs. (6e)–(6g)). Nevertheless, as the stress
constraints in the deck and cables are more unfavorable when the
𝐿𝐿 acts, it is enough to establish stress design constraints only in the
Load Case 1 and 2. Therefore, the load combinations considered in this
research are defined in Eqs. (6a), (6c), (6d), (6f) and (6g).

First, the optimization of the intact model was performed to com-
pare the results with those obtained in the previous work [22]. This
step was necessary since different regulations were considered for the
application of the load cases. The steel volume of the cable system was
636.35 m3, only 0.3% higher than the one obtained in the previous
work (634.15 m3). Fig. 12 shows the cable arrangement with the cross-
sectional area values obtained, which is almost identical to the design
found in the previous work. The final number of cables remaining in
each span is summarized Table 3.

4.1. Formulation of the fail-safe optimization problem

The general methodology described in Section 3.2 to obtain the
fail-safe optimum design under cable breakage is particularized for
7

Table 3
Optimum number of cables without considering cable breakage (intact model
optimization).
𝑁𝐶 Side span (𝑁𝑆 ) Main span (𝑁𝑀 )

𝑁𝑀1 𝑁𝑀𝐶1 𝑁𝑀𝐶2 𝑁𝑀2

22 6 0 7 9 0

this example. The formulation of the fail-safe optimization problem is
presented below:

min 𝑉 = 2 ⋅
𝑁𝐶
∑

𝑘=1

(

𝑥𝐴𝑘 ⋅ 𝐿𝑘
(

𝑥𝑃𝑘
)

)

(7a)
. t.

|

|

|

𝑤𝑀0,𝑙

deck,𝑗
|

|

|

⩽ 𝑤𝑀0,𝑙
max 𝑗 = 1,… , 𝑁𝐷 𝑙 = 0, 1 (7b)

|

|

|

𝑢𝑀0,𝑙
tower, 𝑝

|

|

|

⩽ 𝑢𝑀0,𝑙
max 𝑝 = 1, 2, 3 𝑙 = 0, 1 (7c)

0 < 𝜎M𝑖,𝑙

cable,𝑘 ⩽ 𝜎cable,max 𝑘 = 1,… , 𝑁𝑇 ∕ 𝑘 ≠ 𝑖 𝑙 = 1, 2 (7d)
𝑖 = 0,… , 𝐷

𝜎C, deck ⩽ 𝜎𝑀𝑖,𝑙

top,deck, 𝑗 ⩽ 𝜎T, deck 𝑗 = 1,… , 𝐸𝐷 𝑙 = 1, 2 (7e)
𝑖 = 0,… , 𝐷

𝜎C, deck ⩽ 𝜎𝑀𝑖,𝑙

bottom,deck, 𝑗 ⩽ 𝜎T, deck 𝑗 = 1,… , 𝐸𝐷 𝑙 = 1, 2 (7f)
𝑖 = 0,… , 𝐷

|

|

𝑥𝑘+1 − 𝑥𝑘|| ⩾ 𝑑min 𝑘 = 1,… , 𝑁𝑃 − 1 (7g)

Eq. (7a) refers to the objective function to be minimized, which
s the volume of the cable system. From Eq. (7b) to Eq. (7f), the
uperscripts 𝑀𝑖 and 𝑙 refer to the configuration and the load case,
espectively, being 𝑀0 the intact model and 𝑀1,… ,𝑀𝐷 the damaged

models. In Eq. (7b), 𝑤𝑀0 ,𝑙
deck,𝑗 is the deflection of the node 𝑗 in the deck for

the load case 𝑙, 𝑤𝑀0,𝑙
max is the maximum allowable deflection in the deck,

which depends on the load case considered, and 𝑁𝐷 is the total number
of deck nodes in which the displacements are checked. In Eq. (7c)
𝑢𝑀0,𝑙

