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A B S T R A C T   

A recent paper published in Trends in Ecology and Evolution suggested a new alternative for the reporting of 
statistical results, using a language based on evidence against the null hypothesis. I agree that the reporting of 
null hypothesis statistical testing clearly needs improvement, but the proposal of an evidence-based language has 
several drawbacks: a) it goes back to the original Fisherian continuous interpretation of p-values, b) at the same 
time uses some loose categorizations and, c) most importantly, it may provide a wrong idea of what p-values 
actually are. By saying that there is very strong, strong, moderate, weak or little evidence of an effect, the reader 
gets the idea that p-values are providing Bayesian-type information on the probability of the null hypothesis 
given our data. However, p-values are only providing information on the probability of having obtained our data 
(or more extreme data), under the trueness of the null hypothesis. That is why I suggest reporting results using a 
data probability-based language, together with a previous and separate specification of the magnitude of the 
effects.   

Time goes by and we ecologists still seem to be in search of the best 
way to write statistical results in our papers. Proof of that is the recent 
work by Muff et al. (2022) in Trends in Ecology and Evolution. I am 
writing here to try to summarize why, after 100 years of the invention of 
p-values by sir Ronald Fisher, we are still having problems with the 
writing of results sections, and also to suggest a new alternative based on 
a data probability language. As usual, solving problems from the present 
requires a trip to the past. 

1. A historical introduction 

Statistical inference means that we draw conclusions about the 
properties of a whole statistical population from the properties of a data 
sample (e.g. the arithmetic mean x). The statistical population can be 
pictured as all the possible sample means that we could obtain by 
sampling an unconstrained number of times the real biological popu
lation. We intend to infer the actual mean of a statistical population 
(written with Greek letters such as μ in this case) from a sample of data 
that was collected randomly and that has an adequate size to be repre
sentative of the real population. Of course if we were in the case of being 
able of sampling the whole real population our sample n would equal N, 
the whole population, and no inferential statistics would be needed to 
jump from the properties of n to the properties of N. We would rather use 

descriptive statistics. In large populations we never get to reproduce 
whole statistical populations, but we get as close as possible to them by 
building what is called the sampling distribution (i.e. the probability 
distribution of a given random-sample-based-statistic) from our field or 
lab sample, often resampling with repetition from the original sample. I 
like to tell to my students that Gods in Mont Olympus (i.e. population 
parameter values written with Greek letters) can never be reached. 

The first thinker to find a way (importantly, the most intuitive way) 
to jump from data properties to statistical population properties was the 
reverend Thomas Bayes already back in the 18th century. Bayes sug
gested, by means of his famous theorem that: 

P(μ|d) =
P(d|μ)P(μ)

P(d)

That is, if we are interested in knowing what is the probability (P) 
that a parameter such as μ takes a particular value (based on the data –d- 
obtained in the field or lab), we need to multiply the probability of 
having obtained those lab or field data (given that the parameter really 
takes that particular value) times the probability that the parameter 
takes that specific value. The first component (the mirror image of what 
we are looking for) is called “likelihood”, and the second component is 
the information that we have a priori about the chances that the 
parameter takes a particular value (the so-called prior distribution). 
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Hence, by combining what data are telling us with what we knew about 
the parameter beforehand we can obtain what we want, the probability 
of our parameter taking a particular value given our data. The same 
equation, by the way, could be re-written substituting μ by H0, if we 
were testing a null hypothesis rather than trying to estimate the value of 
a population parameter. 

So, as Dennis (1996) wondered, if we have Bayes’ equation at hand, 
why are not all ecologist using it and becoming Bayesian en masse? Well 
the initial problem was the denominator of the equation. Calculating the 
probability of having obtained our data (and not other) became a 
desideratum, not satisfied with ease until the modern times of powerful 
personal computers. Additionally, Fisher wanted to get rid of the prior 
because it is an added difficulty to require previous information about 
our study system to solve a question. 

This difficulty forced the search of an alternative way to perform 
inference, and the solution came at the beginnings of the 20th century 
with sir Ronald Fisher. He reasoned out that if we are unable to reach 
what we want, that is the probability of our parameter given our data, 
we would have to settle for working with the probability of having ob
tained our data (or more extreme data) in the lab or in the field, provided 
that the parameter takes a particular value. Hence we work in the 
opposite way of what we originally intended. 

