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a b s t r a c t

In recent years, mainly due to the application of smartphones in this area, research in human activity
recognition (HAR) has shown a continuous and steady growth. Thanks to its wide range of sensors,
its size, its ease of use, its low price and its applicability in many other fields, it is a highly attractive
option for researchers. However, the vast majority of studies carried out so far focus on laboratory
settings, outside of a real-life environment. In this work, unlike in other papers, progress was sought
on the latter point. To do so, a dataset already published for this purpose was used. This dataset was
collected using the sensors of the smartphones of different individuals in their daily life, with almost
total freedom. To exploit these data, numerous experiments were carried out with various machine
learning techniques and each of them with different hyperparameters. These experiments proved that,
in this case, tree-based models, such as Random Forest, outperform the rest. The final result shows an
enormous improvement in the accuracy of the best model found to date for this purpose, from 74.39%
to 92.97%.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Having become a hot research topic in recent years, human
ctivity recognition (HAR) analyses series of sensor-collected data
o identify the actions taken by a person [1–3]. These sensors can
e used through wearable devices such as wristbands or, more
ecently, smartphones. Both cases offer a broad set of sensors that
an be used relatively easy, with excellent accuracy and a small
ize that favours its portability. In addition, this area has many
pplication possibilities in various fields such as health, fitness or
ven home automation [4–8]. All this, together with the recent
pplication of smartphones in HAR and its global use, make this
ield a highly attractive option for research [9,10].

There are several research challenges within this field. Firstly,
here is the challenge of correctly processing the vast amounts
f data that these devices collect, while controlling the tempo-
ality of such data. Also, although significant advances have been
ade [11,12], the relation between these data and most human
ovements is still not known precisely, making the task even
ore difficult. Besides, most of the studies carried out to date
ere done in a laboratory environment, with highly controlled
ovements and specific placements of the device that collects

he data [13,14]. That is interesting in order to see what the
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approximate relation between the information collected and the
action studied is. However, the excellent results seen in these
works may not be as good when they are applied outside that
highly-controlled environment. That is because, in a daily life
environment, people will use and carry the data collection device
differently, outside of what was previously examined. In this
way, the orientation and placement of the device could vary
greatly, even when performing the same action. Also, each person
may have many physical peculiarities that could considerably
influence the final result as well. In fact, the personalization of
AI models in HAR for large numbers of people is something that
it is being researched since almost a decade [15–18]. For these
reasons, the transfer of this knowledge to real-life remains to be
seen.

In this paper, looking to close the gap with the real-life ap-
plication, a dataset gathered for this purpose was used [19]. For
that goal, the dataset was collected using the sensors of several
individuals’ smartphones, with almost total freedom. In this way,
a comparative study between the last results obtained and the
current ones is presented. To do so, numerous machine learning
algorithms frequently used in HAR were implemented, in search
of the best combination between algorithm and hyperparameters.
In the same manner, a comparison of the results obtained by
using the data taken with all the sensors, as well as with the
absence of the gyroscope, is also presented to observe which case
behaves better. In this way, we will be able to get even closer to
that real-life ideal that is currently being pursued.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Thus, the main contributions of this paper are the following:

• A comparison of the main machine learning algorithms ap-
plied in the HAR field, using a dataset taken in a real-life
environment, unlike in other studies.

• The addition of the Extreme Gradient Boosting (XGB) algo-
rithm to the comparison, not very explored until today in
this knowledge area.

• A study of the best model configurations for long-themed
activities (such as driving or jogging), based on the indicated
dataset, with changes and additions to the last feature set
used.

• A review of the gyroscope’s real influence to the final results.
• The improvement of the current approaches in this field,

oriented towards real life.

The remaining sections of this paper are organized as follows:
Section 2 shows some related works on HAR, Section 3 gives
a thorough explanation of how the data was prepared, as well
as a brief description of every algorithm and metric used, Sec-
tion 4 presents and discuss the experimental results obtained
on the models we propose, and, finally, Section 5 contains the
onclusions and future work lines.

. Related work

Human activity recognition (HAR) has been studied exten-
ively in recent years and, over the last decade, the continuous
low of works has brought a steady pace of advances. Most
f these works were carried out using datasets such as those
rovided in [20,21], which are two of the most widely used
nes in HAR. Both datasets offer a large amount of information
bout different actions to be exploited, using smartphone sensors
uch as the accelerometer and the gyroscope. However, for both
ases, these data were taken in a laboratory environment. That
eans that the smartphone was placed in a particular position
nd the actions performed were highly controlled. An example
ould be [22], where a comparison is made between different
achine learning algorithms, namely, Convolutional Neural Net-
orks (CNN), Random Forest (RF), K-Nearest Neighbours (KNN)
nd also a feature selection method, Principal Component Anal-
sis (PCA). Among all of them, CNN was the best by far, for
hich they also contributed different architectures, with several
ombinations of hyperparameters and the result of each one of
hem. Besides, they also concluded that with rather large time
indows the results did not improve. Likewise, in [23], another
NN model was also proposed for this problem, with slightly
etter performance. Alternatively, other works such as [12] pro-
ided techniques based on deep learning, such as the Deep Belief
etwork (DBN). Here, after a feature selection process, they also
btain pretty good results, even better than those of the models
ased in the Support Vector Machine (SVM) algorithm, which
roved to be the best to use for the HAR problem. Conversely,
esearch was also done on the selection of features for different
achine learning algorithms widely used in HAR. The results of
orks such as [24,25] showed that the frequency-based param-
ters are more feasible since they were the ones that showed
etter results.
However, not all the work relied solely on the accelerometer

nd gyroscope for its research. Some studies such as [26,27] show
igh-grade results with the addition of other sensors such as the
PS or the magnetometer. In fact, in these works, they studied
ong-themed activities such as walking or jogging, which shows
he potential of these sensors for this type of actions. On the
ther hand, in [28], an online SVM model is proposed for nine
ifferent smartphone orientations, although all of them are based
n leaving the mobile phone in a backpack. They also made a
 o

2

omparison with other methods typically used in HAR, such as
NN, Decision Tree (DT) and Naïve Bayes (NB). All these methods,
ogether with other techniques such as SVM, CNN, Random Forest
RF) and Gradient Boosting (GB), proved to be fully valid in
AR for a reasonable amount of data. At the same time, it also
ndicates that the application of deep learning techniques could
e a very up-and-coming line of research for the HAR field, as
ome of the best results in practice seem to be obtained with this
ype of methods.