tower, 𝑝 is the horizontal displacement at the tower head 𝑝 and 𝑢𝑀0,𝑙
max

is the allowed limit value. As can be seen, displacement constraints are
only evaluated for the intact model in the Load Case 1 and not in the
Load Case 2, due to the symmetry of the structure. In Eq. (7d), 𝜎𝑀𝑖,𝑙

cable,𝑘 is
the tensile stress in cable 𝑘, 𝜎cablemax is the maximum allowable tensile
stress in cables and 𝑁𝑇 is the total number of cables. It should be noted
that the stress of the broken cable (𝑘 = 𝑖) is not taken into account.
In Eqs. (7e) and (7f), 𝜎𝑀𝑖,𝑙

bottom,deck,𝑗 and 𝜎𝑀𝑖,𝑙
top,deck, 𝑗 are the normal stresses

in the top and bottom fiber of the deck in 𝑗th element and 𝐸𝐷 is the
number of elements of the deck in which stresses are checked. 𝜎C, deck
and 𝜎T, deck are the limits for compression and tension in the deck.
Finally, in Eq. (7g) 𝑑min represents the minimum distance between the
anchor position of two consecutive cables.

Regarding to the side constraints of the design variables, the cable
anchor positions must be within the corresponding deck region, as
shown in Fig. 4. The lower bound of cable areas is 10−6 m2 and the
upper bound is 0.1 m2. A workable area limit, 𝑙𝑏𝑤 = 0.0025 m2,
was considered. The limits of each constraint type are summarized in
Table 4, being 𝐿𝑆 = 325 m, 𝐿𝑀 = 650 m and 𝐻𝑇 = 200 m. An ultimate
tensile strength for the cables of 𝑓𝑢 = 1860 MPa was adopted, as stated
by the PTI [27]. Regarding to stresses in the deck, a more restrictive
compression limit (200 MPa) than the tensile limit (300 MPa) was
imposed to prevent buckling in a simplified manner. The minimum
distance between two consecutive cables was set to 5 m.

Deck vertical displacements are evaluated every four nodes of the
FEM, which corresponds to each eight meters (𝑁𝐷 = 243). Deck stresses
are also computed every four elements (𝐸𝐷 = 242). However, to reduce
the number of constraints, the deck has been divided into 16 regions
along its length and the maximum and minimum stresses for each
region are used to evaluate the design constraints. Fig. 13 shows a

scheme of the regions considered.
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Fig. 11. Strategy to reduce the number of damaged models to be analyzed (𝑁𝐶 models and two 𝐿𝐶 instead of 𝑁𝑇 models and one 𝐿𝐶).

Fig. 12. Optimum cable layout and cross-sectional areas without considering cable breakage (intact model optimization).

Fig. 13. Regions considered to evaluate stress constraints of stress on the deck.
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Fig. 14. Cable arrangement of the three initial design cases.
Table 4
Limit values for the structural responses.

(a) Displacements on deck and towers

Side span Main span

𝑤𝑀0,0
max (m) 𝑤𝑀0,1

max (m) 𝑤𝑀0,0
max (m) 𝑤𝑀0,1

max (m) 𝑢𝑀0,0
max (m) 𝑢𝑀0,1

max (m)

𝐿𝑆∕7500 𝐿𝑆∕500 𝐿𝑀∕7500 𝐿𝑆∕500 𝐻𝑇 ∕7500 𝐻𝑇 ∕500

(b) Stresses in cables and deck, and minimum gap between cables

𝜎cable,max (MPa) 𝜎T,deck (MPa) 𝜎C,deck (MPa) 𝑑min (m)

0.45⋅𝑓𝑢 300 −200 5

Table 5
Number of cables in the three initial design cases.
𝑁𝐶 Side span (𝑁𝑆 ) Main span (𝑁𝑀 )

𝑁𝑀1 𝑁𝑀𝐶1 𝑁𝑀𝐶2 𝑁𝑀2

58 20 1 18 18 1

Before proceeding to the optimization process, three initial designs
ere defined using different cable anchor positions, areas and prestress-

ng forces. In all of them, an initial number of cables 𝑁𝐶 = 58 were
set, distributed as indicated in Table 5. The first initial design (Case
I) corresponds to the result of the optimization of the intact model
done by Cid et al. [22]. In the second initial design (Case II) cables
are equally spaced along each span. Finally, Case III is similar to Case
II, but cables are more concentrated in the center of each span. The
layout of each case is shown in Fig. 14, where cables represented by
dashed lines have areas below the 𝑙𝑏𝑤.