2. The forging of p-values 

Based on the concept of likelihood Fisher developed the p-value. The 
process goes like this. Imagine I want to test whether two populations of 
wing lengths differ in relation to their arithmetic mean. A professional 
statistician knows that when dealing with differences between means 
(x1 − x2) one must make use of a Student-t distribution, because the 
difference between means is t-distributed. Statisticians know the prop
erties of this distribution as well as ecologists know the properties of a 
given ecosystem. Thus, they can go to their well-known Student-t dis
tribution, transform our difference-between-means-data into Student-t 
values by means of the appropriate equation, and compute the tail 
probability (i.e. the area under the curve tail) that will give us the 
probability of having obtained our data, or more extreme data, 
presuming that H0 is actually true (i.e. presuming that the probability of 
having obtained our data is maximum when the difference between 
means is zero). The lower the p-value the better. Why? Because if the 
probability of having obtained our data is very low but we have obtained 
them (look at them, I have them in my spread sheet) somebody has to be 
wrong. And the most likely candidate to be wrong is … yes, the null 
hypothesis, and that is why we are entailed to reject it. 

3. Introducing cut-off points 

In summary, p-values, as first designed by Fisher, could be inter
preted in an absolute manner, as a continuous scale (the lower the 
better) for the rejection of null hypotheses. But Fisherian p-values had 
the drawback of not being able to allow proper decision-making when 
needed. Is the p-value low enough for a government to decide on the 
protection of an endangered species? Jerzy Neyman and Egon Pearson 
came to the rescue and suggested the need of establishing an acceptable 
cut-off point for the risk of being wrong when rejecting the null hy
pothesis (i.e. the Type I error rate or α), and also for the risk of wrongly 
failing to reject the null when we should not (often taken to be a less 
risky situation). Practitioners agreed that an arbitrary chance of being 
wrong 5 times out of 100 was usually okay. Low enough. Sometimes the 
a priori agreed level is more conservative, but whatever the α value 
chosen it has to be established a priori, before having test results in 
hand. 

Statisticians were able to return to their Student-t curves and find the 
value of t (i.e. of the degree of standardized difference between sample 
means indicated by our data) in the X axis of the distribution that pro
vides an area at the tail of the x1 − x2 curve that equals 5% chances of 

being wrong when rejecting the null hypothesis that x1 − x2 = 0. We 
call that value of t the critical value. Hence we want that the t value that 
we obtain using our data lies towards the right of that critical value, 
entailing that our probability of being wrong when rejecting the null is 
lower than the agreed 5% (≤0.05). That is, a p-value lower than α (the 
so-called statistically significant result) implies that chances of being 
wrong are low enough because the probability of having obtained our 
data, or more extreme data, under the trueness of null hypothesis, is very 
low. But we have got the data and hence H0 has to be wrong. 

From this moment in time on, p-values lost their continuous inter
pretation and acquired a dichotomous meaning related to α. All ecolo
gists that forget about Neyman and Pearson’s contribution, and keep 
interpreting p-values according to its continuous value, are proceeding 
in a wrong way. This is similar to agreeing (prior to the start of the exam) 
on a cut-off point for considering students past or failed in an exam. If 
that number is 5, students with a 4.9 are as failed as those with a 3.2. 
Using both criteria at the same time (absolute and relative) is 
inconsistent. 