In the same vein, more recently, research in HAR is focusing
ore on the application of purely deep learning techniques. One
f the first works to apply these techniques was [29], in which
comparison of different architectures for a deep CNN model
ith other methods widely used in the literature, such as SVM or
ultilayer Perceptron (MLP), is presented. Moreover, currently,
esides the deep CNN models, much research is being done with
odels that implement the Long Short-term Memory (LSTM)

echnique. The main advantage that these implementations have
s that they can include information from the past in their train-
ng, as well as not needing a previous feature extraction period.
owever, as a disadvantage, they need a large amount of data
o obtain reliable results, as well as requiring an adequate stop
riterion to avoid overfitting and underfitting. Some examples
f the application of this technique are the works of [30,31],
n which excellent results were obtained. Specifically, in [30],
modification of this method was carried out, called Bi-LSTM

bidirectional LSTM), which also manages to learn from the fu-
ure, throwing accuracies of around 95%. On the other hand,
ther works have been in charge of comparing in depth the
wo most used deep learning methods, CNN and LSTM and their
ariants, in search of the most suitable model for HAR [32,33]. The
esults show that both techniques have very similar potentials
nd performances, being probably two of the best options to use
or short-themed activities such as sitting or standing. Nonethe-
ess, it seems that some studies suggest that the application of
NNs over LSTMs is favoured, due to its higher speed and its
traightforward application [34].
However, despite all the progress mentioned above, all the

orks share the same problem. That one is no other than the
ependency on precise use guidelines for the device to obtain
ood results. While there are some works such as [35,36] that
ave addressed this problem, they cannot be considered feasi-
le for real life. In these cases, they obtained good results by
ransforming the phone’s coordinate system to the Earth’s coor-
inate system. In addition, in the case of [35], different models
f smartphones were also used, without an apparent drop in the
ventual accuracy. In any case, when changing the orientation
f the smartphones, the final performance does decrease. Finally,
hey also do not address the problem of placing the smartphone
n different places, like a backpack, and not just in a trouser
ocket.
Nonetheless, a very recent work does address this problem

ightly [19]. There, a dataset focusing on the application of HAR
echniques in real life is presented, which will be used in this
aper as well. Also, they did a series of experiments with machine
earning techniques, but they are very elementary and could
e highly improved. Therefore, this work has as main aim to
dvance in the resolution of these problems of lack of realism
nd applicability in real life of all the models developed up to
ate in HAR. While it is true that the advances made so far
re very promising, if those advances were taken into a real-
ife environment, more than probably they would show a grave
etriment on their performance. Hence, with the development
f new models, comparing them to each other and building on
much more realistic dataset, it is hoped to surpass the results

btained so far in this transition to a more credible environment.
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Fig. 1. Examples of data taken by the accelerometer and gyroscope of a specific individual’s smartphone, during the first 15 seconds of each session, for each of the
pecified activities, being: (a) Raw data. (b) Data after having been preprocessed.
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. Experimental setup

This section contains a description of all the resources and
ethods that were used to carry out this work. Firstly, in Sec-

ion 3.1, the data preprocessing guidelines are presented, as well
s the chosen features for the machine learning models. Then,
ection 3.2 gives a brief description of each artificial intelli-
ence algorithm used, as well as introducing their most crucial
yperparameters.

.1. Data preparation and feature extraction

To carry out this project, the dataset published in [19] was
sed. In that work, the authors gathered information from four
ifferent sensors: accelerometer, gyroscope, magnetometer and
PS. Likewise, it also offers datasets in which the gyroscope does
ot exist, or neither the gyroscope nor the magnetometer exist
imultaneously. The last best results came from the case where
he gyroscope data were missing. For this reason, in addition
o studying all the sensors, it was decided to study this option
s well. In this way, a detailed comparison can be made, in
earch of the most representative set and the real influence of the
yroscope on the final result. Regarding the activities performed,
hey were four, as said in that work:

• Inactive: the individual does not have the smartphone on
him.

• Active: any action that involves moving, such as cooking or
brushing your teeth, but not moving anywhere in particular.

• Walking: any trip made without the use of vehicles, such as
walking or running.

• Driving: every kind of journey made utilizing an engine-
powered transport, without the need to be the person driv-
ing it.

As for the data preparation, it obeyed the same steps as in the
riginal proposal, so the following actions were carried out:

• All outliers in the GPS data that exceeded 0.2 in latitude and
longitude increments or 500 in altitude increments were
ignored.

• The first and last five seconds of each data collection ses-
sion were excluded to prevent the model from learning the
movements of before and after the activity (putting in or
taking the smartphone out of the pocket, for example). Each
session corresponds to a whole activity recording, since a
person starts an action until they stop it.

• Due to the lack of GPS data in many sessions, they were
replicated so that there was always one record per second.
For this purpose, if the difference between one observation
and another was greater than one second, the last measure-
ment was repeated, with a different timestamp. Similarly,
for the same reason, any data session that did not have at
least one GPS observation was disregarded.
3

• Any data session that had long gaps (> 5 seconds) between
the accelerometer, gyroscope or magnetometer sensor ob-
servations was also ignored.

In order to represent more clearly the arrangement of these
ata, Figs. 1 and 2 show examples of the data provided by a
pecific user for each of the indicated activities. In both figures,
he image on the left (a) shows the first 15 s of each activity
efore any preprocessing, while the one on the right (b) shows the
esult of such preprocessing. The selection of this time interval
llows for a straightforward interpretation of the values on a
onsiderable figure size. In order to improve the readability, the
igures were divided due to the high variability shown by the av-
rage of the values for each sensor. Fig. 1 shows the accelerometer
nd gyroscope data, while Fig. 2 shows the magnetometer and
PS data. The data for the accelerometer, gyroscope and magne-
ometer are shown separately for each of their three axes (‘‘Acc’’,
‘Gyro’’, and ‘‘Magn’’ on the figures). As for the GPS acronyms,
hese correspond, on the one hand, to the latitude, longitude and
ltitude increments between each sample (‘‘GPS_lat’’, ‘‘GPS_long’’
nd ‘‘GPS_alt’’, respectively). On the other hand, the speed, bear-
ng and accuracy of each of its measurements correspond to
‘GPS_sp’’, ‘‘GPS_bear’’ and ‘‘GPS_acc’’, respectively. Note that each
PS measurement is plotted as a single point instead of a con-
inuous signal to highlight its differential behaviour regarding
he other sensors. Additionally, each figure contains a series of
ertical bars, every 15 s, to delimit the different activities in the
ame plot. It should be highlighted that these are not continuous
ignals from one activity to another. Each action is given by
ifferent sessions, from the initial moment of data collection until
he 15 s have elapsed. As can be seen on the (b) figures, all GPS
ata is replicated, and the first few seconds of each session are
ut out, for the reasons indicated above. Moreover, some clear
rends can be observed for each sensor, depending on the activity
erformed.
Once data were loaded and preprocessed as previously de-

cribed, the features were extracted. That extraction was based on
he application of a sliding window from 20 to 90 s, in increments
f 10, with the maximum possible overlap (one second less than
ach full window size), to have as many samples as possible. Thus,
s an example shown in the original work for a window size of
0 s and the dataset containing all the sensors, Table 1 shows

the number of available patterns and their distribution by every
activity studied. On the other hand, in each of those windows, the
features shown in Table 2 were calculated. As can be seen, there
s a primary set already proposed in [19] (‘‘Primary set’’ column)
hat will be used as a basis for comparison. Similarly, another
eries of features are also shown (‘‘Proposed additions’’ column),
hich were added to the primary set. In this way, it will be possi-
le to examine the differences in performance between the initial
et and the one formed by that set plus the proposed collection.
ach of the sub-columns that can be observed in this table refers
o the sensors to which these features were practised. In the case
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Fig. 2. Examples of data taken by the magnetometer and GPS of a specific individual’s smartphone, during the first 15 seconds of each session, for each of the
specified activities, being: (a) Raw data. (b) Data after having been preprocessed.
Table 1
Number of patterns available and their distribution by every
activity studied, for a window size of 20 seconds and the dataset
containing all the sensors.