4.2. Numerical results of the fail-safe optimization

This section presents the optimization results for the three initial
designs described above. Fig. 15 shows the final cable arrangements as
well as the cable area distribution, and Fig. 16 shows the evolution of
the objective function. At first glance, it can be seen that the optimum
cable layout solution is similar for the three optimization cases.

The final steel volume of the cable system is summarized in Table 6,
where the number in brackets represents the volume increment with
9

respect to the solution without considering cable breakage (636.25
Table 6
Optimum volume of the fail-safe design.

Case I Case II Case III

Fail-safe optimization 719.76 720.03 771.97
(+13.11%) (+13.15%) (+21.31%)

Table 7
Final number of cables at the fail-safe optimum design in the half length of the
Queensferry Crossing.

Case 𝑁𝐶 Side span (𝑁𝑆 ) Main span (𝑁𝑀 )

𝑁𝑀1 𝑁𝑀𝐶1 𝑁𝑀𝐶2 𝑁𝑀2

I 36 (+14) 14 (+8) 0 9 (+2) 12 (+3) 1 (+1)
II 36 (+14) 14 (+8) 0 9 (+2) 12 (+3) 1 (+1)
III 37 (+15) 14 (+8) 0 12 (+5) 10 (+1) 1 (+1)

m3). Cases I and II result in 719.76 m3 and 720.03 m3, respectively.
This implies a penalty in the steel volume of approximately 13% when
considering the cable breakage in the optimization process. On the
other hand, Case III leads to a slightly heavier result than in the two
previous cases, increasing the penalty up to 20%.

Table 7 summarizes the number of cables obtained for the three
optimization cases and each deck region. The number in brackets indi-
cates the increase with respect to the optimum design without taking
into account a cable breakage scenario. Cases I and II converge to
𝑁𝐶 = 36, while Case III leads to 𝑁𝐶 = 37. This means an increase of 14,
14 and 15 cables, respectively. From these results it can be drawn that,
despite of minimizing only the volume of steel, a reduction in the total
cost of the cable system has been indirectly achieved. This happens
because during the optimization process, it is more advantageous to
slightly increase the area of the existing cables than to add new ones,
which translates into savings associated with the number of cables, and
therefore savings in installation costs.

The number of active constraints are summarized in Table 8. From
the 21,779 design constraints, 227, 226, and 239 correspond to active
constraints in Cases I, II, and III, respectively. In addition, it can be seen
how most of them are cable stresses in the damaged models.

Since Case I provides the fail-safe design with the lowest volume,
the results for this case will be analyzed in more detail below. However,
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Fig. 15. Optimum cable area distribution for the fail-safe optimization.
Fig. 16. Evolution of the objective function for the fail-safe optimization.

Table 8
Number of active constraints.

Total number Active constraints

of constraints Case I Case II Case III

𝑀0 𝑀𝑖 𝑀0 𝑀𝑖 𝑀0 𝑀𝑖

𝑤deck 486 67 – 65 – 76 –
𝑢tower 6 1 – 1 – 1 –
𝜎cable 13456 8 123 8 123 13 111
𝜎deck 7488 1 24 1 25 2 24
Cable spacing 343 3 – 3 – 12 –
Total 21779 80 147 78 148 104 135

the conclusions drawn are broadly similar for the other two cases. First,
the cable arrangement of the intact model and fail-safe optimization are
shown together in Fig. 17. Analyzing both cable arrangements, it can
be observed that they follow a similar pattern, reminiscent the Ting
Kau bridge. The main feature of both cable layouts is the existence of
a group of cables of great length anchored to the central tower and
the deck near the side towers. In multi-span cable-stayed bridges, the
control the horizontal displacement in central tower head is crucial for
an adequate behavior of the structure.