4. Reporting statistical results 

This historical introduction leads us back to our main topic: the use 
of a correct statistical language when reporting NHST results. From the 
moment Neyman and Pearson established the cut-off point for dichot
omous yes/no decisions (α), we can reject the null hypothesis when the 
p-value < α, but … can we also accept the null hypothesis when the p- 
value > α? The unfortunate answer is that it depends. It depends on 
whether we can perform a priori power tests before the onset of the 
experiment or not. In an a priori power test one feeds the test with 
means, standard deviations (a desired α and a desired power level) and, 
importantly, the magnitude of the effect that we consider biologically 
relevant. And the test gives us back the sample size required from each 
population so that if we obtain a p-value lower than α we can reject the 
null, AND if a p-value is larger than α we can accept it. Statistical sig
nificance and biological relevance become matched in that case, thanks 
to the a priori power tests. However, we ecologists seldom know how 
large the magnitude of an effect has to be beforehand to consider it 
biologically relevant, and hence we do not perform a priori power tests 
and use instead null hypotheses of equality to zero effects. This way only 
the so-called positive results (in which p-value < α) are useful (Martí
nez-Abraín, 2013) and can be trusted but, on the contrary, “negative” or 
statistically non-significant results (p-value > α) can always be due to a 
lack of power. Increasing the sample size further we would end up 
obtaining a statistically significant result for sure. Hence, used that way, 
null hypothesis statistical testing only allows us to reject null hypotheses 
or to fail to reject them, but we cannot accept a null hypothesis of no 
effects. Ideally, nulls should not be of null effects but rather be biolog
ically informed, but we are forced to use these biologically nonsensical 
hypotheses (i.e. as everything differs to some extent in nature) due to our 
lack of detailed prior knowledge of the system under study (Martíne
z-Abraín, 2007). That leaves us with useless negative results always 
attributable to a lack of power. 

Another problem with the way we report results is the unfortunate 
habit of calling “significant” to results that just show that the null hy
pothesis of no effects is not true (p-value < α). The problem comes from 
the fact that significant has a meaning of big magnitude in common 
parlance, and hence by reporting that a result is significant we are using 
the same word that we use when we mean that the effect found (i.e. r, 
difference between means, r2, etc) was big. At least we should clearly 
separate both meanings (i.e. statistical significance and magnitude of 
effects). For example, we can use “statistically significant” for results in 
which the p-value was lower than α, and call “biologically relevant” (or 
another adjective equivalent to relevant, such as substantial) to those 
results in which the magnitude of the effect was found to be big (Mar
tínez-Abraín, 2008). 

The recent suggestion by Muff et al. (2022) of using an 
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evidence-based language when reporting p-values is an attempt to make 
a change in the old language. However, it also has some problems from 
my point of view (see also Hartig and Barraquand 2022; Lakens 2022). 
First, their proposal represents going back in history to Fisherian 
p-values and their continuous interpretation. But, as explained above, 
and admitted by Muff et al. (2022) as well, this is not practical for de
cision making. Cut-off points cannot be avoided and using the two 
paradigms (continuous and dichotomous) at the same time is not 
possible. Muff et al. (2022) however provide at the same time both 
continuous and categorical (i.e. little or no evidence, weak evidence, 
moderate, strong and very strong evidence) interpretations to p-values. 
That reminds quite a lot to the old use of asterisks. Additionally, and 
most importantly, I think it can be misleading to use the word evidence 
when reporting p-values. It can be misleading because evidence against 
the null could be considered by many to be synonymous of reporting the 
probability that the null (or the parameter value) is true, given our data 
(Biau et al., 2010), and that is not the case at all. You only get that 
through Bayesian analyses. 

Hence, rather than using an evidence-based language and working 
with frequentist p-values in a continuous way, we could better preserve 
the cut-off point (that we have agreed a priori to be low enough) and 
make use of a language based on the probability of having obtained our 
data, or more extreme data, under the trueness of the null. So, p-values 
lower than α would represent too low probabilities of having obtained 
our data, or more extreme data, provided that the null hypothesis is true. 
In Table 1 I use all the examples of inadequate statistical language 
provided by Muff et al. (2022), show their alternative option based on 
their evidence language, and finally present my proposal based on data 
probability language for p-values, plus a separate statement for the 
magnitude of the effects. The statement about the magnitude of the ef
fects should always come first as this should be our main scientific in
terest. The results of tests only will tell us whether what we see in our 
samples applies or not at the statistical population level as well. 