Activity
Inactive Active Walking Driving Overall
214,130 140,060 83,376 61,710 499,276
(43%) (28%) (17%) (12%)
Table 2
Feature set used.
Features

Primary set Proposed additions

General General Not for GPS Only for GPS

Mean Signal magnitude area
Variance Energy Number of zero crosses
Median absolute deviation Number of observations Number of local maxima Total distance travelledMaximum Maximum time gap Number of local minima
Minimum Minimum time gap Total positive time
Interquartile range Total negative time
of ‘‘Not for GPS’’, they relate to the features that did not make
sense to be used for GPS. That is because for the GPS the values
are much more separated in time (approximately one value every
10 s) and always remain on the positive side of the signal, as these
are absolute increments between observations. Besides, for the
same reason, there are not three accurate axes like the X, Y and
Z used in the other sensors, so it was also not attainable to use
the signal magnitude area feature (SMA). Thus, a specific feature
for this sensor was applied, ‘‘total distance travelled’’, which, from
the increments of the latitude and longitude values, approximates
the distance travelled using a Pythagorean theorem. The resulting
value corresponds to the sum of all the hypotenuses, i.e. all the
distances calculated in each of the observations.

Regarding the implemented features, it was decided to apply
ome of those included in the proposed collection, such as ‘‘num-
er of zero crosses’’, ‘‘number of local maxima/minima’’ and ‘‘total
ositive/negative time’’. This is due to having seen their reliable
erformance in [37], in which a comparison of different features
or HAR was made. The first of those listed refers to the number of
imes the signal changes from positive to negative or vice versa.
ll of them were considered attractive given the variability in the
ctivities to be studied. For example, in a case of inactivity, these
alues should be much lower than those that could be found
n a situation where the individual is walking or running. On
he other hand, ‘‘energy’’ and ‘‘signal magnitude area’’, are two
ery common calculations in signals and the HAR field, so it was
ecided to include them as well. As for ‘‘number of observations’’,
‘maximum/minimum time gap’’ and ‘‘total distance travelled’’,
hese were features that were thought that could be favourable
iven the peculiarities of this dataset, in order to take advantage
4

of the fact that there are some gaps between the data, mainly in
the case of GPS.

3.2. Classification algorithms

Within the scope of HAR, numerous machine learning algo-
rithms can be applied. In this case, it was decided to use the
following ones: Support Vector Machine (SVM), Decision Tree
(DT), Multilayer Perceptron (MLP), Naïve Bayes (NB), K-Nearest
Neighbour (KNN), Random Forest (RF) and Extreme Gradient
Boosting (XGB). The selection of these algorithms is due, in most
cases, to the fact that they were the most used and with the
best results within this field [22,28,29], as seen in the Related
Work section. Only the case of XGB would be a novelty, as it
has not been seen so much in this area. Anyhow, its addition
was considered attractive to the list due to its high popularity in
recent years and its outstanding results in many machine learning
competitions [38]. Moreover, every algorithm mentioned above
was implemented in Python, using the Scikit-learn library [39],
as well as the XGBoost one [40] for its own case.

3.2.1. Support Vector Machine
Support Vector Machines (SVM) are machine learning models

often used in binary classification problems [41]. This type of
models searches for the hyperplane which maximizes the mar-
gins between two previously specified and labelled classes. To
make this hyperplane non-linear, functions called kernels are
used, which are one of the most crucial hyperparameters in SVM.
These functions transform non-linear spaces into linear spaces,
by changing the dimension in which they are plotted, making
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ossible the application of this linear approach. Depending on
he kernel used (linear, polynomial or radial basis function), the
yperparameters to be applied change. The only fundamental
yperparameter that occurs in any kernel is C, which defines the
umber of errors that can be accepted by the model, as well
s the width of the margins of the resulting hyperplane. In the
ame way, other fundamental hyperparameters also influence to
great extent the definition of such hyperplane. One of them is
amma (not applicable in linear kernels, among others), which
etermines the curves that the hyperplane can take, making them
ore accentuated or softer, depending on the patterns that are

ntroduced into the model. Similarly, for polynomial kernels, the
egree of the polynomial broadly affects the curvature that such
hyperplane can take. In fact, for example, if the degree is equal
o 1, the result will be equivalent to that of a linear kernel (one
traight line).
Usually, SVMs are employed to solve binary classification

roblems, but they can also be used for multi-class ones. To
erform these tasks, it is necessary to choose a one-vs-one or
ne-vs-all strategy. In the first case, the classes are modelled in
airs, performing several binary classifications until a final result
s obtained. Conversely, in the second case, the models are formed
y confronting each class with the rest independently, creating a
pecific classifier for each situation. In this paper, the one-vs-all
pproach will be the one implemented, since it is the most used
ne in the literature [20,42]. In this way, the final result returned
ill be the average of all the classifiers created in the process.

.2.2. Decision Tree
Decision Trees (DT) are one of the closest models to human

hought, representing knowledge through trees. To do this, they
enerate a series of rules or questions that they use to predict
nd classify the data entered. There are numerous tree creation
lgorithms, including ID3 [43], C4.5 [44] or CART [45]. In this
aper, the latter one will be used, as there is a widely accepted
ersion, which is available and on which no modifications have
een made for the purpose of comparison. To carry out this
reation process, the algorithm follows a series of steps:

1. It starts by looking for the attribute that best defines each
of the classes and places it at the top of the tree. This
attribute is also known as the root node. To determine
the order in which the attributes are evaluated, it uses
statistical measures such as information gain. This metric
calculates the expected reduction of uncertainty, which
is obtained from the division of the dataset into a given
attribute.

2. The algorithm then generates a criterion by which it sepa-
rates the data, depending on the probability distribution of
each of the classes in the tree.

3. Finally, it forms branches that split the datasets into sub-
sets known as internal nodes. To evaluate these divisions,
the algorithm uses the Gini Index, which provides a score of
how good the resulting subsets are. The smaller this value
is, the better the division.

nce these steps have been performed, the algorithm repeats the
irst and second steps until it reaches, in each branch, a leaf node,
hich is a subset of data that cannot be further divided.

.2.3. Multilayer Perceptron
The Multilayer Perceptron (MLP) is one of the most widely

sed neural models nowadays, as well as being one of the first
achine learning techniques to appear [46]. Unlike more tra-
itional neuron networks, it can have more than one layer of
eurons. For the simplest case, it would consist of three different

ayers, where the first one would be the input layer, followed

5

by the hidden layer and ending with the output layer. The data
are entered by the input layer, taking the predictions in the
output layer. The hidden layers can be multiple, depending on
how complex the model needs to be for the specified problem.
Each layer is represented as follows:

y = f (W × x + b) (1)

The letter ‘‘f’’ would be the activation function, which is responsi-
ble for describing the input–output relations in a non-linear way.
In this way, the model has more power to be more flexible in
the description of arbitrary associations. On the other hand, ‘‘W’’
refers to the layer weights, which change as errors are found,
by adding the learning rate, which can be constant or dynamic.
Similarly, ‘‘x’’ would correspond to the input data vector of the
previous network and ‘‘b’’ would be the bias vector, which is an
additional set of weights with which to allow the layer to produce
a series of output data. In order to carry out the training of the
network, it is necessary to define a loss function. This loss will
be high if the class predictions do not correspond to the ground
truth, and will be low if they do. In this way, the layer weight
values (W) would be added to this loss. The idea is that during
the training of the model this loss value will be low. For this
purpose, functions called optimizers are used, which look for the
appropriate values of the weights with which to lower this value.
In this paper, the Adaptive Moment Estimation (Adam) function
will be used [47], as it is the more recommended one for large
datasets. Moreover, to avoid overfitting, these algorithms use an
alpha parameter that penalizes weights with large magnitudes.

