
Development of efficient De Bruijn
graph-based algorithms for genome
assembly

Autor: Borja Freire Castro
Tesis doctoral UDC / 2022

Directores:
José Ramón Parama Gabia
Leena Salmela

Tutora: Susana Ladra González

Development of efficient De Bruijn
graph-based algorithms for genome
assembly

Autor: Borja Freire Castro
Tesis doctoral UDC / 2022

Directores:
José Ramón Paramá Gabía
Leena Salmela

Tutora: Susana Ladra González

Programa Oficial de Doutoramento en Computación

PhD thesis supervised by
Tesis doctoral dirigida por

José Ramón Paramá Gabía
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 881011241
jose.parama@udc.es

Leena Salmela
Department of Computer Science
Faculty of Science
University of Helsinki
FIN-00014 FINLAND
Tel: +358 (0) 2941 911
leena.salmela@cs.helsinki.fi

Tutored by
Tutorizada por

Susana Ladra González
Departamento de Computación y Tecnologías de la Información
Facultad de Informática
Universidade da Coruña
15071 A Coruña (España)
Tel: +34 881011218
susana.ladra@udc.es

Leena Salmela y José Ramón Paramá Gabía, como directores, y Susana Ladra
como tutora acreditamos que esta tesis cumple los requisitos para optar al título de
doctor internacional y autorizamos su depósito y defensa por parte de Borja Freire
Castro cuya firma también se incluye.

Leena Salmela and José Ramón Paramá Gabía, as directors, and Susana Ladra
as tutor, certify that this thesis meets the requirements to qualify for the title of
international doctor and we authorize its deposit and defense by Borja Freire Castro,
whose signature is also included.

iii

iv

A mis padres que hace diez años me encaminaron por la vía de
informática en lugar de las matemáticas y eso me ha permitido llegar

adonde estoy ahora mismo.

v

vi

Acknowledgements

Four years ago when I started my doctorate I did it full of doubts and like all
Spanish students I dedicated the first month, or year, to searching the internet:
what is a doctorate worth? Is the doctorate worth it? a criminal when you have
an FPU? Why is it published so much in machine learning?, etc. Despite the fact
that the answers were not very encouraging, he decided to follow this path and I
honestly do not regret it at all. I have to especially thank my directors for this, the
3 (or two, we’ll see), for making my path bearable and pleasant. More than special
thanks to José for having acted as a sparring partner for ideas, as a psychologist, as
a motivational coach, as a grammar checker and as a punching bag, among other
things. Also thank my parents who have supported me for 28 years and when I
decided to make a career in begging, also known as PhD candidate, they only had
words of support, and a little sorrow.

I would also like to thank the universities of Helsinki, Chile and Saarbrüken for
having treated me as one more member of the group. Especially to the University of
Helsinki and the group Genome-Scale Algorithm Design who hosted me repeatedly.

Finally, thanks to all the entities that have financed me and have allowed
me to travel and do my doctorate with full performance. I want to thank the
Galician Research Center “CITIC”, funded by the Xunta de Galicia and the
European Union (European Regional Development Fund - Galicia Program 2014-
2020), with the ED431G 2019/01 grant. I would also like to thank the Xunta de
Galicia/FEDER-UE that has financed this thesis through the grants [ED431C
2021/53; IG240.2020.1.185; IN852A 2018/14]; to the Ministry of Science and
Innovation with scholarships [TIN2016-78011-C4-1-R; FPU17/02742; PID2019-
105221RB-C41; PID2020-114635RB-I00]; and to the Academy of Finland [grants
308030 and 323233 (LS)].

vii

viii

Agradecimientos

Hace cuatro años cuando empecé el doctorado lo hice lleno de dudas y como
todo estudiante español me dediqué el primer mes, o año, a buscar en internet:
¿para que vale un doctorado?¿merece la pena el doctorado?¿porque te tratan como
un delincuente cuando tienes una FPU?¿porque se publica tanto en aprendizaje
automático?, etc. Pese a que las respuestas no fueron demasiado alentadoras decidí
seguir este camino y sinceramente no me arrepiento para nada. Esto se lo tengo
que agradecer especialmente a mis directores, los 3 (o dos ya veremos), por haceme
el camino llevadero y agradable. Agradecimiento más que especial para José por
haber hecho de sparring de ideas, de psicólogo, de coach motivacional, de corrector
gramatical y de saco de boxeo, entre otras cosas. También agradecérselo a mis
padres que me han soportado durante 28 años y que cuando decidí hacer carrera
en la mendicidad, también conocido como estudiante de doctorado, solo tuvieron
palabras de apoyo, y un poquito de pena.

Agradecer también a las universidades de Helsinki, Chile y Saarbrüken por
haberme tratado como a un miembro más del grupo. Especialmente a la universidad
de Helsinki y al grupo Genome Scale algorithm design que me acogió en repetidas
ocasiones.

Por último, los agradecimiento a todas las entidades que me han financiado y me
han permitido viajar y hacer mi doctorado con total desempeño. Quiero agradecer al
Centro de Investigación de Galicia “CITIC”, financiado por la Xunta de Galicia y la
Unión Europea (European Regional Development Fund- Galicia 2014-2020 Program),
con la beca ED431G 2019/01. También agradecer a la Xunta de Galicia/FEDER-UE
que ha financiado esta tesis a través de las becas [ED431C 2021/53; IG240.2020.1.185;
IN852A 2018/14]; al Ministerio de Ciencia e Innovación con las becas [TIN2016-
78011-C4-1-R; FPU17/02742; PID2019-105221RB-C41; PID2020-114635RB-I00]; y
a la academia de Finlandia [grants 308030 and 323233 (LS)].

ix

x

Agradecementos

Hai catro anos cando comecei o doutoramento fíxeno cheo de dúbidas e como todos
os estudantes españois dediqueino o primeiro mes, ou ano, a buscar en internet: que
vale un doutoramento?, ¿vale o doutoramento?, un delincuente cando tes unha FPU?,
por que se publica tanto en machine learning?, etc. A pesar de que as respostas non
foron moi alentadoras, decidiu seguir este camiño e sinceramente non me arrepinto
nada. Teño que agradecer especialmente aos meus directores este, os 3 (ou dous,
xa veremos), por facer o meu camiño levadeiro e agradable. Agradecemento máis
que especial a José por ter actuado como compañeira de combate de ideas, como
psicólogo, como adestrador motivacional, como corrector gramatical e como saco de
boxeo, entre outras cousas. Tamén agradecer aos meus pais que me apoiaron durante
28 anos e cando decidín facer unha carreira de mendicidade, tamén coñecido como
estudante de doutoramento, só tiveron palabras de apoio, e un pouco de mágoa.

Tamén me gustaría agradecer ás universidades de Helsinki, Chile e Saarbrüken
que me trataran como un membro máis do grupo. Especialmente á Universidade de
Helsinki e ao grupo Genome-Scale Algorithm Design que me acolleron varias veces.

Para rematar, agradecer a todas as entidades que me financiaron e que me
permitiron viaxar e facer o doutoramento con pleno rendemento. Quero agradecer
ao Centro Galego de Investigación “CITIC”, financiado pola Xunta de Galicia e a
Unión Europea (Fondo Europeo de Desenvolvemento Rexional - Programa Galicia
2014-2020), coa subvención ED431G 2019/01. Tamén quero agradecer á Xunta de
Galicia/FEDER-UE que financiou esta tese a través das axudas [ED431C 2021/53;
IG240.2020.1.185; IN852A 2018/14]; ao Ministerio de Ciencia e Innovación con
bolsas [TIN2016-78011-C4-1-R; FPU17/02742; PID2019-105221RB-C41; PID2020-
114635RB-I00]; e á Academia de Finlandia [subvencións 308030 e 323233 (LS)].

xi

xii

Abstract

During the last two decades, thanks to the development of new sequencing techniques,
the study of the genome has become very popular in order to discover the genetic
variation present in both humans and other organisms. The predominant mode of
genome analysis is through the assembly of reads in one or multiple chains for as
long as possible. The most traditional way of assembly is the one that involves reads
from a single genome. In this field, in the last decade, third-generation readings
have emerged with new challenges for which there are no efficient solutions. The
first contribution that has been made in this thesis is Compact-Flye, a tool for the
efficient assembly of third-generation reads on the Flye algorithm. This tool is based
on the ingenious use of compact data structures to improve typical assembly steps
such as counting and indexing k-mers. Apart from the assembly of a genome, there
are techniques that seek to assemble all the genomes contained in a given sample.
This assembly is known as multiple sequence assembly or haplotype reconstruction, a
subject also treated in this thesis. Our first approach to solving this has been viaDBG,
which is the first solution based on de Bruijn graphs that offers results comparable
to current techniques in viral genome assembly while maintaining the efficiency of
these graphs. Our second contribution is ViQUF, which is a natural improvement on
its predecessor. ViQUF completely changes the algorithm of viaDBG but continues
to be based on the same structures, although with some variations that allow it not
only to improve results in terms of time and quality, but also to provide additional
information such as an estimate of the relative presence of each species in the sample.

xiii

xiv

Resumen

Durante las últimas dos décadas, gracias al desarrollo de nuevas técnias secuenciación,
el estudio del genoma ha ganado mucha popularidad de cara a conocer la variación
genética presente tanto seres humanos como otros organismos. El modo predominante
de análisis del genoma es a través del ensamblaje de lecturas en una o múltiples
cadenas lo más largas posibles. La manera más tradicional de ensamblaje es el
que implica lecturas provenientes de un solo genoma. En este campo, en la última
década han surgido las lecturas de tercera generación con nuevos retos para los
que no existen soluciones eficientes. La primera aportación que se ha realizado en
esta tesis es Compact-Flye una herramienta para el ensamblaje eficiente de lecturas
de tercera generación sobre el algoritmo Flye. Esta herramienta está basada en
el uso igenioso de estructuras compactas de datos para mejorar etapas típicas del
ensamblaje como el conteo e indexación de k-mers. Al margen del ensamblaje de
un genoma existen técnicas que buscan ensamblar todos los genomas contenidos en
una muestra determinada. Este ensamblaje es conocido como ensamblaje múltiple
de secuencias o reconstrucción de haplotipos, tema también tratado en esta tesis.
Nuestra primera aproximación para la resolución de este ha sido viaDBG, que es la
primera solución basada en grafos de de Bruijn que ofrece resultados comparables a
las técnicas vigentes en ensamblaje de genomas víricos, mientras que mantiene la
eficiencia de estos grafos. Nuestra segunda aportación es ViQUF, que es una mejora
natural de su predecesor. ViQUF cambia totalmente la algoritmia de viaDBG, pero
sigue cimentándose en las mismas estructuras aunque con alguna variación que le
permite no solo mejorar resultados en tiempo y calidad. Sino que además le permite
aportar más información como estimaciones relativa de cada especie en la muestra.

xv

xvi

Resumo

Durante as dúas últimas décadas, grazas ao desenvolvemento de novas técnicas
de secuenciación, o estudo do xenoma fíxose moi popular para descubrir a
variación xenética presente tanto nos humanos como noutros organismos. O modo
predominante de análise do xenoma é a través da ensamblaxe de lecturas nunha ou
varias cadeas o maior tempo posible. A forma máis tradicional de ensamblar é a que
implica lecturas dun só xenoma. Neste campo, na última década xurdiron lecturas
de terceira xeración con novos retos para os que non existen solucións eficientes.
A primeira contribución que se fixo nesta tese é Compact-Flye, unha ferramenta
para a montaxe eficiente de lecturas de terceira xeración sobre o algoritmo Flye.
Esta ferramenta baséase no uso intelixente de estruturas de datos compactas para
mellorar os pasos típicos de montaxe, como contar e indexar k-mers. Ademais da
montaxe dun xenoma, existen técnicas que buscan ensamblar todos os xenomas
contidos nunha determinada mostra. Este conxunto coñécese como conxunto de
secuencias múltiples ou reconstrución de haplotipos, tema tamén tratado nesta
tesis. O noso primeiro enfoque para resolver isto foi viaDBG, que é a primeira
solución baseada en gráficos de Bruijn que ofrece resultados comparables ás técnicas
actuais de ensamblaxe de xenoma viral, mantendo a eficiencia destes gráficos. A
nosa segunda incorporación é ViQUF, que é unha mellora natural con respecto ao
seu predecesor. ViQUF cambia completamente o algoritmo de viaDBG pero segue
baseándose nas mesmas estruturas, aínda que con algunha variación que lle permite
non só mellorar os resultados en tempo e calidade. Pero tamén permite achegar
máis información como estimacións relativas de cada especie da mostra.

xvii

xviii

Contents

1 Introduction 1
1.1 Biological background . 1

1.1.1 Genome, DNA, RNA and genetic variation 1
1.1.2 Genome sequencing . 2
1.1.3 Haplotype reconstruction . 3

1.2 Objectives . 4
1.2.1 Viral haplotype reconstruction 6

1.2.1.1 viaDBG . 6
1.2.1.2 ViQUF . 7

1.2.2 Improving third-generating sequencing assembly 7
1.3 Discussion and conclusions . 8
1.4 Articles published during the thesis span 11
1.5 Projects not published yet . 12

2 Articles 15
Inference of viral quasispecies with a paired de Bruijn graph 17
ViQUF: de novo Viral Quasispecies reconstruction using Unitig-based Flow

networks . 33
Memory-Efficient Assembly using Flye . 57

A Resumen del trabajo realizado 71
A.1 Introducción . 71
A.2 Objetivos . 73

A.2.1 Reconstrucción de haplotipos víricos 73
A.2.2 Ensamblaje de tercera generación compacto 75

A.3 Discusión y conclusiones . 77
A.4 Trabajo futuro . 78

Bibliography 79

xix

xx Contents

Chapter 1

Introduction

This chapter presents the problem addressed in this thesis, the objetives, and
a discussion of the achieved results. First, Section 1.1 introduces the biological
background needed to present the addressed problem. Then, Section 1.2 shows
the objetives and Section 1.3 shows a discusion of the achieved results and the
conclusions.

1.1 Biological background

1.1.1 Genome, DNA, RNA and genetic variation
DNA is the molecule responsible for storing the genetic information of almost every
organism. It is located inside each cell and all cells in one organism have almost the
same DNA. DNA encodes the genome, which stores generic and particular traits of
every single individual; thus, DNA makes us who we are.

DNA is the final product built from the joining of small pieces known as
nucleotides. These nucleotides are the basic component of the DNA and they
are built from one molecule of sugar (ribose and deoxyribose for RNA and DNA
respectively), a phosphate group, and a nitrogenous base. Depending on this base, we
have adenine (A), cytosine (C), thymine (T), and guanine (G). In the case of RNA,
thymine is changed to uracil (U). The four bases have a peer relationship allowing
them to form hydrogen bonds between opposite bases, A−T and C −G. Each pair is
called a base pair, bp for short. These bonds are responsible for the double-stranded
DNA chain, which allows processes such as DNA replication and transcription. These
two strands are known as complementary strands and, depending on the direction,
they are called forward or reverse strands. Although they are called complementary,
both strands store the same information. This enables a repair mechanism that
corrects the DNA when errors appear during the replication process. Finally, not

1

2 Chapter 1. Introduction

all organisms are bistranded: several viruses are single-stranded, but they have lost
some important properties such as DNA correction.

The genome length varies greatly depending on the organism. For example,
humans have around 3,000 million pairs of bases, while a bacteria, such as for
example Escherichia coli, have 4.5 million, and viruses only have between 10,000–
30,000 base pairs.

In both eukaryotic and prokaryotic organisms, DNA can be copied in two different
ways through replication and transcription. Transcription is the process of copying
particular regions of the DNA into RNA. The RNA is a molecule highly similar to the
DNA but single-stranded and focused on protein production: producing ribosomes,
transporting aminoacids, and coding proteins. Therefore, transcription produces
three different RNAs: rRNA or ribosomal RNA, which is the basic component of the
ribosome; tRNA or transfer RNA, which allows amino acids to be transported in the
cytoplasm; and mRNA or messenger RNA, which is the one that will be translated
into proteins. mRNA is the translation of particular regions of the genome known
as exons. The remaining parts of the genes are known as intronic or non-coding
regions, typically interspersed with coding regions. Although it is not the main
topic of this thesis, exons, and introns have an interesting relationship and most
introns are understudied nowadays with no clear function assigned. On the other
hand, replication consists in duplicating the genetic information of an organism to
duplicate the cell. During the transcription and replication processes, some mistakes
can happen, which are sometimes corrected by enzymes known as polymerases (I,
II, II). However, when some of these errors are not corrected during the replication
process, mutations are produced. These effects go from harmless, silent mutations, to
deleterious, removing some functionality, and stopping an entire protein production.
In general, mutations can be divided into three different groups, depending on the
structural impact they produce: single nucleotide polymorphism (SNPs), insertions
or deletions (indels), or structural variations (SVs). During the last years, multiple
effects such as cancer, an increase of aggressiveness, or resistance in some viruses or
bacterias have been discovered. They have been directly associated with variations,
thus creating enormous interest in the research community. In prokaryotic organisms,
there is another way to produce mutations, which is the recombination process.

1.1.2 Genome sequencing
In recent years, biology has joined the group of sciences that seek a solution to
their problems in computer science. Biological problems are highly complex due
not only to the inherent difficulty of the physicochemical processes but also due
to the uncertainty and size of the data they handle. This is what prompted the
incorporation of computer techniques into the biological field as early as the last
decade of the 20th century. The first major project was the Human Genome Project,
where the use of computational techniques led to a dizzying increase in the assembly
speed. This incorporation allowed the replacement of more traditional sequencing

1.1. Biological background 3

techniques, such as Sanger or sequencing by chemical decomposition, with new
high-performance versions, known as Next Generation Sequencing (NGS) and Third
Generation Sequencing (TGS). As a result of this first contact, computer science has
gradually been claimed as the solution to many of today’s biological problems and is
nowadays an essential element in the development of the field of traditional biology.

Both of them, NGS and TGS, rely on a sequencer to produce a set of reads.
Each of these reads covers a portion of the genome. However, depending on the
technique, the portion and the quality of the reads change:

• NGS produces high-quality short reads of 100–250 bps (base pairs) with less
than 1% of error. It allows paired-end reads to be produced, which are pairs
of reads with lengths 100–250 bp separated by an inner distance.

• TGS produces low-quality long reads, which are longer than 10,000 bps with a
high rate of error, sometimes higher than 15%.

In either case, each read only covers a portion of the genome, and then it is necessary
to reconstruct the genome from these reads. This problem is traditionally called
genome assembly.

Genome assembly is typically conducted by using graphs. Depending on the
graph used, the genome assembly can be de Bruijn or overlap graph-based. The
first one is based on building a representation of the reads and their relations by
using k-mers, which are substrings of length k contained in the reads. The second
one is based on computing overlaps between the reads and joining them when these
overlaps have passed some quality controls. The pruned version of these graphs is
known as string graphs.

1.1.3 Haplotype reconstruction
The DNA contains genes, which are sequences of contiguous nucleotides in the
DNA molecule (or ribosomal RNA) containing the information necessary for the
development or operation of a physiological function. Each gene is located in a
fixed position of the DNA sequence, called locus. In genetics, it is common to have
different versions of the same functional gene, each of those versions is called an
allele.

In biological terms, a haplotype is a set of DNA variations, or polymorphisms,
that tend to be inherited together. A haplotype can refer to a combination of
alleles or to a set of single nucleotide polymorphisms1 (SNPs) found on the same
chromosome2.

From the computational perspective, the haplotype reconstruction problem
consists in detecting the haplotype(s) present in a set of raw reads obtained from a
biological sample, where abundancies and genomes are unknown. More precisely,

1A variation in the DNA sequence that affects a single nucleotide.
2A chromosome is a set of DNA that represents a part of all genetic information of an organism.

4 Chapter 1. Introduction

the haplotype reconstruction consists in producing a set of contigs (sections of the
genome) as long as possible, which contains both high-frequency and low-frequency
alleles or SNPs correctly placed, as well as the different reconstructed haplotypes.
Additionally, depending on the problem, it may be necessary to obtain the relative
frequency of each allele.

In this thesis, we will treat one well-known haplotype reconstruction problem,
which is the viral haplotype reconstruction. From a purely biological perspective,
viral haplotype reconstruction aims to ensemble the viral haplotypes contained in
a sample, like for example in an infected person. Because the mutation rate of
viruses is much higher than that of other species, especially in the case of RNA
viruses or retroviruses such as HIV, the diversity in a sample can be extremely
high. However, knowing all the different variations and haplotypes that coexist in a
patient plays a key role in target medicine since it helps assess the virulence and
better define the current infection status. Therefore, with this knowledge, deciding
which therapy is most suitable is much easier. Deep sequencing of intra-host viral
populations is becoming an important tool for studying viruses with a growing
number of applications, including, for example, drug resistance, immune escape, and
epidemiology.

At the time this thesis started, the available solutions had several drawbacks,
such as high execution time, lack of sensitivity, and the extremely high number of
parameters needed to run the process. This made these tools not too attractive for
solving real problems; thus, more generic metagenomics tools, like MetaSPAdes, were
used. These techniques were developed to detect different species in a sample, like
finding the different microorganisms in wastewater, but not for the reconstruction
of viral haplotypes.

1.2 Objectives
This thesis addresses the genome assembly problem, and inside it, it address two
lines of work.

The first one is to give a new solution to the viral haplotype reconstruction
problem, which can be classified as a metagenomic problem. This includes several
complex challenges such as: differentiating between genetic variations and errors;
managing genetic recombination between the haplotypes; placing the correct SNPs
in the correct place avoiding misassemblies or blending different haplotypes.

However, viral haplotype reconstruction has some particular features that separate
it from the typical metagenomics problem. As explained, in metagenomics, the
target is to find different species, so similarity bounds are laxer than in the case of
viral haplotype reconstruction, where we are not dealing with different species, but
with haplotypes of the same species. Metagenomic assembly tools usually claim to
be able to reconstruct genomes within a similarity range from 1%, but in practice,
none can capture such similarity and these variations are discarded. However,

1.2. Objectives 5

viral haplotype reconstruction has to achieve that level of similarity or even more.
Although this makes the problem harder, there are two specific features of the viral
haplotype reconstruction problem that helps. First, depth coverage in viral haplotype
reconstruction is always very high, from 20000×3 and beyond, and, as a consequence
of this, the full haplotypes are completely contained in the sample. Furthermore,
while in metagenomics the sample contains a palette of different organisms, in viral
haplotype reconstruction samples, they only contain haplotypes evolved from the
same ancestor. These properties are convenient and have allowed the development
of ad hoc tools that achieve much better accuracy than typical metagenomic tools.

As in regular assembly tasks, viral haplotype reconstruction has reference-based
and de novo approaches. Reference-based methods use a previously constructed
genome (the reference) to guide the assembly of reads from a sample, whereas
de novo methods only rely on the raw reads. Reference-based methods are not
typically effective when the genomic divergence grows. Furthermore, sometimes
it is complex to find an adequate reference since the viruses mutate faster than
regular organisms. Until 2019, most of the approaches were reference- or overlap
graphs-based. The reference-based approaches introduced severe biases removing
highly divergent strains or being misassembled. The overlap graph-based methods
had high time and memory requirements or they relied on greedy data pruning that
loses, in complex cases, genomic information. Since de Bruijn graph approaches
were barely explored and de Bruijn graphs have proved to be useful in the general
assembly context, we face the problem from that perspective.

In this thesis, we present two different algorithms to give a competitive solution
for the viral haplotype reconstruction based on de Bruijn graphs. Although de
Bruijn approaches are typically known for being less accurate than string graph
approaches, we were able to keep competitive and sometimes even better results in
terms of accuracy, but lowering time and memory consumption by several orders of
magnitude. The first of our approaches was viaDBG, which was the first approach
that, keeping the de Bruijn performance properties, obtains competitive results in
terms of accuracy. However, viaDBG had several weak points when working with
extremely tangled data and it did not provide strain frequency estimation. Therefore,
we designed and developed our second algorithm ViQUF that, maintaining or even
improving viaDBG’s assembly quality, can outperform it in terms of memory and
speed, and provides accurate haplotype frequency estimation.

The target of the second line of work in this thesis is to reconstruct a unique
genome using TGS reads. In this part of the thesis, we focus on the development of
data structures to increase the performance of k-mer counting in assemblers that
use TGS reads. The number of k-mers is so high in eukaryotic and prokaryotic
organisms that huge amounts of memory and time are required, and thus counting
k-mers in samples from large genomes such as the human is not feasible except on

3This means that given a position of the genome, on average, there are 20000 reads covering
that position.

6 Chapter 1. Introduction

high-capacity computers. Thus, the design of data structures that consume less space
and time during that computation is a relevant problem. This produces software
much more scalable, i.e. huge genomes can be assembled on smaller computers. To
this end, we study the use of state-of-the-art information compression techniques
that allow the information to be stored in the computer’s main memory, thus saving
space and (potentially) reducing disk access times.

1.2.1 Viral haplotype reconstruction
Both viaDBG [FLPS21] and ViQUF [FLPS22] are based on de Bruijn graphs, which
we augment with several techniques to improve the accuracy of the reconstructed
haplotype sequences. Basically, we adapt the approximate paired de Bruijn graph
[MPC+11] to viral quasispecies assembly. The approximate paired de Bruijn graph
integrates the information available in the paired-end reads directly into the de
Bruijn graph, which allows this information to be utilised directly in contig assembly.
Then viaDBG builds clique graphs to detect haplotypes, while ViQUF is based on
flow networks and optimisation problems to be able to simplify the de Bruijn graph.

1.2.1.1 viaDBG

viaDBG method has two main steps, error correction and haplotype inference. The
error correction step aims to correct the sequencing errors in the reads by first
identifying non-false k-mers in the reads and then applying the LoRDEC [SR14]
algorithm, a error correction method for correcting sequencing errors in TGS reads,
adapted to our case. The haplotype inference step starts by building a de Bruijn
graph, where the paired-end information is added and then, some heuristics are
used to polish the paired-end information. Finally, the haplotypes are obtained by
splitting the de Bruijn graph nodes based on the paired-end information, and then,
the contigs are obtained from this new modified de Bruijn graph.

Given a node A of the de Bruijn graph, if all occurrences of the genome fraction
that A represents are from the same haplotype, then all paired information of A
occur along some path in the de Bruijn graph. Thus all nodes corresponding to A
and its paired information are reachable from each other. On the other hand, if
the genome fraction that A represents occurs in several haplotypes, then the paired
information of A is likely to span some site containing a mutation, and thus, not
all the nodes corresponding to the paired information of A are reachable from each
other. viaDBG uses this reachability information to split the de Bruijn graph nodes
into different haplotypes.

The reachability information must be carefully analysed. For this, an intermediate
support graph, called Cliques Paired de Bruijn Graph (CPBG) is built for each pair
of adjacent nodes of the de Bruijn graph, combining information from the de Bruijn
graph and the paired-end reads. In the CPBG, the target is to find the cliques, since
each clique represents a different haplotype.

1.2. Objectives 7

1.2.1.2 ViQUF

This method also starts with the de Bruijn graph built from non-false k-mers. In the
de Bruijn graph, the nonbranching paths, unitigs, are compacted into single nodes
producing an assembly graph (AG). For each unitig, we associate a set of unitigs
linked to it by paired-end reads. Then, AG is processed by taking every pair of
adjacent nodes. For each pair, a new directed acyclic graph (DAG) is built including
all unitigs linked to those two nodes by paired-end reads. We then determine a
minimum path cover of DAG, where each path represents a haplotype. Therefore,
the two nodes for which we computed the considered DAG are divided as many
times as paths were found.

For this to work properly, each DAG must be carefully processed to achieve a
more reliable graph. This includes transforming each DAG into an offset flow network
and solving a min-cost flow problem. With the detected flows, the DAG is corrected,
yielding a more reliable graph. Finally, the nodes of the AG are divided based on the
path covers of its DAGs, and this results in a new AG, called approximate paired
AG (APAG). Once this graph is polished, it is used to derive the contigs and their
abundances.

With respect to viaDBG, these are the main differences. First, it employs
a mathematically rigorous way of determining the non-false k-mers using kernel
density estimation, resulting in a better filtering than the method of viaDBG. Second,
ViQUF uses path cover to split the adjacent nodes into haplotypes, whereas viaDBG
finds cliques in the reachability graph of paired-end nodes. Third, ViQUF uses path
cover to find haplotypes and their abundances; thus, considering the coverage in this
stage. However, viaDBG only reports nonbranching paths as contigs.

1.2.2 Improving third-generating sequencing assembly

Genome assemblers for the regular genome assembly have been developing over the
past decades. The are really mature and thus it is really difficult to improve their
performance with respect the quality of the genome assembly. Moreover, in the case
of TGS, Flye [LYK+16] was built upon SPAdes [BNA+12], which in turn, is one of
the most used and mature assemblers.

Flye that was recently compared with five state-of-the-art assemblers, obtaining
better or comparable assemblies, while it is an order of magnitude faster [KYLP19].
Moreover, Flye obtains longer contigs as it doubles the NGA50 metric. Therefore,
its results are impressive in all aspects, with only one weak point, the memory
consumption.

Flye works in three steps: i) Building a draft genome assembly and generating
consensus contig, ii) Treating repetitive regions, and iii) Polishing the final genome.
All of these three steps are critical and need to be treated carefully. Even though all
the steps are equally relevant, the most memory-demanding phase is the first one

8 Chapter 1. Introduction

since it has to quickly process all k-mers in reads and build consensus contigs, which
requires having all overlaps between reads.

The high error rate of TGS reads produces a large number of false k-mers.
In order to overcome this problem, Flye separates the real and false k-mers by
counting the appearances of the k-mers in the reads and selecting only those whose
frequency is above a threshold t. While this might sound simple, it actually becomes
a hard problem when working with long reads, due to the huge amount of k-mers
present in the reads, which makes their indexation extremely difficult in a reasonable
time and space. In fact, this problem is the origin of a research line by itself
[KDD17, RLC13b, MP11].

Flye relies on Cuckoo hash, which consumes large amounts of space in order
to obtain fast access times. We replace Cuckoo hash by a data structure based
in bitmaps [FLP21] and two well-known operations of the field of compact data
structures [Nav16], rank and select. The bitmaps are space efficient and by using rank
and select operations on them, we can simulate complex operations. In addition,
rank and select are fast operations, indeed, they can be done in constant time
regardless the size of the bitmaps. As a result, the new space efficient verion of Flye
developed in this thesis is also faster and less energy demanding than the original
one.

1.3 Discussion and conclusions
In the last two decades, computational biology has been an active field of research,
especially for topics like assembly, Genome-Wide association studies (GWAS),
discovery of metabolic path-ways, and so on.

The common thread of this work is genome assembly, always using a de Bruijn
graph as the main basic element. The thesis tackles two lines of work inside this
subject. First, genome assembly using NGS reads of viruses to find haplotypes and,
second, genome assembly using TGS reads.

Currently, both topics are hot topics in bioinformatics, with new publications
almost monthly, thus highly competitive contexts. In these topics, we have made
the following contributions:

• Design and implementation of the first competitive haplotype
reconstruction algorithm based on de Bruijn graphs with high
efficiency and competitive results. viaDBG is the first method that
provides a solution to the haplotype reconstruction problem keeping the
properties of de Bruijn graph approaches and providing competitive results
compared with the state-of-the-art. At the time we launched viaDBG, there
were no reliable de Bruijn graph methods for viral haplotype reconstruction.
The previous approaches were inaccurate, and thus unreliable. Furthermore,
some of them lost their main feature, speed, because they rely on really

1.3. Discussion and conclusions 9

complex algorithms. In our case, we were able to adapt a theoretical approach,
approximate paired de Bruijn graphs, to keep the speed and to increase
accuracy and reliability. The result was viaDBG, a fast and accurate de Bruijn
method for haplotype reconstruction in viral samples.