The main difference between both designs lies in how the cable
areas are distributed. Without the requirement for cable breakage, the
10
design ensures compliance with the constraints by using fewer cables,
some of which reach the upper area limit (0.1 m2). However, in the
fail-safe design, the areas of these cables are distributed over more
cables with smaller areas to meet the design constraints associated
with damaged configurations. Fig. 18 presents three graphs showing the
cable anchorage positions, areas, and prestressing forces for the initial
and fail-safe optimum designs. It should be noted that these values are
represented only for the left half of the bridge, taking advantage of its
symmetry with respect to the central tower. The numerical values of
the design variables are also summarized in Table 9. It can be observed
that 22 cables have area values significantly below the workable area
limit, 𝑙𝑏𝑤 = 0.0025 m2, hence they are considering as non-existing
cables. Indeed, it is important to remark that 15 cables reached their
minimum area value of 10−6 m2. After the removal of these 22 cables
from the FEM, it was found that their contribution was negligible as the
active constraints remain unchanged. Thus, from a size optimization
approach, a structure with a different topology has been achieved,
since the number of cables has been reduced from 58 to 36 and their
anchorage position on the deck have also changed.

Analyzing Figs. 17 and 18, the areas of the cables in the lateral spans
can be divided into two distinct groups: cables located at 𝑥𝑃 =[50 m,
120 m] and cables located between 𝑥𝑃 =150 m and the first tower
location. In the first group, the cables have area values ranging from
0.04 m2 and 0.06 m2. Most of them are located around the intermediate
pier of the lateral span, which acts as a fixed anchorage point to control
the horizontal displacement of the tower head in the lateral towers. In
the second group, cable areas are reduced to values of around 0.015 m2,
being their main task to provide vertical support to the deck.

In the main spans, there is a group of 4 cables of great length and
similar areas around 0.04 m2. As explained before the main purpose is
to brace the central tower head. Analyzing the layout of the remaining
cables in the main spans, a fan-shaped distribution can be observed,
reminding the standard configuration of a cable-stayed bridge. The
areas of these cables grow from the towers towards the center of
the span, with areas between 0.02 m2 and 0.055 m2. Regarding the
prestressing forces, it can be seen that the cables with bigger area have
a higher prestressing force, with values between 15000 kN and 20000
kN. The cables of smaller area in the lateral spans reach prestressing
forces between 4000 kN and 8000 kN approximately.
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Fig. 17. Comparison of the optimum cable arrangement without (top) and with (bottom) fail-safe requirement under cable breakage.

Fig. 18. Initial and final values of the design variables for the Case I.
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Fig. 19. Active constraints of the most relevant configurations for the fail-safe optimization.
Fig. 20. Deformed shaped in 𝑀0 for the Load Case 1. Scale factor = 40.
Fig. 19 shows the active constraints for the most relevant configura-
tions. In the intact configuration, for LC0, there are active constraints of
vertical displacements in the deck in both main and lateral spans. Some
cable stress constraints are also active when LC1 is applied, as well as
the horizontal displacement of the central tower head. As can be seen in
12
Fig. 20, the live load produces a horizontal displacement of the central
tower towards the loaded span, thus reaching the displacement limit at
the tower head and at the same time, vertical displacements in the deck
are also active in the loaded span. In addition, stress constraint in cables
with highest horizontal component are also active. There is also a single
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Fig. 21. Deck stress distribution in the damaged configuration 𝑀29.
Table 9
Values of the design variables at the optimum solution.