3.2.4. Naïve Bayes
The Naïve Bayes (NB) classifiers are a collection of classifi-

cation algorithms based on Bayes’ Theorem [48]. This theorem
expresses the conditional probability of an event A given B, from
the conditional probability of B given A and the marginal prob-
ability of A. This definition is represented in the Bayes’ Rule:

Pr(A|B) =
Pr(B|A) Pr(A)

Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A)
(2)

Thus, it is not a single algorithm, but a family of algorithms that
share a common principle, which is that in each pair of classified
features, each one is independent of the other. The main differ-
ences between each of the algorithms of this family are based on
the assumption they make regarding the distribution of Pr(B|A).
The continuous values associated with each feature are assumed
to follow a specific distribution, such as the Gaussian one, a given
multinomial distribution or Bernoulli’s multivariate event model,
where the features introduced are independent booleans (binary
variables) [49]. In this paper, this last assumption will be used,
since the rest do not apply to our problem, or offered preliminary
results far below what it is considered randomness (50% success
rate). On the other hand, although the assumptions made by this
kind of methods may seem very simple, the truth is that this
kind of algorithms have worked well in many tasks. Moreover, it
is an extremely fast classifier compared to other types of more
sophisticated machine learning algorithms, so it is considered
that it is worth trying.

3.2.5. K-Nearest Neighbour
The K-Nearest Neighbour (KNN) algorithm is supervised and

instance-based, so it needs the data entered to be pre-labelled, as
well as not being able to create a model explicitly [50,51]. Instead,
it memorizes the training instances that are used as a basis for
the prediction phase. The most crucial point in this algorithm is
the selection of the ‘‘K’’ number, which represents the number of
neighbours that are taken into account in the neighbourhood to
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lassify the previously specified groups. In this way, the algorithm
ollows a series of steps defined for each of the observations in the
ata:

1. The distances between the selected observation and all
other observations in the dataset are calculated. This dis-
tance can be understood as a similarity measure between
these elements. It is calculated using a predefined function,
such as the Euclidean or the Manhattan distance.

2. Then, the closest K-elements are selected and a majority
vote is taken among them. The dominant class will be the
one deciding the final classification, depending also on the
weights given to each of these classes.

ne of the most prominent problems in KNN is the immense
mount of memory and time required as the selected dataset
rows. That is because they need to evaluate every observation
n the data, so if the number of features and data is very high,
he computational resources required for their training can be
uite significant. Nevertheless, it is considered as an algorithm
hat can produce great results, being also easy to understand and
o implement.

.2.6. Random Forest
Models based on Random Forest’s (RF) algorithm are among

he most popular nowadays [52,53]. Through the creation of
ultiple decision trees from previously tagged data, they can
roduce very robust models. That is because, by having to create
ifferent trees, they can select the best possible solution in a
uch more general and flexible way, as well as also reducing
verfitting by not having a single decision tree. Thus, the main
ork of the algorithm is divided into the following steps:

1. First, you start by selecting various subsets randomly over
the given dataset.

2. Then, the algorithm will build decision trees for each of
these examples, following the steps described in 3.2.2. The
number of decision trees constructed will be given from the
number of estimators hyperparameter, which is specified
previously.

3. Once the trees have been created, the resulting prediction
is obtained from each of them. At this point, a vote is
also taken on each of these resulting values, where the
dominant class will decide the final result.

4. Finally, the most voted class is selected as the final result
of the prediction.

hen making predictions with the model already created, this
lgorithm is usually much slower than the rest. That is because
f having to average the outcomes of each of the trees that make
p the final model. Even so, it is widely used today because
t is capable of creating very robust models with a high-grade
erformance, being also faster to train than many of the other
rtificial intelligence algorithms used nowadays.

.2.7. Extreme Gradient Boosting
Although Extreme Gradient Boosting (XGB) is not an algo-

ithm by itself but a refined implementation of the Gradient
oosting algorithm [40], it is worth to be considered. The main
eason is that this approach has won several competitions and
as recurrently offered very competitive results in the related
iterature [38]. The implementation provides a more efficient and
lexible method by parallelizing the tree boosting process. Con-
erning the Gradient Boosting Machine (GBM), it is an algorithm
hat seeks the production of a model through the formation of
umerous ‘‘weak’’ prediction models, usually decision trees. For
his purpose, decision trees are created in a stage-wise fashion,
6

Table 3
Binary confusion matrix example.

Model output

False True
Ground
truth

False TN FP
True FP TP

sequentially, following the same lines listed in 3.2.2. As in Ran-
dom Forest, a number of estimators hyperparameter is used to
determine the number of trees to be created. The idea is to seek
the progressive improvement of the final model. To do this, a loss
function is defined that evaluates the performance of the last tree
created, and which, presumably, will progressively decrease as
all the observations in the trees built are better classified. That
results in a final model that is much more robust and easy to
tune, as well as offering excellent results. However, it can be quite
sensitive to overfitting and noise, so it is important to be careful
when training it.

3.3. Evaluation metrics

One of the most elementary and easily interpreted metrics is
the confusion matrix. A confusion matrix is a table that facilitates
the visualization of the performance of a classification model
from a set of test data. A simple example would be the one
showed in Table 3. From this, we can draw many widely used
terms to evaluate these confusion matrices, such as: precision,
recall, accuracy and F1-score [54].

Precision and recall are the metrics used to measure the qual-
ity and quantity of the classifications made, respectively. Pre-
cision measures the number of true positives, divided by the
total number of positive results returned. Concerning recall, it
measures the number of true positives, divided by the number
of correct results that should have been returned. Their formulas
would be as follows:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Any other way, accuracy and F1-score metrics are used to
know the performance of a model in test. The first consists of the
measurement of all correctly identified cases, while the second is
based on the harmonic mean of the recall and precision metrics.
Their formulas would be as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(5)

F1 = 2 ×
Precision × Recall
Precision + Recall

(6)

However, in a multi-class problem such as the one in this
paper, the way these metrics are computed changes. As a model
example, it can be seen how these values would be calculated in
Table 4, compared to the binary case of the previous example.
Thus, to calculate the overall precision and recall of the whole
model, the final value is obtained from various types of averaging,
among which the following stand out: micro and macro [55]. The
first one considers the total of TP, FN and FP to calculate the
metric, so it is suitable for problems with mutually exclusive
classes. As for macro, it returns the average of calculating the
metric for each label, regardless of the proportion of each of them
in the dataset. Concerning accuracy, it is usually calculated in the
same way as in the latter case.

On the other hand, F1-score has more ways of weighting its
esult to evaluate multi-class classification problems. In addition
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Fig. 3. Methodology followed for each algorithm and window size specified.
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Table 4
TP, TN, FP and FN calculations for the ‘‘Class 1’’ class of a
multi-class confusion matrix example.

Model output

Class 1 Class 2 Class 3

Ground
truth

Class 1 TP FP

Class 2 FN TNClass 3

to the two most commonly used ones discussed above, there
is a variant of macro, macro-weighted (provided by the Scikit-
learn library), which does take into account the data proportions
by averaging the precisions and recalls of each of the classes
involved.

Although accuracy is the most widely used measure globally,
F1-score is also closely linked to the correct classification of
groups, but it is not as influenced by possible imbalances between
classes in the datasets [56]. In fact, when this occurs, the accuracy
could give an incorrect impression of the final results. In this
paper, the F1-score will be used as the initial assessment metric,
specifically with the macro-weighted case of averaging, as the
proportions of the data are quite inclined towards one of the
classes involved. Anyhow, the final results will be shown mainly
with the accuracy metric, since it is the most common one for
comparison with the rest of the works.