• ViQUF, a new viral haplotype reconstruction based on de Bruijn
graphs with strain frequency estimation. After developing viaDBG,
the new tool Virus-VG was presented, which introduced a new feature,
the estimation of the abundance of the haplotypes present in the sample.
However, Virus-VG needs pre-assembled contigs to produce extended contigs
and abundances. Therefore, speed remains a major issue. Then, we started
working on ViQUF, which is a completely new approach since viaDBG misses
some information required for the abundance estimation step. Although
ViQUF is also a de Bruijn graph approach, the key difference is the use of
optimization techniques, instead of cliques as its predecessor. Virus-VG was
based on a variation graph from which an optimization problem was built and
then solved. However, the variation graph building and constraints definition
were hard and time-consuming. viaDBG uses the same optimization approach,
but with some major changes, we can define a similar optimization problem
directly on our graph building phase. Therefore, we can skip the preassembly
step and the variation graph building, and thus, our approach is much faster
with close results, which sometimes are even more accurate. ViQUF is the first
viral haplotype reconstruction method based entirely on de Bruijn graphs that
allows abundance estimation. Furthermore, it is much faster than viaDBG
and gives more robust and reliable results.

• Memory and time-efficient assembly of TGS reads. Based on Flye
assembler, we have designed new methods to improve the assembly of TGS
reads. The implemented approach does not rely on modern hashing methods
like cuckoo hashing, but on simpler data structures like bitmaps. By using
multiple leveled bitmaps and regular hashing, our new method saves space,
producing a more linear memory allocation and keeping the high speed of
cuckoo’s hashing. Therefore, it avoids cuckoo hash table duplications, which
penalize space because it demands much more memory than it requires, and
time because it needs time to move elements from one place to another in
memory. As a final result, we allow the execution of Flye on personal computers
even for medium-large genomes.

These contributions have been materialized in three different software programs:
Compact-Flye, viaDBG, and ViQUF. The software run from a command-line interface
and, for viaDBG and ViQUF, a Docker is available. About dependencies, all of
them rely on different C++ libraries for network flows, graphs, data structures, and
bioinformatics such as Lemon, GATB, boost, and SDSL 2.0. Only ViQUF uses
Python for the early and final stage of the algorithm and needs the third-party

10 Chapter 1. Introduction

commercial software Gurobi. For evaluation purposes, we have used Quast 4.3 and
the metagenome assembler version metaQuast 4.3, which allows us to produce several
different measures to check the quality of an assembly. We realized that different
versions of Quast produce serious differences in evaluation. Since we always run
the latest version of the evaluator, results might not be always comparable to other
articles.

To further improve the process of TGS, there are different lines of work that need
to be developed further. First of all, methods to classify correctly k-mers from TGS
reads as genomic or not genomic must be designed. From a sequencing perspective,
the easy way to do so is to increase further the sequencing depth in TGS experiments
or maybe to increase the reliability of these reads. However, from an algorithmic
perspective, the requirements fall on a better correction method, or maybe in some
statistical approach that allows for prediction or to classify bases as valid or failures.
Another improvement would be to produce longer and less fragmented assemblies,
but this applies as well to regular assembly procedures, not only to the assembly of
third generation reads.

On the other hand, haplotype reconstruction challenges, such as metagenomics,
transcriptomic, or metatranscriptomics, which are some of the most studied
bioinformatics topics, have only partial or inaccurate solutions. In the haplotype
reconstruction studied in this thesis, viral haplotype reconstruction, several advances
have been made in the last years. Therefore, in the close future, improvement margin
is much lower, nevertheless, there is still room for improvement. In de Bruijn graph
based methods, which is our field of study, improvements fall on the side of reducing
assembly fragmentation, testing more on real data benchmarks, and reducing the
complexity of the pruning methods.

• Reducing assembly fragmentation: our developed methods are faster and
have comparable results. However, they typically produced more contigs than
required. The main reason for that is that, when splitting the nodes to build
the APAG, sometimes some extra small cliques are produced or small flow
remains in fake paths. Although in most cases, we can filter these residues,
sometimes we cannot and, as a final result, more contigs are produced; thus, a
more fragmented assembly is generated. This situation is common in complex
cases like in the real data benchmark. By pruning a little bit more the cliques
graphs or the DAGs in viaDBG and ViQUF, respectively, better results would
be achieved.

• Testing more on real data: this is a major problem since we started working on
the viral haplotype reconstruction topic. There is almost no real information
available and only in one ground truth is known, thus the evaluation on these
datasets is difficult.

• Reducing the complexity of the pruning methods: the two approaches we
have developed, viaDBG and ViQUF, have complex pruning methods when

1.4. Articles published during the thesis span 11

selecting the right cliques and building the DAG. These methods are both
hard to explain, debug and change when something fails or better ideas are
suggested. Although it is not clear how to make them easier while keeping the
actual performance, methods to reduce the steps or make them easier could
be explored.

The suggested improvements are all based on NGS reads. However, during
the last couple of years, some new approaches for TGS reads have been published.
In contrast to NGS, one or a couple of TGS reads are capable of covering the
entire virus genome. Therefore, reconstructions, intuitively at least, seem much
simpler. Nevertheless, in viral haplotype reconstruction the similarity between strains
decreases from 1.0% to 0.1%; thus, given the high error rate of these reads, assembling
with such levels of similarity are extremely challenging. In fact, during the last year,
we have been actively working with our colleagues at the University of Helsinki
to adapt ViQUF to TGS. This adaptation uses the assembly graph with a flow
inferred from it. Then, this flow is translated to the set of most parsimonious paths
by formulating a problem of integer linear programming (ILP). To do so, we have
designed three different scenarios: the standard, based on the network structure, and
the flow conservation rule; the inexact, based on the network structure, and the flow
conservation rule, but it requires a preflow, not a flow; and the subpath constraints
version, based on the network structure, flow conservation rule, and including the
solid k-mers in the TGS as subpath constraints. The term subpath constraints has
been introduced by Tomescu et al. in [WL22].

In conclusion, haplotype reconstruction challenges are still under active develop-
ment with several solutions that work incredibly well in simulated data but they
struggle with real information. In our field of study, viral haplotype reconstruction,
several solutions have been proposed during the last years. Although, all of them
have some flaws when working on real data, basically because there is no real data
benchmark posted, they work extremely well in simulated datasets. Therefore, the
next required step would be to get some real data information to assay all the
available tools and see how they really perform. Furthermore, this makes it possible
to replace synthetic data that produces unexplained gaps with real information.

1.4 Articles published during the thesis span
The results of the research carried out throughout this doctoral thesis have been
published in the following international journals:

• ViQUF: de novo Viral Quasispecies reconstruction using Unitig-based Flow
networks. Borja Freire Castro, Susana Ladra, José R. Paramá, Leena
Salmela, July 2022, IEEE/ACM Transactions on computational biology and
bioinformatics DOI: 10.1109/TCBB.2022.3190282.

12 Chapter 1. Introduction

• Memory-Efficient Assembly using Flye. Borja Freire Castro, Susana Ladra,
José R. Paramá, September 2021, IEEE/ACM Transactions on computational
biology and bioinformatics, DOI: 10.1109/TCBB.2021.3108843.

• Inference of viral quasispecies with a paired de Bruijn graph. Borja Freire
Castro, Susana Ladra, José R. Paramá, Leena Salmela, February 2021,
Bioinformatics 37(4), pp. 473-481. DOI: 10.1093/bioinformatics/btaa782.

Other publications during my doctoral period:

• Compact and Efficient Representation of General Graph Databases. Sandra
Álvarez-García,Borja Freire Castro, Susana Ladra, Oscar Pedreira, September
2019, Knowledge and Information Systems, DOI:10.1007/s10115-018-1275-x.

• Parallel Feature Selection for Distributed-Memory Clusters. Jorge González-
Domínguez, Verónica Bolón-Canedo, Borja Freire Castro, Juan Touriño,
September 2019, Information Sciences, DOI:10.1016/j.ins.2019.01.050.

1.5 Projects not published yet
Apart from the previous work already published, some work other work has been
developed during these past four years. Nevertheless, they have not been published
yet. These works are:

• Singular spectrum drugs design. During my stay in Chile, we started working on
unique pattern discoveries to allow automatic drug design. The recent discovery
of the existence of a unique pattern in the bacteria Helicobacter pylori has
raised the question of "Is there a unique pattern in all bacteria?". By following
this idea, we aimed to answer the topic of antibiotic resistance. To do so, we
used some self-polished versions of recently microbiome databases published
in indexed journals. The objective is, by giving the genomic information for a
bacterium, raw reads or complete genome assembled, detect a unique pattern.
If there are unique patterns in the bacteria, then there may be patterns directly
related to the survivability of the bacteria. Therefore, a unique antibiotic can
be designed to target only that bacteria. This project was conducted in a joint
work with Cecilia Hernández and Alexis Salas, researchers at the School of
Medicine and Engineering at the University of Concepción (Chile). Some good
results were achieved and the project is still under development.

• Analysis over the conservation index in the mitochondrial genomes in cancer
and healthy cells. This is a joint work with Anton Vila Sanjurjo and Jose
Antonio Vilar Fernández, researchers at University of A Coruña. The goal
of the analysis was to verify the hypothesis that the number of variations in
places with high conservation index increases in cases of cancer. As a final

1.5. Projects not published yet 13

result, we adjusted both splines and polynomial regressions over the original
data, the first and the second derivatives and for all an effect existed. At the
moment, we are waiting for the biological explanation of these results.
As a side study of this work, we hypothesized to study the concurrence of
mutations in the mitochondrial genome by using collaborative filtering methods.
Since the mitochondrial genome is short, around 40000 bps, and there are
several already fully assembled. It is feasible to build a matrix M of rows the
assemblies and the columns each base with a stored variation. Therefore, a
Singular Value Decomposition can be performed over this matrix, M = UΣV T ,
and distance metrics can be calculated in this matrix to build clusters that
associate variants by similarity. As a result, we were able to associate multiple
mutations in the mitochondrial genome; however, the correctness of these is
pending to be assayed by experts in the domain.

• Lyndon word enumeration. During the last year, we started a collaboration
with Hideo Bannai and Dominik Köppl, researchers at the Dental University of
Tokyo. In this collaboration, we focused on pure theoretical computer science
topics such as bijective Burrows Wheeler transformation and Lyndon word
enumeration. As a result, we have written a conference paper which is pending
for publication.

14 Chapter 1. Introduction

Chapter 2

Articles

15

Sequence analysis

Inference of viral quasispecies with a paired

de Bruijn graph

Borja Freire1, Susana Ladra 1, Jose R. Paramá 1,* and Leena Salmela 2

1Department of Computer Science and Information Technologies, Facultade de Informática, Universidade da Coru~na, Centro de investi-

gación CITIC, A Coru~na, Spain and 2Department of Computer Science, Helsinki Institute for Information Technology, University of

Helsinki, Helsinki, Finland

*To whom correspondence should be addressed.

Associate Editor: Bonnie Berger
Received on June 13, 2019; revised on March 11, 2020; editorial decision on August 31, 2020; accepted on September 2, 2020

Abstract

Motivation: RNA viruses exhibit a high mutation rate and thus they exist in infected cells as a population of closely
related strains called viral quasispecies. The viral quasispecies assembly problem asks to characterize the quasispe-
cies present in a sample from high-throughput sequencing data. We study the de novo version of the problem,
where reference sequences of the quasispecies are not available. Current methods for assembling viral quasispecies
are either based on overlap graphs or on de Bruijn graphs. Overlap graph-based methods tend to be accurate but
slow, whereas de Bruijn graph-based methods are fast but less accurate.

Results: We present viaDBG, which is a fast and accurate de Bruijn graph-based tool for de novo assembly of viral
quasispecies. We first iteratively correct sequencing errors in the reads, which allows us to use large k-mers in the de
Bruijn graph. To incorporate the paired-end information in the graph, we also adapt the paired de Bruijn graph for viral
quasispecies assembly. These features enable the use of long-range information in contig construction without com-
promising the speed of de Bruijn graph-based approaches. Our experimental results show that viaDBG is both accur-
ate and fast, whereas previous methods are either fast or accurate but not both. In particular, viaDBG has comparable
or better accuracy than SAVAGE, while being at least nine times faster. Furthermore, the speed of viaDBG is compar-
able to PEHaplo but viaDBG is able to retrieve also low abundance quasispecies, which are often missed by PEHaplo.

Availability and implementation: viaDBG is implemented in Cþþ and it is publicly available at https://bitbucket.org/
bfreirec1/viadbg. All datasets used in this article are publicly available at https://bitbucket.org/bfreirec1/data-viadbg/.

Contact: jose.parama@udc.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA viruses such as the human immunodeficiency virus (HIV), the
Zika virus (ZIKV) and the hepatitis C virus (HCV) exhibit a high
mutation rate (Duffy et al., 2008). Thus, their populations in a host
organism consist of a number of different strains, which are differen-
tiated from each other by mutations in the genome. In the context of
viruses, the collection of these strains is called a viral quasispecies
(Domingo et al., 2012; Holmes, 2009). Each of the strains in the
viral quasispecies can be characterized by its haplotypic sequence.
When studying a viral sample, it is important to capture all strains
present in the sample, because different viral strains may have a dif-
ferent response to the available treatments and drugs (Domingo
et al., 2012).

High-throughput sequencing has provided a way to investigate
viral samples in detail to characterize the different strains present in
the sample and their abundances. However, although viral genomes
are short, there are challenges that are specific to the analysis of viral

quasispecies data. First, the presence of similar strains in the data
makes it difficult to assign the reads to different haplotypic sequen-
ces. Secondly, viral samples are typically sequenced to a much
deeper coverage than e.g samples for genomic or metagenomic
sequencing. This presents a challenge for developing computational-
ly efficient tools for reads that frequently overlap each other.
Therefore on viral samples, standard tools for genome assembly or
metagenomics produce fragmented assemblies that do not properly
capture all strains present in the sample [see e.g. Baaijens et al.
(2017)].

Methods for assembling viral quasispecies from high-throughput
sequencing data are classified into two approaches, reference-based
and de novo approaches (Posada-Cespedes et al., 2017). The
reference-based approaches first align the reads to the reference se-
quence. Many of these approaches then cluster the reads to haplo-
types by enumerating maximum cliques (Töpfer et al., 2014),
assembling the reads (Jayasundara et al., 2015), using Hidden
Markov Models (Töpfer et al., 2013), or using probabilistic

VC The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 473

Bioinformatics, 37(4), 2021, 473–481

doi: 10.1093/bioinformatics/btaa782

Advance Access Publication Date: 14 September 2020

Original Paper

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

17

modelling (Ahn and Vikalo, 2018; Barik et al., 2018; Prabhakaran
et al., 2014; Zagordi et al., 2011). Instead of clustering reads,
Knyazev et al. (2019) cluster the observed variants to haplotypes.
Prosperi and Salemi (2012) divide the reference into overlapping
intervals, construct local haplotypes for each interval, and finally
merge them to global haplotypes. These reference-based approaches
can be effective if a good quality reference is available. However, it
has been shown that using reference genomes can bias the recon-
struction significantly (Baaijens et al., 2017; Töpfer et al., 2014).
Thus, a number of de novo viral quasispecies assemblers, which do
not need a reference sequence, have been developed. We are aware
of three tools fitting this category, MLEHaplo (Malhotra et al.,
2015), SAVAGE (Baaijens et al., 2017) and PEHaplo (Chen et al.,
2018). The de novo assemblers typically cannot assemble each strain
into a single haplotype but instead produce a set of contigs. Baaijens
et al. (2019) have recently proposed a method that takes as input
contigs produced by a de novo viral quasispecies assembler and uses
frequency information to further merge these into global haplotypes.
In this work, we focus on the de novo contig assembly of viral qua-
sispecies data.

Similar to the most successful genome assemblers for bacterial
and eukaryotic genomes, de novo viral quasispecies assemblers use
either an overlap graph or a de Bruijn graph (DBG) to represent the
sequencing data. See e.g. Nagarajan and Pop (2013) for a discussion
on genome assembly approaches. An overlap graph is constructed
by finding all pairwise overlaps between the sequencing reads.
Given the deep sequencing of viral data, the number of actual over-
laps between the reads approaches the quadratic worst-case limit,
and thus this step could be computationally expensive. On the other
hand, methods based on overlap graphs, such as SAVAGE, produce
very accurate assemblies, because the overlap graph captures well
the long-range similarities between the reads. PEHaplo introduces a
different trade-off for overlap graph-based approaches by introduc-
ing a technique to reduce the number of reads. It is thus much faster,
but unfortunately also less accurate. The DBG-based methods, such
as MLEHaplo, do not need to perform computationally intensive
overlap computations between the reads. Instead, they decompose
the reads into k-mers and construct a DBG, where the k – 1-mers
are the nodes of the graph and an edge is added between two nodes
if the corresponding k-mer is present in the read set. Because k-mers
can be extracted by a linear scan over the reads, these approaches
are computationally efficient. However, they are not able to opti-
mally use long-range information available in full-length reads and
thus the assemblies they produce tend to be more fragmented and
less accurate.

High-throughput sequencing reads, such as Illumina reads, are
typically paired-end reads. Many of the viral quasispecies assemblers
use heuristics to incorporate the paired-end information. SAVAGE
merges read pairs when the pairs overlap each other and it accepts
overlaps involving paired-end reads only if both pairs are involved
in the overlap and their orientation in the overlap is the same.
PEHaplo uses heuristics to prune the overlap graph based on paired-
end information and it uses paired-end information as a guidance
for finding paths in the overlap graph. PEHaplo also includes a post-
assembly step where contigs are split based on paired-end align-
ments. MLEHaplo formulates the viral quasispecies assembly prob-
lem as finding a path cover with maximum score from paired-end
reads in a DBG. This problem is shown to be NP-hard and thus
MLEHaplo implements a heuristic path finding algorithm for this
problem.

We present viral assembly with paired DBG (viaDBG), a fast and
accurate tool for viral quasispecies assembly. Our method is based
on DBGs, which we augment with several techniques to improve the
accuracy of the reconstructed haplotypic sequences. First we employ
an iterative error correction method with increasing k-mer sizes.
This allows us to use large k-mers in the final assembly enabling the
use of long-range information in the DBG. Furthermore, we adapt
the approximate paired de Bruijn graph (APDB) (Medvedev et al.,
2011) to viral quasispecies assembly. Whereas almost every assem-
bler nowadays applies paired-end information in the post-processing
phase, where contigs are merged and/or topologically sorted to

create scaffolds, in the APDB the paired-end information is added to
the DBG.

Our experiments show that on both synthetic and real data,
viaDBG is among both the most accurate methods and the fastest
methods, whereas previous tools are either accurate or fast but not
both. For example, viaDBG is up to 43 times faster than SAVAGE
and produces assemblies with comparable accuracy. Furthermore,
viaDBG is able to recover also low-abundance strains, which are
lost or inaccurately assembled by PEHaplo, while matching the
speed of PEHaplo. On real sequencing data, viaDBG produces
assemblies with three times as high N50 values as SAVAGE while
being nine times faster. The speed of viaDBG is comparable to
PEHaplo on this dataset but depending on whether we look at pol-
ished or unpolished contigs, PEHaplo either mixes the strains or
produces a 30% lower N50 value than viaDBG, while viaDBG pro-
duces accurate results. The DBG-based approach makes viaDBG ef-
ficient, whereas the accuracy of viaDBG is due to using a large k in
the DBG and the systematic use of paired-end information.

2 Materials and methods

2.1 Background
2.1.1 Error correction by LoRDEC

LoRDEC (Salmela and Rivals, 2014) is a hybrid error correction
method for correcting sequencing errors in third-generation
sequencing reads with the help of accurate short reads. LoRDEC
defines a k-mer as solid if it occurs at least t times in the short-read
data, where t is the abundance threshold. The solid k-mers are then
used to build a DBG. The third-generation sequencing reads are
then processed one at a time. First, solid k-mers in the read are iden-
tified and the regions between solid k-mers are called weak. Then,
for each weak region between two solid k-mers, LoRDEC finds the
best matching path in the DBG between the two solid k-mers. This
path is used to correct the weak region in the read. Finally, the weak
ends of the read are aligned to the DBG starting from the extremal
solid k-mer and the weak ends are corrected according to the found
paths. To limit the runtime of the method, LoRDEC abandons the
search for the best alignment if there are too many branches in the
DBG.

2.1.2 Approximate paired DBG

Medvedev et al. (2011) presented the APDB to leverage paired-end
information directly in contig assembly. To build the APDB, they
first extract all bilabels from the paired-end reads. A bilabel is a pair
of k-mers (A, B) such that A occurs in position p in a left-hand read
and B occurs in position p in the corresponding right-hand read.
Two bilabels (A, B) and (C, D) are merged if A ¼ C and B is reach-
able from D or vice versa. The merged bilabels form the edges of the
APDB and thus the edges have the form (A, S), where A is a k-mer
and S is a set of k-mers. An edge (A, S) connects two nodes,
ðprefðAÞ;prefðSÞÞ and ðsufðAÞ; sufðSÞÞ, where prefðAÞ (sufðAÞ) is the
k – 1 length prefix (suffix) of the k-mer A and prefðSÞ (sufðSÞ) is the
set of k – 1 length prefixes (suffixes) of all the k-mers in the set S.

Unfortunately, APDB is not directly applicable to viral quasispe-
cies assembly. Consider a case where the left-hand reads derive from
a region of the genome where two strains are equal and the right-
hand reads derive from a region where the strains differ by a single
SNP. When we extract bilabels from these reads, the left k-mers will
be the same in both strains but the extracted right k-mers can be the
same or different depending on whether they cover the SNP or not.
Let us suppose that we have extracted bilabels (A, B), (A, B’) and
(A, C) from the reads, where B and C occur in the first strain and B’
and C in the second strain. Because B is reachable from C and B’ is
reachable from C, all these bilabels are merged into a single edge in
APDB. This is acceptable if the goal is to construct a single genomic
sequence but not for viral quasispecies assembly where we need to
construct all the strains. Here, we have devised a method to differen-
tiate such bilabels correctly. The key idea is to merge a set of bilabels
only if all right-hand k-mers are pairwise reachable from each other.

474 B.Freire et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

18 Chapter 2. Articles

2.2 Overview of our method
Figure 1 shows the main steps followed by viaDBG. The main differ-
ence with respect to typical assembly methods based on DBGs is the
use of paired-end information in an early stage. Paired-end reads are
composed by two reads, which are the two extremes (left- and right-
hand) of a sequencing fragment. The insert size is the number of
base pairs between the two reads. We will use D to denote the max-
imum error in the insert size.

2.3 Error correction
The error rate of paired-end short reads is low, which makes them
suitable for assembly methods based on the DBG. It has been shown
that longer k-mers lead to better assembly, but the probability of
getting erroneous k-mers also increases. Therefore, we devote the
first step to remove sequencing errors from reads, to obtain longer
correct k-mers, and thus reducing the erroneous information that
would lead to shorter contigs, lower genome fraction recovered and/
or more misassemblies.

The error correction involves two steps: (i) selection and classifi-
cation of solid k-mers that, as in the case of LoRDEC, are the k-
mers whose abundance in the reads is higher than a threshold and
(ii) reads correction.

2.3.1 Selection of solid k-mers

A k-mer is genomic if it appears in at least one strain and a non-
genomic k-mer does not appear in any of the strains in the sample.
As in LoRDEC, we select solid k-mers based on their frequency of
appearance, assuming that genomic k-mers are more frequent than
the non-genomic ones. Then, the whole read set is traversed and
each k-mer is classified as solid or not solid. Because of the conserva-
tive selection of the threshold, we expect the non-solid regions to be
compounded with erroneous information. This is simple, but the
problem is to determine the threshold.

In our work, the search of that value is based on the following
idea. Let us first consider the histogram of the number of different
k-mers that occur at each frequency, i.e. for each frequency fi, we
plot nðfiÞ, which is the number of different k-mers occurring fi times.
Then, we expect to find a change in the trend in the histogram
among the number of different k-mers having low frequencies (non-
genomic k-mers) and those having higher frequencies (genomic k-
mers). On one hand, the number of different non-genomic k-mers
decreases as the frequency increases. On the other hand, the number
of different genomic k-mers, which have higher frequencies, starts
outnumbering the number of different non-genomic k-mers. Thus,
we will use the starting position of that change of trend in the histo-
gram as the threshold to detect solid k-mers.

More concretely, we will search for a region in the histogram
where there is a frequency whose count is lower than most of the
counters for the frequencies in the succeeding zone. We make use of
a fixed window size N to find the frequency ft where that change of
trend starts. We define t as the smallest i such that fi � 1 and

jffjjfi � fj � fiþN and nðfjÞ > nðfiÞgj � N=2:

In the Supplementary Material, we show that the choice of N is
easy, by showing that with a wide range of different window values,
the performance of viaDBG does not differ significantly. By default,
we use N ¼ 16.

2.3.2 Error correction algorithm

To correct sequencing errors in the read, we adapted the LoRDEC
algorithm (Salmela and Rivals, 2014) for viral quasispecies data. We
use the solid k-mers identified above to build a DBG and then align
all the reads to the DBG to correct them. If the abundance of a strain
is such that the corresponding k-mers are solid, the strain is present
as a path in the DBG. The reads are corrected by aligning them to
this graph and choosing the alignment with the smallest edit distance
between the read and path in the graph. The reads are expected to
align best against the path representing the strain they derive from
and thus most of them are corrected towards the correct haplotypic
sequence. Therefore, this algorithm is well suited for correction of
viral quasispecies data.

We made three further changes to better adapt the algorithm for
viral quasispecies data. First, after building the DBG using the solid
k-mers, we polish it by removing short tips, i.e. short paths where
the first node has out-degree larger than one and the last node has
out-degree zero. Secondly, we only correct the part of the reads be-
tween the leftmost and rightmost solid k-mer because the algorithm
is less accurate on the read ends when only one end of the alignment
is anchored on solid k-mers. Third, in viral quasispecies data, it is
not necessary to abandon the search for best alignment if there are
too many branches in the DBG because the genomes are smaller and
the DBG is less tangled. Therefore, this limitation was removed
from the algorithm.

Once reads have been corrected, the k-mer size is doubled and
the reads are corrected again. This process is repeated three times. In
the first iteration when k is small, the set of solid k-mers contains
most genomic k-mers and some non-genomic k-mers that are caused
by the same sequencing error occurring in the same locus in several
reads. Still our method can correct most errors already at this stage
because most k-mers including an error are unique even for a small
k. Once most errors have been corrected in the first iteration, we can
increase k because longer k-mers are now expected to be correct.
Because longer k-mers span more variants, k-mers originating from
different strains are separated better from each other. Thus, also the
abundance of erroneous k-mers becomes lower and now less of the
erroneous k-mers are classified as solid. This allows us to further
correct some sequencing errors in the next iterations.

2.4 Haplotype inference using paired-end reads
As seen in Figure 1, the haplotype inference is applied in several
steps. To illustrate them, Figure 2 shows an example workflow.

First, a regular DBG is built with the solid k-mers obtained in the
previous step. Then, we retrieve the unitigs of the DBG, and for each
unitig, we assign a representative k-mer, which will be used later in
the process. Next, each k-mer is associated with a set of paired k-
mers. Given a k-mer A and a paired-end read where A appears at
position p of the left-hand read, B is a paired k-mer of A if B occurs
at position p of the right-hand read. Next, we polish the paired-end
information, and finally we modify the DBG. If all occurrences of
the k-mer A are from the same strain, then all paired k-mers of A
occur along some path in the DBG. Thus, they are all reachable
from each other. On the other hand, if the k-mer A occurs in several
strains, then the paired k-mers are likely to span some site contain-
ing a mutation. Note that, the paired k-mers span an area larger
than k in the haplotypic sequences. Therefore, they are not all reach-
able from each other but it still holds that the paired k-mers

Fig. 1. Overview of viaDBG. Our method has two main steps, error correction and haplotype inference. The error correction step aims to correct the sequencing errors in the

reads by first identifying solid k-mers in the reads and then applying the LoRDEC algorithm. The haplotype inference step starts by building a DBG and obtaining unitigs. The

paired-end information is then added to the DBG and some heuristics are used to polish the paired-end information. Finally, the haplotypes are obtained by splitting the DBG

nodes based on the paired-end information and obtaining unitigs from this modified DBG

viaDBG: inference of viral quasispecies 475

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

19

originating from the same strain are all reachable from each other.
We will use this reachability information to split the DBG nodes
into different strains. Finally, the contigs are retrieved from this new
DBG. Next, we explain each of these steps in detail.

2.4.1 Getting unitigs and representative k-mers

A unitig is a unary path in the DBG, i.e. a path where all nodes have
in-degree and out-degree equal to one except for the first and last
nodes. Unitigs always belong to the final genome/s. Therefore, some
assemblers, such as SPAdes (Bankevich et al., 2012), condense uni-
tigs into single nodes to compact the graph without losing
information.

In our case, for each unitig, we extract three elements: first, mid-
dle and last k-mers. The middle k-mer serves as a representative of
the unitig, whereas the first and last k-mers are used to determine if
there is a path from one unitig to another.

Figure 2a shows the DBG of our running example where unitigs
are delimited by a brace. The representative k-mer and the first and
last k-mers are also displayed in a grey box.

2.4.2 Adding paired-end information for each k-mer

One of the key features of our method is the use of the paired-end in-
formation, as it provides additional clues of the actual strains during
the traversal of the DBG.

Let U be the set of paired-end reads. Given a read r 2 U, L(r) is
the left-hand, R(r) is the right-hand read and LðrÞ½l . . . m�
(RðrÞ½l . . . m�) are the base pairs at positions l . . . m of L(r) (R(r)). For
each k-mer A, our method needs to compute its set of paired k-mers
PðAÞ ¼ fMjM is a solid k�mer and; 9 rx 2 U and a position j
such that LðrxÞ½j . . . jþ k� 1� ¼ A and RðrxÞ½j . . . jþ k� 1� ¼Mg.

Figure 3 shows an example where the k-mer A appears in the
left-hand part in two reads (rx and ry). Then, the solid k-mers M and
L, which appear in the same positions of the right-hand parts, form
P(A).

To avoid excessive memory usage, we do not store all paired k-
mers. Instead, for each k-mer in P(A), we find the unitig to which it
belongs and replace that k-mer with the representative k-mer of the
unitig.

Observe in Figure 2b, e.g. that k-mer A has two paired k-mers H
and N, which are the representative k-mers of the unitigs GHI and
MNO, respectively.

2.4.3 Polishing paired-end information

In this step, for each solid k-mer A, its P(A) is polished. This is
needed since sometimes the variance of the insert size can be larger
than the used D, as the insert size distribution can be modelled with
a normal distribution. Therefore, we design a paired-end polishing
method that removes outliers with large variance in the insert size,
while avoiding the removal of low abundance strains.

Let freqðA;MÞ be the frequency of the appearance of the k-mer
pair (A, M) in paired-end reads r 2 U such that M 2 PðAÞ. Because
the insert size is normally distributed, the frequency of a k-mer pair
with insert size close to the mean is expected to have a high fre-
quency, whereas a k-mer pair with insert size far from the mean is
expected to have a low frequency. Furthermore, if the insert size of a
k-mer pair (A, M) is close to the mean, then within a short distance
from the node corresponding to M in the DBG, we expect to see
many other k-mers L that are also in P(A) and have a frequency
freqðA;LÞ � 1. Again, this is not expected for a k-mer pair whose in-
sert size is far from the mean. We combine these two effects into a
smoothed frequency freq0ðA;MÞ, which is defined as follows:

freq0ðA;MÞ ¼

min

freqðA;MÞþ jfLj freqðA;LÞ � 1

and dðM;LÞ < max� path� lengj
max� threshold

;

8><
>:

where d(M, L) denotes the distance between M and L in the DBG
and we set max-threshold to 40 and max-path-len to 20. Finally, we
keep only those paired k-mers whose frequency is within top 85%.
We experimentally found that those values work well in practice for
all cases.

We limit the smoothed frequency by max-threshold to preserve
low abundance haplotypes. Without such limit, the frequency of
paired k-mers of high abundance strains with higher divergence
from the mean insert size often gets higher than the frequency of
paired k-mers of low abundance strains with insert size close to the
mean value. This is especially important when relative abundances
are around 1–2%.

Currently, this step is the bottleneck of the algorithm. We need
to compute the distance between nðn�1Þ

2 pairs per node, where n is the
number of pairs in the list of paired k-mers of a given k-mer.