Side span (𝑁𝑆 ) Main span tower 1 (𝑁𝑀1) Main span tower 2 (𝑁𝑀2)

𝑘 𝑥𝑃𝑘 (m) 𝑥𝐴𝑘 (m2) 𝑥𝐹𝑘 (kN) 𝑘 𝑥𝑃𝑘 (m) 𝑥𝐴𝑘 (m2) 𝑥𝐹𝑘 (kN) 𝑘 𝑥𝑃𝑘 (m) 𝑥𝐴𝑘 (m2) 𝑥𝐹𝑘 (kN)

1 0.11 10−6 0 21 329.90 10−6 0 40 970 0.0412 29913

2 16.38 10−6 0
3 33.02 10−6 0

4 54.95 0.0040 1456 Main span (𝑁𝑀𝐶1) Main span (𝑁𝑀𝐶2)

5 69.81 0.0422 16080 𝑘 𝑥𝑃𝑘 (m) 𝑥𝐴𝑘 (m2) 𝑥𝐹𝑘 (kN) 𝑘 𝑥𝑃𝑘 (m) 𝑥𝐴𝑘 (m2) 𝑥𝐹𝑘 (kN)

6 92.89 0.0507 18561 22 330.25 10−6 0 41 330.25 0.0406 19347
7 102.26 0.0581 20800 23 408.47 0.0229 7828 42 408.47 0.0409 18155
8 107.26 0.0616 22291 24 425.00 0.0231 5802 43 425.00 0.0411 18174
9 112.35 0.0614 21722 25 467.70 0.0307 8828 44 467.70 0.0418 17687

10 151.46 1.9 ⋅ 10−5 7 26 521.83 0.0326 6485 45 521.83 3 ⋅ 10−4 101
11 163.80 0.0032 1280 27 526.89 0.0331 6599 46 526.89 10−4 52
12 182.00 0.0137 6727 28 572.74 0.0424 9648 47 572.74 10−5 5
13 194.65 0.0142 7463 29 622.25 0.0551 18129 48 622.25 10−6 0
14 218.61 0.0138 6624 30 637.30 0.0519 20696 49 637.30 10−6 0
15 233.48 0.0130 6008 31 643.30 0.0484 19123 50 643.30 5 ⋅ 10−5 13
16 238.98 0.0131 6027 32 724.33 5 ⋅ 10−4 218 51 724.33 0.0514 17415
17 249.73 0.0122 5358 33 747.09 10−4 50 52 747.09 0.0540 14002
18 263.19 0.0079 3445 34 766.28 10−6 0 53 766.28 0.0563 19435
19 292.01 10−6 0 35 811.28 10−6 0 54 811.28 0.0479 14079
20 308.53 10−6 0 36 854.21 10−6 0 55 854.21 0.0447 14598

37 890.93 10−6 0 56 890.93 0.0427 15502
38 920.59 10−6 0 57 920.59 0.0324 14280
39 948.45 10−6 0 58 948.45 0.0208 14762
E
l
b
t
h

active stress constraint in the deck around the intermediate pier of the
lateral span. As for the damaged models, it can be observed that most
of the active constraints occur in the vicinity of the damaged cable. In
general, when a cable breaks in the lateral spans, stress constraints are
activated in adjacent cables of the same span, in some cases activating
up to eight cables simultaneously (𝑀9). In the main spans, the breakage
f one of the four longest cables activates the stress constraints on the
ther three (𝑀41). In addition, the breakage of a cable in the center
f the span anchored to tower 1 also triggers the activation of stress
onstraints of some cables in the side span (𝑀29). Regarding the deck
tress constraints in damaged models, they occur when cables break in
he main span. As an example, Fig. 21 shows the normal stresses in
he deck for the damaged configuration 𝑀29. As can be seen, at the
ocation of the rupture, tensile and compression limits are reached in
he bottom and upper fiber, respectively. This is due to the increase
f the span length and the impact force produced by the sudden cable
oss.