3.4. Validation and optimization techniques

One of the most widely used model validation techniques
in the field of machine learning is cross-validation [57]. Before
entering the data in the model to be trained, the data is divided
into training and test. This elementary division of data is also
called hold-out. In this way, there is a set of data destined to train
the model and another subset that serves to test its performance,
with data a priori unknown to it. One of the most common ways
of making this division is employing the k-fold cross-validation
technique. Here, the aim is to partition the original data set
into ‘‘k’’ equal sized subsamples. Then, one of these subsamples
is selected as the validation set to test the model, being the
rest of subsamples used to train it. This process is repeated ‘‘k’’
times until all subsets are selected as a test once. Finally, the
results obtained by the model are averaged and the relevant
performance evaluation metrics are calculated. In this paper, a
variant of this technique will be used, called stratified k-folding.
This alternative seeks that the proportion of each class in each
of the subsets created is practically the same. In this way, the
existing imbalance on the dataset and its possible influences on
the model performance are avoided.

As for the optimization of the models to be used, there is a
technique widely employed in the field called grid search [58]. A
grid search is a process that consists of an exhaustive search for
the best combination of hyperparameters introduced to a model
using a particular algorithm. Here, each of the possibilities of the
 t

7

set of hyperparameters previously indicated is tested. It is a long
and expensive process, but with which it is possible to know the
best possible performance of the model to be used. In this paper,
the F1-score commented in 3.3 will be used as the evaluation
etric for these combinations. Also, some of these combinations
ill be trained not once, but 50 times. This is because non-
eterministic algorithms such as Multilayer Perceptron (MLP),
andom Forest (RF) and Extreme Gradient Boosting (XGB) will
e used. The nature of these types of algorithms means that
here is always a small random component that affects their final
esult. Thus, by averaging the values obtained in each of these
epetitions, it is possible to get a reliable outcome.

In the present paper, these techniques will be used together
o find the most robust and optimal model for these problems, as
hown in Fig. 3. For this purpose, an initial 10-fold will be applied
o the dataset. Each of the training parts of each fold will be
ntroduced later in the grid search. To validate the performance
f each of these models, the data of the corresponding fold will
e divided applying a hold-out. Hence, 90% of the data will be for
raining and the resulting 10% for testing. It was decided to apply
his technique instead of the traditional k-fold cross-validation
ue to the high number of experiments to be performed in the
rid search. In this way, we obtain the final results in a reasonable
ime, as we do not have to evaluate each of the folds. Besides, the
igh number of patterns available (around 450,000 for each fold)
ould lead to greater redundancy in the data if we applied another
0-fold. Finally, the best model selected by the grid search will be
ested again, this time with the corresponding part for testing of
he initial 10-fold. Thus, the models are tested with truly unseen
ata during their training, making the final result more realistic
oncerning their data generalization capabilities.

. Results and discussion

Within this section, all the results of the experiments carried
ut will be displayed. First, in Section 4.1, all the data obtained
ill be represented, with their corresponding graphs and eval-
ation metrics. Then, in Section 4.2, the main observations and
onsiderations of the results obtained will be discussed.

.1. Results

After having prepared the data, applying the selected window
izes with the previously discussed features (Table 2), a series of
xperiments were conducted on them. As described before, the
liding window sizes ranged from 20 to 90 s, in increments of 10,
ith the maximum possible overlap (one second less than each

ull window size). To do this, the most applied machine learning
lgorithms in HAR were used, which are: Support Vector Machine
SVM), Decision Tree (DT), Multilayer Perceptron (MLP), Naïve
ayes (NB), K-Nearest Neighbour (KNN) and Random Forest (RF),
ith the addition of Extreme Gradient Boosting (XGB). In order
o get the best possible results for each of them, it was decided

o explore the best architecture for each of them beforehand. For
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Table 5
Chosen hyperparameters to perform further grid search for each machine learning algorithm.
Algorithms Hyperparameters

SVM

Kernel = {linear, RBF (Radial Basis Function), polynomial}
C = {1, 10, 100, 1000, 10000}
Gamma (not applicable for linear kernels) = {0.0001, 0.001, 0.01, 0.1, 1}
Degree (only applicable for polynomial kernels) = {1, 2, 3, 4}
Maximum iterations = 1000

DT
Maximum depth = {5, 8, 15, 30, None}
Leaf minimum size = {1, 2, 4, 8, 16, 32, 64}
Minimum size for node division = {2, 5, 10}

MLP

Hidden layers and units size = {(5,), (10,), (20,), (30,), (50,), (70,), (100,)
(5, 5), (10, 10), (20, 20), (30, 30), (50, 50), (70, 70), (100, 100)}
Activation function = {tanh (Hyperbolic Tangent), ReLU (Rectified Linear Unit)}
Alpha = {0.0001, 0.05, 0.1}

NB It has no specific hyperparameters. In our case, we used the model based on Bernoulli,
since the rest, after some preliminary tests, were not applicable to this problem.

Number of neighbours = {3, 5, 7, 11, 15, 19, 24, 29, 34}

KNN Weights = {uniform, distance}
Metrics = {Euclidean, Manhattan}
Leafs size = {30, 50, 100}

RF

Number of estimators = {100, 250, 500, 1000}
Maximum depth = {5, 12, 25, 50}
Leaf minimum size = {1, 2, 4}
Minimum size for node division = {2, 5, 10}

XGB Number of estimators = {100, 300, 500, 800, 1200}
Maximum depth = {5, 8, 15, 30, None}
Minimum size for node division = {1, 3, 5}
Table 6
Accuracy results comparison between algorithms and sliding window sizes for the initial feature set and the complete dataset.

Window size

20 30 40 50 60 70 80 90

SVM 69.28%
±15.10%

78.07%
±10.37%

81.30%
±8.79%

79.52%
±10.57%

78.84%
±8.54%

79.45%
±9.77%

81.23%
±8.53%

80.90%
±9.02%

DT 88.17%
±12.47%

85.79%
±16.40%

88.12%
±8.83%

86.71%
±13.47%

87.82%
±13.00%

86.17%
±14.37%

87.57%
±12.81%

89.91%
±7.15%

MLP 86.46%
±6.30%

86.80%
±6.02%

86.85%
±6.12%

86.59%
±6.61%

86.65%
±7.11%

86.39%
±7.69%

86.57%
±7.90%

85.47%
±8.65%

NB 78.11%
±6.93%

78.68%
±6.61%

79.09%
±6.73%

79.48%
±6.92%

79.66%
±6.95%

80.01%
±7.08%

80.09%
±7.08%

79.62%
±6.81%

KNN 85.68%
±7.20%

86.30%
±6.20%

86.83%
±6.34%

86.32%
±6.48%

86.56%
±6.50%

86.84%
±6.77%

86.99%
±6.57%

87.09%
±6.76%

RF 91.78%
±5.20%

92.27%
±5.58%

92.36%
±5.74%

92.56%
±5.92%

92.55%
±5.99%

92.29%
±5.86%

92.37%
±5.80%

92.28%
±6.50%

XGB 90.58%
±7.57%

90.47%
±9.09%

91.42%
±7.62%

91.36%
±7.76%

91.80%
±8.06%

92.23%
±7.30%

91.21%
±6.98%

91.30%
±7.09%
this reason, different values for the most crucial hyperparameters
of each of them were selected, in search of the best possible
combination between them. To choose the best final result, the
next steps were followed, for each of the previously specified
datasets:

1. The first step was to carry out a stratified 10-fold to have
ten different datasets, with approximately the same pat-
tern distribution for each class.