2.4.4 Obtaining the haplotypes

This subsection describes in detail the third block of Step 2 of
Figure 1 [steps labelled 2.(e), 2.(f) and 2.(g)]. The haplotypes are ob-
tained by splitting the nodes of the DBG built in Step 2.(a), based on
the paired-end information and obtaining unitigs from this modified
DBG. Therefore, the Step 2.(e) starts by creating a new empty DBG’.

• Step 2.(f) i: for each pair of adjacent nodes (A, B) of the DBG, a

Cliques Paired de Bruijn Graph (CPBG) graph is built. CPBG(A,

Fig. 2. Example of the different steps of haplotype inference. (a) First we build a DBG using all solid k-mers in the reads. Unitigs are then identified and a representative k-mer

is assigned to each unitig. (b) Next, we augment the graph with the paired-end information. P, S and X are representative k-mers of unitigs not shown in the figure. (c) A CPBG

is built for each adjacent pair of k-mers in the DBG. Nodes of CPBG are the paired k-mers of the adjacent pair of k-mers and edges between the nodes are added if there is a

path between the corresponding k-mers in the DBG. (d) Finally for each CPBG, we find cliques and each clique is used to split the nodes of the DBG

Fig. 3. Extracting paired k-mers from paired-end reads. P(A)=(M, L)

476 B.Freire et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

20 Chapter 2. Articles

B) is an undirected graph. The paired k-mers of A and B are the

nodes of CPBG(A, B), i.e. the set of nodes is PðAÞ [PðBÞ. There

is an edge between two nodes U, V in the CPBG(A, B) if there is

a path of length � 2D in the DBG from last(U) to first(V) or

from last(V) to first(U) [first(K) is the first k-mer of the unitig of

which K is the representative, while last(K) is the last k-mer].

Observe that we are computing the CPBG of k-mers A and B

that are adjacent in the DBG. Therefore, their paired k-mers (sep-

arated from A and B, on average, by the insert size) would also

be neighbours in the DBG since they ideally differ by one base

pair as well, or they would be very close to each other, due to the

insert size error, forward and backward, i.e. 2D. Therefore, in

CPBG(A, B), we link the paired k-mers of A and B that are con-

nected by a path of the DBG of size at most 2D.

Figure 2c shows the CPBG of all pairs of adjacent nodes in the

DBG of our example. For example, observe in CPBG(A, B) that

the nodes are the paired k-mers of A and B, which are H and N

in both cases. However, there is no path in the DBG connecting

H and N, and thus, in the CPBG, there is not an edge linking

them. In the case of CPBG(C, G), there is an edge between H

and P, since there is a path of length at most 2D in the DBG that

connects them (not shown in the DBG of Fig. 2 to avoid clutter-

ing the figure). Similarly, there is an edge connecting N and P.

Here, we can see the other important benefit of using represen-

tatives. Observe that in order to determine whether there is an

edge connecting a pair of nodes U and V of a CPBG, the algo-

rithm has to find paths in the DBG, between the unitigs of the

DBG corresponding to U and V. Therefore, decreasing the num-

ber of nodes of the CPBG speeds up this process.
• Step 2.(f) ii: for each CPBG, we obtain all its maximal cliques. A

clique is a set of nodes of the graph where all nodes are con-

nected to each other.

In Figure 2c, observe the CPBG(C, G). There are two cliques;

the first one is formed by H and P, and the other by N and P.

Conceptually, cliques are sets of k-mers that belong to the same

haplotypic sequence. Since all the paired-end k-mers in the clique

reach or are reached by others in the DBG, it means that there is

one strain that gathers them together.

However, when the graph is tangled, it is possible to find paths

in the DBG for two k-mers that do not belong to the same strain,

and this may produce fake cliques. Therefore, we select the cli-

ques that are supported by the frequency of appearance of their

k-mers, more precisely, we select those cliques whose nodes ap-

pear in more reads and are more linked to other nodes in the

DBG. Full details of this process are given in the Supplementary

Section S2. Choosing a large value of k makes the graph less

tangled and thus alleviates this problem. Also using a small D
helps because even in a tangled graph, shorter paths are less like-

ly to be incorrect.

We obtain another benefit by using representative k-mers, since

the CPBG is not a large graph, maximal cliques can be found with

lower computational cost than in the case of using all k-mers.
• Step 2.(f) iii: because of errors in reads, repetitive sections and

shared strain regions, wrong cliques can be created. We use sev-

eral heuristics to polish the cliques.
• We remove small cliques because they often rise from errone-

ous k-mers.
• Shared strain regions produce cliques where all k-mers are

paired with A while a subset of them is also paired with B,

i.e. all nodes of the clique are in P(A), and some nodes, but

not all, are in P(B). To keep strains with shared regions separ-

ate, we also remove these cliques.

• Let SC be the set of all cliques found so far. When two cliques

C‘x; C‘y 2 SC are almost the same, we remove the smallest

one because such cliques can arise from sequencing errors.

More precisely two cliques are considered almost the same

when jðC‘x \ C‘yÞj � R �minðjC‘xj; jC‘yjÞ, where R is a thresh-

old value. By default, we use R ¼ 90%.

• Step 2.(f) iv: for each pair of adjacent nodes A and B in DBG, we

take the set of cliques SCCPBGðA;BÞ of CPBG(A, B) and, for each

clique C‘x 2 SCCPBGðA;BÞ: if C‘x has nodes of P(A) and P(B), then

the nodes APA\C‘x and BPB\C‘x are added to DBG’, unless they are

already in DBG’. APA\C‘x is a node corresponding to the k-mer A

having paired-end information PA \ C‘x, similarly BPB\C‘x is a

node corresponding to B having paired-end information PB \ C‘x.

In the case of nodes C and G of the example of Figure 2, their

CPBG(C, G) has two cliques C‘1 ¼ fH;Pg and C‘2 ¼ fN;Pg.
Then, a new node C’ is created due to the existence of C‘1,

with paired information PðCÞ \ C‘1 ¼ fH;Ng \ fH;Pg ¼ fHg,
as seen in Figure 2d. C” is derived from the clique C‘2, thus,

this new node has as paired information

PðCÞ \ C‘2 ¼ fH;Ng \ fN;Pg ¼ fNg. Next, G is processed ac-

cordingly, producing only one version with paired info P. These

nodes are added to DBG’.

Observe that, in DBG’, C’ and C” correspond to the same k-

mer but those nodes have different paired information, which

means that they correspond to different strains.
• Step 2.(g): the last step of the algorithm enumerates the unitigs in

the new DBG’. As a result of the adaptations based on the CPBG

analysis, unitigs are expected to be much longer than in the previ-

ous DBG.

3 Results

We compare viaDBG with previous methods for de novo viral qua-
sispecies assembly. We also include SPAdes (Bankevich et al., 2012)
and metaSPAdes (Nurk et al., 2017) in the comparison to show that
viaDBG improves upon general approaches for genome assembly
and metagenomic assembly in the case of viral data. We omit some
comparisons, such as the reference-based approaches PredictHaplo
(Prabhakaran et al., 2014) and ShoRAH (Zagordi et al., 2011), as
Baaijens et al. (2017) have shown that SAVAGE outperforms both
of them. We perform experiments both on simulated and real
Illumina MiSeq data.

In the case of de novo viral quasispecies assemblers, we com-
pared viaDBG with SAVAGE (Baaijens et al., 2017), which has pro-
ven to be the most precise tool among the whole de novo assemblers
for viral quasispecies, and with PEHaplo (Chen et al., 2018), which
is the last released state-of-the-art tool. Real data were trimmed
using CutAdapt (Martin, 2011), removing primers, low quality and
extremely short reads. In the case of SAVAGE, whose authors highly
encourage the usage of PEAR (Zhang et al., 2014), it was only
applied to the dataset HIV-real described in Section 3.1.1 and to the
dataset HCV-10 described in Section 3.1.2, since for the rest of the
datasets, SAVAGE could not complete the assembly—due to mem-
ory crash—when running on the result of applying PEAR. In the
case of PEHaplo, PEAR was not applied since their authors discour-
age its usage. PEAR was not applied on synthetic datasets for
viaDBG. However, we used PEAR on the real datasets (HIV-real
and the real ZIKV and HCV samples) for viaDBG because the reads
were shorter in these datasets and using PEAR ensured that we could
use a large k for constructing the DBG.

3.1 Benchmarking data
In our experimental evaluation, we used both simulated and real
MiSeq sequenced data. We have followed the methodology and
datasets used by Baaijens et al. (2017), which are described next.

viaDBG: inference of viral quasispecies 477

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

21

3.1.1 Real data with ground truth

We used a gold standard benchmark for viral assembly (Giallonardo
et al., 2014). The reads were produced from 5 HIV strains using
Illumina MiSeq (2�250 bp with error around 0.3% and mean insert
size 371 bp) with 20 000� coverage. As the five strains contained in
the sample are known, it is possible to validate the achieved results.
Table 1 includes the main characteristics of this dataset (HIV-real).

3.1.2 Synthetic benchmarks

Five different simulated datasets were used, consisting of 2�250 bp
Illumina reads from different virus strains, namely HIV, HCV and
ZIKV. The HIV-5, ZIKV-3 and HCV-10 datasets are the datasets
generated by Baaijens et al. (2017). The read length in these datasets
is 2�250 bp and the insert size is 450 bp. The ZIKV-15 dataset was
regenerated by us using SimSeq with default configuration for
Illumina MiSeq reads (read length 2�250 bp and insert size 500 bp).
Table 1 also shows the main characteristics of these datasets.

3.1.3 Divergence ratio and relative abundance benchmarks

We used synthetic datasets for measuring the algorithm bounds. To
analyse when the algorithm loses its effectiveness, we used datasets
with extreme properties that differ from the real data or the synthet-
ic datasets used in usual experiments, which are generally simulated
using realistic properties. Thus, we used 36 datasets from HIV-86.9
strain, varying the divergence ratio (0.5%, 0.75%, 1%, 2.5%, 5%
and 10%) and the relative abundance (1:1, 1:2, 1:5, 1:10, 1:50 and
1:100) of each haplotype. These datasets also correspond to the
datasets used by Baaijens et al. (2017), in an effort to avoid any bias
in the experiments.

3.1.4 Real data without ground truth

We have included two real patient samples. More concretely, (i)
ZIKV sample: an Asian-lineage ZIKV sample consisting of Illumina
MiSeq 2�300 bp reads with �30 000� coverage sequenced from a
rhesus macaque after 4 days of infection (Dudley et al., 2016) and
publicly available in NCBI under the accession code SRR3332513
and (ii) HCV sample: an HCV sample consisting of Illumina MiSeq
reads with �80 000� coverage, sequenced from an Australian
human patient after 135 days of infection, publicly available in
NCBI under the accession code SRR1056035.

3.2 Evaluation scenarios
We ran several experiments under different scenarios. First, we ana-
lysed the behaviour of our method when the target genome is
known, such that we can evaluate the obtained results. More con-
cretely, we used the evaluator MetaQUAST (Mikheenko et al.,
2016) with the option ‘-unique-mapping’, which allows us to assay
metagenomic results getting the best unique alignment for each con-
tig to the objective genomes, avoiding one contig to cover more than
one genome fragment. We obtained several statistics, such as the
largest contig, mismatches/indels/N-Rate, misassemblies, N50, gen-
ome fraction, etc. Furthermore, we measured the time spent and the
memory used during the whole assembly process. As in previous
work (Baaijens et al., 2017), we only considered contigs above
500 bp.

To further analyse the performance of our method, we ran some
experiments to check the algorithm bounds. We used the synthetic
data with different abundance and divergence ratios, and compared

the obtained results in terms of percentage of genome retrieved and
percentage of mismatches.

Finally, we ran some experiments over those datasets with no
available ground truth. This is the case for real virus sample HCV
and ZIKV, which may have mixed data of other organisms different
from the considered virus, making the discovery even more
challenging.

3.3 Results comparison—overall performance
Table 2 shows a summary of the results obtained when applying
each assembler over the benchmarking datasets. The complete table,
including also the results for the datasets ZIKV-3 and HCV-10, and
the additional values of number of contigs larger than 500 bp, length
of the largest contig, percentage of indels, N-rate and total user CPU
time, can be seen in the Supplementary Material.

Overall, the results show, as expected, that tools specifically
designed for viral quasispecies inference obtain the best results in
genome fraction and largest alignment for all datasets. SAVAGE,
PEHaplo and viaDBG show a good performance on the average
length of the retrieved contigs. SAVAGE generally retrieves a higher
genome fraction and obtains larger contigs than viaDBG and
PEHaplo. When the datasets are more complex, namely large differ-
ences in genome abundances or high number of strains, PEHaplo
fails. For example, we could not get meaningful results for PEHaplo
on the ZIKV-15 dataset and thus these are missing in Table 2. After
correcting the reads, PEHaplo removes all of those that do not have
a large enough number of duplications or substrings. Ideally, when
the dataset has high coverage (around 20 000�), every position of
the genome will have a significant number of reads starting on it.
However, when the number of strains is high, the coverage for each
strain is reduced. Furthermore, if abundance for each strain is large,
then the impact over the coverage for each strain is even higher. On
the other hand, in accordance with the results reported by Baaijens
et al. (2017), SPAdes gets results comparable with tools specifically
designed for viral assembly on some of the simulated datasets, such
as HIV-5, but poor performance over the real dataset (HIV-real).
Exactly the opposite happens with metaSPAdes, which obtains low
genome fractions, large number of mismatches and low N50 values
for simulated data, whereas it improves the genome fraction
retrieved for HIV-real (while keeping high rates of mismatches and
misassemblies).

Table 2 also shows that SPAdes’ performance decreases when
the number of strains increases, the relative abundance decreases,
and similarity ratio increases. This is due to the fact that SPAdes
does not implement any strategy to deal with this situation. As com-
mented before, PEHaplo also encounters problems when the number
of strains increases. In contrast, viaDBG and SAVAGE obtain simi-
lar performance, SAVAGE being more sensitive to the strain relative
abundance.

On the HIV-real and HIV-5 datasets, PEHaplo achieves the high-
est N50 but the contigs reported have much more errors than
viaDBG (four times more mismatches on HIV-5 and 17 times more
mismatches on HIV-real than the contigs produced by viaDBG).
This indicates that some of the strains have been mixed in the con-
tigs produced by PEHaplo. For the HIV-real dataset, we also report
the results of PEHaplo without the polishing step (PEHaplo** in the
table) and see that the mismatch rate is much lower without the pol-
ishing step but also the N50 drops below the N50 of viaDBG.

Focusing in the case of the real dataset (HIV-real in Table 2),
viaDBG has the overall best performance. Although the genome

Table 1. Main characteristics for the datasets with ground truth available

Virus type Genome length (bp) Average coverage Num. strains Abundance (%) Divergence (%)

HIV-real HIV-1 9487–9719 20 000� 5 10–30 1–6

HIV-5 HIV-1 9487–9719 20 000� 5 5–28 1–6

ZIKV-3 ZIKV 10 251–10 269 20 000� 3 16–60 3–10

ZIKV-15 ZIKV 10 251–10 269 20 000� 15 1–13 1–12

HCV-10 HCV-1a 9273–9311 20 000� 10 5–19 6–9

478 B.Freire et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

22 Chapter 2. Articles

fraction retrieved is slightly lower than SAVAGE (2.26% points),
viaDBG is able to get the largest contig, a longer average contig and
a lower number of mismatches. Moreover, using the standard pipe-
line of PEHaplo, viaDBG obtains a larger genome fraction retrieved
and a lower number of mismatches and indels. The high number of
mismatches and indels obtained by the standard PEHaplo pipeline
indicates that some of the haplotypes have been mixed. With this
dataset, PEHaplo obtains higher genome fraction and lower number
of mismatches and indels, but also a lower N50 and shorter largest
contig, if the polishing step is omitted (indicated as PEHaplo** in
the table).

We will closely compare the behaviour of each method by taking
into account the results for ZIKV-15 datasets, which can be consid-
ered the most challenging simulated dataset. We omit PEHaplo
from the comparison, as we were not able to run this tool and pro-
duce reliable results for this dataset. Figure 4 shows the percentage
of genome recovered for each strain of the ZIKV-15 dataset. Table 2
shows that viaDBG and SAVAGE have a similar overall perform-
ance. However, a deeper comparison reveals that the behaviour of
each method is rather different. SAVAGE retrieves the highest per-
centage of genome for most of the strains. This can be caused by the
fact that viaDBG systematically removes the beginning and the end
of the genomes due to lack of coverage in these regions. Despite
SAVAGE outperforming viaDBG in most cases, SAVAGE fails at
assembling the genome for two strains. This is not happening with
viaDBG, which retrieves a significant portion of the genome in all
cases, being close to SAVAGE in most cases, and even sometimes
outperforming its results. More concretely, one of the genomes lost
by SAVAGE, HQ234501.1 (Mutant 1%) (Abundance 6%), is al-
most fully recovered by viaDBG. The performance of metaSPAdes
and SPAdes in this particular example was quite bad: they could
only recover one of the 15 strains completely. Moreover,
metaSPAdes did not retrieve any portion from 11 of them.

3.4 Efficiency analysis
We measured the runtime and peak memory usage required by all
the algorithms when applied to each dataset. All algorithms were
given access to 32 cores in all experiments. Error correction, adding
paired-end information and polishing the paired-end information
have been parallelized in viaDBG. The Supplementary Material
includes an experiment evaluation of the effects of the number of
cores used by each of the tools.

As shown in Table 2, SAVAGE needs much more time than the
rest of the methods, ranging from 204.40 min in the fastest case to

352.98 min in the slowest one. This is caused by the computations
made by SAVAGE during the overlap graph construction, which
requires the enumeration of all approximate suffix–prefix overlaps
among the reads. PEHaplo, despite following also an overlap graph
approach, obtains much better execution times, as it removes a high
percentage of repeated reads, thus, alleviating the construction of
the graph. On the other hand, the time performance of the methods
based on the DBG is better: SPAdes and metaSPAdes were around
1.5 times faster than viaDBG. However, when the correction step is
omitted, viaDBG outperforms both of them on the real dataset,
HIV-real. Results show that viaDBG worsens its time efficiency
when including the error correction step, as the CPU times are
around 4.5 times higher. This is an expected result, since the time
complexity of the error correction performed by viaDBG is Oðn �
mÞ where n is the number of reads and m is the maximum length of
the reads. PEHaplo is faster than viaDGB with correction step for
HIV-real dataset, but viaDBG obtains more accurate results. In the
Supplementary Material, we can also see that PEHaplo obtains
slightly better time efficiency and also better accuracy than viaDBG
for HCV-10.

We also measured the peak memory required by each tool.
Among the de Bruijn methods, SPAdes and metaSPAdes require the
highest memory resources, reaching 5.52 GB, whereas viaDBG
requires at most 3.74 GB per execution. Only for ZIKV-15 dataset,
metaSPADES obtains lower memory consumption, but also much
lower accuracy. On the other hand, if we consider the overlap meth-
ods, the memory requirements of SAVAGE are much higher, from
9.03 to 49.12 GB, depending on the file size, whereas PEHaplo
requires for their worst tested case, HIV-5, 4.86 GB (8.99 GB if we
consider HCV-10, as seen in the Supplementary Material).

3.5 Testing viaDBG limits
In this section, we will explore the algorithm bounds. We will follow
the methodology used in the experimental evaluation of Baaijens
et al. (2017), using 36 simulated datasets that vary their abundance
and divergence.

Figure 5 shows the results obtained by viaDGB, SAVAGE and
PEHaplo for each of these datasets in terms of percentage of
retrieved genome and percentage of mismatches. In this experiment,
in the case of SAVAGE, PEAR was applied over the input datasets.
As we can see, viaDBG has a surprising behaviour with 10%, 5%
and 2.5%, as it is able to retrieve almost the complete genome until
the 1:50 abundance relation. Furthermore, on 1:50 relation, it is
able to retrieve around 60% of the genome for the minor strain.

Table 2. Assembly results per method on the benchmarking datasets when ground truth is known

Dataset Method % genome N50 Misassemblies % mismatches Elap time (min) Memory (GB)

HIV-real viaDBG* 87.25 1813 0 0.197 4.48 3.74

viaDBG 89.53 1986 0 0.204 20.01 3.74

SAVAGE 91.79 611 0 0.684 218.30 49.12

PEHaplo 87.96 2995 0 3.521 12.74 3.48

PEHaplo** 91.43 1262 0 0.074 7.56 3.48

SPAdes 20.15 660 1 2.091 12.74 5.52

metaSPAdes 83.10 1432 3 9.291 9.06 4.29

HIV-5 viaDBG 97.50 8046 2 0.151 5.01 2.89

SAVAGE 98.22 6001 3 0.014 204.40 26.11

PEHaplo 78.59 9328 2 0.690 23.93 4.86

SPAdes 90.91 5097 2 0.051 3.31 4.12

metaSPAdes 35.87 6385 6 5.322 3.86 2.99

ZIKV-15 viaDBG 86.06 1759 0 0.002 18.26 3.71

SAVAGE 82.72 1632 0 0.002 352.98 9.03

PEHaplo — — — — — —

SPAdes 38.97 2063 0 0.147 6.17 4.42

metaSPAdes 16.03 3863 0 2.273 4.49 3.19

Note: viaDGB, * omits the correction step and PEHaplo, ** omits the polishing step.

viaDBG: inference of viral quasispecies 479

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

23

Comparing our results with those achieved by SAVAGE and
PEHaplo, we can see that viaDBG behaves better than either of
them in these scenarios with higher differences of abundance rates.
For example, in the 1:50 case, neither SAVAGE nor PEHaplo is able
to retrieve more than 10–20% of the minor strain, and in most cases
they retrieve 0% of the minor strain. On the divergence bound be-
haviour, viaDBG’s results decrease in comparison to SAVAGE,
retrieving a bit less genome fraction when divergence is below 1%.
A possible reason for this is the length of the processed k-mers.
SAVAGE uses the full-length reads (>200 bp) and extends them,
which produces much longer reads, thus more accuracy. On the
other hand, viaDBG uses fixed k-mer length, which produces a slight
loss in accuracy when divergence is below 1%. Nevertheless, it
seems that both SAVAGE and viaDBG have a more robust behav-
iour than PEHaplo, which suffers when divergence is below 0.75%.
In conclusion, viaDBG can properly handle different ranges of diver-
gence levels and of relative abundances, especially for extreme dif-
ferences in the abundance ratio.

3.6 Real datasets with unknown target genome
In this section, we show the results obtained for a real virus sample
from patients infected by the Asian-lineage ZIKV. To evaluate the
results, we use as references the complete genome sequence of
the Asian-lineage ZIKV (KU681081.3). The result for the HCV can
be found in the Supplementary Material.

We obtain 10 contigs above 1000 bp covering 9578 out of
10 677 bases, with a N50 of 1975 bp and a largest contig of
2445 bp. Additionally, 17 809 bases were aligned, thus, it is obvious
that more than one strain is contained in the sample. According to
these results, it seems that there are two different, but highly similar
strains, in the sample. Besides, in our analysis, we have not discov-
ered any local misassembly, which means that there is no contig that
does not align with the reference at some point.

4 Conclusion

We present viaDBG, a time- and memory-efficient de novo multi-
assembler for viral quasispecies. Viral samples generally contain sev-
eral haplotypes, which have evolved from the same genome through
multiple mutations and recombination events. Additionally, not all
viral genomes within the sample have exactly the same frequency,
namely each viral genome has its own level of abundance.
Experimental results have shown that general purpose and metage-
nomic assemblers, such as SPAdes and metaSPAdes, are not able to
retrieve the viral genomes in the sample. This motivates the research
on new specific tools that can overcome all these limitations.

Our experimental evaluation shows that viaDBG is able to get
competitive, sometimes even better, results in comparison to state-
of-the-art de novo viral quasispecies assemblers, such as SAVAGE
and PEHaplo. Furthermore, the runtime of viaDBG is much lower
than SAVAGE and also to PEHaplo in most cases, and its memory
usage is also lower than its counterparts, making viaDBG an attract-
ive alternative. One of the main drawbacks of PEHaplo is that its be-
haviour is highly dependent on the parameter configuration, which
is not easy to determine for each particular dataset. Furthermore, in
some extremely complex cases, such as 15 ZIKV strains where
genomes are extremely close and abundance is extremely low,
viaDBG is able to retrieve information for the whole set of strains
and the overall genome fraction is higher than for other tools.
Despite of these successful results, our method shows a weaker be-
haviour than SAVAGE for datasets with extreme divergence ratios.

The main reasons for the good performance of viaDBG are the
error correction step and the systematic use of the paired-end infor-
mation. On the one hand, error correction enables the usage of ex-
tremely large k-mers (120-mers), as the veracity of the k-mers is
improved due to the adjustment of their frequency distribution.
Additionally, a side effect of the correction is that it reduces the pos-
sibility of having wrong pairs for genomic k-mers and vice versa.

Fig. 5. Performance of viaDBG, SAVAGE and PEHaplo for different divergence and abundance ratios

Fig. 4. Comparison between the four tools and the ZIKV-15 strains dataset

480 B.Freire et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

24 Chapter 2. Articles

On the other hand, the cliques retrieved by using the paired-end in-
formation for every pair of k-mers allow us to change the original
DBG into a much less tangled graph. Applying paired information
as a post-processing step is more restrictive than adding the informa-
tion directly in the graph. When used during the post-processing
step, only reads that align entirely with one contig are going to be
used, whereas all reads with genomic information can improve the
results when they are considered during the graph construction.
Therefore, there is always more information when using paired k-
mers than when using the overlap between reads and contigs.

The main advantage of viaDBG is its efficiency, both in terms of
execution time and memory usage. Our method benefits from the
better efficiency of DBG approaches, which avoids computing over-
laps between all reads. Despite the computations of the paired infor-
mation, viaDBG has proven to be much faster than overlap based
methods.

As a future work, we plan to reduce the memory footprint of
viaDBG by taking full advantage of compacted DBGs. This will also
allow us to study the suitability of our approach for metagenomics
assembling, which is a more demanding task. Another line of im-
provement is to enhance the current parallelization of viaDBG by
taking into account some relevant issues, such us disk accesses,
thread synchronization and data interchanges. In parallel, we will
consider the possibility of integrating our approach with Virus-VG
(Baaijens et al., 2019) to produce larger contigs.

Acknowledgements

We want to thank J. Baaijens and J. Chen for the help in the execution and in

the search for the right parameters on SAVAGE and PEHaplo, respectively.

Funding

This research has received funding from the European Union’s Horizon 2020

research and innovation programme under the Marie Sklodowska-Curie

[grant agreement number 690941]; Ministerio de Ciencia, Innovación y

Universidades [TIN2016-78011-C4-1-R, TIN2016-77158-C4-3-R and

FPU17/02742]; Xunta de Galicia [ED431C 2017/58, ED431G/01, IN848D-

2017-2350417 and IN852A 2018/14]; and from Academy of Finland

[308030, 314170 and 323233]. We also wish to acknowledge the support

received from the Centro de Investigación de Galicia "CITIC", funded by

Xunta de Galicia and the European Union (European Regional Development

Fund- Galicia 2014-2020 Program), by grant ED431G 2019/01.

Conflict of Interest: none declared.

Data availability

The data underlying this article are available in Bitbucket Repository, at

https://bitbucket.org/bfreirec1/data-viadbg/.

References

Ahn,S. and Vikalo,H. (2018) aBayesQR: a Byesian method for reconstruction

of viral populations characterized by low diversity. J. Comput. Biol., 25,

637–648.

Baaijens,J.A. et al. (2017) De novo assembly of viral quasispecies using overlap

graphs. Genome Res., 27, 835–848.

Baaijens,J.A. et al. (2019) Full-length de novo viral quasispecies assembly

through variation graph construction. Bioinformatics, 35, 5086–5094.

Bankevich,A. et al. (2012) SPAdes: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Barik,S. et al. (2018) QSdpR: viral quasispecies reconstruction via correlation

clustering. Genomics, 110, 375–381.

Chen,J. et al. (2018) De novo haplotype reconstruction in viral quasispecies

using paired-end read guided path finding. Bioinformatics, 34, 2927–2935.

Domingo,E. et al. (2012) Viral quasispecies evolution. Microbiol. Mol. Biol.

Rev., 76, 159–216.

Dudley,D.M. et al. (2016) A rhesus macaque model of Asian-lineage Zika

virus infection. Nat. Commun., 7, 12204.

Duffy,S. et al. (2008) Rates of evolutionary change in viruses: patterns and

determinants. Nat. Rev. Genet., 9, 267–276.

Giallonardo,F.D. et al. (2014) Full-length haplotype reconstruction to infer

the structure of heterogeneous virus populations. Nucleic Acids Res., 42,

e115.

Holmes,E.C. (2009) The Evolution and Emergence of RNA Viruses. Oxford

University Press, Oxford.

Jayasundara,D. et al. (2015) ViQuaS: an improved reconstruction pipeline for

viral quasispecies spectra generated by next-generation sequencing.

Bioinformatics, 31, 886–896.

Knyazev,S. et al. (2019) CliqueSNV: scalable reconstruction of intra-host viral

populations from NGS reads. bioRxiv. doi: 10.1101/264242.

Malhotra,R. et al. (2015) Maximum likelihood de novo reconstruction of viral

populations using paired end sequencing data. arXiv e-Prints.

Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet J., 17, 10–12.

Medvedev,P. et al. (2011) Paired de Bruijn graphs: a novel approach for incor-

porating mate pair information into genome assemblers. J. Comput. Biol.,

18, 1625–1634.

Mikheenko,A. et al. (2016) MetaQUAST: evaluation of metagenome assem-

blies. Bioinformatics, 32, 1088–1090.

Nagarajan,N. and Pop,M. (2013) Sequence assembly demystified. Nat. Rev.

Genet., 14, 157–167.

Nurk,S. et al. (2017) metaSPAdes: a new versatile metagenomic assembler.

Genome Res., 27, 824–834.

Posada-Cespedes,S. et al. (2017) Recent advances in inferring viral diversity

from high-throughput sequencing data. Virus Res., 239, 17–32.

Prabhakaran,S. et al. (2014) HIV haplotype inference using a propagating

Dirichlet process mixture model. IEEE/ACM Trans. Comput. Biol.

Bioinform., 11, 182–191.

Prosperi,M.C.F. and Salemi,M. (2012) QuRe: software for viral quasispecies

reconstruction from next-generation sequencing data. Bioinformatics, 28,

132–133.

Salmela,L. and Rivals,E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.

Töpfer,A. et al. (2013) Probabilistic inference of viral quasispecies subject to

recombination. J. Comput. Biol., 20, 113–123.

Töpfer,A. et al. (2014) Viral quasispecies assembly via maximal clique enu-

meration. PLoS Comput. Biol., 10, e1003515.

Zagordi,O. et al. (2011) ShoRAH: estimating the genetic diversity of a mixed

sample from next-generation sequencing data. BMC Bioinformatics, 12,

119.

Zhang,J. et al. (2014) PEAR: a fast and accurate Illumina Paired-End reAd

mergeR. Bioinformatics, 30, 614–620.

viaDBG: inference of viral quasispecies 481

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/4/473/5905473 by U
D

C
 - U

niversidade da C
oruna user on 13 July 2022

25

i
i

“output” — 2020/3/11 — 9:08 — page 1 — #1 i
i

i
i

i
i

viaDBG: Inference of viral quasispecies 1

Supplementary Material

A

B

C

… D E F J

G H I

K L M

N…

Fig. 1. DBG with the paired-end information.

Contents
1 Algorithm for obtaining the haplotypes 1
2 Obtaining the maximal cliques in the CPBG 1
3 Parameter selection 3
4 Description of Zika virus simulated data sets (ZIKV-3 and

ZIKV-15) 3
5 Complete results comparison - overall performance 3

5.1 Analysis of the parallelisation 3
6 Assembly of real data sets with unknown target genome 5

6.1 BAC clones in the Zika virus sample 5
6.2 Hepatitis C Human Sample 5

7 Commands executed 5
7.1 Specialized assembly tools 5
7.2 Generic assembly tools 5
7.3 PEAR 5
7.4 Divergence-Abundance Comparison 6

1 Algorithm for obtaining the haplotypes
Algorithm 1 shows the pseudocode of the algorithm for obtaining the
haplotypes, described in Section 2.4.4 of the main paper, that is, steps
2(e), 2(f), and 2(g) of the Figure 1 of the main paper.