5. Final considerations 

Some readers may be reasoning that since we now have powerful 
computers nothing stops us from using Bayes’ rule for performing 
inference, and obtaining what we really are looking for, rather than 
roughly its mirror image. That way all current language problems 
associated to p-values would vanish. Certainly we should use Bayesian 
inference more when good previous information is available (and 
sometimes is). However, there are some drawbacks for a generalized 
application of Bayesian methods to ecology. Most importantly we 
commonly do not have a priori information about the probability of the 
parameter or the null, and end up using non-informative priors to be 
able to apply Bayes’ rule (see Banner, 2020). By using flat 
un-informative priors, we obtain results that are similar to those ob
tained performing frequentist inference only based on data probability. 
All the information comes from our data, and Bayesian credible intervals 
will coincide with frequentist confidence intervals, despite their inter
pretation is very different. If reliable previous information is not avail
able I would suggest that the use of likelihood-based AICs for relative 
model selection, together with multi-model inference, is the best infer
ence tool currently available in the ecologist tool box. A tool that we can 
certainly use in a continuous way, without dichotomous decisions and 
without qualitative categories. We just have to be aware that we are only 
getting relative probabilities for our models (Akaike’s weights) meaning 
that these probabilities are not absolute, and hence that all our hy
potheses may be wrong. However, that is the subjective part of the 
frequentist inference (i.e. model specification) (Martínez-Abraín et al., 
2014). It is unavoidable, but to me it is the most relevant contribution of 
the ecologist to the inference process, as our expertise (i.e. a complex 
algorithm) reflects the quality of the hypotheses that we finally contrast. 

Table 1 
Examples provided by Muff et al. (2022) for an evidence-based way of reporting 
NHST results, compared to the alternative suggested in this paper of using a 
likelihood-based language.  

Initial statement Evidence-based language Data probability 
language 

Glider and arborealist 
disparities are not 
significantly different (P 
= 0.44). 

There is no evidence that 
glider and arborealist 
disparities differ [(give 
effect estimate), P =
0.44]. 

Disparities between 
glider and arborealist 
were large/small (give 
effect size). The 
probability of the data, 
or more extreme data, 
under the null hypothesis 
of equality was high (p- 
value>0.05). 

We found no significant 
differences between 
hypercarnivorous and 
generalist species for the 
shape of the cranium (F 
= 1.07, P = 0.34). 

There was no evidence 
that the shape of the 
cranium is different 
between 
hypercarnivorous and 
generalist species (F =
1.07, P = 0.34). 

Differences in the shape 
of the cranium between 
hypercarnivorous and 
generalist were small/ 
large (give effect size). 
The probability of the 
data, or more extreme 
data, was high under the 
hypothesis of equal 
cranium shapes at the 
statistical population 
level (p-value>0.05). 

By contrast, we found 
significant shape 
differences, mainly 
related to bone 
robustness, for the 
humerus (F = 3.13, P =
0.022) and the femur 
(F = 2.7, P = 0.017). 

By contrast, there was 
moderate evidence for 
shape differences, 
mainly related to bone 
robustness, for the 
humerus (F = 3.13, P =
0.022) and the femur (F 
= 2.7, P = 0.017). 

Differences in bone 
robustness were small/ 
large (give effect size) 
regarding the humerus 
and the femur. The 
probability of the data, 
or more extreme data, 
was small in both cases 
under the hypothesis of 
equal humerus and 
femur shapes at the 
statistical population 
level (p-values<0.05 in 
both cases). 

Our results revealed 
significant disparity 
differences between 
generalist and 
hypercarnivorous 
species for the cranium 
(P = 0.002) and the 
mandible (P = 0.006). 

There was strong 
evidence for disparity 
differences between 
generalist and 
hypercarnivorous 
species for the cranium 
[(give effect estimate), P 
= 0.002] and the 
mandible [(give effect 
estimate), P = 0.006]. 

Our results indicated 
small/large differences 
between generalists and 
carnivorous in cranium 
(give effect size) and 
mandible (give effect 
size). The probability of 
data, or more extreme 
data, was low under the 
hypothesis of equality at 
the statistical population 
level (p-value <0.05 in 
both cases). 

(…) we show here that 
body size decreased 
significantly in the 
treatments 
(F3, 7710 = 76.30, P <
2.20 ⋅ 10–16). 

(…) there was very 
strong evidence that 
body size decreased in 
the treatments (F3, 7710 

= 76.30, P < 0.001). 

(…) body size decreased 
substantially between 
treatments (give effect 
size). The probability of 
data, or more extreme 
data, was low under the 
hypothesis of equality 
between control and 
treatment at the 
statistical population 
level (p-value<0.05). 