2. Then, with each of the previous folds, a grid search was
carried out to find the best combination of hyperparame-
ters of each algorithm. Because the dataset used has some
unbalance towards the class of ’’inactive’’, the resulting pre-
dictions were evaluated using the F1-score metric, offering
a value that should better represent the performance of the
model. On the other hand, concerning the hyperparameters
used for each of the selected machine learning algorithms,
they were all arranged in Table 5. The intention was to
have a wide range of hyperparameters, to know the best
possible option. Therefore, attempts were made to increase
the number of possibilities in those that were more influ-
ential in the final result. However, the overall complexity
8

of each training increases with higher amounts of hyperpa-
rameters, so it was necessary to be conservative in general.
Any other hyperparameters not listed there were chosen
and set to the default value, after some preliminary exper-
iments and confirmation of good performance. In this way,
the number of experiments is adequate to find the optimal
model in a reasonable time.

3. For the MLP and RF algorithms, given their non-
deterministic nature, the previous step was repeated 50
times, for each of the ten initial folds. In this way, we avoid
that their random behaviour affects the final result, aver-
aging all the obtained ones. On the other hand, although
the XGB algorithm also should have this non-deterministic
nature, for the Python package used in this work the results
are always the same, so it was not necessary to perform
these repetitions.

4. Once the grid search was completed, the results were eval-
uated and the best combination of hyperparameters for
each of the folds was selected. Then, each of the best
models selected was tested with truly unseen data from
the initial 10-fold.
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Table 7
Accuracy results comparison between algorithms and sliding window sizes for the proposed feature set and the complete dataset.

Window size

20 30 40 50 60 70 80 90

SVM 80.77%
±12.64%

82.00%
±13.45%

82.15%
±14.12%

83.38%
±10.85%

83.59%
±11.84%

85.12%
±11.55%

86.56%
±11.30%

85.98%
±11.18%

DT 89.99%
±6.13%

89.92%
±6.62%

87.95%
±10.18%

88.27%
±11.01%

87.68%
±12.17%

86.94%
±14.31%

89.63%
±8.38%

88.26%
±10.26%

MLP 83.76%
±10.37%

84.00%
±10.49%

84.24%
±10.38%

84.60%
±10.22%

84.73%
±10.32%

84.32%
±10.79%

84.96%
±10.37%

84.43%
±10.09%

NB 81.69%
±7.20%

82.21%
±7.16%

82.49%
±7.16%

82.77%
±7.32%

82.86%
±7.60%

83.06%
±7.67%

83.27%
±7.78%

82.72%
±7.68%

KNN 87.62%
±7.37%

88.27%
±7.02%

88.72%
±6.99%

88.99%
±6.96%

88.76%
±7.94%

88.80%
±8.01%

89.02%
±8.00%

88.03%
±7.94%

RF 91.71%
±5.47%

92.08%
±5.49%

92.26%
±5.68%

92.51%
±5.86%

92.73%
±5.98%

92.77%
±6.16%

92.97%
±6.23%

92.61%
±6.60%

XGB 88.32%
±12.29%

88.99%
±11.66%

88.87%
±12.61%

88.78%
±14.26%

89.72%
±11.54%

89.55%
±12.54%

90.38%
±9.64%

91.15%
±7.01%
Once the steps indicated in the previous paragraph have been
arried out, for each of the algorithms and sliding window sizes
sed, the results shown in the Tables 6 and 7 were obtained. The
alue below each accuracy result refers to its standard deviation.
hese values correspond to the initial and proposed sets of fea-
ures, respectively. As can be seen, the tree-based models, DT, RF
nd XGB, work considerably better than the rest, since they are
he only ones capable of approaching and even surpassing the
0% of success. The cases of RF and XGB stand out even more
ecause they are less variable than DT. However, as it is logical,
he computational complexity of these algorithms is much higher
han in the case of DT. On the other hand, the size of the windows
s not as influential as it was thought at first, except for SVM,
here the fluctuations are quite broad, especially in the step of
0 to 30 s. For that reason, although the best value is obtained
ith a 80-second window, the model might perform similarly
ith a window such as the 20-second one, since the difference

n accuracy is pretty low in most cases. In this way, they would
e easier to apply to a real-life environment, as they can be
sed more finely with the activities that are being carried out at
ach moment. As for the differences between each of the sets of
eatures, the truth is that these were much smaller than expected.
n fact, after performing a T-test between each pair of values of
oth groups, significant differences were only found in one case.
his only case corresponds to the SVM algorithm, specifically for
he 30-second window size. For the rest, the p-values were all
bove 0.1, which means that the results are statistically similar.
owever, some clear improvements are visible for the proposed
et, as in the cases of SVM, NB and KNN. On the contrary, for
LP and XGB, it seems that the results are slightly worse. The

est of the algorithms remain with very similar values to each
ther, especially in the case of RF. Additionally, the test results
etween each pair of results in Tables 6 and 7 seem to indicate
hat the new features do not add information that would signifi-
antly increase accuracy, not making it possible to reach a reliable
onclusion. Moreover, in the same way, in Fig. 4 the F1-scores
esulting from each of the algorithms and window sizes used
re shown, for each of the sets of features applied. Both metrics
re displayed to, on the one hand, show the numerical accuracy
esults in tables as a comparison with other works. On the other,
t is also possible to show the differences between each case in a
uch more visual way through the F1-score graphs.
On the other hand, the results obtained for the dataset that did

ot include the gyro, both with the old and the new features, are
lso shown in Tables 8 and 9, respectively. As in the previous case,

a T-test was also carried out to check the differences between
the sets of features introduced in the models. Once again, the
only case where significant differences can be seen is with SVM
9

and a window size of 30 s. Therefore, the results are, in general,
statistically similar, so we cannot claim that they are different.
In any case, the observations from before are repeated, with
improvements in SVM, NB and KNN, as well as a worsening
in MLP and XGB. However, in this case, DT worsens slightly.
Anyhow, as can be seen, the results are, in general, somewhat
worse than those obtained with all the sensors. Although there
is indeed some case with some improvement, like the one found
in [19], with SVM and 20 s of a window, it is considered that
the models work better with the complete case. In this way, the
gyroscope does provide a slight improvement in the models, as
shown in previous works that included it in their tests. Similarly,
the F1-scores for this case are also shown in Fig. 5.

Regarding the winning hyperparameter combinations of each
algorithm, for each window size and dataset, the best values of
F1-score obtained for each of those combinations are shown in
Fig. 6. Here, the ‘‘Feature dataset’’ field refers to the combination
of the set of features and the dataset used in each case, as shown
in Table 10. Thus, the numbers 1 and 2 would correspond to the
dataset containing all sensors, while 3 and 4 to the dataset not
including gyroscope data. At the same time, the numbers 1 and 3
would also correspond to the initial set of features, while 2 and 4
to that proposed in this paper. As can be seen, no single winning
hyperparameter combination is obtained for each algorithm, but
different sets depending on the case study. Therefore, the data
displayed there for each of the applied algorithms are detailed
below:

• SVM. The RBF kernel was by far the most selected, with
only a few cases of grade 3 polynomial kernels in the larger
window sizes when using the proposed feature set. The
linear kernel was always lower in overall performance. As
for C, the values fluctuated a lot, but seemed to settle more
for the intermediate values of 10, 100 and 1000, leaving
quite apart from the value 1. Finally, with gamma something
similar happened, although the extreme values of 1 and
0.0001 were practically never selected, being clearer the
dominance of the rest of the values, more or less in equal
parts.