Figure 1 shows a portion of a DBG used to illustrate this process. Solid
black arrows are the edges of DBG, whereas the coloured dotted lines show
the pair-end information of each node.

The algorithm receives as input the DBG obtained through the steps
2(a) until 2(d) of the Figure 1 of the main paper. In Line 4, for each pair of
adjacent nodes (A,B) of the DBG, a CPBG (CPBG(A,B)) is built. Lines
6 and 7 create the nodes of CPBG(A,B). Lines 8–10 add the edges of the
CPBG.

Figure 2(a) shows CPBG(A,B).1 It is composed of the nodes in
P(A)={D, E, F, G, H, I} and P(B)={M, D, F, J}. There is an edge between
two nodes if there is a path in the DBG of length smaller than 2∆. In this
case, function reachDBG(A,B) returns true.

Line 13 obtains the set of maximal cliques in the CPBG (denoted as
SC). This algorithm is shown in Section 2 of this Supplementary Material.

Figure 2 shows the four different CPBGs obtained for the DBG shown
in Figure 1. Each clique in the graphs is highlighted by its own color.

Line 14 polishes the cliques in SC. For example, in CPBG(A,B), the
yellow clique will be discarded because it only has nodes from P(A). This

1 We do not use representative k-mers to facilitate the understanding of
the example.

D E F J

G I

M D E F

G H I N

(a): CPBG(A,B) (b): CPBG(A,C)

F

J L M

L

N G

I N

(c): CPBG(B,K) (d): CPBG(C,K)

Cl0

H

D
F

I

Cl1

Cl0

Cl1

Cl0
Cl0

Cl1

Cl1

Fig. 2. The four different clique graphs.

A’’ C G H I

A’ B D E F JK’

K’’

L M

N…

…

Fig. 3. The final form of the graph.

step avoids having short tips (1 bp) and having several contigs which lead
to exactly the same strain.

Lines 15–28 create the nodes of the new DBG. Line 15 is a loop that
processes all cliques of the treated pair. If the processed clique has nodes
of P (A) and P (B), then that pair is added to the new DBG, otherwise it
is discarded (Line 16).

In Figure 2(a), only C`0 passes the polish step. Therefore the pair
(A,B) is added to the output (see Figure 3): A with paired information
P (A)∩C`0 ={D, E, F} and B with paired information P (B)∩C`0 =

{D, F, J}.
Processing C`1 of CPBG(A,C) (see Figure 2(b)) produces the output

of A and C. However, that A is different2 from that obtained from
CPBG(A,B), and thus, to differentiate them, we use A′ for the one
obtained from CPBG(A,B) and A′′ for the one obtained from CPBG(A,C).
Continuing the process, we obtain the new DBG of Figure 3.

2 Obtaining the maximal cliques in the CPBG
Classic algorithms to find cliques in undirected graphs, such as those

of Johnson et al. (1988) or Tomita et al. (2006), have a considerable
computational cost, for example, O(3n/3) in the case of Tomita et al.

2 In the sense that they belong to different strains.

26 Chapter 2. Articles

i
i

“output” — 2020/3/11 — 9:08 — page 2 — #2 i
i

i
i

i
i

2 Supplementary Material

Algorithm 1 Obtain Haplotypes (DBG)
1: let new_DBG be a DBG
2: let new_DBGnodes = ∅
3: let new_DBGedges = ∅
4: for all (A,B) a pair of adjacent nodes of the DBG do {Builds the CPBG}
5: let CPBG(A,B)edges = ∅
6: let CPBG(A,B)nodes = P (A) {Adds the representative k-mers in P(A)}
7: let CPBG(A,B)nodes = CPBG(A,B)nodes ∪ P (B) {Adds the representative k-mers in P(B)}
8: for all (U, V) nodes in CPBG(A,B)nodes do
9: if reachDBG(U, V) then
10: CPBG(A,B)edges = CPBG(A,B)edges ∪ {(U, V)}
11: end if
12: end for
13: let SC = {C`0, C`1, ..., C`n} the maximal cliques in CPBG(A,B)

14: polish (SC)
15: for all C`i ∈ SC do
16: if C`i ∩ P (A) 6= ∅ and C`i ∩ P (B) 6= ∅ then
17: let new_DBGnodes = new_DBGnodes ∪ {AP (A)∩C`i}{Adds version A with paired information P (A) ∩ C`i}
18: let new_DBGnodes = new_DBGnodes ∪ {BP (B)∩C`i} {Adds version B with paired information P (B) ∩ C`i}
19: let new_DBGedges = new_DBGedges ∪ {(AP (A)∩C`i , BP (B)∩C`i)} {Both nodes are connected}
20: end if
21: end for
22: end for
23: search unitigs in new_DBG

Algorithm 2 Obtain maximal Cliques (DBG, CPBG(A,B))

1: for all Node n in CPBG(A,B) do
2: for all Edge e of DBG that reaches n do
3: let n.weight =+ e.weight
4: end for
5: end for
6: for all Node n in CPBG(A,B) do
7: for all Node n′ in CPBG(A,B) adjacent to n do
8: let n.weight =+ n′.weight
9: end for
10: end for
11: let i = 0
12: let C`i = ∅
13: repeat
14: let=n be the node of CPBG(A,B) with the highest value of degree× n.weight
15: repeat
16: let C`i = C`i ∪ n

17: let nused = true
18: let n′ = n

19: let=n be the node of CPBG(A,B) adjacent to n′ and also connected to all nodes in ci with the highest value degree×n.weight and not in ci
20: until n = ∅
21: let lowest be the lowest weight of all nodes in ci
22: for all Node n in C`i do
23: let n.weight =- lowest

24: if n.weight==0 then
25: let n.weight = 1
26: end if
27: end for
28: let i=i+1
29: let C`i = ∅
30: until All nodes in CPBG(A,B) are used
31: return C`0, C`1, . . . , C`v

(2006). Therefore, instead, we use a faster heuristic method shown in
Algorithm 2, which is based on the work by Pattabiraman et al. (2015).

It receives as input the DBG and the CPBG of a given pair of nodes.
Observe in Figure 4, that the edges of the DBG corresponding to paired
information are now labeled with the number of paired reads that contain
the corresponding pair of k-mers. That frequency is used to determine
which cliques correspond to real strains.

The first loop of Lines 1–4 enriches the nodes of the CPBG with a
number which results from adding the weight of all edges which reach
that node in the DBG. Figure 5(a) shows the result of this process for the
CPBG(A,B) of our example in Figure 4. For example, observe the node D,
its weight (18) is obtained by adding the weight of the edge of the DBG
connecting A and D, with weight 10, and that connecting B and D, with
weight 8.

27

i
i

“output” — 2020/3/11 — 9:08 — page 3 — #3 i
i

i
i

i
i

viaDBG: Inference of viral quasispecies 3

The next loop in Lines 6–10 adds more weight to each node of the
CPBG, specifically, the weight of all its adjacent nodes. Figure 5(b) shows
the result. The weight of D is 45, resulting from adding its weight (18),
and those of its adjacent nodes (J (8), F (9), and E (10)).

The loop of Lines 13–29 is the main part of the algorithm. Line 14
selects the node with the highest value resulting from multiplying its degree
(number of adjacent nodes) and its weight. In our example, that node is F .

Then, the loop of Lines 15–20 builds the clique containing that node.
In our example, first F is added to the clique and marked as “used”. Then,
line 19 obtains the adjacent node of F with the highest value resulting
from multiplying its degree and its weight. In our example, all nodes are
adjacent to F , but E and J are those with the highest value (46 ∗ 4). So,
the process continues adding, let say, E and then J and marking them as
“used”. From J , the adjacent node with highest value is D, which is also
added to the clique. After processing D, all its adjacent nodes are already
in the clique, and thus the process ends.

Next, Lines 21–27 decrease the weight of all the nodes of the recently
created clique by subtracting the weight of the node of the clique with the
lowest value, except if the result of that subtraction is 0, which is changed
to 1. The resulting clique of this process is shown in Figure 5(c) highlighted
in yellow. Observe that its nodes remain now with a low weight, then it
is unlikely that these nodes will be part of subsequent cliques. The idea is
that we have concluded that those nodes correspond to a given strain, it is
unlikely that they would be part of another different strain.

The process continues until all nodes have been marked as “used”. In
our example, another clique is created, as shown in Figure 5(d), but this
clique is later removed by the polishing process, as explained in the main
manuscript.

A

B

C

… D E

F

J

G H I…

8

10

9

10

1

1

8

Fig. 4. DBG with the frequency of appearance of paired k−mers.

3 Parameter selection
The most important parameters of our method are k-mer solid threshold
and the variance of the insert size which we denote by ∆. The ∆ value
can be configured using a higher value than needed without endangering
the assembly results. Nevertheless, if some further information is known,
then using a more precise ∆ will provide better results avoiding some false
cliques that may appear. On the other hand, the k-mer solid threshold is
automatically selected by using the histogram of the k-mers frequencies,
where a change in the trend of the frequency count intuitively means that
from there on k-mers having higher frequencies are genomic. For better
identifying this point of change, we use a window of size N .

We have conducted several experiments for analysing the effect of this
window size in the results. We obtained that the threshold selection for the
simulated data is quite stable, whereas it is much more variable for the real
data set HIV-real. A possible explanation is given by Figure 6, which shows

D
18

E
10

F
9

J
8

G
1

I
1

D
45

E
46

F
47

J
46

G
19

N
21

D
1

E
1

F
2

J
1

G
19

I
21

D
1

E
1

F
1

J
1

G
1

I
2

(a) (b)

(c) (d)

Fig. 5. Obtaining the cliques of the CPBG(A,B) of the DBG of Figure 4.

two k-mer frequency histograms: one for the real data set HIV-real and
the other for the simulated data set HIV-5. Nevertheless, results in terms
of genome fraction retrieved have been consistent throughout the whole
evaluation. This information is provided in Figures 7 and 8. In Figure 7,
we can see that for HIV-real, the threshold suggested by our algorithm
increases when the windows size grows, whereas for the simulated data
sets, the threshold is practically stable. On the other hand, we can see
in Figure 8 that the windows size does not affect the percentage of the
retrieved genome for any data set.

4 Description of Zika virus simulated data sets
(ZIKV-3 and ZIKV-15)

SAVAGE was assayed by using a 15-strain ZIKV data set. Unfortunately,
ground truth criteria, namely reference, was not available. Therefore, we
simulated our own references and the data set.

Twelve extra references were produced from only 3 strains, all
of African lineage: one from Uganda (accession HQ234498), one
from Nigeria (accession HQ234500), and one from Senegal (accession
HQ234501). For each reference 4 extra sequences were build by inserting
1%, 1%, 2% and 2% mutations to the reference.

The data set was simulated by using the whole set of 15 references
with abundances from 1% to 13% at most.

5 Complete results comparison - overall
performance

We include here the complete results of the benchmarking performed in
Section 3 of the main paper. Thus, Table 1 contains the results for all the
data sets, included ZIKV-3 and HCV-10, which were omitted in Table 2
of the main paper. We also include the values for the number of contigs
larger than 500 bp, the length of the largest contig, the percentage of indels,
N-rate, and total user CPU time. We measured peak memory usage using
gnu time commnad (with option -v), and measured time performance using
perf profiler (command perf stat -d), which reports both total CPU user
time and elapsed time.

5.1 Analysis of the parallelisation

We conducted an experiment varying the number of cores available to the
methods to see how the number of cores affects the running times and the

28 Chapter 2. Articles

i
i

“output” — 2020/3/11 — 9:08 — page 4 — #4 i
i

i
i

i
i

4 Supplementary Material

Fig. 6. HIV-real vs HIV-5 frequency histograms.

Table 1. Assembly results per method on the benchmarking data sets when ground truth is known.

contigs % largest mis- % mis- % % elapsed CPU user peak mem
data set method >500 genome N50 contig assemb. matches indels N-Rate time (min) time (min) (GB)

HIV-real

viaDBG - without correction 88 87.25% 1813 8596 0 0.197 0.285 0.000 4.48 17.24 3.74
viaDBG - with correction 57 89.53% 1986 8966 0 0.204 0.240 0.000 20.01 389.13 3.74
SAVAGE 459 91.79% 611 2511 0 0.684 0.149 0.104 218.30 4803.06 49.12
PEHaplo - with polishing 35 87.96% 2995 8674 0 3.521 0.245 0.000 12.74 101.89 3.74
PEHaplo - without polishing 31 91.43% 1262 6383 0 0.074 0.083 0.000 7.56 50.47 3.74
SPAdes 1 20.15% 660 2952 1 2.091 0.089 0.000 12.74 99.63 5.52
metaSPAdes 16 83.10% 1432 2986 3 9.291 0.405 0.000 9.06 111.43 4.29

HIV-5

viaDBG 45 97.50% 8046 9667 2 0.151 0.008 0.000 5.01 63.56 2.89
SAVAGE 18 97.69% 3305 9645 4 0.120 0.004 0.000 204.40 3618.10 26.11
PEHaplo 7 78.59% 9328 9656 2 0.690 0.037 0.000 23.93 68.58 4.86
SPAdes 22 90.91% 5097 9557 2 0.051 0.002 0.000 3.31 25.89 4.12
metaSPAdes 8 35.87% 6385 6561 6 5.322 0.104 0.000 3.86 51.52 2.99

ZIKV-3

viaDBG 10 99.76% 10203 10267 0 0.000 0.000 0.000 7.56 62.10 3.66
SAVAGE 3 99.77% 10243 10258 0 0.003 0.000 0.003 332.15 6527.90 42.37
PEHaplo 2 99.89% 10247 10269 0 0.000 0.000 0.000 20.11 68.19 4.40
SPAdes 3 99.56% 9851 10269 0 0.000 0.000 0.000 4.05 33.05 4.59
metaSPAdes 6 33.34% 2890 8675 0 1.919 0.009 0.000 4.96 58.69 3.33

ZIKV-15

viaDBG 185 86.06% 1759 9483 0 0.002 0.000 0.000 18.26 82.22 3.71
SAVAGE 231 82.72% 1632 10199 0 0.002 0.000 0.002 352.98 8329.14 9.03
PEHaplo - - - - - - - - - - -
SPAdes 247 38.97% 2063 10251 0 0.147 0.000 0.000 6.17 35.34 4.42
metaSPAdes 11 16.03% 3863 5261 0 2.273 0.264 0.000 4.49 57.98 3.19

HCV-10

viaDBG 27 97.72% 8934 9293 0 0.005 0.000 0.000 13.03 69.06 2.81
SAVAGE 20 99.33% 9204 9290 0 0.0975 0.000 1.043 50.01 451.63 26.13
PEHaplo 10 99.66% 9297 9311 0 0.032 0.000 0.000 29.01 64.79 8.99
SPAdes 26 90.59% 8690 9311 0 0.002 0.000 0.000 4.10 26.79 4.09
metaSPAdes 42 49.37% 2742 3475 0 4.534 0.000 0.000 3.73 49.86 2.97

memory usage. We used HIV-real data set with the same configuration for
each tool as the previous experiments. Table 2 shows that only SAVAGE
approaches an ideal speedup, as times are practically divided by 2 when
doubling the number of cores. In the case of viaDBG, using 16 cores
instead of 8 only implies an improvement of 2%, whereas the usage of 32
cores yields a speedup of 1.78. Still, that value is around the same as that
obtained by metaSPAdes and better than the rest, except for SAVAGE.

In Table 3, we can observe that memory usage grows for all methods
when increasing the number of cores. Again, viaDBG obtains similar
results using 8 and 16 cores, but the memory usage growth is worse for
32 cores. This increase in memory consumption is moderate in the case

of PEHaplo, which is the tool obtaining the best result for 32 cores, but
larger for metaSPAdes and SAVAGE.

From the results, we can see that SAVAGE is the tool that best takes
advantage of parallelisation, as its running time considerably decreases
with the number of cores, at the expense of greater memory requirements.
In any case, those time results are still much higher than those obtained by
the rest of the techniques. viaDBG parallelisation obtains a slight speedup
at the expense of a moderate growth in memory consumption.

29

i
i

“output” — 2020/3/11 — 9:08 — page 5 — #5 i
i

i
i

i
i

viaDBG: Inference of viral quasispecies 5

Fig. 7. Threshold value suggested by our approach, varying the windows size.

Fig. 8. Genome fraction retrieved, varying the windows size.

Table 2. Running times in minutes, varying the number of cores.

of cores viaDBG SPAdes metaSPAdes PeHaplo SAVAGE
8 5.96 15.51 15.73 11.00 1255.91
16 5.82 12.83 9.72 11.18 468.58
32 3.34 12.74 9.06 7.56 218.30

Table 3. Memory usage in Gigabytes, varying the number of cores.

of cores viaDBG SPAdes metaSPAdes PeHaplo SAVAGE
8 2.85 4.97 6.53 4.12 7.26
16 2.96 7.28 11.57 4.00 10.25
32 6.69 11.35 19.03 5.50 20.27

6 Assembly of real data sets with unknown target
genome

6.1 BAC clones in the Zika virus sample

Baaijens et al. (2017) discovered human BAC clones within the same
real Zika virus data set that we have also analysed. In our results we
did not find these. This could be caused by two possible explanations.
On the one hand, it is probable that BAC information was not complete,
creating several isolated connected components that were removed during
the polishing step of the graph. On the other hand, results can differ
due to the preprocessing step, which is not exactly the same as the one
used by SAVAGE. In fact, results obtained by SAVAGE method with our
preprocessing step did not show BAC clones either.

6.2 Hepatitis C Human Sample

Here, we show the results of the Australian human patient infected with
Hepatitis C virus. For ground truth, we will use the complete genome of
Hepatitis C virus (NC_004102.1).

Obviously, the results are much more non-specific than in the Zika
sample. This is probably because of the Australian warm environment, the
time that the virus spent in the carrier, plus the initial number of strains
was as well unknown.

7 Commands executed
We run the tools over the same data sets, but customising the configuration
with the best one for each data set. In the case of PEHaplo, and following
authors’ indications, input was only trimmed but PEAR was not used.

7.1 Specialized assembly tools

• viaDBG: Version 1.0
Current version of viaDBG only allows dsk as counter. Furthermore,
preprocessing included removing duplicated reads, as this boosts
efficiency with no accuracy impact.

• ./bin/viaDBG -p ../PairEndDir/ -o Output -u ../OutputUnitig -k 1...192
-c dsk -n -t 1 --postprocess

• ./bin/viaDBG -s SingleEndFile -p ../PairEndDir/ -o Output -u
../OutputUnitig -k 1...192 -c dsk -n -t 1 --postprocess

• SAVAGE: Version: 0.4.0
Although last version of SAVAGE has made the selection of minimum
overlap automatic, it is recommended to use the value 150.

• python savage.py -p1 forward.fastq -p2 reverse.fastq -t 32 --split 30
• python savage.py -s single-end.fastq -p1 forward.fastq -p2

reverse.fastq -t 32 --split 30

• PEHaplo: Version 1.0
Data sets for PEHaplo were modified to fit the software requirements:

• Reads ids must be all different.
• Reads names must end with /1.
• Only fasta format is allowed.

• python pehaplo.py -f1 forward.fasta -f2 reverse.fasta -l 210 -l1 220
-correct yes -n 3 -r 250 -F 450 -t 32

7.2 Generic assembly tools

• SPAdes: Version 3.13.1
SPAdes has automated the selection of multiple parameters such
as k-mer size. Therefore, we relied on SPAdes for the parameters
selection.

• python spades.py -s pear.assembled.fastq -1 forward.fastq -2
reverse.fastq -t 32

• metaSPAdes: Version 3.13.1
metaSPAdes has also automated the selection of multiple parameters
thus we again relied on metaSPAdes parameters selection.

• python metaspades.py -s assembled.pear.fastq -1 forward.fastq -2
reverse.fastq -t 32

7.3 PEAR

• ./pear -f forward.fasta -r reverse.fasta -o output_preffix

30 Chapter 2. Articles

i
i

“output” — 2020/3/11 — 9:08 — page 6 — #6 i
i

i
i

i
i

6 Supplementary Material

7.4 Divergence-Abundance Comparison

• viaDBG: viaDBG needs to use longer k-mers when the divergence
ratio decreases. Abundance is not managed by any parameter.

• Divergence above 1%: ./bin/viaDBG -p exp_0.1_1/ ../OutputDir/ -u
../OutputUnitigs -k 120 -c dsk -n -t 32

• Divergence below 1%: ./bin/viaDBG -p exp_0.1_1/ ../OutputDir/ -u
../OutputUnitigs -k 180 -c dsk -n -t 32

• SAVAGE:

• python savage.py -p1 forward.fastq -p2 reverse.fastq -t 32 –split 1

• PEHaplo:

• Relative abundance 50%: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 210 -l1 220 -correct yes -n 3 -r 250 -F 450 -t 32 -std
150

• Relative abundance 33%: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 210 -l1 220 -correct yes -n 2 -r 250 -F 450 -t 32 -std
150

• Relative abundance below 10%: python pehaplo.py -f1 forward.fasta
-f2 read2.fasta -l 210 -l1 220 -correct yes -n 1 -r 250 -F 450 -t 32 -std
150

• Low divergence ratio: python pehaplo.py -f1 forward.fasta -f2
read2.fasta -l 170 -l1 200 -correct yes -n 1 -r 250 -F 450 -t 32 -std
150

References
Baaijens, J. A., Aabidine, A. Z. E., Rivals, E., and Schönhuth, A. (2017).

De novo assembly of viral quasispecies using overlap graphs. Genome
Research, 27, 835–848.

Johnson, D. S., Yannakakis, M., and Papadimitriou, C. H. (1988).
On generating all maximal independent sets. Information Processing
Letters, 27(3), 119 – 123.

Pattabiraman, B., Patwary, M. M. A., Gebremedhin, A. H., keng Liao,
W., and Choudhary, A. (2015). Fast algorithms for the maximum clique
problem on massive graphs with applications to overlapping community
detection. Internet Mathematics, 11(4–5), 421–448.

Tomita, E., Tanaka, A., and Takahashi, H. (2006). The worst-case
time complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1), 28 – 42.
Computing and Combinatorics.

31

1

ViQUF: de novo Viral Quasispecies
reconstruction using Unitig-based Flow networks

Borja Freire, Susana Ladra, José R. Paramá, and Leena Salmela

Abstract—During viral infection, intrahost mutation and recombination can lead to significant evolution, resulting in a population of
viruses that harbor multiple haplotypes. The task of reconstructing these haplotypes from short-read sequencing data is called viral
quasispecies assembly, and it can be categorized as a multiassembly problem. We consider the de novo version of the problem, where
no reference is available. We present ViQUF, a de novo viral quasispecies assembler that addresses haplotype assembly and
quantification. ViQUF obtains a first draft of the assembly graph from a de Bruijn graph. Then, solving a min-cost flow over a flow
network built for each pair of adjacent vertices based on their paired-end information creates an approximate paired assembly graph
with suggested frequency values as edge labels, which is the first frequency estimation. Then, original haplotypes are obtained through
a greedy path reconstruction guided by a min-cost flow solution in the approximate paired assembly graph. ViQUF outputs the contigs
with their frequency estimations. Results on real and simulated data show that ViQUF is at least four times faster using at most half of
the memory than previous methods, while maintaining, and in some cases outperforming, the high quality of assembly and frequency
estimation of overlap graph-based methodologies, which are known to be more accurate but slower than the de Bruijn graph-based
approaches.
Availability: ViQUF is freely available at: https://github.com/borjaf696/ViQUF

Index Terms—de novo viral quasispecies assembly, genome assembly, de Bruijn graphs.

✦

1 INTRODUCTION

A host organism infected by an RNA virus, such as hu-
man immunodeficiency virus (HIV-1), typically carries

a population of related but distinct viral haplotypes, i.e.,
viral quasispecies [1], [2], due to their high mutation rate
[3]. However, it is possible to use short-read sequencing
data to reconstruct the set of viral haplotypes in a sample
with their relative abundance. In this work, we focus on
de novo viral quasispecies assembly, which does not require
a reference sequence. There are reference-based methods
for viral quasispecies reconstruction [4]–[6]; however, this
approach is constrained to well-known viruses [7] or can be
biased for certain studies [8], [9].

De novo viral quasispecies assembly from shotgun reads
has been tackled either using overlap graphs [8], [10] or
de Bruijn graphs (DBGs) [11], [12]. Overlap graph-based
approaches have traditionally been considered accurate but
require many resources, whereas DBG-based approaches are
usually efficient but less accurate. Recently, we showed that
when properly taking advantage of paired-end reads using
a paired DBG [13], a DBG-based approach can be as accurate
as an overlap graph-based method [12].

Network flows have been used to solve many assem-
bly problems in computational biology [14]–[19]. These ap-

• B. Freire, S. Ladra, and J.R. Paramá are with Universidade da Coruña,
Centro de investigación CITIC, Facultad de Informática, 15071, A
Coruña, Spain.
E-mail: {borja.freire1,susana.ladra,jose.parama}@udc.es

• Leena Salmela is with Department of Computer Science, Helsinki Institute
for Information Technology, University of Helsinki, Helsinki, Finland
E-mail: leena.salmela@cs.helsinki.fi

Manuscript received xxxxx xx, 2020; revised xxxxx xx, xxxx.

proaches first construct an assembly graph (e.g., an overlap
graph, DBG, or string graph), where each vertex and edge is
assigned a coverage based on the number of reads mapping
to it. Then, a network flow that explains the coverage of each
vertex and edge is found. Finally, the flow is split into paths,
which are the contigs reported by the methods. Pevzner
et al. [14] and Myers [15] first suggested using network
flows to solve genome assembly. Later, Westbrooks et al. [17]
used network flows in the quasispecies assembly problem.
Recently, several other works have also used network flows
to address the same problem [18]–[21].

In this work, we present ViQUF, an efficient method
for assembly and abundance quantification of viral qua-
sispecies. ViQUF builds an assembly graph using the DBG
paradigm and uses network flows to formulate the problem
of using paired-end reads to split the assembly graph into an
approximate paired assembly graph. We obtain the contigs
and their frequencies from the approximate paired assembly
graph by solving a network flow problem. Furthermore,
we present a mathematically rigorous formulation based
on kernel density estimation to determine the threshold
for solid k-mer abundance when building the DBG. The
experimental results show that ViQUF is faster and more
memory efficient than previous methods while maintaining
the good quality of the resulting assembly and frequency
estimation.

2 PRELIMINARIES

Given an individual carrying a virus with reference genome
G and a set of haplotypes H = {h1, h2, . . . , hnh

}, each
one with a relative frequency f(hi) (or abundance), a

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

33

2

shotgun sequencing process produces a set of reads D =
{r1, . . . , rnr

}, each read of length l.
The genome G is a sequence of base pairs G =

{bp1, . . . bpn}. Each hi ∈ H is G but with three types of
changes with respect to the reference genome: substitutions,
insertions, and deletions.

Reads are of paired-end type; thus, each read rj ∈ D
has two parts: L(rj) is the left-hand read and R(rj) is the
right-hand read. L(rj) covers the base pairs bpb, . . . , bpe and
R(rj) covers the base pairs bpb′ , . . . , bpe′ of a haplotype
ht ∈ H . The average number of base pairs between bpb
and bp′e is called the insert size.

Due to sequencing errors, reads might include false
changes of base pairs, insertions, and deletions. Given a base
pair bps of the reference genome G, there are on average C
reads covering it; this value is the coverage of the sequencing.

From the set of reads D, our goal is to reconstruct the
haplotypes in H as complete as possible and estimate the
relative frequency of each haplotype in the sample.

Our method is based on a DBG G = (V,E). The vertices
V = {v1, ..., vn} are k-mers, i.e., all subsequences of length
k of the reads in D, and there is an edge e = (vi, vj) between
two vertices vi and vj if the last k − 1 bases of vi match the
first k − 1 bases of vj . k is a parameter of the assembly.

3 OUR METHOD: VIQUF
Figure 1 shows an overview of the steps of ViQUF. The
method selects the k-mers found in the reads in D whose
frequency is above a threshold to build a DBG. In that graph,
the nonbranching paths are compacted into single nodes,
unitigs, producing an assembly graph (AG). For each unitig,
we associate a set of unitigs linked to it by paired-end reads.
Then, AG is processed by taking every pair of adjacent
nodes. For each pair, a new directed acyclic graph (DAG)
is built including all unitigs linked to those two nodes by
paired-end reads. We then determine a minimum path cover
of DAG, where each path represents a haplotype. Therefore,
the two nodes for which we computed DAG are divided as
many times as paths were found.

For this to work properly, each DAG must be carefully
processed to achieve a more reliable graph. This includes
transforming each DAG into an offset flow network and
solving a min-cost flow problem. With the detected flows,
the DAG is corrected, yielding a more reliable graph. Finally,
the nodes of the AG are divided based on the path covers of
its DAGs, and this results in a new AG, called approximate
paired AG (APAG). Once this graph is polished, it is used to
derive the contigs and their abundances. Figure 2 shows a
running example of this process, which will be used in this
section to illustrate how to build the final APAG from the
original DBG.

3.1 Obtaining the AG
First we will explain in detail how AG is produced.

The nodes of AG are unitigs, i.e., compacted nonbranch-
ing paths of a DBG. Two unitigs are connected with an edge
if the corresponding edge also exists in the DBG. AG is
augmented with paired-end information by associating a set
of paired unitigs P (U) to each unitig U . The paired unitigs
are inferred based on the paired-end reads.

3.1.1 Obtaining solid k-mers

We denote a k-mer as genomic if it appears in a haplotype
of the sample and nongenomic if it does not. Recall that, in
D, reads contain erroneous changes of base pairs, insertions,
and deletions; thus, there can be nongenomic k-mers. There-
fore, we use the notion of solid k-mer, which denotes a k-mer
that occurs at least t times in the reads in D, where t is an
abundance threshold. The selection of solid k-mers based on
the frequency of appearance [14] works well due to the high
coverage used in viral quasispecies assembly. Therefore,
it is possible to establish a threshold to separate correct
and erroneous information with high level of accuracy. The
process is simple; the entire read set is traversed, and those
k-mers whose frequency is above the threshold are classified
as solid, whereas the rest are considered nongenomic.

There are several methods for selecting the threshold
for solid k-mers. Chaisson and Pevzner [22] approximated
the number of reads covering a k-mer using a Poisson
distribution. They selected a threshold such that few k-
mers are expected to be covered by several reads below that
threshold. Chaisson et al. [23] applied a Poisson and Gaus-
sian mixture model to the k-mer frequency distribution, and
the first local minimum is selected as the threshold. Zhao
et al. [24] used a clustering method based on the variable-
bandwidth mean-shift algorithm. In our recent study [12],
we used a window over the k-mer frequency histogram to
detect the threshold value where no frequency reduction is
detected.

We propose a new approach based on estimating the
k-mer frequency density function through kernel density
estimation using the Gaussian kernel. A brief introduction
of kernel density estimation can be found in the supple-
mentary material. The frequency is expected to decrease
systematically, corresponding to nongenomic k-mers, up to
a certain point where it stabilizes. Then, it subsequently
begins to increase again, corresponding to genomic k-mers.
Therefore, a good threshold would be the middle point
between the minimum point and the previous maximum
value of the function. The problem of possible local minima
can be mitigated by increasing the suggested bandwidth;
thus, producing an intended over-smoothing effect in the
density function, as shown in Figure 3.

3.1.2 Building and polishing the AG

The solid k-mers obtained in the previous step are used to
build a DBG. We join all the nodes of the unitigs in just
one node, as shown in Figure 2(b), to reduce the number of
nodes of the graph. The resulting graph is called AG. We
use the tool BCALM2 [25] to construct AG.

