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1. Introduction

This issue, as a continuation of a previous Special Issue on “Efficiency and Optimiza-
tion of Buildings Energy Consumption,” gives an up-to-date overview of new technologies
based on Machine Learning (ML) and Internet of Things (IoT) procedures to improve the
mathematical approach of algorithms that allow control systems to be improved with the
aim of reducing housing sector energy consumption.

2. Energy Optimization Procedures

To achieve the objective of reducing buildings’ energy consumption, some papers aim
to improve building constructive characteristics and materials [1], but always within the
realistic economical and health limitations [2,3], and others look for other energy sources
implemented with different control system algorithms [4,5]. To improve this, construction
materials showed an expected reduction of 30% and implementation of a Passivhaus
resulted in a reduction of 85% in heating demand [2]. Finally, the control of daylighting
accounted for the highest energy savings of 14% [4].

In consequence, the key is to define a correct algorithm based on correct variables (such
as weather conditions [6]) and, at other times, to employ a more adequate machine learning
method. In this sense, a Support Vector Machine [7] was shown to be adequate for global
solar prediction, but short memory neural networks were preferred for the prediction of
other classical variables related to energy consumption in buildings, such as thermal inertia
and input time lag [8]. More examples of machine learning methods were employed to
predict [9] and to define building parameters like the Heat Loss Coefficient [8], reaching
a maximum error of 6%. Results showed that weather data control systems may reach
23% [6].

3. Future Tasks

As a pending research task, a smart grid optimized by artificial intelligence and
employing Internet of Things technology let a multilayer feed-forward artificial neural
network improve the previous results in real case studies [10].
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