• DT. The maximum depths in DT always remained at the
low values of 5 and 8, except for some isolated cases for
the complete dataset with the primary feature set (case
1). In the latter case, the chosen value was 15. As for the
minimums per leaf and to divide the node, their values were
very arbitrary and all were selected more or less equally, so
it is not possible to draw a reliable conclusion.

• MLP. The case of (100,) was by far the most selected for
the size of the hidden layers. However, there were also
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Fig. 4. F1-scores for: (a) The initial feature set and the complete dataset. (b) The proposed feature set and the complete dataset.
Table 8
Accuracy results comparison between algorithms and sliding window sizes for the initial feature set and the dataset missing the
gyroscope’s measurements.

Window size

20 30 40 50 60 70 80 90

SVM 74.39%
±10.75%

73.47%
±9.66%

76.77%
±10.98%

81.00%
±9.41%

80.66%
±12.96%

82.56%
±7.68%

80.70%
±9.22%

81.77%
±9.28%

DT 82.74%
±13.36%

83.67%
±13.72%

87.07%
±8.23%

87.06%
±9.19%

87.88%
±8.75%

88.82%
±6.29%

88.60%
±7.44%

87.28%
±8.93%

MLP 86.35%
±4.95%

86.70%
±4.97%

86.46%
±5.22%

86.63%
±6.06%

86.88%
±6.56%

87.16%
±6.85%

87.00%
±7.10%

87.01%
±7.42%

NB 80.23%
±7.30%

80.39%
±7.27%

80.62%
±7.50%

81.24%
±7.32%

80.94%
±7.35%

80.97%
±7.63%

81.32%
±7.63%

81.42%
±7.13%

KNN 84.61%
±6.15%

86.10%
±5.13%

86.28%
±5.57%

86.81%
±5.38%

86.84%
±5.52%

86.68%
±5.85%

86.92%
±5.88%

86.18%
±9.49%

RF 89.34%
±6.67%

89.75%
±7.27%

90.03%
±7.64%

90.45%
±7.44%

90.62%
±7.52%

90.63%
±7.92%

90.76%
±8.01%

90.36%
±8.06%

XGB 87.40%
±10.57%

89.21%
±7.34%

89.75%
±7.22%

90.35%
±6.80%

90.27%
±7.41%

89.53%
±8.61%

89.75%
±8.06%

90.50%
±6.62%
Table 9
Accuracy results comparison between algorithms and sliding window sizes for the proposed feature set and the dataset missing the
gyroscope’s measurements.

Window size

20 30 40 50 60 70 80 90

SVM 80.65%
±11.65%

81.34%
±9.45%

80.66%
±11.48%

82.57%
±9.56%

82.77%
±8.71%

83.71%
±7.96%

84.64%
±7.86%

84.88%
±7.75%

DT 82.15%
±12.88%

81.97%
±12.50%

84.77%
±10.49%

84.71%
±12.07%

84.04%
±12.62%

84.64%
±12.34%

85.55%
±11.90%

86.66%
±9.72%

MLP 84.07%
±7.82%

84.57%
±8.02%

85.03%
±7.98%

85.45%
±7.68%

85.69%
±7.54%

85.51%
±7.82%

85.94%
±7.55%

86.17%
±7.42%

NB 81.49%
±6.44%

82.18%
±6.70%

82.53%
±6.93%

82.60%
±7.23%

82.72%
±7.34%

82.92%
±7.66%

83.04%
±8.04%

82.75%
±7.72%

KNN 85.43%
±6.49%

86.25%
±6.50%

86.96%
±6.34%

87.16%
±6.17%

87.47%
±6.05%

87.45%
±6.04%

87.60%
±5.64%

86.73%
±6.05%

RF 88.94%
±6.22%

89.55%
±6.24%

90.17%
±6.29%

90.19%
±7.15%

90.41%
±7.51%

90.50%
±7.85%

90.62%
±7.97%

90.22%
±7.90%

XGB 85.57%
±11.17%

84.96%
±13.02%

87.33%
±11.12%

86.15%
±12.98%

86.57%
±12.75%

87.44%
±11.37%

88.33%
±10.61%

87.32%
±10.79%
some cases of (70,), for the 90-second windows, and (5,)
for the 20-second ones (for the primary feature set). As for
the activation functions, the tanh (Hyperbolic Tangent) case
dominated for the primary feature set (cases 1 and 3), while
ReLU (Rectified Linear Unit) was always the chosen function
in the proposed one (cases 2 and 4). Besides, the ReLU was
also always chosen for the 20 and 30-second windows of the
cases 1 and 3. Regarding the alpha values, generally, those
of 0.1 were chosen much more, with some appearances of
0.05 and only one choice of 0.0001.
10
• NB. No hyperparameters to choose.
• KNN. Here, the number of neighbours was always 34 for the

smaller window sizes (until 40 or 50 s). For the following
ones, the number was regularly diluted to the lowest values
in the list with the size of 90 s, except for the complete
dataset with the primary feature set (case 1), where these
high values were relatively constant. As for the weight, it
was pretty arbitrary in all cases, so it is not possible to draw
a reliable conclusion. Concerning the chosen metric, it was
always Manhattan, in absolutely all measurements. Finally,
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g

Fig. 5. F1-scores for: (a) The initial feature set and the dataset missing the gyroscope’s measurements. (b) The proposed feature set and the dataset missing the
yroscope’s measurements.
Fig. 6. F1-scores for each winning hyperparameter combination of each algorithm used.
the size of the leaves did not seem to have any influence
whatsoever on the results, as the accuracy was always the
same for any of the three values studied.

• RF. In the vast majority of cases, the number of estimators
remained at the value of 1000 and, to a lesser extent, 500.
The value of 1000 dominated mostly in cases where the
proposed feature set was applied (cases 2 and 4). On the
other hand, the maximum depth was more inclined towards
the mean values of 12 and 25, with some cases of 50. The
dominance of these mean values was clearest in cases 2
and 4, as with the previous parameter. As for the minimum
per leaf, the most selected value was 1, although in case
1, 4 was the most dominant by far. Finally, the minimum
to split the node does not seem to be entirely conclusive,
as all cases were selected more or less equally, with some
tendency towards the lower values of 2 and 5. The value of
10 was only ever selected for cases 3 and 4 (non-gyroscope
ones).

• XGB. In this case, the values are pretty arbitrary. How-
ever, there does seem to be a trend towards the number
of 1200 estimators compared to the rest, especially with
the non-gyroscope dataset. As far as the maximum depth
is concerned, 5 and 8 were the most widely used values.
Finally, the minimum to divide the node was centred much
more on the lower numbers of 1 and 3.
11
To select the best-resulting model, a Critical Difference di-
agram was carried out, as shown in Fig. 7. This diagram was
constructed from all the datasets, features and window sizes
used, with the best values obtained for each case (the ones
showed in Tables 6, Table 7, Tables 8 and 9). As it is shown in
the aforementioned figure, RF, XGB, DT and MLP models appear
to be statistically equivalent. From these four, given the results,
it was decided to select RF, because it has the highest accuracy
peaks and is less computationally complex than XGB. Addition-
ally, although it requires more time and computational resources
than MLP and DT, its performance is considerably better, as well
as being a more advanced version of the latter one.