.3. Verification of tower strength

When solving the fail-safe optimization problem, no design con-
traints were set on the towers. They are key elements of a cable-stayed
ridge and it is necessary to verify that the new cable system design
uarantees their stability. The most unfavorable scenarios correspond
he breakage of the longest cables anchored at the central tower in the
13
ELS. The reason is that the breakage of one of these cables generates a
ateral impact load on the central tower head that causes a significant
ending moment in the tower. Among the possible damaged models,
he highest internal forces occurs on the central tower at the deck
eight for the model 𝑀41, being the axial force 𝑁𝐸𝑑,41 = −309.73 MN

and the bending moment 𝑀𝐸𝑑,41 = 1676.74 MNm. On the other hand,
the corresponding internal forces in the intact model for ULS are
𝑁𝐸𝑑,0 = −398.40 MN and 𝑀𝐸𝑑,0 = 1123.73 MNm. As can be seen, the
dynamic effect of the breakage of this cable introduces a significant
increase of the internal forces in the central tower.

The verification of the tower strength has been analyzed through
the axial-bending interaction diagram that has been computed using
the commercial software SAP2000. This software provides the N-M di-
agram of a reinforced concrete section according to current regulations.
A reinforcement of 690𝜙35 was considered for this section, according
to the available Refs. [68–71]. The interaction diagram was computed
according to the Eurocode 2 [72]. Fig. 22 shows the reinforcement
tower of the section and its interaction diagram . As can be seen, the
capacity of the tower section is sufficient to resist the loads reached in
the intact model (ULS) and the worst cable breakage scenario (EELS).

5. Conclusions

This research considers for the first time the optimization of the
cable system in cable-stayed bridges considering the sudden breakage
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Fig. 22. Tower section at the deck level (left) and N-M interaction diagram (right).
of any cable. This implies taking into account the dynamic effect of this
rupture in the optimization problem that aims to minimize the amount
of steel used in the cables.

For this purpose, a multi-model optimization problem is proposed
to handle simultaneously all possible damaged configurations with the
corresponding impact loads on the deck and towers. Deck deflection,
horizontal displacement at the tower heads as well as stress constraints
are considered in the deck and cables. A Matlab code was developed
to manage the FEM analyses performed by the Abaqus software and
formulate the optimization problem.

The FEM employed in the analyses depends on the transverse layout
of the cable system. When cables are externally attached to the deck,
a 3D FEM should be used to take into account the torsional effects of
a cable rupture. On the other hand, when cables are anchored at the
center of the deck this effect is negligible and a 2D can be used instead.

The methodology has been applied to the Queensferry Crossing
Bridge and the solution matches the initial expectations, as the op-
timum design leads to a layout with a higher number of cables and
smaller area. That is, when a cable breaks, two complementary situa-
tions occur: the dynamic effect of the rupture itself and the static effect
of increasing the span between two consecutive cables. Both effects are
mitigated by increasing the number of cables adjacent to the one that
breaks. Specifically, the optimum number of cables in the half of the
bridge increases from 22 to 36 when considering the possible sudden
loss of a cable with a weight increase of only 13.11%.

The solution converges to a design that has simultaneously active
constraints in both the intact and damaged configurations. The highest
number of constraints in the intact model corresponds to displacements
in the deck and tower heads, while in damaged models there are cables
with active stress constraints in the vicinity of the broken cable.

Regarding the cable layout, a group of long cables appears with
the purpose of bracing the central tower head. This arrangement is
observed in both designs, with and without considering cable break-
age. The remaining cables follow a distribution similar to that of a
traditional cable-stayed bridge, but with smaller cable spacing when
compared with the optimum arrangement without considering this fail-
safe requirement. This cable configuration is the result of posing a
general problem where each cable anchorage position is an indepen-
dent variable. Therefore, no pre-specified design pattern is forced and
the cable system is allowed to vary according to the stiffness ratio
between deck and tower.
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