First, the graph is polished by removing isolated unitigs
and tips shorter than a given threshold. Then, we remove
filigree edges, an approach previously employed in metage-
nomics [26]. Filigree edges are the connections between
unitigs that are not strongly supported. The idea is not to
remove edges based on an overall threshold, which may
remove edges corresponding to low-frequent haplotypes.
Instead, edges in the graph are tagged as weak or strong
based on the connection they support. For instance, the
abundance of an edge e, abu(e), denotes the number of
reads that support the edge. Then, the abundance of a node

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

34 Chapter 2. Articles

3

1. Process adjacent nodes
i. Build the DAGs

2. Translate DAGs into offset flow networks and solve
min-cost flow problem

3. Adjust the DAGs according to the flow in the offset
flow network

4. Obtain paths in the new DAGs
5. Polish paths
6. Build the APAG

Build approximate paired assembly graph (APAG)

1. Obtain solid k-mers
2. Build assembly graph
3. Polish assembly graph

i. Process filigree edges
ii. Remove isolated nodes
iii. Remove tips

4. Add paired-end info to
unitigs of assembly graph

Obtain assembly graph
1. Polish APAG

i. Remove short isolated contigs
ii. Remove in/out tips

2. Translate APAG into an offset flow
network and solve min-cost flow
problem

3. Obtain paths in the APAG
4. Obtain haplotypes abundance using

linear programming

Extract haplotypes and their abundances

Fig. 1. Overview of the proposed method process.

(a) Original DBG

(b) Assembly graph (AG)

ABC
A B C

M N O

IHG S T U

X Y Z
P GHI

MNO
P

STU

XYZ

U1

U2 U5

U3

U4

U6

ABC
U2U3

GHI
U4U5

MNO
U4U6

P
U5U6

STU
…

XYZ
…

U1

U2 U5

U3

U4

U6

(c) AG with paired-end information

U1’
U2

U2
U4U5

U3
U4U6

U4’
U5

U5
…

U6
…

U4’’
U6

U1’’
U3

(d) Approximate paired assembly graph (APAG)

Fig. 2. Example illustrating different steps of the proposed method from the original DBG to APAG.

(a) HCV-10 (b) HIV-real

Fig. 3. Kernel density estimation of k-mer abundance for two datasets
of the experimental evaluation (HCV-10 and HIV-real). We indicate with
a dotted line the threshold selected for each of the datasets.

v, abu(v), is defined as the maximum abu(e) over all edges
e incident to v. Then, every edge e = (v1, v2) is tagged
as weak if abu(e) ∗ ratio < min(abu(v1), abu(v2)) and
strong otherwise. We set the ratio to a default value of 5,
lower than the typical value used in metagenomics, where
abundances are lower.

3.1.3 Adding paired-end information to the unitigs
Paired-end information is usually employed in a post-
assembly step to join contigs into scaffolds such that the
assembly can be extended or repetitive sections can be
solved. However, this information has also been used in
the previous stages of the assembly process. For instance,
the approximate paired DBG (APDB) [13] is a modifica-
tion of the DBG to use paired-end information directly
in contig assembly. The same ideas were also employed
for assembling viral quasispecies [12]. The aim is to use
the paired-end information before building the contigs to

untangle AG. Thus, the paired-end information is included
during the graph-building step. This addition requires time
and increases space consumption. However, it does not
represent a problem for viral datasets in practice.

More precisely, given a k-mer kd, its paired k-mers are
P (kd) = {kg | kg is a solid k-mer and ∃ rx ∈ D and a posi-
tion j such that L(rx)[j . . . j+k−1] = kd and R(rx)[j . . . j+
k − 1] = kg}.

Let Ky be a set of k-mers, U(Ky) denotes the unitigs
where the k-mers in Ky appear. Then, given a unitig Ui

formed by k-mers k1, k2, . . . , km, its paired-end information
is
P (Ui) = {U(P (k1)),U(P (k2)), . . . ,U(P (km))}. Therefore,
to each vertex Ui of the AG, we attach its P (Ui).

An example of paired unitigs is shown in the
supplementary material. Figure 2(c) shows our AG with
paired-end information.

3.2 Building the APAG
Next, we will transform AG augmented with paired-end
information to APAG. Similar to AG, the nodes of APAG
are unitigs augmented with paired unitigs. However, in
APAG, unitigs that occur in more than one haplotype will be
replicated. Each instance of the unitig ideally corresponds to
one haplotype and the paired unitigs in the same haplotype.
The edges of APAG will connect the unitigs belonging to the
same haplotype.

To construct APAG, we take each pair of adjacent nodes
in AG and build a DAG, where its nodes are those two
nodes and their paired unitigs. The DAG captures the
connectivity between the unitigs in AG, by adding edges in
DAG between the unitigs linked in AG through short paths.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

35

4

Therefore, each edge of DAG indicates that the connected
nodes probably form part of the same haplotype. Then, we
detect the haplotypes in that group of unitigs by finding
paths in the DAG. We use that information to split the
edge and the two adjacent nodes of AG according to the
haplotypes found in DAG.

Therefore, DAGs are the core elements of the proposed
method. This implies that they must be built with care to
obtain reliable paths, including a correction based on a min-
cost problem built on DAG.

3.2.1 Processing adjacent nodes: building the DAGs
Observe that if all occurrences of a unitig Ui are due to a
unique haplotype, then all paired unitigs of Ui occur along
a path in AG. Thus, they are all reachable from each other.
This occurs in our example of Figure 2(c) with, e.g., U2,
with paired unitigs U4 and U5. We employ this information
to detect haplotypes. For example, the pairing between
U2 and U4/U5 highlights one of the two haplotypes in
Figure 2: {A,B,C,G,H, I, P, S, T, U} = {U1, U2, U4, U5}.
The other haplotype is {A,B,C,M,N,O, P,X, Y, Z} =
{U1, U3, U4, U6}.

However, if the unitig Uj occurs in several haplotypes,
the paired k-mers will span some site containing a mutation.
In our example, U1 appears in two haplotypes; thus, its
paired information contains U2 and U3, which are not
reachable from each other. However, the paired unitigs
originating from the same haplotype are reachable from
each other. We will use this reachability information to
split the nodes of AG into different nodes. Each node
corresponds to a different haplotype; thus, producing the
new APAG. The new APAG will be used to obtain the
contigs.

Let AG = (Vag, Eag) be the AG. Our target is to divide
the nodes in Vag into as many nodes as the number of
haplotypes they belong to. Thus, we follow the next steps:

1) For each pair of adjacent nodes of Vag , say Ui and
Uj , a directed acyclic graph DAG ij = (Vij , Eij) is
built, where

• Vij = Ui ∪ Uj ∪ P (Ui) ∪ P (Uj).
• There is an edge e ∈ Eij from u ∈ Vij to

v ∈ Vij , if and only if there is a path in AG
from u to v that does not include any other
node in Vij and has a length shorter than
2∆, where ∆ is the maximum error in the
insert size. When searching for a path, we also
limit the number of traversed branches by a
threshold T to ensure that the path search
remains tractable. By default, we set T to
10, which is a conservative value in order to
avoid removing low abundance haplotypes.

Observe that the nodes of DAG are the two adjacent
(in AG) unitigs Ui and Uj , and their paired unitigs.
Ui and Uj overlap by k − 1 bp1; thus, their paired
unitigs (separated from Ui and Uj , on average,
by the insert size) should also be close by in AG

1. Recall that AG is a compaction of the DBG, so edges between
unitigs are actually edges of the DBG, and thus the end of the source
unitig overlaps k − 1 bp with the beginning of the target unitig.

because their distance in AG should not exceed 2∆,
twice the insert size error if they belong to the same
haplotype.

2) Next, we will find the source to sink paths in DAG
such that the paths correspond to the haplotypes.
However, not all paths correspond to haplotypes. To
identify the correct paths, we will use the coverage
of the DAG nodes and edges along with the paired-
end information of the reads.
The coverage of the DAG edges is computed based
on the coverage of the unitigs on the path in AG
that the edge represents, where the coverage of a
unitig is the average abundance of the k-mers of the
unitig. When computing the coverage of an edge
(u, v) of DAG, the process analyzes the paths in AG
connecting them. It means that if there is only one
path p, the edges that reach nodes of p from nodes
that are not in p and those coming from nodes in
p and reaching nodes that are not in p correspond
to haplotypes different from that containing u and
v. Thus, we analyze the paths connecting Ui, Uj , u,
and v. We traverse those paths. At each node, we
add to a bag the coverages of edges coming from
nodes that do not belong to p. Then, we distribute
those excess coverages in the bag among the nodes
forming a fork when we find one. Therefore, we
combine the coverage and paired-end information
of the reads.
The final coverage is that of the last edge of p minus
the incoming coverages that were not assigned to
nodes leaving p. The exact method for computing
the coverages is described in more detail in the
supplementary material.
Once the edge and node coverages are computed,
we want to find a set of paths in DAG and
associated abundances to explain the coverage of
edges and nodes.
Figure 4 shows the process of building a reliable
DAG for detecting the haplotypes that pass through
the adjacent nodes U2 and U4. Figure 4(a) shows AG
of our running example with the coverages of nodes
and edges, i.e., the number of reads supporting
those nodes and edges. Figure 4(b) shows the
first version of DAG DAG24. Observe that there
could be two paths U2, U4 and U5, and U2, U4,
and U6; thus, we must check if they are correct
using the coverages of edges in AG and the paired
information. Figure 4(b) shows that, even after
applying the previous method for computing the
coverage of the edges of DAG, the coverages may
not be consistent. Observe that U4 has two exits,
adding a total output coverage of 12. This is not
possible since U4 only receives an input coverage of
10.

Therefore, the coverages of the graph are inconsistent.
Moreover, there can be false edges due to false paths in AG.
Their origin is due to the shared k-mers between different
but similar haplotypes. Additionally, there can be several
real edges and thus paths, but the observed coverages may
not be consistent with each other.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

36 Chapter 2. Articles

5

23

10

3

U1

U2

U3

U4

U5

U6

U4

U5

U6

(b) DAG24 before min-cost adjustment
(a) AG

1310

10 13

13

3 2

U2

10
10

10 10
10

2

U4

U5

U6

(d) New DAG24’ after min-cost adjustment

U2

10
10

10 10
10

0

2

S U4in U4out

0/10
U5in U5out

0/10
0/10

T
U6in U6out

2/2

2/2

S*

10

2

10/10

U2in

0/10

U2out

2/2

0/10

T*

10

10

(c) OFN24

13

Fig. 4. Example of the construction and coverage adjustment of DAG corresponding to the adjacent nodes U2 and U4. We show the original AG,
DAG24, OFN24, and DAG′

24

To solve these problems, we employ the coverage of the
unitigs (nodes of DAG), i.e., the number of reads supporting
them and their connections.

We need to assign a flow to the graph to satisfy the
conservation property of the flow.

It means that the amount of flow reaching each node
must be the same as those leaving the node. A simple
heuristic, such as taking first the heaviest paths, will work
accurately with a graph in that form. However, conservation
is not enough; the flow assigned to each node/edge must be
as close as possible to the observed coverage.

Our example, DAG24, is simple, but in a very complex
graph, a decision on the flow distribution must be taken
at each fork; however, the flow that reaches the fork
might depend on several previous decisions. Therefore, the
optimal solution is very complex. We will use a min-cost
flow that will solve the two problems using a cost function,
i.e., it will modify DAG such that i) satisfies the conservation
law, ii) the new flow assigned to the edges is close to the
observed coverage.

To assign a flow minimizing the difference from the
observed coverage of the unitigs in DAG, the min-cost
flow uses a cost function that increases when the difference
grows. Therefore, we obtain our solution by minimizing that
cost. The main advantage of this method is that it decides
at all forks using a polynomial-time algorithm, minimizing
the difference between the assigned flow and observed
coverage globally. It means that it does not compute the best
cost in the fork but computes the cost as the sum of costs at
all edges of the graph to decide the flow in each edge of a
fork.

With the corrected graph, the next step is to decompose
the flow into paths in the graph in the most parsimonious
way. Finally, the corrected flow and its decomposition into
paths will give us the relative abundance of the haplotypes.

Consider the following: let cov(v) be the coverage of
the nodes v ∈ Vij , cov(u, v) be the coverage of the edges
(u, v) ∈ Eij , and c(y) a cost function that can be applied to
nodes v ∈ Vij or edges (u, v) ∈ Eij . Following the approach
proposed by [16], we use, for our problem, the same cost
function for nodes and edges c(x) = x2. Here, x is the error

in the frequency estimation for nodes and edges.
The objective is to find the set of paths Pij from the

sources of DAG ij to the sinks of DAG ij that minimizes:
err =

∑
u∈Vij

cu
(
|cov(u)−∑

p∈Pij |u∈p a(p)|
)
+∑

(u,v)∈Eij
cuv

(
|cov(u, v)−∑

p∈Pij |(u,v)∈p a(p)|
)
,

where a(p), for each path p ∈ Pij , is the estimate abundance
level of the path obtained by the solution of the min-cost
flow problem and the decomposition of the flow into paths.

3.2.2 Translating DAGs into offset flow networks
In this section, we explain how we use the min-cost network
flows to first determine an optimal flow in DAG and then
split the flow into paths. A brief introduction to network
flows can be found in the supplementary material.

To determine such an optimal flow, we translate DAGs
into offset flow networks and solve the min-cost problem in
those offset flow networks. The min-cost flow in the offset
flow network models how the coverages in DAG need to be
modified to create an optimal feasible flow.

For each DAG ij = (Vij , Eij), we build the offset flow
network OFN ij as follows:

• Replace every node v ∈ Vij by two nodes vin
and vout and two arcs: (vout, vin), with capacity
b(vout, vin) = cov(v) and cost function cvout,vin

(x) =
cv(x), and (vin, vout) with infinite capacity and the
same cost function. The flow on the arc (vout, vin)
will be nonzero if the coverage of v in DAG needs
to be decreased in the optimal solution. However,
the flow on the arc (vin, vout) will be nonzero if the
coverage of v needs to be increased.

• Replace the arc between each pair of original nodes
(u, v) ∈ Ei,j by two edges: (vin, uout) with capacity
b(u, v) = cov(u, v), and cost function cvin,uout

(x) =
cu,v(x), and (uout, vin) with infinite capacity, and the
same cost function. Similarly, a nonzero flow on the
forward arcs indicates that the coverage of the arc
(u, v) should be increased. In contrast, a nonzero
flow on the backward arcs indicates that the coverage
should be decreased.

• Add start (S) and target (T) nodes. For each source
node s in DAG ij , add an arc from S to s with cost

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

37

6

cS,s(x) = 0 and infinite capacity. Similarly, for each
target node t in DAG ij , add an arc from t to T with
ct,T (x) = 0 and infinite capacity. Source nodes are
the nodes with no incoming arcs, and target nodes
are the nodes with no outgoing arcs.

• Add an artificial source (S∗) and sink (T ∗) to manage
the exogenous flow and initialize the exogenous flow
of each node of OFNij to qv = 0. These will be used
to balance the flow on nodes where the total coverage
of the incoming arcs and the total coverage of the
outgoing arcs do not match.

• For any node v with

qv =
∑

u∈V

cov(v, u)−
∑

u∈V

cov(u, v) < 0

add an arc from S∗ to the node v with capacity set to
qv and cost cS∗,v(x) = 0. Update the exogenous flow
of S∗: qS∗ = qS∗ + qv .

• For any node v with

qv =
∑

u∈V

cov(v, u)−
∑

u∈V

cov(u, v) > 0

add an arc from v to T ∗ with capacity set to qv and
cost cv,T∗(x) = 0. Update the exogenous flow of T ∗:
qT∗ = qT∗ + qv .

• Add an edge from T to S to close the offset network
with cost f(T, S) = 0 and infinite capacity.

Figure 4(c) shows the resulting network flow for the
offset network of DAG24 of Figure 4(b). On the edges,
the label x/b means that b is the node’s capacity, and x is
the flow that passes through it when solving the min-cost
problem. Edges with only a value x means that the edge has
∞ capacity, and the flow passing through it is x.

3.2.3 Adjusting DAGs according to the flow in the offset
flow network
Once the min-cost problem in the offset flow network is
solved, the original DAG is modified as follows.

Let us consider DAG ij and its OFNij . Let cov(u, v) be
the coverage of the edge (u, v) ∈ DAG ij , xuoutvin be the
flow through the edge (uout, vin) in OFNij , and xuinvout be
the flow through the edge (uin, vout) in OFNij . Then, the
new coverage cov(u, v)′ of the edge (u, v) in the modified
DAG ′

ij is: cov(u, v)′ = cov(u, v)− xuinvout + xuoutvin .
Observe in Figure 4(d) the new DAG ′

24, the output flows
of U4 match the input flows.

3.2.4 Obtaining paths in the new DAGs
For each adjusted DAG ′

ij , we build a set of paths Pij =
p1, p2, p3, . . . , pp from the sources to the sinks of DAG ′

ij

with weights w1, w2, w3, . . . , wp satisfying:

cov(u, v)′ =
∑

∀pt∈Pij |u∈pt and v∈pt

wt

for all edges (u, v) of DAG ′
ij .

Analogously to prior research to solve RNA-seq
problems [16], we are interested in parsimoniously explaining
the abundance distribution over the sample. We are
interested in finding the set of paths Pij with the lowest
number of paths. A well-known result is that decomposing

a flow into a minimum number of paths is an NP-hard
problem in a strong sense. Therefore, only heuristic methods
can be run in a reasonable time. In this work, we use a
mixture of two heuristics to build the final set of paths.

We iteratively find the source to sink paths in the
graph until the paths are a decomposition of the flow. We
resolve branches primarily using paired-end information
and secondarily choosing the heaviest path when the
paired-end information is unavailable or does not point to a
unique solution. To achieve this, we proceed in two steps as
follows:

• For each node u ∈ Vij , we store the list of nodes in
V such that u is part of their paired-end information,
i.e., paired with[u] = {v1, . . . , vn} iff u ∈ P (vi), i =
1, . . . , n.

• When traversing the graph to find a path, we
remember the parent of the last node on the path
with an indegree greater than one. We call this saved
node haplotype reference node. When we find a node
with an outdegree greater than one, we must decide
which branch to follow. Then, we take the haplotype
reference node and employ the map built in the
previous step. There are three possibilities: none of
the branches of the fork is pointed by any node in the
paired-end information of the haplotype reference
node, then we use the heaviest path heuristic; only
one branch of the fork is pointed, then we follow
that path; more than one branch is pointed, then we
follow the heaviest path of the pointed branches.

In the example of Figure 4(d), the only resulting path is
p1 = U2, U4, U5, with weight 10. We have discarded the path
U2, U4, U6, with weight 0, which, if not removed, would be
responsible for mixing haplotypes.

Additionally, in DAGs, we have information about the
relative abundance of the haplotypes.

3.2.5 Polishing the paths
It is necessary to solve one min-cost flow problem for
each pair of adjacent nodes in AG. Ideally, the number of
paths reported for each pair coincides with the number of
haplotypes to which the pair belongs. However, this does
not happen in practice due to, for instance, shared regions
or coverage inconsistencies; thus, a wrong number of paths
might be reported. Therefore, a soft polishing is performed
to overcome this problem. This polishing involves tasks,
such as removing paths that do not contain both nodes
under study, paths with suggested flow below the k-mer
solid threshold, and paths with low simultaneously support
from the given nodes.

The expected output once the polishing has been
completed is to have for each pair of nodes both the
haplotypes it belongs to and the estimation of the
abundance of each haplotype given by the suggested flow.

3.2.6 Building the APAG
For each pair of adjacent nodes Ui and Uj in AG, we take
the set of paths Pij , and for each path p ∈ Pij , unless they
are already in APAG, we create the nodes:

• UiP (Ui)∩p, which is the node with label Ui with
paired information P (Ui) ∩ p.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

38 Chapter 2. Articles

7

• UjP (Uj)∩p, which is the node with label Uj with
paired information P (Uj) ∩ p.

In our example, DAG24 produced only one path P24 =
{p1}, and p1 = {U2, U4, U5}. Then, we create two nodes:

• U2P (U2)∩p1
. Since PU2 = U4, U5, we create the node

labeled U2 in Figure 2(d) with paired information
U4, U5.

• U4P (U4)∩p1
. Since PU4 = U5, U6, we create the node

labeled U ′
4 in Figure 2(d), with paired information

U5.

As shown in Figure 2(d), APAG of our running example
and our nodes U2 and U ′

4 are in the upper haplotype; the
remaining nodes of the haplotype are computed from DAGs
DAG12 and DAG45.

The nodes U ′
4 and U ′′

4 correspond to the same unitig, but
those nodes have different paired information, meaning that
they correspond to different haplotypes.

3.3 Extracting the haplotypes and their abundances
Finally, we polish APAG by removing isolated nodes, which
can be wrongly built when splitting one node more than
necessary. We also remove short tips and paths with lengths
below 500 bp, which are not expected to be correct contigs.
After polishing APAG, the only remaining step is to traverse
it and report the correct paths.

For this, we solve a min-cost flow problem on APAG.
APAG is transformed into an offset network using the
same method used previously for DAGs. Once the offset
network is built, a min-cost flow is solved on it using cost
function cuv(x) = (x−cov(u, v)′)2. Therefore, the first paths
to be flooded will be the ones with more flow capacity.
Then, we obtain the haplotypes and their abundances by
decomposing the flow into weighted paths using a greedy
algorithm to extract the heaviest path.

A similar approach has been previously introduced by
VG-Flow, which solves a min-cost flow problem over a
variation graph, using the number of paired-end reads
mapping a particular edge as edge labels. Then, it performs
a greedy path extraction to obtain the set of paths P and
solves a linear programming problem to polish the results.
In contrast, ViQUF skips the variation graph using APAG.
It also avoids mapping the reads using the suggested flows
as labels for the edges. Although ViQUF could obtain the
haplotype abundance estimation based on the estimated
flows in APAG, the estimation for some haplotypes may not
be accurate due to the lack of precision on the abundances
for heads/tails plus some wrong estimations that can
appear on the split computation. Therefore, like VG-Flow,
ViQUF performs a flow polishing based on a simple linear
programming problem. Given APAG = G = (V,E) a
graph, P = {p1, p2, . . . , pn} a set of paths on G, and f(pi) a
flow over the paths, we define

min
x

∑

u∈V

∣∣abu −
∑

pi,u∈pi

f(pi)xpi

∣∣(Lu

k
− 1

)

s.t. x = [xp1
, . . . , xpn

] ∈ Rn
≥0

(1)

where Lu and abu are the length and abundance of the
unitig, respectively; k is the k-mer size, and f(pi)xpi is the

flow of the path pi after polishing. Equation 1 minimizes
the accumulated difference for each vertex and the assigned
flow for each path it belongs to. The second term of the
expression is a correction factor that gives a higher weight
to the longest; thus, the most reliable, unitigs. The aim is
to obtain, for each path, a weight xpi

that minimizes the
difference between the abundance of each unitig and the
given flow. Although simple, it is quite effective in practice
and, even for complex cases, the frequency estimation
improves significantly compared to the previous estimation.

3.4 Theoretical complexity analysis

3.4.1 Theoretical time complexity

To build the initial AG, we must build and traverse a DBG
from the reads. We use GATB library [27] for this step, which
takes O(N) time, where N denotes the total length of all
reads.

To build APAG, we need to associate each unitig with
the unitigs through the paired-end information. To do so,
we traverse the read set and, for each pair of k-mers in the
left and right reads, we locate the corresponding unitigs and
add the right unitig to the set of paired unitigs of the left
unitig. Assuming constant time access to the unitigs using a
hash function, this takes O(N) time.

To build DAG ij for two nodes Ui and Uj of AG, we
traverse AG from the first node Ui until we reach a specific
distance (we use 2∆ by default) without finding any node
from pe = P (Ui) ∪ P (Uj). In the worst case, the number of
iterations of this step is nh(k+2∆), where nh is the number
of haplotypes. This leaves us a complexity ofO(nh(k+2∆)).

After building DAG, it is polished. For this, DAG is
traversed. This costs O(|Vij | + |Eij |), where |Eij | and |Vij |
are the number of edges and vertices of DAG ij , respectively.
Furthermore, in the worst case |Vij | = nh(k + 2∆),
indicating that the insert size is maximum and every k-
mer within the insert size belongs to pe. In DAGs, the
|Eij | is bounded to

(|Vij |
2

)
. However, even in the worst

case scenario, this is impossible, and the upper limit is
4|Vij | = 4nh(k + 2∆), meaning that each node is at most
connected to four other nodes. Again, the complexity of this
step is also O(nh(k + 2∆)).

The third and hardest step is solving the min-cost flow
problem. There are two possibilities: if the cost function
is concave or convex. If it is concave, the problem is NP-
hard; however, the problem can be solved in polynomial
time if the cost function is convex [28]. Given a circulation
problem on a network N = (G, l, u, c), where G is a directed
graph, l and u are non-negative functions for demand and
capacity for every arc, respectively, and c is a convex cost
function, the minimum-cost circulation, flow, problem can
be solved through cycle-canceling algorithm inO(nm2CU),
where n = |V (G)|, m = |E(G)|, C is the maximum value
of the costs, and U is the maximum capacity in an edge. As
described earlier, n ≤ nh(k + 2∆) and m ≤ 4n; thus, the
algorithm runs in O(n3CU) = O((nh(k + 2∆))3CU).

Finally, building and polishing DAG and solving the
min-cost flow problem is repeated for each edge or pair
of adjacent nodes in AG, which is four times the number
of k-mers in the sample in the worst case scenario. Thus,

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

39

8

the theoretical complexity of these steps is O((N)(nh(k +
2∆))3CU).

The final step is to solve a minimum-cost flow over
APAG, which in the worst case is the same as AG, which
in the same scenario is DBG. Therefore, we can use the
same previous complexity O(nm2CU), but in this case
n ≤ N and m ≤ 4n = 4(N), resulting in a complexity
of O(N3CU).

As summary, the entire algorithm takes O((N)(nh(k +
2∆))3CU + (N3CU)). If we assume k and ∆ are constants,
we obtain O(N3CU). According to the theoretical analysis,
building APAG and solving the min-cost flow in APAG are
the most time-consuming steps. However, building APAG
takes the longest in practice.

3.4.2 Theoretical space complexity
The three main structures of ViQUF are the de Bruijn graph,
the assembly graph and the APAG. In the worst case
scenario where no k-mers have been filtered, the de Bruijn
graph can be represented in O(N) space, where N denotes
the total length of all reads. However, for the assembly
graph we need to store the paired-end information of each
node and in the APAG we have potentially split every node
in the assembly graph nh times. The assembly graph is a
compaction of the de Bruijn graph and thus the graph itself
can be represented in O(N) space. The total number of
k-mer pairs we extract from the reads is O(N) and thus
also the paired-end information can be represented in O(N)
space. The representation of the APAG will need O(N ∗ nh)
space. Thus, we have a final space complexity of O(N ∗nh).
However, nh has a bounded value, thus we can treat it as a
constant and therefore the final space complexity is O(N).

4 EXPERIMENTAL EVALUATION

We compare ViQUF with the most recent solutions for
de novo haplotype-aware full-length viral quasispecies
assembly: Virus-VG [19] and VG-Flow [29]. We also include
in this comparison viaDBG [12], a related solution for
de novo assembly of viral quasispecies, and PEHaplo [10]
(which do not provide haplotype abundance estimations).
Additionally, we compare ViQUF with two reference-based
viral quasispecies construction methods: CliqueSNV [6] and
PredictHaplo [5]. We followed the recommendations given
by the authors in their papers to set the parameters of the
methods. For ViQUF, we set the k-mer size to 121.

4.1 Benchmarking data
In our experimental evaluation, we used simulated and
real MiSeq sequencing data. We employed the methodology
and datasets used by related work [8], [19], [29], which are
described below.

Real data with ground truth. We used a gold standard
benchmark for viral assembly [30]. The reads were produced
from five HIV haplotypes using Illumina MiSeq (2×250 bp
with an error of about 0.5% [31]) with 20000x coverage. Since
the five haplotypes in the sample are known, it is possible
to validate the achieved results. Table 1 presents the main
characteristics of this dataset (HIV-real).

Synthetic benchmarks. Four simulated datasets were used,
consisting of 2×250 bp Illumina reads from different viruses:

TABLE 1
Main characteristics for the datasets used in the experiments.

Virus Genome Average # Haplo- Abun- Diver-
Type Length (bp) Coverage types dance gence

HIV-real HIV-1 9487–9719 20000× 5 10%–30% 1%–6%
HIV-5 HIV-1 9487–9719 20000× 5 5%–28% 1%–6%
ZIKV-15 ZIKV 10251–10269 20000× 15 1%–13% 1%–12%
HCV-10 HCV-1a 9273–9311 20000× 10 5%–19% 6%–9%
POLIO-6 Poliovirus 7428–7460 20000× 6 1.6%–51% 1.2%–7%

Human immunodeficiency virus (HIV), Poliovirus (POLIO),
Hepatitis C virus (HCV), and Zika virus (ZIKV). These
datasets correspond to those employed by [29] in their
experiments. We denote these datasets by HIV-5, POLIO-6,
HCV-10, and ZIKV-15, respectively. Table 1 also shows the
main characteristics of these datasets.

4.2 Evaluation metrics
Ground truth sequences are available for all out datasets.
Thus, we evaluate the assemblies by comparing the obtained
contigs against these. We used MetaQUAST [32] for this
evaluation. MetaQUAST gives multiple alignment statistics
and an overall assembly evaluation. We used MetaQUAST
with the option “–unique-mapping” meaning that each
contig can map to only one haplotype. For each dataset,
we report genome fraction retrieved, N50, and errors
(misassemblies and percentage of mismatches/indels/Ns).
The genome fraction is defined as the percentage of the
target haplotypes contained in the set of the obtained
contigs (all contigs with lengths larger than 500 bp). We used
N50 to measure the fragmentation level of the assembly.
The N50 is defined as the length of the shortest contigs
in the assembly of at least the length of half of the
total assembly. We show misassemblies to measure the
behavior on repetitive sections, and error rate, which is
calculated as the sum of mismatch rate, indel rate, and N-
rate, measures the correctness of the assembly, showing if a
set of contigs is correct or just a random graph extension.
The supplementary material includes the results for the
measures of precision and recall, following the extension
proposed by [33] for de novo methods.

4.3 Performance analysis
In this section, we present several evaluations to verify the
quality of the obtained contigs. Table 2 presents the overall
results of the five tools on the different datasets. Section 5 of
the supplementary material shows the results for the main
statistics of this table using graphs for a better view.

The de novo reconstruction methods, Virus-VG, VG-Flow,
viaDBG, and PEHaplo, and the reference-based methods,
PredictHaplo and CliqueSNV, were configured with the
settings given by their authors [5], [6], [10], [12], [19], [29].
We use the optimal values to determine the solid k-mers
for viaDBG and ViQUF. A discussion on the impact of these
values can be found in the supplementary material.

The results of the reference-based methods show high
variability in terms of genome fraction and error rate;
however, N50 is almost the length of the entire haplotype
for all datasets. For example, on HCV-10, using the same

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

40 Chapter 2. Articles

9

TABLE 2
Results for the seven viral quasispecies assembly tools. We show percentage genome (the fraction of all haplotypes retrieved by each method),
N50 (the length of the shortest contig needed to be included to cover at least half of the total assembly), the number of misassemblies, the error

rate of the assembly (the sum of mismatch rate, indel rate, and N-rate), elapsed time, peak memory usage, mean estimated error (MEE) of
haplotype frequencies, and the standard quasideviation of the estimated error of haplotype frequencies (ŜEE). For Virus-VG and VG-Flow, we

show the elapsed time and memory usage separated into the time for contig assembly using SAVAGE (first value) and for the full haplotype
reconstruction (second value). Similarly, for the reference-based methods, PredictHaplo and CliqueSNV, we show the elapsed time and memory
usage to align the reads to the reference (first value) and run the method (second value) separately. The best values for each data set in each

column are highlighted.