IA was affected by 
conditions in males (P =
8.87 ⋅ 10−5) but not in 
females (P = 0.07). 

There was very strong 
evidence that IA was 
(positively/negatively) 
affected by conditions in 
males [(give effect 
estimate), P < 0.001], 
but only weak evidence 
that this was the case in 
females [(give effect 
estimate), P = 0.07]. 

IA was affected slightly/ 
strongly by conditions in 
males (give effect size) 
but not in females (give 
effect size). The 
probability of data, or 
more extreme data, 
under the hypothesis of 
IA equality between 
sexes was low for males 
(p-value<0.05) but high 
for females (p- 

(continued on next page) 
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Table 1 (continued ) 

Initial statement Evidence-based language Data probability 
language 

value>0.05) at the 
statistical population 
level. 

Foliar 10% did not 
significantly increase 
production of extrafloral 
nectar (estimate =
−0.13, P = 0.061). 

There was (only) weak 
evidence that foliar 10% 
increased production of 
extrafloral nectar 
(estimate = −0.13, P =
0.061). 

Foliar 10% slightly 
increased production of 
extrafloral nectar 
(−0.13), but the 
probability of data, or 
more extreme data, was 
high under the 
hypothesis of no effects 
at the statistical 
population level (p- 
value>0.05). 

The relationship between 
mean light transmittance 
and basal area was not 
significant (R2 adj =
0.146, P = 0.168, n = 9), 
but light transmittance 
decreased slightly with 
diameter at breast height 
(DBH) of transplant trees 
across sites (R2 adj =
0.022, P < 0.014, n =
225). 

There was no evidence 
for a relationship 
between mean light 
transmittance and basal 
area (R2 adj = 0.146, P 
= 0.168, n = 9), but 
moderate evidence that 
light transmittance 
decreased slightly with 
DBH of transplant trees 
across sites [R2 adj =
0.022, P = (give exact P- 
value), n = 225]. 

The relationship 
between mean light 
transmittance and basal 
area was small (R2 adj =
0.146, n = 9) but the 
probability of data, or 
more extreme data, was 
high under the 
hypothesis of no 
relationship at the 
statistical population 
level (p-value>0.05). 
Light transmittance 
decreased slightly with 
diameter at breast height 
of transplanted trees 
across sites (R2 adj =
0.022). The probability 
of data, or more extreme 
data, was low under the 
hypothesis of no 
relationship at the 
statistical population 
level (p-value<0.05). 

The sex ratio for 
immigrants was female 
biased (58.9% females, 
n = 569, binomial test P 
< 0.001) in wandering 
albatrosses (but not for 
residents: 49.7%, n =
2844, binomial test P =
0.750). 

There was very strong 
evidence that the sex 
ratio for immigrants was 
female biased (58.9% 
females, n = 569, 
binomial test P < 0.001) 
in wandering 
albatrosses, but there 
was no evidence for such 
a bias for residents 
(49.7%, n = 2844, 
binomial test P = 0.75). 

The sex ratio for 
immigrants in wandering 
albatrosses was female- 
biased (58.9% females, n 
= 569); the probability 
of data, or more extreme 
data, was low under the 
hypothesis of equal sex 
ratio at the statistical 
population level (p- 
value<0.05). However, 
the sex ratio for resident 
wandering albatrosses 
was not female-biased 
(49.7%, n = 2844); the 
probability of data, or 
more extreme data, was 
high under the 
hypothesis of equal sex 
ratio at the statistical 
population level (p- 
value>0.05). 

There was no difference 
detected among 
contemporary Great 
Lakes and East Coast 
anadromous alewives 
(ANOVA: F2,224 = 2.74, 
P = 0.067). 

There was (only) weak 
evidence that 
contemporary Great 
Lakes and East Coast 
anadromous alewives 
differ (ANOVA: F2,224 =

2.74, P = 0.067). 

The difference detected 
between contemporary 
Great Lakes and East 
Coast anadromous 
alewives was small (give 
effect size); the 
probability of data was 
high under the 
hypothesis of no 
differences between 
statistical population 
means (p-value>0.05).  
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