As can be seen in all the tables and figures shown, the best
model obtained is the one thrown by the Random Forest algo-
rithm, for 80-second time windows and for the proposed set of
features. This case yields the average confusion matrix shown in
Table 11, along with its particular metrics (recall, precision and
accuracy). The model manages to correctly classify all activities,
although some problems with the ‘‘active’’ action are visible.
That is because this activity is very diffuse, and can include both
moments of activity and inactivity while the individual remains
‘‘active’’. Thus, some confusion can be expected from the classifier
with the rest of the activities concerning this one. Although there
is still room for improvement, it is considered that the classifier
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Table 10
Combinations of dataset and feature set used.

Dataset Features

Complete Missing gyroscope Primary set Proposed additions

Case 1 X X
Case 2 X X
Case 3 X X
Case 4 X X
Fig. 7. Critical Difference diagram made from all the results obtained with all
the algorithms used.

Table 11
Average confusion matrix for the best combination found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 19,965 230 261 13 97.54%
Active 888 12,980 1,005 373 85.14%
Walking 24 325 6,043 94 93.17%
Driving 50 44 29 5,157 97.67%

Recall 95.40% 95.59% 82.35% 91.49% 92.97%

Table 12
Average confusion matrix for the 20-second window size option of the best case
found.

Ground truth Precision

Inactive Active Walking Driving

Inactive 20,451 328 190 22 97.43%
Active 852 13,089 1,359 493 82.88%
Walking 51 474 6,700 106 91.39%
Driving 58 115 90 5,550 95.48%

Recall 95.51% 93.45% 80.35% 89.94% 91.71%

achieved far exceeds what was expected, with a resulting accu-
racy of 92.97%, a much higher value than that of 74.39% achieved
in other works [19].

That was the highest result among all the combinations of
eature set, window size and dataset. However, after performing a
ukey test, it was clear that there were no significant differences
mong the different window sizes, as it is evident if we take a
ook at Fig. 8. Thus, any window size would be feasible to be
elected as the best, depending on the problem in which it would
e used. In this case, it is considered that 20-second windows
ould be more than enough to obtain good results, since it would
llow a more suitable classification of the activities to be studied
y being able to separate them into 20-second intervals. The
verage confusion matrix for this case would be the one shown
n Table 12. As can be seen, the most fundamental differences lie
n the ‘‘active’’ activity, as noted above. Even so, the results are
tatistically similar to those of the best case found with window
izes of 80 s, so it is considered feasible to select this one option
referably.
12
Fig. 8. Results of the Tukey test performed for all window sizes used with
Random Forest, for the complete dataset and proposed feature set (case 2).

4.2. Discussion

The results obtained in this paper manage to advance to a
great extent towards that real-life environment that is so much
sought after. The resulting accuracy of the best model found is
exceedingly superior to the best obtained so far, from 74.39% to
92.97%. Besides, several findings have been made about the given
dataset, as it appears that the size of the sliding window is not as
crucial as first thought. Consequently, the results are quite similar
between all the window sizes used in the vast majority of cases.

On the other hand, it has also been possible to reinforce
the demonstration of the advantages of using the gyroscope as
opposed to not using it in HAR, resulting in a better performance
than when it is not used. However, in an effort to further improve
the final results, it has not been possible to enhance the primary
set of features used in [19]. The additions proposed in this paper
have not been entirely conclusive, since the comparison between
using each set has quite similar performances to each other, with
improvements and worsenings depending on the algorithm and
window size used. While there are clear cases of an upgrade such
as SVM and NB, the same cannot be said of MLP, XGB and even
DT. Perhaps the most robust examples in this sense were KNN
and RF, with pretty slight variations in both cases. Probably the
proposed features are adding noise to some algorithms and hence
are not entirely favourable.

In any case, given the results, it can be concluded that the best
algorithms to use in this matter are the tree-based ones (DT, RF
and XGB), since they have been the ones that have given the best
outcomes with a considerable difference from the rest. Even so,
MLP and KNN deserve special mention, since its results have been
kept only a little below the latter.

Also, on the other hand, it should be noted that there are
still problems in optimally discerning the activity of ‘‘active’’,
unlike the rest, where the percentage of success is very high.
Although this activity is very diffuse and can be easily confused
with cases of ‘‘inactive’’ or ‘‘walking’’ (especially with this one),
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Fig. 9. Recall and precision values for the ‘‘active’’ and ‘‘walking’’ activities and
every sliding window size used.

it is possible that with a more in-depth study for this case the
final solution will be found. In fact, looking at the confusion
matrices for each of the window sizes of the case indicated in
Table 11, a relevant trend is indeed observed. With smaller win-
dow sizes, this confusion is more pronounced, with more samples
misclassified among these activities. Similarly, with larger sizes,
this confusion is milder. This is shown in Fig. 9. However, as
reviously discussed, window size did not end up being a crucial
arameter for the overall performance of the models studied,
lthough it seems to be a trend to have the highest accuracy peaks
n the 80-second windows. Additionally, as can be seen in that
igure, there is a clear downgrade when the window size reaches
he value of 90. Perhaps using other more influential features for
his activity could make it possible to obtain the optimal model
or this case. Also, the application of other types of algorithms,
uch as LSTM and CNN, characteristic of the deep learning aspect,
ould improve the performance, as they are giving outstanding
esults in HAR in recent years.

. Conclusions and future work

In this work, a series of experiments were carried out in search
f the improvement of the last model developed in HAR, for a
ataset oriented to the introduction of this problem in a real-
ife environment. By using various machine learning algorithms,
ifferent features and much larger sliding windows, the results
ere severely improved. In addition, it has been observed that
he preliminary results on the dataset in which gyroscope’s mea-
urements were missing were inconclusive. This sensor finally
roved to improve the final performance in a general way in all
he algorithms used, as in the rest of the works that included it
n their experiments.

Unfortunately, the proposed set of features has not obtained
uch good results. The performance of the algorithms with this
et and the primary one is quite similar in most cases, with ups
nd downs depending on the algorithm to be used, so its impact
s not entirely conclusive. Perhaps it is necessary to think of other
ypes of features that could improve the classification of the ‘‘ac-
ive’’ activity, which, although the current models differentiate it
elatively well, is quite improvable. Also, it could be interesting to
ake some kind of evaluation and selection of features, applying,

or example, a Principal Component Analysis (PCA), to see which
nes are the most suitable.
Another point worth to be mentioned is the fact that the size

f the windows does not have as much influence on the final
13
results as was first thought. For that reason, a window of 20 s
could be perfectly chosen (at least in the best case found, for the
Random Forest algorithm), as it would be easier to apply in a real-
life environment. In this way, it could be possible to detect and
classify each activity more finely, as well as making it possible to
get these results in a shorter time since the start of the action.

For the aforementioned reasons, it is considered that the re-
sults can still be upgraded. Perhaps also with the application
of algorithms purely focused on deep learning, such as CNN or
LSTM, which are the two most widely used algorithms in recent
years in HAR and which, apparently, are offering the best results
nowadays. For this purpose, the exploration will continue in
order to improve these results in the future, probably with the
algorithms mentioned above, in search of the optimal model.
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