% Genome N50 misass- % error elap time memory MEE
ŜEEdataset method emblies rate (min) (GB) (%)

HCV-10

Virus-VG 99.30% 9231 0 0.002 913.48 + 1009.08 26.13 — 8.35 0.05 0.04
VG-Flow 99.79% 9293 0 0.001 913.48 + 559.56 26.13 — 8.29 0.05 0.04
viaDBG 97.72% 8934 0 0.005 69.10 2.81 - -
PEHaplo 94.78% 8661 0 0.013 68.45 8.94 - -
PredictHaplo 89.79% 9273 0 0.044 4.11+175.73 0.08 — 1.14 6.74 6.44
CliqueSNV 9.97% 9273 0 2.100 4.11+3494.09 0.08 — 17.24 17.6 25.10
ViQUF 97.37% 8911 0 0.008 3.51 1.09 0.15 0.13

HIV-5

Virus-VG 96.85% 9632 2 0.332 1619.34 + 312.68 26.83 — 0.64 6.12 5.57
VG-Flow 96.87% 9625 2 0.331 1619.34 + 312.20 26.83 — 0.65 5.25 4.79
viaDBG 97.50% 8046 2 0.151 62.34 2.89 - -
PEHaplo 78.59% 9328 2 0.690 73.33 4.84 - -
PredictHaplo 99.90% 9663 0 0.591 4.00+120.13 0.09 — 1.05 6.26 5.59
CliqueSNV 99.86% 9649 0 1.152 4.00+93.67 0.09 — 8.51 7.02 4.06
ViQUF 99.71% 9237 2 0.321 3.26 1.07 3.09 1.88

POLIO-6

Virus-VG 89.96% 7436 0 0.141 3455 + 201.23 17.30 — 0.73 1.56 1.18
VG-Flow 99.49% 7388 2 0.137 3455 + 532.33 17.30 — 0.30 2.18 2.48
viaDBG 73.81% 1760 0 0.018 49.21 2.52 - -
PEHaplo 98.15% 7428 0 0.125 107.96 3.63 - -
PredictHaplo 49.81% 7428 0 0.646 3.80 + 82.35 0.10 — 0.92 11.08 11.65
CliqueSNV 83.07% 7428 0 1.844 3.8 + 27.95 0.10 — 8.45 4.74 5.27
ViQUF 97.40% 7428 0 0.247 2.61 1.06 3.05 1.79

ZIKV-15

Virus-VG 99.56% 10212 0 0.077 706 + 407.51 13.45 — 1.37 0.94 0.70
VG-Flow 83.05% 10210 0 0.144 706 + 406.22 13.45 — 0.62 2.00 1.85
viaDBG 89.85% 1398 0 0.110 65.48 3.25 - -
PEHaplo 98.32% 10247 0 2.05 321.53 8.80 - -
PredictHaplo 46.65% 10251 0 0.133 4.06+149.68 0.08 — 1.11 6.33 7.68
CliqueSNV 66.66% 10251 0 0.036 4.06 + 126.28 0.08 — 8.38 1.18 1.34
ViQUF 99.08% 10140 0 0.142 4.05 1.11 0.25 0.29

HIV-real

Virus-VG 83.36% 8637 0 3.384 3550 + 440.71 26.85 — 0.80 - -
VG-Flow 89.99% 5950 0 1.100 3550 + 1499.61 26.85 — 1.47 - -
viaDBG 87.25% 1813 0 0.197 17.24 3.74 - -
PEHaplo 91.43% 1262 0 0.074 68.34 3.48 - -
PredictHaplo 90.21% 8702 0 0.287 4.71 + 100.75 0.09 — 0.87 - -
CliqueSNV 72.17% 8676 0 1.125 4.71 + 136.68 0.09 — 9.03 - -
ViQUF 90.85% 2267 0 0.292 3.73 1.07 - -

alignment file, CliqueSNV only retrieves one genome,
obtaining 9.97% of genome fraction, whereas PredictHaplo
retrieves nine out of 10 genomes. The opposite situation
occurs in POLIO-6 and ZIKV-15. On HIV-real, PredictHaplo
performs well in all metrics, whereas CliqueSNV retrieves
less than four of five genomes, 72.17% with a higher error
rate.

The results of the de novo approaches show that although
all tools have an overall good performance in terms of
genome fraction, on average ViQUF achieved the highest
level of genome fraction retrieved. However, there are
some cases where large differences appear. The first case
is POLIO-6, where viaDBG with the optimal configuration
retrieves only 73% of the genome fraction, whereas the
remaining methods range from 89% to 99%. In ZIKV-15, VG-
Flow achieves a genome fraction of 83%, whereas the rest
cover more than 89% of the genome. This difference may
seem small, but the loss of one complete haplotype causes
a 6% loss in genome fraction for 15 haplotypes. Finally, for
HIV-5, PEHaplo achieves only 78% of the genome fraction
with twice the error rate compared to the remaining de novo

tools.
Analyzing the length of the obtained contigs, N50 shows

that viaDBG loses by far against the rest of the tools.
However, ViQUF and PEHaplo are slightly below Virus-VG
and VG-Flow, but they can obtain competitive results. We
note that DBG methods usually produce more fragmented
assemblies than overlap methods because of using k-mers
instead of full-length reads.

We also evaluated the number of misassemblies and the
error rate. All tools perform well in these aspects. There
are only a few examples where VG-Flow, Virus-VG, and
PEHaplo have quite high error rates. Virus-VG and VG-
Flow have an extremely good performance on N50 but with
many errors in HIV-real. Therefore, we assume that the large
N50 is due to the mixing of multiple haplotypes. A similar
situation occurs for PEHaplo in ZIKV-15 where the error
level is very high, but N50 and genome fraction are almost
perfect.

The previously published values [19], [29] did not show
this anomaly. The reason is probably that Virus-VG and VG-
Flow were evaluated with QUAST version 4.3, whereas we

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

41

10

used MetaQUAST from QUAST version 5.0. Furthermore,
in previous evaluations of Virus-VG and VG-Flow, contigs
were allowed to align to several haplotypes, whereas we
only allowed one contig to align at one place. Although
one can think that this evaluation method may impact the
genome fraction level, making it smaller, this is not the case
since our experiment shows similar values.

Another interesting result is the misassemblies for HIV-5,
where all de novo tools have at least two misassemblies. The
reason for these strange results is the terminal repeats of the
HIV genome. Therefore, no matter the graph methodology,
if the shared region between the start and end of the genome
is longer than the k-mer, for DBG methods, or the average
read, for overlap-based methods, they will probably extend
longer than the actual genome.

The overall comparison between reference-based and
de novo methods supports de novo approaches as the most
reliable ones. However, the divergence levels in these
datasets range from 1% to 12%, which might be high for
a short-term virus infection. We have performed two extra
experiments in Section 4.6 by simulating two new datasets
with a divergence between 0.1% to 2%.

4.4 Haplotype abundance estimation

This section evaluates the precision of the haplotype relative
frequency estimations. PEHaplo and viaDBG are excluded
since they do not provide this information, as stated before.
Again, we used the last version of MetaQUAST with the
“–unique-mapping” set. If it is not set, one contig might
be aligned to several haplotypes; thus, misplacing it and
making frequency estimation harder or even impossible.

To evaluate the haplotype relative frequency estimation
error, we use two different measures. More specifically,
the Mean Estimation Error (MEE), which is the average
error per haplotype, and the estimation error standard
quasideviation (ŜEE), which measures the amount of
dispersion in the frequency error estimations.

We will only consider the set of contigs with N50 larger
than 75% of the genome length; thus, the contigs assigned
to each haplotype should be long enough to estimate the
haplotype frequency. Additionally, more than one contig
could cover a particular haplotype. This can happen in
complex or simple datasets at the beginning and end of
the haplotype, where frequencies are expected to be less
reliable. For a fair comparison, the estimated frequency
for one haplotype belongs to the longest contig in these
situations. Besides, some short contigs sometimes appear
in assemblies because of repetitive sections or failures in
the assembly. These contigs are expected to have lower or
inaccurate frequencies; thus, they will not be considered in
the evaluation.

In this experiment, from the de novo perspective,
there is no clear winner. Virus-VG and VG-Flow perform
better than ViQUF for HCV-10 and POLIO-6. However,
ViQUF outperforms these techniques for ZIKV-15 and HIV-
5, obtaining lower estimation errors and less variability.
Overall, the three tools can properly estimate the haplotype
frequencies for the datasets. These estimations are accurate
for HCV-10 and ZIKV-15, with estimation errors per
haplotype below 2% on average. However, the three

techniques obtain lower levels of accuracy for POLIO-
6 and HIV-5. One possible explanation is the high level
of similarity between haplotypes. This high level of
similarity (Table 1) means that the paired-end information
of unitigs shared between two or more haplotypes point
to other sets of unitigs that are also shared. Therefore, this
complicates the estimation of the abundance frequencies.
Nevertheless, all tools can assemble haplotypes with high
levels of accuracy. However, for POLIO-6, the differences in
abundance create even more problems on low abundance
haplotypes with lower levels of paired-end information
and a lower level of reliability on their frequencies.
Finally, the reference-based methods achieve worse results,
especially when they do not retrieve all haplotypes. The
supplementary material contains individual estimations per
haplotype and dataset for further details about which
haplotypes have been retrieved and the error in each
estimation.

4.5 Time performance and memory consumption

We measured the running time and peak memory usage
required by the seven tools. For evaluation, we used only
one core to execute the different techniques. For VG-Flow,
Virus-VG, PredictHaplo and CliqueSNV, elapsed time and
memory consumption are split into two terms separated
by “+” and “—” symbols, respectively. For VG-Flow and
Virus-VG, the first time term refers to the time required to
build the preassembled contigs that the tools need, while
the second term is the actual time for running the tool.
The reference-based methods, PredictHaplo and CliqueSNV,
require an alignment file; thus, the first term refers to the
time employed to perform the alignment process. We used
SAVAGE [8] to obtain the preassembled contigs as suggested
by the authors of VG-Flow and Virus-VG. Additionally, we
used BWA [34] to obtain the alignment files for reference-
based methods. For running time, we used the symbol “+”
to report the results since the entire running time is the
sum of the time required by SAVAGE or BWA and the one
required by a specific assembly tool. We use the symbol “—”
for memory consumption, since peak memory consumption
of the entire process is the maximum of both results. We
decided to show the information separately because one
could use another multiassembly, such as viaDBG or ViQUF,
or alignment tool, such as Bowtie or Bowtie2, for this first
step, which might be beneficial in terms of running times or
memory consumption.

First, running times for de novo methods in Table 2 show
that ViQUF is the fastest approach, faster than viaDBG,
which is also a DBG-based method, and PEHaplo, which
(although it is an overlap-based method) can correctly
reduce the input data several orders of magnitude. Finally, it
is significantly faster than Virus-VG and VG-Flow, based on
overlap graphs. ViQUF is between 275 and 1070 times faster
than SAVAGE, followed by Virus-VG, and between 275 and
1354 times than SAVAGE, followed by VG-Flow.

These results were expected since the DBG-based
methods skip reads alignment, which takes quadratic time.
Furthermore, ViQUF and viaDBG are faster because VG-
Flow and Virus-VG require aligning reads to contigs (which
takes O(nm), where m is the number of contigs and n is

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

42 Chapter 2. Articles

11

the number of reads) even without considering SAVAGE
execution time, thus removing reads alignment. Compared
with viaDBG and PEHaplo, ViQUF is between 5 and 80
times faster. The current implementation of ViQUF is not
parallelized. The most time-consuming part of ViQUF is
building APAG, which could, in principle, be computed
in parallel for each pair of adjacent nodes. However, the
practical impact of parallelization would be negligible since
even without parallelization, ViQUF finishes in less than 5
minutes on all datasets.

For the reference-based methods, running times include
the time required for alignment, even though it is negligible
compared with the actual assembly time. Running times for
reference-based methods are larger than those for the DBG-
based methods; specifically two to four times slower than
viaDBG and 10 to 40 times slower than ViQUF. These are
significantly smaller than the times of Virus-VG and VG-
Flow, and they are comparable with those of PEHaplo.

Finally, our entire approach is more efficient in terms
of memory consumption since SAVAGE+Virus-VG and
SAVAGE+Virus-Flow require 12 to 25 times the space
required by ViQUF, and ViQUF requires less than half
of the memory required by viaDBG and PEHaplo.
However, the two reference-based methods show different
behavior. While PredictHaplo is comparable to ViQUF, even
outperforming its results for HIV-real, CliqueSNV requires
from eight to 10 times more memory than PredictHaplo and
ViQUF.

4.6 Testing de novo approaches boundaries

The experiments shown so far reveal an advantage of de
novo methods against the reference-based ones. However,
all datasets used in those experiments have relatively high
divergence ratio between the haplotypes. Therefore, the
previous sections do not include a scenario where the
viruses have not evolved a lot from the common ancestor.

To test this scenario and, at the same time, test the
de novo algorithms boundaries, we used FAVITES [35]
and DWGSIM to simulate two different datasets with five
haplotypes with low divergence ratios, from 0.1% to 2.0%,
and an average divergence of 1.08%. Furthermore, we
have established two different abundance levels to test
two different situations. In the first case we have the
same abundance, 20%, for each simulated haplotype and
a coverage of 20000×. In the second case, we have a more
realistic situation with different abundances, 33.3%, 27.6%,
20%, 12.5%,5%, and 2.5% but with a very high coverage of
around 40000×. Through these experiments, our goal is to
test the limits of de novo and reference-based approaches in
terms of sensitivity and scalability.

Table 3 summarizes the results of these experiments.
In the first dataset, where abundance for each strain is
the same, the reference-based methods, PredictHaplo and
CliqueSNV, slightly outperform the de novo approaches.
The percentage of genome retrieved is almost the same,
except for CliqueSNV, which is able to obtain the five entire
haplotypes with almost no error. However, mismatches
here are really important, for example, PEHaplo’s 0.8
might be really problematic when maximum difference
between strains is around 2%, in the case of ViQUF this

number is smaller, 0.314, but it is still higher than that of
the reference-based methods. In the second dataset, both
reference and de novo based methods retrieve the entire set
of haplotypes with a N50 as long as the actual genomes.
However, in this case, there is no advantage of using
reference-based methods because ViQUF retrieves the same
percentage of the genome with no errors, as PredictHaplo.
For the second dataset, we were not able to get results
for SAVAGE+VG-Flow and CliqueSNV. SAVAGE could not
produce long enough contigs in any of the experiments,
whereas CliqueSNV requires more than 64Gb and thus, we
could not run it on the same machine we used for the rest
of the experiments. Table 3 also shows the time needed
to run all the experiments. While the first dataset has the
same coverage as the ones used in previous sections, the
second has twice the coverage. This second dataset was
simulated in this way to be able to measure the scalability
of the approaches. As the results show, with the exception
of CliqueSNV, the methods are scalable. PredictHaplo has
the best scalability ratio, whereas ViQUF is the one with the
lowest absolute runtimes.

Overall, the results exposed in Table 3 show that
reference-based methods are slightly more reliable than
de novo approaches when the divergence between the
strains is very low, specially CliqueSNV, which has an
astonishing performance. However, de novo approaches are
on average faster and use less memory than the reference-
based methods, even if we do not take into consideration
the required time for the alignment.

5 CONCLUSIONS

In this work, we proposed ViQUF to de novo assemble
viral quasispecies. The methodology of ViQUF bears some
similarity to our previous work, viaDBG [12], which also
uses paired-end information to split nodes of a DBG
into haplotypes. However, ViQUF addresses the problem
differently, obtaining important result improvements and
the possibility of estimating haplotype abundances.

With respect to ViaDBG, these are the main differences.
First, it employs a mathematically rigorous way of
determining solid k-mers using kernel density estimation,
resulting in better estimates for the abundance threshold of
solid k-mers as shown by our experiments. Second, ViQUF
uses path cover to split the adjacent nodes into haplotypes,
whereas viaDBG finds cliques in the reachability graph
of paired-end nodes. Third, ViQUF uses path cover to
find haplotypes and their abundances; thus, considering
the coverage in this stage. However, viaDBG only reports
nonbranching paths as contigs. Our experiments show that
these improvements allow us to build longer contigs with
comparable accuracy fast.

In the overall results, all methods show remarkable
performance. In comparison, Virus-VG, VG-Flow,and
the two reference-based methods (PredictHaplo and
CliqueSNV) perform slightly better in average contig length
than their counterparts. However, the error rate is higher
than expected for some cases, and the reference-based
methods lose some haplotypes. This is probably because
of the high divergence between the haplotypes in each
sample. However, viaDBG and ViQUF exhibit a more

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

43

12

TABLE 3
Results for the viral quasispecies assembly tools, de novo and reference-based, for small divergence ratios and extremely high sequencing

coverage. For reference-based methods, the elapsed time column shows the time required for alignment plus the tool execution time.

% Genome N50 Misassemblies Mismatches Time elapsed (mins)

Same abundance - 20000× coverage

ViQUF 83.97% 9975 0 0.314 4.53
SAVAGE+VG-Flow * * * * *
PEHaplo 80.00% 10000 0 0.807 227.96
PredictHaplo 80.00% 10000 0 0.205 10.53 + 442.78
CliqueSNV 100.00% 10000 0 0.100 10.53 + 34.93

Different abundances - 50000× coverage

ViQUF 99.94% 9995 0 0.000 25.56
SAVAGE+VG-Flow * * * * *
PEHaplo 100.00% 10000 0 0.604 1051.56
PredictHaplo 100.00% 10000 0 0.100 23.73 + 1475.23
CliqueSNV * * * * *

robust behavior without an unexpectedly high error rate
for any dataset. Furthermore, ViQUF shows high levels of
sensitivity, retrieving more than 90% of the genome fraction.
ViQUF outperforms all methods when comparing memory
consumption and runtime, especially VG-Flow and Virus-
VG. It is also remarkable that PredictHaplo exhibits a great
performance in running time and memory usage, especially
in memory usage, where it is comparable with ViQUF and
even better for real data. For this dataset, PEHaplo achieves
the best performance in terms of genome fraction and error
rate. ViQUF is also faster than viaDBG, using noticeably
less memory. Moreover, ViQUF can provide haplotype
abundance, whereas viaDBG cannot.

In summary, ViQUF obtains
long accurate contigs consuming fewer resources than other
methods. Furthermore, ViQUF can produce competitive
haplotype frequency estimations compared with current
state-of-the-art tools like Virus-VG and VG-Flow. However,
our experiments were mostly conducted on synthetic data.
Therefore, it is highly desirable to obtain new real datasets
to conduct more thorough experimental evaluations in our
future studies.

As a comparative conclusion, the viral quasispecies
assembly and quantification have several good but different
solutions. Some solutions are better than others depending
on constraints, such as runtime, memory resources, accuracy
required, and properties of a specific dataset. For example,
when the sequencing depth is sufficiently high and uniform
over each haplotype, and all haplotypes are completely
present in the sample, ViQUF or viaDBG can be the best
solution when running time and memory consumption are
severe constraints. However, under the same conditions
but without constraints on running time and memory,
using a smart grid of parameters with SAVAGE+VG-Flow
could lead to the most accurate results. Furthermore, if
the average similarity between haplotypes is below 1%,
the most accurate and consistent results are provided by
reference-based methods.

ACKNOWLEDGMENTS

This work has received funding from the EU H2020
under the Marie Sklodowska-Curie [GA 690941]. We
wish to acknowledge the support received from the
Centro de Investigación de Galicia “CITIC”, funded by
Xunta de Galicia and the European Union (European
Regional Development Fund- Galicia 2014-2020 Program),

by grant ED431G 2019/01. This work was also supported
by Xunta de Galicia/FEDER-UE under Grants [ED431C
2021/53; IG240.2020.1.185; IN852A 2018/14]; Ministerio de
Ciencia e Innovación under Grants [TIN2016-78011-C4-1-R;
FPU17/02742; PID2019-105221RB-C41; PID2020-114635RB-
I00]; and the Academy of Finland [grants 308030 and 323233
(LS)]. The authors also thank David Posada for his advice on
viral evolution.

REFERENCES

[1] E. Domingo, J. Sheldon, and C. Perales, “Viral quasispecies
evolution,” Microbiology and Molecular Biology Reviews, vol. 76,
no. 2, pp. 159–216, 2012.

[2] E. C. Holmes, The Evolution and Emergence of RNA Viruses. Oxford
University Press, 2009.

[3] S. Duffy, L. A. Shackelton, and E. C. Holmes, “Rates of
evolutionary change in viruses: patterns and determinants,”
Nature Reviews Genetics, vol. 9, pp. 267–276, 2008.

[4] O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel,
“ShoRAH: estimating the genetic diversity of a mixed sample from
next-generation sequencing data,” BMC Bioinformatics, vol. 12, p.
119, 2011.

[5] S. Prabhakaran, M. Rey, O. Zagordi, N. Beerenwinkel, and V. Roth,
“HIV haplotype inference using a propagating Dirichlet process
mixture model,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, vol. 11, no. 1, pp. 182–191, 2014.

[6] S. Knyazev, V. Tsyvina, A. Melnyk, A. Artyomenko, T. Malygina,
Y. B. Porozov, E. Campbell, W. M. Switzer, P. Skums, and
A. Zelikovsky, “CliqueSNV: scalable reconstruction of intra-host
viral populations from ngs reads,” bioRxiv, 2019.

[7] R. Malhotra, S. Prabhakara, M. Poss, and R. Acharya, “Estimating
viral haplotypes in a population using k-mer counting,” in Pattern
Recognition in Bioinformatics, A. Ngom, E. Formenti, J.-K. Hao, X.-
M. Zhao, and T. van Laarhoven, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 265–276.

[8] J. A. Baaijens, A. Z. E. Aabidine, E. Rivals, and A. Schönhuth,
“De novo assembly of viral quasispecies using overlap graphs,”
Genome Research, vol. 27, pp. 835–848, 2017.

[9] N.-C. Chen, B. Solomon, T. Mun, S. Iyer, and B. Langmead,
“Reference flow: reducing reference bias using multiple
population genomes,” Genome biology, vol. 22, no. 1, pp. 1–17, 2021.

[10] J. Chen, Y. Zhao, and Y. Sun, “De novo haplotype reconstruction
in viral quasispecies using paired-end read guided path finding,”
Bioinformatics, vol. 34, no. 17, pp. 2927–2935, 2018.

[11] R. Malhotra, M. M. S. Wu, A. Rodrigo, M. Poss, and
R. Acharya, “Maximum likelihood de novo reconstruction of viral
populations using paired end sequencing data,” arXiv e-prints, p.
arXiv:1502.04239, 2015.

[12] B. Freire, S. Ladra, J. Paramá, and L. Salmela, “Inference of viral
quasispecies with a paired de Bruijn graph,” Bioinformatics, vol. 37,
no. 4, pp. 473–481, 2021.

[13] P. Medvedev, S. Pham, M. Chaisson, G. Tesler, and P. Pevzner,
“Paired de Bruijn graphs: a novel approach for incorporating mate
pair information into genome assemblers,” Journal of Computational
Biology, vol. 18, no. 11, pp. 1625–1634, 2011.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

44 Chapter 2. Articles

13

[14] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path
approach to dna fragment assembly,” Proceedings of the National
Academy of Sciences, vol. 98, no. 17, pp. 9748–9753, 2001.

[15] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,
vol. 21, no. suppl 2, pp. ii79–ii85, 09 2005.

[16] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen, “A novel
min-cost flow method for estimating transcript expression with
RNA-Seq,” BMC Bioinformatics, vol. 14, p. S15, 2013.

[17] K. Westbrooks, I. Astrovskaya, D. Campo, Y. Khudyakov,
P. Berman, and A. Zelikovsky, “Hcv quasispecies assembly using
network flows,” in Bioinformatics Research and Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 159–170.

[18] P. Skums, N. Mancuso, A. Artyomenko, B. Tork, I. Mandoiu,
Y. Khudyakov, and A. Zelikovsky, “Reconstruction of viral
population structure from next-generation sequencing data using
multicommodity flows,” BMC Bioinformatics, vol. 14, no. 9, pp. 1–
13, 2013.

[19] J. A. Baaijens, B. Van der Roest, J. Köster, L. Stougie, and
A. Schönhuth, “Full-length de novo viral quasispecies assembly
through variation graph construction,” Bioinformatics, 05 2019,
btz443.

[20] N. Mancuso, “Algorithms for viral population analysis.” Ph.D.
dissertation, Georgia State University, 2014.

[21] I. Astrovskaya, N. Mancuso, B. Tork, S. Mangul, A. Artyomenko,
P. Skums, L. Ganova-Raeva, I. Mandoiu, A. Zelikovsky, and
M. Park, “Inferring viral quasispecies spectra from shortgun and
aplicon next-generation sequencing reads,” in Genome analysis:
current procedures and applications, M. S. Poptsova, Ed. Caister
Academic Pres, 2014.

[22] M. J. Chaisson and P. A. Pevzner, “Short read fragment assembly
of bacterial genomes,” Genome Research, vol. 18, no. 2, pp. 324–330,
2008.

[23] M. J. Chaisson, D. Brinza, and P. A. Pevzner, “De novo fragment
assembly with short mate-paired reads: Does the read length
matter?” Genome Research, vol. 19, no. 2, pp. 336–346, 2009.

[24] X. Zhao, L. E. Palmer, R. Bolanos, C. Mircean, D. Fasulo,
and G. M. Wittenberg, “Edar: an efficient error detection and
removal algorithm for next generation sequencing data,” Journal
of computational biology, vol. 17, no. 11, pp. 1549–1560, 2010.

[25] R. Chikhi, A. Limasset, and P. Medvedev, “Compacting de Bruijn
graphs from sequencing data quickly and in low memory,”
Bioinformatics, vol. 32, no. 12, pp. i201–i208, 06 2016.

[26] S. Nurk, D. Meleshko, A. Korobeynikov, and P. Pevzner,
“metaSPAdes: a new versatile metagenomic assembler,” Genome
Research, vol. 27, pp. 824–834, 2017.

[27] E. Drezen, G. Rizk, R. Chikhi, C. Deltel, C. Lemaitre, P. Peterlongo,
and D. Lavenier, “GATB: genome assembly & analysis tool box,”
Bioinformatics, vol. 30, no. 20, pp. 2959–2961, 2014.

[28] A. Tomescu, V. Mäkinen, F. Cunial, and D. Belazzougui,
“Genome-scale algorithm design,” 2015.

[29] J. A. Baaijens, L. Stougie, and A. Schönhuth, “Strain-aware
assembly of genomes from mixed samples using flow variation
graphs,” bioRxiv, 2020.

[30] F. D. Giallonardo, A. Töpfer, M. Rey, S. Prabhakaran, Y. Duport,
C. Leemann, S. Schmutz, N. K. Campbell, B. Joos, M. R. Lecca,
A. Patrignani, M. Däumler, C. Beisel, P. Rusert, A. Trkola,
H. F. Günthard, V. Roth, N. Beerenwinkel, and K. J. Metzner,
“Full-length haplotype reconstruction to infer the structure of
heterogeneous virus populations,” Nucleic Acids Research, vol. 42,
no. 14, p. e115, 2014.

[31] N. Stoler and A. Nekrutenko, “Sequencing error profiles
of Illumina sequencing instruments,” NAR Genomics and
Bioinformatics, vol. 3, no. 1, 03 2021.

[32] A. Mikheenko, V. Saveliev, and A. Gurevich, “MetaQUAST:
evaluation of metagenome assemblies,” Bioinformatics, vol. 32,
no. 7, pp. 1088–1090, 2016.

[33] A. Eliseev, K. M. Gibson, P. Avdeyev, D. Novik, M. L. Bendall,
M. Pérez-Losada, N. Alexeev, and K. A. Crandall, “Evaluation
of haplotype callers for next-generation sequencing of viruses,”
Infection, genetics and evolution: journal of molecular epidemiology and
evolutionary genetics in infectious diseases, vol. 82, p. 104277, August
2020.

[34] H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows-Wheeler transform.” Bioinformatics, vol. 26, no. 5, pp.
589–595, 2010.

[35] N. Moshiri, M. Ragonnet-Cronin, J. O. Wertheim, and S. Mirarab,
“FAVITES: simultaneous simulation of transmission networks,

phylogenetic trees and sequences,” Bioinformatics, vol. 35, no. 11,
pp. 1852–1861, 11 2018.

Borja Freire received his bachelor degree in
Computer Science at the University of A Coruña
in 2016 and master degree in Bioinformatics at
the same university in 2018. He is now a PhD
student of the Doctorate Program in Computer
Science at University of A Coruña, and he has
been awarded a FPU fellowship to complete his
doctorate.

Susana Ladra received the bachelor’s degree
in mathematics from the National Distance
Education University (UNED), in 2014, and
the master’s in computer science engineering
and the Ph.D. degree in computer science
from the University of A Coruña, in 2007 and
2011, respectively. She is currently an Associate
Professor with the Universidade da Coruña. She
is the Principal Investigator of several national
and international research projects. She has
published more than 40 articles in various

international journals and conferences. Her research interests include
design and analysis of algorithms and data structures, and data
compression and data mining in the fields of information retrieval and
bioinformatics.

José R. Paramá has PhD in computer science
from the University of A Coruña. His PhD Thesis
was presented in 2001 and had research results
also developed during stays at New Mexico
State University and Texas Tech University.
Since 1997 he is a professor at the University of
A Coruña, and since 2008, Associate Professor.
He has participated in more than twenty
research projects funded by European, regional
and national administrations, and in more than
thirty R&D contracts.

He is the author of more than thirty scientific publications and more
than sixty scientific conferences.

Leena Salmela received her M.Sc.(Tech) and
D.Sc.(Tech) degrees in computer science from
Helsinki University of Technology, Finland, in
2005 and 2009, respectively. Since 2009 she
has worked in the University of Helsinki, Finland,
where she currently is University Lecturer and
Academy of Finland Research Fellow. She
has published over 40 scientific articles in
international journals and conferences. Her
research field is algorithmic bioinformatics with
a focus on applications in biological sequence

analysis.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

45

1

Supplementary Material

✦

CONTENTS

1 Background 1
1.1 Min-cost network flow problem 1
1.2 Kernel density estimation 1

2 Example of paired unitigs 1

3 Coverage of an edge of the DAG 2
3.1 Initial coverage estimation 2
3.2 Coverage readjustment 4

4 Experimental evaluation 4
4.1 Threshold computation 4
4.2 Haplotype abundance estimation 5
4.3 Comparison using precision and recall . 5
4.4 Experimental analysis for different se-

quencing error rates and number of
strains 5

5 Plots with the results of the experimental evalu-
ation of the main paper 7

6 Commands to create the datasets of Table 3 of
the main paper 8

References 8

1 BACKGROUND

In this section, we introduce some basic concepts used by
our method, such as the network flow problem and kernel
density estimation.

1.1 Min-cost network flow problem
A flow network is a tuple N = (G, b, q), where G = (V,E)
is a directed graph, b is a function assigning a capacity buv
to every arc (u, v) ∈ E, and q is a function assigning an
exogenous flow qv ∈ Z to every node v ∈ V , such that∑

v∈V qv = 0. Then, we have a flow over the network N ,
if for every arc (u, v) ∈ E the flow xuv ∈ N satisfies two
conditions:

1) 0 ≤ xuv ≤ buv for every (u, v) ∈ E
2)

∑
u∈V xvu −

∑
u∈V xuv = qv , for every v ∈ V

In the min-cost flow problems, like in many other cost-
flow optimization problems, a cost function cuv(x) is given
for every (u, v) ∈ E, and the objective is to find the flow
which minimizes:

∑

(u,v)∈E

cuv(xuv).

L(rx) R(rx)…………..
j . . . j+k-1

A M
j . . . j+k-1

L(ry) R(ry)
…………..

u. . . u+k-1
A

u. . . u+k-1
L

U1

U1
U2

U3

L(rz) R(rz)…………..

l . . . l+k-1

B H
l . . . l+k-1

L(rw) R(rw)
…………..

m. . . m+k-1
B

m. . . m+k-1
J

U1

U1 U4

U5

Fig. 1. Extracting paired unitigs from paired-end reads P (U1) =
{U2, U3, U4, U5}.

This problem can be solved in polynomial time when
cuv(x) is a convex cost function. One of the most common
cost functions is cuv(x) = x2.

[1] proposed a min-cost flow method for estimating
transcript expression with RNA-Seq. We will use a similar
approach as part of our method.

1.2 Kernel density estimation
Kernel density estimation is a very powerful mathematical
tool for estimating the probability density function of a
random variable. In practice, it creates a smooth curve given
a set of data. More concretely, it can be expressed as:

f̂h(x) =
1

n

n∑

i=1

Kh(x− xi)

Kh(y) =
K(y)

h

where xi are the sample data points, n is the sample size,
h is the window size or the bandwidth, and K(·) is a ker-
nel function, such as Gaussian, uniform, or Epanechnikov,
among others [2]. Once f̂h is estimated, the minima and
maxima of f̂h are obtained by computing the zero crosses of
its derivative.

2 EXAMPLE OF PAIRED UNITIGS

In Figure 1, the unitig U1 contains (among others) the k-
mers A and B. Observe that L(rx) contains the k-mer A at
positions j . . . j + k − 1, and in those positions of R(rx) we
find the k-mer M . In ry , A is at positions u . . . u + k − 1
of L(ry), whereas positions u . . . u+ k − 1 of R(ry) contain
the k-mer L. Therefore, P (A) = {M,L}. From the reads rz
and rw, we obtain that P (B) = {H,J}. Since M is located

46 Chapter 2. Articles

2

s U1

Ui1

U2

Ui2

U3

e
15

10 3

5

23

25

Ui

Uj

U4
Uw

5 5

10

15

23

Fig. 2. Extract of an AG used to compute the coverage of the edge
between s and e in a DAG DAGij .

inside U2, that is U(M) = U2, and U(L) = U3, U(H) = U4,
and U(J) = U5, then finally P (U1) = {U2, U3, U4, U5}.

3 COVERAGE OF AN EDGE OF THE DAG
To split the nodes of the assembly graph into haplotypes,
we build DAGij for each pair of adjacent nodes Ui and Uj

in the assembly graph. The nodes of DAGij are the pair
of adjacent nodes and the nodes pointed by their paired-
end information. We add an edge between two nodes if
there exists a path between the corresponding nodes in the
assembly graph. Here, we present the method to compute
the coverage of an edge (s, e) of a DAGij .

3.1 Initial coverage estimation

DAGij is constructed to analyze haplotypes that pass
through Ui and Uj . Therefore when computing the
coverage of an edge (s, e) in DAGij , we should only
consider haplotypes that pass through all nodes Ui, Uj ,
s, and e. The coverage of an edge (s, e) in DAGij is thus
defined as the total coverage of all haplotypes that pass
through the nodes Ui, Uj , s, and e. For this, we analyze the
coverages of the paths connecting Ui, Uj , s, and e in the AG.
The coverage of an edge of the AG is the number of reads
supporting that edge.

To illustrate the process, in Figure 2, we can see an
extract of an AG. Observe in the figure that the coverage
of the edge (s, U1) is 15, but that coverage cannot be used
as that of cov(s, e) in the DAG, since it includes 10 reads
that are actually reads corresponding to the haplotype that
passes through Uw and Uj but not through Ui, and therefore
the coverage corresponding to that haplotype must not
be included in the coverage of (s, e) in DAGij , which is
computed for detecting the haplotypes that pass through
Ui and Uj . The mixture of coverages coming from different
haplotypes in the paths from s to e makes it impossible
to use simple estimators such as maximum, minimum, or
mean of the coverages of edges on the path from s to e.

Given a node Uk of the AG, let N+
Uk

be the list of out-
neighbors of Uk, N−

Uk
be the list of in-neighbors, and cN+

Uk

and cN−
Uk

the lists of the coverages of the corresponding
edges. For example, in our example of Figure 2, N+

U2
=

{U3, U4} and N−
U2

= {U1, Ui2}, and cN+
U2

= {23, 5} and
cN−

U2
= {25, 3}.

We are going to traverse the AG through all paths
connecting Ui, Uj , s, and e, analyzing cN+ and cN− in
each node, in order to derive a reliable coverage. During
a traversal of the AG that has already processed the path
p = {Ui, Uj , . . . , s, U1, . . . , Uk}, roughly, we maintain a

bag Bk containing the coverages of edges reaching nodes
of p and coming from nodes that are not in p, thus they
correspond to haplotypes different from the one we are
following. Therefore, when e is reached, the coverage of
that path is the coverage of the edge reaching e minus the
coverages in the bag. However, on our way towards e, we
will find outgoing edges leading to paths that do not reach
e, so the coverage of those edges should be removed from
the bag.

Therefore, when we process a new node with one or
more outgoing edges leading to a node which is not on
our way to e, we need a method to distribute the incoming
coverages stored in the bag among those outgoing nodes.
A first naive idea is to search for coverages in the bag
matching the coverages of outgoing edges corresponding to
paths that do not reach e. We remove those values from the
bag, assuming that those values correspond to haplotypes
that entered in p in a previous node and now, we found a
node where those haplotypes are leaving the path we are
following towards e. The problem with this approach is that
each incoming edge may correspond to several haplotypes,
and therefore they might leave our path p in different points,
and thus this approach is not capable of dealing with this
situation.

Therefore, we need a more complex method. As ex-
plained, the method is based on traversing the AG from
Ui until e through all possible paths, carrying a bag with
the incoming coverages. When a traversal finds a fork, it
distributes those coverages among the nodes in the fork, by
using the following iterative minimization problem.

• Let pk = {Ui, . . . , Uk} be path of the AG followed so
far.

• Let cov(pk) the coverage estimation of the path pk.
• Let iC = {ic1, ..., icn, cov(pk)} be the coverages of

n incoming edges to pk with the coverage of pk
included as well.

• Let oC = {oc1, ..., ocb} be the coverages of the b
outgoing edges from Uk.

The task is then to assign the incoming coverages to the
outgoing coverages so that they correspond to each other as
well as possible while simultaneously avoiding to split the
incoming coverages, i.e. assigning them partially to several
outgoing coverages.

For each v ∈ {1...n} and u ∈ {1...b}, we define a
variable xvu ∈ {0, 1} which indicates whether the incoming
coverage icv is assigned to the outgoing coverage ocu. In
the first iteration, iC = Bk ∪ cov(pk), where Bk is the bag
of incoming coverages on path pk and cov(pk) the coverage
estimate of the traversed path, and oC = cN+

Uk
. In a single

iteration, we assign one incoming coverage completely to
an outgoing coverage, whereas several incoming coverages
can be assigned to the same outgoing coverage. Because
cov(pk) has been added to the set of incoming coverages, in
each iteration it can only be assigned to one outgoing edge.
However, we allow the coverage of the path cov(pk) to be
split by including the remaining of it in successive iterations.
Furthermore, we want to minimize the difference between
the assigned incoming coverages and the outgoing coverage

47

3

of each edge. More formally, the minimization problem is
defined as follows:

min
b∑

u=1

∣∣∣∣∣ocu −
n∑

v=1

(icvxvu)

∣∣∣∣∣

subject to:
b∑

u=1

xvu = 1,∀v ∈ {1...n}

xvu ∈ {0, 1},∀vu ∈ {1...n} × {1...b}

(1)

The constraints make sure that one incoming coverage is
assigned completely to a single outgoing coverage.

Let iteration i be defined by oCi, the list of outgoing
coverages still not completely used by the assigned incom-
ing coverages, and iCi, the remaining incoming coverages
available. Then iteration i + 1 is defined as follows. We
subtract from each outgoing coverage the coverage of the
incoming edges assigned to that outgoing edge:

oCi+1 = {max(ocu −
n∑

v=1

icvxvu, 0) ∀u ∈ {1...b}} (2)

Note that if the sum of assigned incoming coverages exceeds
the outgoing coverage of the edge, we set the outgoing
coverage to zero for the next iteration. Similarly, we will
subtract from the incoming coverages the coverage of the
edge they have been assigned to. However, more than one
incoming coverage can be assigned to the same outgoing
coverage. If the sum of the assigned incoming coverages
exceeds the outgoing coverage, we will decrease the incom-
ing coverages starting from the largest incoming coverage.
Assuming that icv are sorted in ascending order, we thus
get:

iCi+1 = {max(icv −max(ocu −
n∑

v′=v+1

xv′uicv′ , 0), 0)}

where u is such that xvu = 1 ∀v ∈ {1...n}}
(3)

The iterative process ends when either all incoming
coverages have been assigned to outgoing coverages or all
outgoing coverages have been totally used. When the itera-
tive process ends, the new estimation of the coverage of the
new extended path (cov(pk+1)) is obtained by subtracting
from the coverage of the assembly graph edge (Uk, Uk+1)
the sum of incoming coverages in Bk assigned to the branch
of Uk+1. These assigned coverages form the new bag Bk+1.
As a reminder, Bk+1 does not contain the fraction of cov(pk)
assigned to the branch; notice that the inclusion of cov(pk)
is only for minimization problem purposes.

This approach not only allows the incoming coverage
to be distributed among several outgoing edges, but also
allows estimating the coverage of the haplotype. In this way
it is possible to avoid the traversal of paths without assigned
coverage, speeding up the build process of the DAGs and
leading to less tangled DAGs.

There can be several paths passing through Ui, Uj , s, and e
and often these paths share a prefix. Next we will explain
how to traverse all these paths to compute the coverages.
The process is as follows: let T be a list of traversals of the
AG. Each traversal is a path of the AG that starts at Ui,

passes through Uj , and contains the nodes processed so far
on its way through s towards e.

Initially T contains one traversal tj , its path only con-
tains UiUj , and its coverage (cov(tj)) is the coverage of the
edge (Ui, Uj). Each traversal has a bag, initially, the bag of
tj is Bj = cN−

Uj
.

Then we will repeatedly remove one traversal from T
until it is empty, compute the extensions of the traversal,
and insert them into T unless they have reached e, their
coverage has dropped to zero, or they are not supported by
the paired-end information1. The extensions of a traversal
tλ are computed as follows. Suppose pλ = {Ui, ...Uk} is
the path followed by traversal tλ so far and Bk is the
bag of incoming coverages associated with the traversal.
We create a new traversal for each node Uk+1 ∈ N+

k
by concatenating pλ with Uk+1. If Uk has more than one
outgoing edge, we use the minimization problem above to
distribute the incoming coverages Bk appropriately and to
compute the incoming coverages for the extended traversal
and the coverage of the extended traversal. If Uk+1 has more
than one incoming edge, the coverages in cN−

Uk+1
except for

the coverage of the edge (Uk, Uk+1) are added to Bk to form
Bk+1. If the coverage of the extended traversal drops to zero
or it contradicts the paired-end information of pλ, we stop
the traversal and do not add it to T . Finally, the coverage
of the edge (s, e) in DAGij is the sum of coverages of all
traversals that reached e.

To illustrate the process, we are going to compute the
coverage of the edge connecting s and e in the DAGDAGij

for the AG shown in Figure 2.
Table 1 shows in row number 1 the initial state of T with

only one traversal tij , its bag Bj = cN−
Uj

= {10}, and the
initial coverage estimation (cov(tij)) is set to cov(Ui, Uj).

Row 2 processes s, which since it only has one incoming
and one outgoing edge does not produce any change. Row
3 processes U1, that, in addition to the edge coming from s,
has also an incoming edge coming from Ui1, and then, the
coverage (10) of that edge is added to the bag B1.

Row 4 processes the out neighbors of U1, this adds only
U2. Then, the coverage of the edge coming from Ui2 is added
to the bag, that is B2 = {10, 10, 3}.

TABLE 1
Trace of the computation of the coverage of the edge (s, e) of DAGij .

T Uk Bk+1 cov

1 tij Ui Bj = {10} 5
2 tijs Uj Bs = {10} 5
3 tijs1 s B1 = {10, 10} 5
4 tijs12 U1 B2 = {10, 10, 3} 5

5 tijs123 U2
B3 = {}
B4 = {10, 10, 3}

cov(ts123) = 5
cov(ts124) = 0

6 tijs123e U3 Be = {} cov(tijs123e) = 5

Row 5 shows the processing of the outgoing neighbors
of U2. This extracts tijs12 from T , and since U2 has two
outgoing neighbors (U3 and U4), two traversals (tijs123 and
tijs124) are created.

1. That is, the new node to be added should be in the paired-end
information of at least one node in the path traversed so far.

48 Chapter 2. Articles

4

• We formulate the minimization problem of Equation
(1) taking iC = B2 ∪ {cov(tijs12]} = {10, 10, 3, 5}
and oC = cN+

U2
= {23, 5}

min |23− 10x11 − 3x21 − 10x31 − 5x41|
+ |5− 10x12 − 3x22 − 10x32 − 5x42|

subject to: x11 + x12 = 1,

x21 + x22 = 1,

x31 + x32 = 1,

x41 + x42 = 1,

x11, x12, x21, x22, x31, x32, x41, x42 ∈ {0, 1}

(4)

• An optimal possible solution is x11 = 1, x21 =
1,x31 = 1, x12 = 0, x22 = 0, x32 = 0, x41 = 0 and
x42 = 1. With those values, expression (4) returns
zero.

• That solution assigns all the excess in the bag to
the outgoing edge that goes to U4 and thus: B3 =
{10·0, 3·0, 10·0} = {∅} and B4 = {10·1, 3·1, 10·1} =
{10, 10, 3}.
Both the set of incoming and outgoing coverages
become empty sets for the next iteration and thus
the minimization ends after only one iteration.

• Therefore, the coverages of the two traversals are:
leftmargin=+.2cm

– cov(ts123) = cov(U2, U3) −
∑3

v=1 icvxv2 =
5 − (0 + 0 + 0) = 5. Thus ts123 is added to
T .

– cov(ts124) = cov(U2, U4) −
∑3

v=1 icvxv1 =
23− (10 + 3 + 10) = 0. Therefore, ts124 is not
added to T .

Therefore, in this example, it is clear that all the input
excesses found in the path through Ui, Uj , s, U1, U2, U3 can
be assigned to the path that goes through U4, and thus the
path that goes through U3 continues without any excess in
its bag, whereas that passing through U4 is discarded.

Row 6 processes tijs123 appending the target e. There-
fore, the coverage of the edge (U3, e) (5) is the coverage of
the traversal passing through U3 (cov(U3, e) = 5), since the
bag B3 is empty.

Once all traversals reached e, we obtain the coverage
of the edge (s, e) in DAGij as the sum of the coverages
of the traversals that reached e, in our example, it is only
cov(tijs123e) = 5.

3.2 Coverage readjustment

The previous section explains how to assign coverages to
the edges of DAGij . However, there are some situations
where this procedure generates unreliable variations of the
coverages, building peaks and falls across the graph . These
nodes will create an incomprehensible exogenous flow that
leads to misleading flows. Therefore, they have to be ad-
justed whenever possible.

We say that a node Ur of DAGij is out of coverage when∑
cN−

Ur
≤ (1 + RATIO)

∑
cN+

Ur
or vice versa, where

RATIO’s default value is 0.1 namely a node is out of
coverage when the incoming or outgoing coverages is 10%
higher than the other.

We are going to correct these out of coverage nodes in
the DAGij . For this, the DAG is traversed in breadth-
first manner making sure that all nodes in N−

Ur
have been

adjusted before adjusting Ur . When a node Ur is classified as
out of coverage, then a solution is found based on its in-degree
and out-degree. Three situations arise:

• in-degree ≥ 1 and out-degree = 1, these cases can be
easily solved by setting cov(Ur, Uout) =

∑
cN−

Ur
,

where Uout is the out neighbor.
• in-degree = 1 and out-degree > 1, in these cases, the

coverage provided by the incoming edge must be
distributed between the nodes N+

Ur
based on how

close their coverage is to the cov(Ui, Uj), where Ui

and Uj are the nodes of the AG under study, that is,
the nodes for which we are computing their DAGij .
The basic idea is that the closer the coverage of an
edge cov(Ur, Uk) Uk ∈ N+

Ur
is to cov(Ui, Uj), the

higher coverage will be assigned. Closer coverages
are expected to be more likely to be the correct ones.
The coverage translation is then:

– For every node Ul ∈ N+
Ur

, we define
diff (Ul) = |cov(Ur, Ul)− cov(Ui, Uj)|.

– The new coverage is

cov(Ur, Ul) = cN−
Ur

|diff (Ul)−
∑

∀Uv∈N+
Ur

diff (Uv)|
∑

l∈cN−
Ur

∣∣∣diff (Ul)−
∑

∀Uv∈N+
Ur

diff (Uv)
∣∣∣

• in-degree > 1 and out-degree > 1, in these cases it
is necessary to assign the nodes in N+

Ur
to each

node in N−
Ur

. To do so, we follow the exact same
methodology as we followed to assign the excesses
found so far in a traversal of the AG to the outgoing
coverages of a given node, when computing the
coverage of an edge of the DAG.

4 EXPERIMENTAL EVALUATION

4.1 Threshold computation
Both viaDBG and ViQUF are based on a de Bruijn graph.
This requires to determine the set of k-mers used to build
that graph. The traditional way to obtain this set is to
calculate a threshold such that the k-mers with a higher
frequency are selected. The value of the threshold might
have a high impact on the results. A method based on the
k-mer frequency histogram is used by viaDBG, whereas, as
explained, ViQUF uses Kernel Density Estimation (KDE).
Therefore, our first experiment is designed to check the
impact of the methods used by ViQUF and viaDBG to
determine the threshold.

Table 2 gathers the thresholds computed for all the
datasets. Those results suggest that the new methodology is
more aggressive than that of viaDBG, obtaining in general
higher thresholds. To perform a fair comparison, viaDBG
and ViQUF were ran with their own threshold and with
the threshold obtained by the other tool. The overall results,
included in Table 3, show that the viaDBG threshold is quite
conservative because the higher threshold of ViQUF does
not affect the genome fraction, although an almost negligible
grow in mismatches appears. However, the contiguity of the
assembly is in general higher with the higher threshold of
ViQUF as seen by the N50 values.

49

5

TABLE 2
Threshold values to filter solid k-mers obtained for different datasets

using an approach based on frequency histogram, as used by viaDBG,
or the proposed approach using kernel density estimation (KDE), used

by ViQUF.

dataset Freq. histogram KDE
HCV-10 16 103
HIV-5 21 146
POLIO-6 12 51
ZIKV-15 5 26
HIV-real 128 172

4.2 Haplotype abundance estimation

In the experimental evaluation of the haplotype relative fre-
quency estimation error, we use the following two measures:

• Mean Estimation Error - which is the average error
per haplotype

MEE =

∑
c∈C | ˆfreqc − freqc|

#C
,

where ˆfreqc is the estimated relative abundance for
the haplotype c and freqc is the known haplotype
relative abundance, finally #C is the number of
haplotypes under evaluation.

• Estimation Error Standard Quasideviation - which
measures the amount of dispersion in the frequency
errors estimation

ŜEE =

√∑
c∈C(ϵc −MEE)2

#C − 1
,

where ϵc is the error in the frequency estimated for
the haplotype c.

Next, we show the full results for frequency estimation.
Tables 4–7 show the frequency estimations and estimation
errors of each haplotype of the different datasets obtained
by each tool. Similar to the average results, these tables
show that both Virus-VG and VG-Flow have a slightly
better performance on frequency estimation than ViQUF.
The reason for this difference is more likely to be related
with the raw data than the frequency estimation step. While
VG-Flow and Virus-VG use preassembled contigs as input
and the number of reads mapping to a contig as abundance
estimation, ViQUF uses unitigs, which are faster to compute
but shorter than contigs, and the average of the k-mer
counting in each unitig as abundance estimation, once again
faster to compute but in this case more error prone than
mapping the reads. Therefore, because of the input data,
the estimation of frequencies by ViQUF are less reliable
than the estimation by VG-Flow and Virus-Vg. According
to our results, all the tools have good performance. There is
a remarkable exception in the case of HIV-5 dataset, with
a significantly high error for one of its haplotypes, thus,
impacting the overall result. Notice that the three methods
make the same mistake overestimating the real frequency
of the same haplotype, NL 43. This is probably because the
NL 43 haplotype shares most of its information with the
rest of the haplotypes.Apart from that, it is important to
compare VG-Flow results on ZIKV-15 haplotype by haplo-
type because according to Table 6 there are large differences

in the error of frequency estimation from one haplotype to
another.

4.3 Comparison using precision and recall

In the main paper, the metrics we employed are generaliza-
tions of common assembly quality metrics used for de novo
genome assemblers. Recently, new approaches have been
suggested to give a new point of view on the quality of
the assembly. Table 8 shows the results of an adaption of
the well-known computational metrics precision and recall,
suggested by [3].

Before explaining how the metrics are adapted, we have
to introduce the term proper contigs. The set of proper contigs
Q′ is a subset of the original set of contigs Q, namely Q′ ⊆
Q, where Q′ = {∀q ∈ Q/mismatches(q) ≤ 1%}. Then,
precision is defined as TP

TP+FP , where TP (true positives) is
the total frequency of the haplotypes correctly predicted by
the set of proper contigs and FP (false positives) is the total
frequency of contigs q ∈ Q′ which do not match with any
haplotype. On the other hand, recall is TP

TP+FN where FN
(false negatives) are 1− TP , thus recall = TP .

Since the results in Table 8 come from the same contigs
than the ones in the main paper, similarities are expected.
However, we can see new insights that might be inter-
esting to point out. First, Virus-VG and VG-Flow exhibit
a slightly better behavior since the haplotypes that they
lose are the least abundant; thus, precision and recall suffer
less than the metrics in the main paper, where all hap-
lotypes count the same. Furthermore, the precision and
recall of ViQUF and PEHaplo for HIV-5 dataset are worse
since both retrieve some contigs with high level of mis-
matches (1% to 2.7%), and these contigs align best against
5 strain HIV JRCSF, which is a high abundance haplotype.
The results for reference-based method are stable and have
no remarkable changes from the previously exposed.

These metrics are more geared towards reference-based
methods, albeit [3] extend them to de novo constructions.
Among other problems, they fail to measure how
fragmented the assemblies are, as this is not an issue
for reference-based methods, which always retrieve
full haplotypes. They prioritize the contigs of the most
abundant haplotypes, a characteristic inherit from their
original definition, but in viral quasispecies reconstruction,
it is very important to also retrieve the low abundance
haplotypes correctly. However, we included them to give a
broader picture of our method.

4.4 Experimental analysis for different sequencing er-
ror rates and number of strains

The next section shows how PeHaplo and ViQUF perform
on datasets with different sequencing error rates and num-
ber of strains. These data sets have been simulated with
Simseq [4] using 2, 5, and 10 strains from the HCV sample.
The sequencing error rate goes from 0.00% to 1.00% with
step 0.25%. Higher error reads is not a realistic scenario since
errors in NGS reads typically range from 0.25% to 0.75%. We
ran SAVAGE as well, but unfortunately we were not able to
set the correct parameters to get a comparable results, thus
we decided to not report the inaccurate results.

50 Chapter 2. Articles

6

TABLE 3
Results for the four viral-quasispecies assembly tools. The table also includes the results for the threshold comparison between viaDBG and

ViQUF. For Virus-VG and VG-Flow, we show the elapsed time and memory usage separated into contig assembly by SAVAGE (first value) and the
full haplotype reconstruction (second value).

% Genome N50 misass- % mis- elap time memory
dataset method emblies matches (min) (GB)

HCV-10

Virus-VG 99.30% 9231 0 0.002 913.48 + 1009.08 26.13 — 8.35
VG-Flow 99.79% 9293 0 0.001 913.48 + 559.56 26.13 — 8.29
PEHaplo 94.78% 8661 0 0.013 68.45 8.94
PredictHaplo 89.79% 9273 0 0.044 4.11 + 175.73 1.14
CliqueSNV 9.97% 9273 0 2.10 4.11 + 3494.09 17.24
viaDBG (t = 16) 97.72% 8934 0 0.005 69.10 2.81
viaDBG (t = 103) 97.18% 8936 0 0.010 68.12 2.81
ViQUF (t = 16) 97.55% 8944 0 0.046 3.43 1.09
ViQUF (t = 103) 97.37% 8911 0 0.008 3.51 1.09

HIV-5

Virus-VG 96.85% 9632 2 0.332 1619.34 + 312.68 26.83 — 0.64
VG-Flow 96.87% 9625 2 0.331 1619.34 + 312.20 26.83 — 0.65
PEHaplo 78.59% 9328 2 0.690 73.33 4.84
PredictHaplo 99.90% 9663 0 0.591 4.00 + 120.13 1.05
CliqueSNV 99.86% 9649 0 1.15 4.00 + 93.67 8.51
viaDBG (t = 21) 97.50% 8046 2 0.151 62.34 2.89
viaDBG (t = 146) 95.27% 6237 3 0.161 61.23 2.87
ViQUF (t = 21) 95.58% 9617 2 0.222 3.32 1.07
ViQUF (t = 146) 99.71% 9237 2 0.321 3.26 1.07

POLIO-6

Virus-VG 89.96% 7436 0 0.141 3455.00 + 201.23 17.30 — 0.73
VG-Flow 99.49% 7388 2 0.137 3455 + 532.33 17.30 — 0.30
PEHaplo 98.15% 7428 0 0.125 107.96 3.63
PredictHaplo 49.81% 7428 0 0.646 82.35 0.92
CliqueSNV 83.07% 7428 0 1.84 27.95 8.45
viaDBG (t = 12) 73.81% 1760 0 0.018 49.21 2.52
viaDBG (t = 51) 80.20% 2290 0 0.016 47.90 2.52
ViQUF (t = 12) 86.90% 4540 0 0.105 3.21 1.07
ViQUF (t = 51) 97.40% 7428 0 0.247 2.61 1.06

ZIKV-15

Virus-VG 99.56% 10212 0 0.077 706 + 407.51 13.45 — 1.37
VG-Flow 83.05% 10210 0 0.144 706.00 + 406.22 13.45 — 0.62
PEHaplo 98.32% 10247 0 2.05 321.53 0.08 — 8.80
PredictHaplo 46.65% 10251 0 0.133 4.06 + 149.68 1.11
CliqueSNV 66.66% 10251 0 0.036 4.06 + 126.28 8.38
viaDBG (t = 5) 89.85% 1398 0 0.110 65.48 3.25
viaDBG (t = 26) 92.61% 2107 0 0.109 66.03 3.25
ViQUF (t = 5) 80.92% 3042 0 0.111 4.80 1.12
ViQUF (t = 26) 99.08% 10140 0 0.142 4.05 1.11

HIV-real

Virus-VG 83.36% 8637 0 3.384 3550.00 + 440.71 26.85 — 0.80
VG-Flow 89.99% 5950 0 1.100 3550.00 + 1499.61 26.85 — 1.47
PEHaplo 91.43% 1262 0 0.074 68.34 3.48
PredictHaplo 90.21% 8702 0 0.287 4.71 + 100.75 0.87
CliqueSNV 72.17% 8676 0 1.125 4.71 + 136.68 9.03
viaDBG (t = 128) 87.25% 1813 0 0.197 17.24 3.74
viaDBG (t = 172) 89.36% 1670 0 0.215 17.24 3.75
ViQUF (t = 128) 90.27% 2302 1 0.349 3.78 1.07
ViQUF (t = 172) 90.85% 2267 0 0.292 3.73 1.07

TABLE 4
Frequency estimations and estimation errors for the HIV-5 dataset.

Genome Real
Frequency

ViQUF
estimation

ViQUF
error

VG-Flow
estimation

VG-Flow
error

Virus-VG
estimation

Virus-VG
error

PredictHaplo
estimation

PredictHaplo
error

CliqueSNV
estimation

CliqueSNV
error

5 strain HIV NL43 11.20 15.71 4.51 24.24 13.04 26.66 15.46 27.00 15.80 12.97 1.77
5 strain HIV JRCSF 28.00 30.47 2.47 24.24 3.76 23.47 4.53 24.00 4.00 22.99 5.01
5 strain HIV YU2 11.10 5.56 5.53 5.24 5.86 5.08 6.02 5.00 6.10 4.90 6.20
5 strain HIV 89.6 22.10 20.04 2.05 18.74 3.36 18.13 3.97 18.00 4.10 10.39 11.71
5 strain HIV HXB2 27.30 28.20 0.91 27.54 0.24 26.66 0.64 26.00 1.30 16.86 10.44

51

7

TABLE 5
Frequency estimations and estimation errors for the HCV-10 dataset.

Genome Real
Frequency

ViQUF
estimation

ViQUF
error

VG-Flow
estimation

VG-Flow
error

Virus-VG
estimation

Virus-VG
error

PredictHaplo
estimation

PredictHaplo
error

CliqueSNV
estimation

CliqueSNV
error

HCV EU155339.2 12.00 12.06 0.06 12.11 0.11 12.10 0.10 13.10 1.10 0.00 12.00
HCV EU255981.1 13.00 12.69 0.31 12.96 0.04 12.96 0.04 5.00 8.00 0.00 13.00
HCV EU255973.1 10.00 10.41 0.41 9.98 0.02 9.98 0.02 12.20 2.20 0.00 10.00
HCV EU255980.1 5.00 5.13 0.13 5.03 0.03 5.03 0.03 6.10 1.10 0.00 5.00
HCV EU155344.2 5.00 5.01 0.01 5.05 0.05 5.05 0.05 27.80 22.80 0.00 5.00
HCV EU255989.1 19.00 18.98 0.02 18.89 0.11 18.88 0.12 10.10 8.90 0.00 19.00
HCV EU255983.1 6.00 6.10 0.10 6.02 0.02 6.02 0.02 12.40 6.40 0.00 6.00
HCV EU234065.2 8.00 7.97 0.03 8.00 0.00 8.00 0.00 0.00 8.00 0.00 8.00
HCV EU255982.1 10.00 9.79 0.21 10.02 0.02 10.02 0.02 8.10 1.90 0.00 10.00
HCV EU255965.1 12.00 11.81 0.19 11.95 0.05 11.95 0.05 5.00 7.00 100.00 87.00

TABLE 6
Frequency estimations and estimation errors for the ZIKV-15 dataset.

Genome Real
Frequency

ViQUF
estimation

ViQUF
error

VG-Flow
estimation

VG-Flow
error

Virus-VG
estimation

Virus-VG
error

PredictHaplo
estimation

PredictHaplo
error

CliqueSNV
estimation

CliqueSNV
error

Strain 0 2.00 2.01 0.01 0.00 2.00 2.05 0.05 12.40 10.40 0.00 2.00
Strain 1 2.00 2.01 0.01 2.10 0.10 2.05 0.05 0.00 2.00 0.00 2.00
Strain 2 2.00 2.01 0.01 8.31 6.31 1.98 0.02 32.40 30.40 0.00 2.00
Strain 3 4.00 4.03 0.03 2.19 1.81 2.30 1.70 0.00 4.00 0.00 4.00
Strain 4 4.00 4.27 0.27 4.42 0.42 4.35 0.35 0.00 4.00 0.00 4.00
Strain 5 4.00 4.09 0.09 4.83 0.83 4.29 0.29 0.00 4.00 3.20 0.80
Strain 6 6.00 6.02 0.02 2.77 3.23 4.87 1.13 0.00 6.00 6.50 0.50
Strain 7 6.00 6.21 0.21 4.54 1.46 4.58 1.42 12.10 6.10 6.60 0.60
Strain 8 6.00 6.26 0.26 0.00 6.00 3.66 2.34 0.00 6.00 6.50 0.50
Strain 9 8.00 8.22 0.22 8.88 0.88 8.76 0.76 8.10 0.10 8.10 0.10
Strain 10 8.00 8.39 0.39 8.95 0.95 8.84 0.84 8.00 0.00 8.00 0.00
Strain 11 8.00 8.00 0.00 8.93 0.93 8.77 0.77 0.00 8.00 7.90 0.10
Strain 12 13.00 13.81 0.81 14.68 1.68 14.54 1.54 13.60 0.60 13.38 0.38
Strain 13 13.00 13.70 0.70 14.72 1.72 14.47 1.47 13.40 0.40 13.36 0.36
Strain 14 13.00 13.79 0.79 14.69 1.69 14.49 1.49 0.00 13.00 13.36 0.36

TABLE 7
Frequency estimations and estimation errors for the POLIO-6 dataset.

Genome Real
Frequency

ViQUF
estimation

ViQUF
error

VG-Flow
estimation

VG-Flow
error

Virus-VG
estimation

Virus-VG
error

PredictHaplo
estimation

PredictHaplo
error

CliqueSNV
estimation

CliqueSNV
error

seq 1 50.80 46.98 3.81 50.86 0.06 49.32 1.48 77.20 26.40 54.26 3.46
seq 2 25.40 21.81 3.58 18.84 6.56 22.55 2.85 0.00 25.40 10.00 15.40
seq 3 12.70 10.97 1.72 15.91 3.21 15.33 2.63 14.00 1.30 9.62 3.08
seq 4 6.30 9.00 2.70 8.66 2.36 8.35 2.05 0.00 6.30 4.38 1.92
seq 5 3.20 8.99 5.79 3.45 0.25 3.21 0.01 8.70 5.50 6.20 3.00
seq 6 1.60 2.23 0.69 2.27 0.67 1.24 0.36 0.00 1.60 0.00 1.60

TABLE 8
Precision and recall measures for the viral quasispecies tools, de novo and reference-based

Precision Recall
HIV-5 HCV-10 POLIO-6 ZIKV-15 HIV-5 HCV-10 POLIO-6 ZIKV-15

Virus-VG 100.00% 100.00% 100.00% 100.00% 95.68% 99.79% 98.31% 98.62%
VG-Flow 100.00% 100.00% 100.00% 100.00% 95.60% 99.81% 99.70% 88.82%
PEHaplo 87.18% 100.00% 100.00% 70.50% 75.46% 99.66% 99.42% 97.60%
PredictHaplo 49.26% 100.00% 85.71% 100.00% 48.16% 91.99% 76.20% 55.99%
CliqueSNV 55.20% 0.00% 51.29% 100.00% 88.47% 0.00% 63.20% 84.99%
ViQUF 71.99% 100.00% 100.00% 94.26% 70.51% 98.53% 99.69% 97.95%

The Table 9 gathers the achieved results for PeHaplo
and ViQUF. These results show that both tools get accurate
results even for the highest error level. However, for 10
strains, both tools have worse performance for intermediate
error rates than for high error rates. The reason is likely
to be in the simulation more than in the tools since both
tools have a correlated performance, namely where PeHaplo
has a worse performance in genome fraction or the number
of mismatches, the performance is worse also for ViQUF.
However, it looks like ViQUF is slightly more stable in
terms of genome fraction. In terms of mismatches ViQUF
looks more precise giving almost always lower levels of

errors. Nevertheless, apart from the case with 5 strains and
1.0% error ratio, where PeHaplo has an unexpected level
of mismatches, both tools work well. PeHaplo has a clearly
better N50 but this is easily understandable since de Bruijn
graph methods tend to lose the beginning and the end of
the genomes.

5 PLOTS WITH THE RESULTS OF THE EXPERIMEN-
TAL EVALUATION OF THE MAIN PAPER

Here, we present the values shown in the Table 2 of the main
paper, using plots for a better view. Figure 3 shows genome

52 Chapter 2. Articles

8

TABLE 9
Results for the HCV data simulation with 2, 5 and 10 strains and with errors from 0.0 to 1.0% with 0.25% step.

Error 0.00% 0.25% 0.5% 0.75% 1.0%
ViQUF PeHaplo ViQUF PeHaplo ViQUF PeHaplo ViQUF PeHaplo ViQUF PeHaplo

% Genome Fraction 99.71% 99.91% 99.97% 99.91% 99.96% 99.91% 99.94% 99.91% 99.81% 99.91%
Mismatches (kbps) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.002 Strains

N50 9252 9284 9281 9284 9279 9284 9276 9284 9263 9284
% Genome Fraction 99.36% 99.34% 99.66% 99.99% 99.74% 99.33% 99.30% 99.31% 99.17% 99.96%
Mismatches (kbps) 0.03 0.02 0.09 0.09 0.17 0.02 0.04 0.02 0.04 116.315 Strains

N50 9221 9273 9266 9283 9262 9273 9218 9273 9215 9283
% Genome Fraction 98.64% 99.98% 96.79% 89.64% 88.75% 89.98% 92.12% 90.20% 96.56% 99.96%
Mismatches (kbps) 0.12 0.99 0.08 0.26 0.13 0.34 0.08 0.99 0.25 0.86

Number of strains

10 Strains
N50 9100 9297 8928 9297 9036 9297 8899 9297 9044 9296

fraction, that is, the fraction of all haplotypes retrieved by
each method (% Genome). Figure 4 shows the value of
N50, that is, the length of the shortest contig needed to
be included to cover at least half of the total assembly.
Figure 5 shows the error rate of the assembly, that is, the
sum of mismatch rate, indel rate, and N-rate (% error rate).
Figure 6 shows the elapsed time. Figure 7 shows the peak
memory consumption. Finally, Figure 8 shows the mean
estimated error of haplotype frequencies (% MEE), and
Figure 9 plots the standard quasideviation of the estimated
error of haplotype frequencies (ŜEE). We do not include
misassemblies, since this is a simple integer.

6 COMMANDS TO CREATE THE DATASETS OF TA-
BLE 3 OF THE MAIN PAPER

Favites, the software used for the simulation, runs with a
configuration file where you have to define the software
used for the simulation and the evolution rate of the strains.
In our case we made the simulation by using DWGSIM, here
we show the configuration file:

"Sequencing": "DWGSIM",
\dwgsim_path":"dwgsim"

(40000x depth)
"dwgsim_options":"-C 8000 -1 250 -e 0.002 -2 250 -r 0.0 -d 250 -F 0.0 -R 0.0 -X 0.0 -y 0.0 -c 0"
and (20000x depth)
"dwgsim_options":"-C 4000 -1 250 -e 0.002 -2 250 -r 0.0 -d 250 -F 0.0 -R 0.0 -X 0.0 -y 0.0 -c 0"

And the evolutionary rate:

"seed_sequence_length": 10000,
Params normal
\tree_rate_loc": 0.0008,
\tree_rate_max": float(’inf’),
\tree_rate_min": 0,
"tree_rate_scale": 0.02,

And the phylogenetic tree that we achieve in Newick
format is:

(N10|72|2.0:0.004224808705067463,(N14|5|2.0:0.019158707294626317,
((N12|87|2.0:0.006835150300967025, N11|89|2.0:0.010340673182958728):0.011236682911299836,
N13|21|2.0:0.024531817257230353):0.015398627402850992):0.004694301281588564):0.0012078787901201905;

The average divergence between the different simula-
tions is around 1.08%.

REFERENCES

[1] A. I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen, “A novel
min-cost flow method for estimating transcript expression with
RNA-Seq,” BMC Bioinformatics, vol. 14, p. S15, 2013.

[2] M. Jones, “The performance of kernel density functions in kernel
distribution function estimation,” Statistics & Probability Letters,
vol. 9, no. 2, pp. 129 – 132, 1990.

[3] A. Eliseev, K. M. Gibson, P. Avdeyev, D. Novik, M. L. Bendall,
M. Pérez-Losada, N. Alexeev, and K. A. Crandall, “Evaluation
of haplotype callers for next-generation sequencing of viruses,”
Infection, genetics and evolution: journal of molecular epidemiology and
evolutionary genetics in infectious diseases, vol. 82, p. 104277, August
2020.

[4] D. N. Sam Benidt, “SimSeq: a nonparametric approach to simula-
tion of RNA-sequence datasets,” Bioinformatics, vol. 31, no. 13, pp.
2131–2140, 2015.

53

9

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

HCV-10 HIV-5 POLIO-6 ZIKV-15 HIV-real

%
 G

en
om

e

Virus-VG
VG-Flow
viaDBG

PEHaplo
PredictHaplo

CliqueSNV
ViQUF

Fig. 3. Genome fraction (% Genome) results for the different viral quasispecies assembly tools.

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

HCV-10 HIV-5 POLIO-6 ZIKV-15 HIV-real

N
50

Virus-VG
VG-Flow
viaDBG

PEHaplo
PredictHaplo

CliqueSNV
ViQUF

Fig. 4. N50 results for the different viral quasispecies assembly tools.

 0.0001

 0.001

 0.01

 0.1

 1

 10

HCV-10 HIV-5 POLIO-6 ZIKV-15 HIV-real

%
 e

rr
or

 r
at

e
lo

g
sc

al
e

Virus-VG
VG-Flow
viaDBG

PEHaplo
PredictHaplo

CliqueSNV
ViQUF

Fig. 5. Error rate results for the different viral quasispecies assembly tools (Y scale logarithmic).

54 Chapter 2. Articles

10

 1

 10

 100

 1000

HCV-10 HIV-5 POLIO-6 ZIKV-15 HIV-real

T
im

e
(m

in
)

lo
g

sc
al

e

Virus-VG
VG-Flow
viaDBG

PEHaplo
PredictHaplo

CliqueSNV
ViQUF

 10000

Fig. 6. Elapsed time results for the different viral quasispecies assembly tools (Y scale logarithmic).

 0

 5

 10

 15

 20

 25

 30

HCV-10 HIV-5 POLIO-6 ZIKV-15 HIV-real

m
em

or
y

(G
B

)

Virus-VG
VG-Flow
viaDBG

PEHaplo
PredictHaplo

CliqueSNV
ViQUF

Fig. 7. Peak memory consumption results for the different viral quasispecies assembly tools.

 0.01

 0.1

 1

 10

 100

HCV-10 HIV-5 POLIO-6 ZIKV-15

M
E

E
 %

 lo
g

sc
al

e

Virus-VG
VG-Flow

PredictHaplo
CliqueSNV

ViQUF

Fig. 8. Mean estimated error of haplotype frequencies (%MEE) results for the different viral quasispecies assembly tools (Y scale logarithmic).

55

11

 0.01

 0.1

 1

 10

 100

HCV-10 HIV-5 POLIO-6 ZIKV-15

S
E

E

lo
g

sc
al

e

Virus-VG
VG-Flow

PredictHaplo
CliqueSNV

ViQUF

Fig. 9. Standard quasideviation of the estimated error of haplotype frequencies (ŜEE) results for the different viral quasispecies assembly tools (Y
scale logarithmic).

56 Chapter 2. Articles

1

Memory-Efficient Assembly using Flye
Borja Freire, Susana Ladra, and José R. Paramá

Abstract—In the past decade, next-generation sequencing (NGS) enabled the generation of genomic data in a cost-effective,
high-throughput manner. The most recent third-generation sequencing technologies produce longer reads; however, their error rates
are much higher, which complicates the assembly process. This generates time- and space- demanding long-read assemblers.
Moreover, the advances in these technologies have allowed portable and real-time DNA sequencing, enabling in-field analysis. In these
scenarios, it becomes crucial to have more efficient solutions that can be executed in computers or mobile devices with minimum
hardware requirements. We re-implemented an existing assembler devoted for long reads, more concretely Flye, using compressed
data structures. We then compare our version with the original software using real datasets, and evaluate their performance in terms of
memory requirements, execution speed, and energy consumption. The assembly results are not affected, as the core of the algorithm
is maintained, but the usage of advanced compact data structures leads to improvements in memory consumption that range from
22% to 47% less space, and in the processing time, which range from being on a par up to decreases of 25%. These improvements
also cause reductions in energy consumption of around 3–8%, with some datasets obtaining decreases up to 26%.

Index Terms—compact data structures, genome assembly, long-reads assembly, memory efficiency, third-generation DNA sequencing

F

1 INTRODUCTION

S INCE the 50s, we are attending to a rapid increase in
the scale of the treated bioinformatics datasets [1]–[3].

Current databases, such as the Sequence Read Archive [4],
contain a large number of datasets; moreover, they are also
growing in size, making old techniques unable to process
them. Genomics poses unique challenges in terms of data
acquisition, storage, distribution, and analysis [5], which
require new innovative approaches.

Nowadays, the most common approach for facing com-
putationally very expensive processes is to use some sort of
parallel computing [6]–[10]. This is due to the availability
of techniques, useful tools, and cheap hardware. However,
another, less frequent, way to obtain scalable systems is
to use more efficient methods or data structures in order
to reduce the memory consumption and/or time [11]–[13].
Despite now being an unusual approach, in the early days
of computer science, it was common to spend considerable
effort to obtain more efficient software, as the hardware was
expensive and had low computational power. In addition
to their intrinsic benefits, these techniques are completely
compatible with parallel computing strategies, thus, we can
join the advantages of both approaches.

In-memory databases [14] constitute an example of this.
Instead of using the traditional setup, where data reside
in disk and portions are translated to main memory when
needed, these database management systems keep all data
in main memory all the time. Obviously, this is a challenge
that requires complex procedures and data structures, in-
cluding compression techniques. Another example is the
so-called compact data structures [15], [16]. The idea is
basically the same as in in-memory databases, data are
stored in the upper levels of the memory hierarchy by using

• B. Freire, S. Ladra, and J.R. Paramá are with Universidade da Coruña,
Centro de investigación CITIC, 15071, A Coruña, Spain.
E-mail: {borja.freire1,susana.ladra,jose.parama}@udc.es

Manuscript received xxxxx xx, 2020; revised xxxxx xx, xxxx.

compression. The difference is that this field faces all types
of data.

Many compact data structures use bitmaps as the main
basic block to build complex data structures. Given a bitmap
B[1 . . . n] storing a sequence of n bits, there are three basic
operations: access(B,i), which obtains the bit at position i
of B; ranka(B, i), which counts the occurrences of bit
a ∈ {0, 1} in B[1 . . . i]; and selecta(B, i) locates the position
for the ith occurrence of a ∈ {0, 1} in B.

Several data structures (see [17] for example) allow solv-
ing these operations in constant time and using n+o(n) bits
of total space. There exist implementations that enable fast
rank and access operations in only 5% extra space over the
original bit array.

By using bitmaps, we present a modification of the well-
known assembler Flye [18], aimed at decreasing the amount
of main memory used when creating the draft genome
assembly and the subsequent assemblies during the rest of
phases of the process. Furthermore, the execution time is not
affected, but improved in most cases.

Flye was recently compared with five state-of-the-art as-
semblers, obtaining better or comparable assemblies, while
it is an order of magnitude faster [19]. Moreover, Flye
obtains longer contigs as it doubles the NGA50 metric.
Therefore, taking as a starting point such an efficient as-
sembler in terms of speed as Flye, we decided to face the
other relevant parameter for an efficient implementation, its
memory consumption.

Decreasing the memory footprint of assembly processes
is crucial for new DNA sequencing technologies that aim at
offering portable and real-time genome sequencing [20]. In-
field analyses are now possible thanks to the development
of mobile and affordable devices, such as the pocket-sized
Oxford Nanopore Technologies’ (ONT) MinION. The main
advantage of these mobile genomic labs, which can be
deployed for in situ DNA extraction and sequencing, is the
possibility of shortening the time from the collection of the

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57

2

sample to the data analysis. This approach has been recently
used, for instance, during the Nigeria 2018 Lassa fever
outbreak, where real-time analysis allowed a better under-
standing of its molecular epidemiology [21]. Currently, most
bioinformatics pipelines are executed on high-performance
computing cluster or powerful computers, most of the time
on the cloud. Thus, data must be transferred and queued
into those systems, which slows down the whole process.
Moreover, it is possible that these analyses involve personal
and sensitive data, such as genetic data; therefore transfer-
ring the data to external facilities can be problematic. Thus,
due to privacy issues or immediateness, there exist scenarios
where the analysis of genomic data in the same place where
the data is extracted, is of vital importance. In these scenar-
ios, it is necessary that these real-time analyses can be done
not only using portable DNA sequencers but also portable
computing devices, such as laptops or smartphones, which
have memory limitations.

1.1 Long error-prone reads assemblers

The expected outcome of an assembly process is a set of safe
contigs that belong to the genome of interest, hopefully cov-
ering as much of it as possible. The traditional way of doing
this is to build a de Bruijn graph [22] from k-mers1 or an
Overlap-Layout-Consensus (OLC) graph [23] and then look
for safe paths within these graphs [24]. Nowadays, there are
several algorithmic ways to discover these paths, and even
graph transformations that lead to longer paths like Y-to-V
transformation [25], EULER [26], or using omnitigs [27].

Although all these techniques are well-known and they
are widely used in practice when working with short reads
obtained from second-generation sequencing2 platforms,
they are not as useful with third-generation sequencing
reads, i.e. PacBio SMRT, or Oxford NanoPore sequencing.
The reason is that, due to the high error rate of the reads, the
de Bruijn graphs built with a standard k-mer size (between
25–30 bp) are extremely tangled and the OLC graphs need
an extremely large coverage to work properly.

The first attempts of long error-prone assemblers were
based on Overlap-Layout-Consensus or on similar string
graph approaches [28], but these methods have quadratic
complexity. Another way to face the problem is to return
to the de Bruijn graph, or more precisely, to a variation
called the A-Bruijn graph, which was originally designed
to assemble a rather long Sanger reads [29].

Based on the A-Bruijn graph, Lin et al. presented Flye
[18], which is able to obtain good results with a rather
efficient process. Our work is based on this approach, which
is better explained at Section 2.2.

2 BACKGROUND

2.1 Compact data structures

Compact data structures have been extensively used in
bioinformatics. The best example is the FM-Index [30],

1. k-mers are subsequences of length k contained within a biological
sequence. In our work, they are sequences of k nucleotides (i.e. A, T, G,
and C).

2. Second-generation sequencing is also known as next-generation
sequencing (NGS).

which is able to store a text using roughly the space required
for representing that text in compressed form and, at the
same time, is able to locate any substring in sublinear time. It
is the main data structure of the majority of short-read align-
ers including Bowtie [31], BWA [32], and SOAP2 [33]. More
specific tasks, such as k-mer counting and k-mer indexation,
have also been addressed by using compact data structures.
Välimäki and Rivals [34] used a FM-Index-like structure,
called compressed suffix array [35] for this. Claude et al.
[36] used techniques coming from the field inverted indexes.
There are many succinct versions for de Bruijn graphs [37]–
[40] that use different compact data structures techniques,
among others, the FM-index. An important recent research
line in compact data structures is to represent and index
genomes of different individuals in very little space [41]–
[43]. There is a large list of works in this field, just to cite a
few [44]–[48].

As explained, many compact data structures use bitmaps
combined with fast rank and select operations. Jacobson [49]
proposed a solution able to compute rank in constant time.
Given a bitmap B of size n, it uses a two-level directory
structure. The first-level directory stores rank1(B, p) for
every p multiple of s = blog ncb(log n)/2c. For every p
multiple of b = b(log n)/2c, the second-level directory keeps
the relative rank value from the previous multiple of s. By
using these data structures, rank1(B, i) can be computed
in constant time by accumulating the values from both
directories. The first-level directory returns the rank value
until the previous multiple of s. The second-level directory
gives the value of rank from that position until the previous
multiple of p. Finally, the number of 1s from that position
until position i is computed using a precomputed table that
stores the rank values for all possible byte values. The sizes
s and p are carefully chosen so that the auxiliary dictionary
structures use o(n) additional space.

Although n + o(n) representations are asymptotically
optimal for incompressible binary sequences, it is possible
to obtain better space when the binary sequence is com-
pressible, for example when the number of 1s (alternatively
the 0s) is small. In that case, the bitmaps are usually called
sparse bitmaps. For instance, Raman et al. [50] presented two
representations for sparse bitmaps with nH0(B) + o(`) +
O(log logn) and nH0(B) +O(n log log n/ log n) bits, where
H0(B) is the zeroth-order entropy of B and ` is the number
of 1-bits in B.

The constant time solution for select is significantly
more complex than that of rank. Clark [51] presented
a solution based on a three-level directory that requires
3n/dlog logne + O(

√
n log n log log n) bits of extra space.

For example, in case n = 230, the additional data structures
occupy 60% of the original bitmap. Practical implementa-
tions of select [17] reuse the same directories used for rank,
although this yields O(log n) time. The simple solution is to
binary search in B a position i such that rank1(B, i) = j
and rank1(B, i− 1) = j − 1. Real implementations, instead
of using the rank operation as a black box, binary search
the directories Ds and Db to speed up the query, yielding a
O(log logn) cost.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

58 Chapter 2. Articles

3

2.2 Flye assembler
Most single-molecule or third-generation sequencing assem-
blers spend much time making sure that the created contigs
are correctly assembled. Flye, in contrast, does not waste
time on making sure that the created contigs are correct. Ac-
tually, Flye intentionally builds misassembled contigs and,
from them, it builds accurate and longer contigs. Briefly,
Flye constructs an assembly graph and, starting from a
given read, it creates random walks on that graph. Once a
random walk is built, all reads that map with that walk are
found, and a consensus contig is built from the whole set of
reads. Obviously, this new consensus contig is legit because
it is supported by several reads. Once all contigs have been
created, they are glued into an accurate assembly graph
which is untangled, and unbridged repetitions are solved
by using the number of reads that traversed consecutive
edges in the accurate assembly graph. More precisely:

1) Building a draft genome assembly and generating
consensus contigs. To deal with the drawbacks of
long reads, Flye corrects them before building the
assembly. This stage computes an A-Bruijn graph
that uses only solid k-mers3 instead of all the k-
mers from the reads. Furthermore, the value stored
in an edge between nodes X and Y of the graph
corresponds to the distance between them in a given
read Z, unlike traditional de Bruijn graphs, which
store the char following node X .
Once the graph is built, Flye generates arbitrary
paths in the graph4 creating inaccurate contigs.
Then, a consensus process is carried out using all
the reads that contribute to the contig. Finally, these
new “accurate” contigs are used to build an accu-
rate assembly graph, which can be traversed like a
regular de Bruijn graph.

2) Treating repetitive regions. One of the biggest chal-
lenges when assembling NGS data is to deal with
genome repetitive regions, which are the result
of recombination, transposons and/or mini/micro-
satellites. The success of the de Bruijn graphs in the
genome assembly field is mainly due to their ability
to represent repeat families as mosaics of ideally
error-free5, sub-repeats [29].
Furthermore, overlap graphs scale quadratically
with the number of reads, thus, they become unfea-
sible for NGS. The direct application of the classic
de Bruijn graph does not obtain accurate assembles
from long reads, and thus OLC graphs with high-
coverage reads are the usual choice to obtain an
accurate assembly. However, with OLC, it is not
possible to define repeat families, thus much re-
search efforts have been devoted to adapt de Bruijn
graphs to be useful for long reads.

3. A solid k-mer is a k-mer that appears at least t times in the reads,
being t a threshold.

4. Instead of looking for the best one, Flye extends the paths selecting
an arbitrary read. Therefore, it does not lose time assaying every single
overlapping read and selecting the most promising one.

5. Note that de Bruijn graphs work for “perfect” repetitions but
unfortunately DNA repeat families are usually full of gaps and mis-
matches. Therefore, even with de Bruijn graphs, treating repeat regions
remains messy.

Flye is able to treat repetitive regions using a de
Bruijn graph because the reads have been corrected
in the previous step. Therefore, using previous con-
sensual reads, an unravelled repeat graph6 is built.
Since the idea behind repeat graphs is actually the
same as that of the de Bruijn graph, Flye is able to
transfer the power of de Bruijn graphs to long reads
without losing accuracy or demanding extremely
high levels of coverage throughout repeat graphs.

3) Polishing the final genome. Once the contigs are ob-
tained, most NGS assemblers are capable of increas-
ing their length by using paired-end information
to add topological knowledge. These extended con-
tigs are then referred to as scaffolds. Furthermore,
this step also allows polishing the obtained contigs
removing those which are misassemblies, namely
chimaeras, and thus increasing the veracity of the
assembly.

All of these three steps are critical and need to be treated
carefully. Even though all the steps are equally relevant, the
most memory demanding phase is the first one, since it has
to quickly process all k-mers in reads and build consensus
contigs, which requires having all overlaps between reads.
Therefore, since our goal is to reduce memory consumption,
we have focused our improvements on this module.

Next, we will introduce how Flye builds the assembly
draft. It is important to remark that this work does not
introduce any changes to the Flye’s assembly algorithm. Our
goal is to improve Flye’s memory efficiency, and therefore
its scalability, by using new data structures to store and ma-
nipulate data, but always using Flye’s assembly procedure.

The traditional genome assembly process is based on
creating a graph representation from the reads using k-mers
and then looking for safe solutions/paths inside the graph.
Afterwards, multiple heuristic steps are applied to extend
these solutions, and once the contigs have been stretched,
the final stages of the process are scaffolding and gap filling.

However, this process suffers from problems when deal-
ing with long reads due to, as explained, their high error
ratio, which is around 15% for long reads compared to 0.1–
1% for NGS. To overcome this, the Flye’s assembly process
consists of three different phases: (i) approximate k-mer
counting, (ii) selection and indexing of solid k-mers, and
(iii) draft genome assembly. The first two steps focus on
filtering the k-mers in reads and selecting those k-mers that
can be considered genomic. Once Flye has selected the legit
genomic k-mers, it assembles the reads looking for those
that overlap each other and also fulfil a set of restrictions.
As a final step, Flye generates consensus contigs to build
long error-free reads and, from them, it obtains an accurate
genome assembly.

6. A repeat graph is an alternative graph representation that com-
pactly represents all repeats in a genome and reveals their mosaic
structure [18], [29]. Furthermore, repeat graphs can deal with mis-
matches and gaps inside repetitions, offering a better way of treating
and detecting repetitive regions.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

59

4

2.2.1 Counting k-mers

The high error rate of the reads produces a large number
of false or non-genomic k-mers.7 In order to overcome this
problem, Flye separates the genomic and non-genomic k-
mers by counting the appearances of the k-mers in the reads
and selecting only those whose frequency is above a thresh-
old t. While this might sound simple, it actually becomes
a hard problem when working with long reads, due to the
huge amount of k-mers present in the reads, which makes
their indexation extremely difficult in a reasonable time and
space. In fact, this problem is the origin of a research line by
itself [52]–[54].

The threshold used by Flye in this phase is automatically
selected as a value between 2 and 5, depending on the
coverage of the input dataset, which is estimated by Flye
from the genome length (provided as a parameter) and the
sum of the read lengths.

The solution of Flye requires two counts: (i) approximate
counting, and (ii) exact counting. The approximate counting
is carried out by using a Bloom filter [55], a hash table
that does not solve collisions. Therefore, one hash entry
can accumulate appearances of different k-mers. This step
removes k-mers with a very low frequency.

We illustrate an example of the use of the hash table
for the approximate counting in the left part of Figure 1. In
the upper part, we include two reads (read1 and read2),
and, for each of their positions, the k-mer that starts at
that position. As explained, in this approximate counting,
collisions are not solved. Observe that entry 4 accumulates
six appearances, which correspond to four appearances of
k13 and two appearances of k14, since the hash function
hash1 maps both k-mers to the same entry.

Being Lr the average length read, Nr the number of
reads, and GenomeSizeFactor a value between 1 and 16 that
Flye calculates based on the estimated size of the genome
provided by the user, this phase costs θ(Lr ∗ Nr) time and
uses GenomeSizeFactor ∗ 415 ∗ 8 bits.

In a second pass of the reads, Flye counts the exact oc-
currences of the k-mers whose entries reached the threshold
t in the first pass. For this exact counting, Flye uses the well-
known data structure Cuckoo hash [56]. It is a variation of
hashing that assures a small and constant number of itera-
tions for indexing and accessing operations. This is achieved
by using several hash functions, usually two is enough,
and a collision handler. When a collision is produced, the
corresponding key already stored at the entry is moved to
one of its other possible positions, defined by an alternative
hash function. This can cause another collision, which is
solved in the same way.

We illustrate the exact counting in the right part of
Figure 1, including different states of the hash table for
different instants of the process. Now, the entries of the hash
table contain the key (a k-mer), in addition to the counter.
In reality, a Cuckoo hash usually uses two tables of the
same size, and, at each entry, several keys can be stored
(collisions). For a given key, if hash(key) = i, that key can

7. The maximum number of non-genomic k-mers is (Lr ∗Fr)∗Cov ∗
Nr , where: Lr is the average length read, Fr is the failure ratio, Cov is
the coverage, and Nr is the number of reads.

be in the entry i of either table. However, in order to simplify
the figure, we use just one table with just one key per entry.

In the hash table under the (a) label, we show the state
of the table after traversing read1 until position 6. As seen,
k13 and k54 appeared twice and k32 once. These keys are
placed in the position given by the hash function hash1.
Under the label (b), we show the state of the hash table after
processing position 7 of read1. The k-mer in that position
(k44) is mapped to the entry 5 according to hash1, which
is already occupied by k32. Therefore, k32 is moved to its
alternative position given by the hash function hash2, that
is, to position 15. Once position 5 is released, k44 is placed
there.

Under label (c), we show the state of the hash table
when processing position 4 of read2. In that position, the
k-mer k14 begins, and hash1 maps it to entry 4, which is
already occupied by k13. Then, k13 should be moved to
its alternative position given by hash2, which is position
5, thus releasing position 4 for k14. However, position 5
is also occupied by k44. Then, k44 is also moved to its
alternative position defined by hash2, which is position
11. Again, position 11 is occupied, in this case by k54, but
now, we enter in a cycle, because the alternative position
of k54 is 4. To avoid this situation, there is a limit in the
number of handled collisions (logarithmic in the table size).
If that value is reached, this requires the change of the hash
functions hash1 and hash2, and all the k-mers should be
reallocated accordingly.

This method guarantees constant time access as long as
the table is not occupied more than 50% of its capacity.
To avoid this, when the number of collisions triggers the
change of the hash functions, the table size is doubled as
well.

The worst-case time complexity of the exact count is
O(Lr ∗ Nr + S2) time, being S the number of k-mers that
passed the approximate counting. Recall that all k-mers
must be processed, checking if they have passed the first
threshold, and then inserted in the Cuckoo table. These
insertions may cause duplication of the hash table and the
reallocation of most entries. Observe that each duplication
implies O(S) reallocations, and, in the worst-case scenario,
this can happen for O(S) keys.

Regarding space, the memory required at the beginning
is O(S) bits, but this is doubled when the number of
collisions triggers a reallocation, therefore it can reachO(S2)
bits in the worst-case scenario. In practice, this easily reaches
20–30 GB.

Here we can see one of the weaknesses of Flye that
our work addresses. In order to ensure an efficient use
of the Cuckoo hash, and therefore to allow fast access to
the information of any k-mer, Flye needs big amounts of
memory. We aim at replacing the Cuckoo hash table by a
more compact data structure without losing speed.

2.2.2 Selecting/Indexing k-mers
Although the previous phase significantly reduces the
amount of non-genomic k-mers, some non-genomic or low
frequent k-mers remain. Therefore, a second filtering step
is necessary to minimize those non-genomic k-mers. Fur-
thermore, more information about k-mers is needed for the
next steps, such as the reads in which each k-mer appears,

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

60 Chapter 2. Articles

5

0

0

9

10

11

12

13

14

15

16

0

…
…

..

0

6

1

2
3

4

5
6

7

8

4

0
1

0

3
0

0
0
0

0

0

0

entry

Approximate
counting

Exact
counting

S

k32

k13

k32

k54

9

10

11
12

13
14

15

16

…
…

..

1

2
3

4

5
6

7
8

0

0

0

…
…

..

0

2
1

0
1

0

2
0

0
0
0

0

0

0

entry

(a)
Position 6

of read1

(b)
Position 7

of read1

k13

k32

k54

9

10

11

12

13

14

15

16

…
…

..

1

2
3

4

5
6

7
8

0

0

0

…
…

..

0

2
1

0
1

0

2
0

0
0
0

0

0

1

entry

k44

position 1 2 3 4 5 6 7 ….
k24 k13 k54 k32 k13 k54 k44 ….

hash1 6 4 11 5 4 11 5 ….

read1 k32 k44 k13 k14 k13 k54 k14 ….
hash1 5 5 4 4 4 11 4 ….

position 1 2 3 4 5 6 7 ….
read2

hash2 5 4 15 5 4 11 hash2 15 11 5 15 5 4 15

k54 cycle -> rehash
table size doubles

(c)
Position 4
of read2

k14

k32

k44

9
10
11
12
13
14
15

16

…
…

..

1
2
3

4
5
6

7
8

0

0

0
…

…
..

0

1
2

0
1

2

2
0

0
0
0

0

0

2

entry

k13

GenomeSizeFactor*415

Fig. 1: Counting k-mers in Flye.

and the position inside these reads. This second filter uses a
different threshold, which depends on the results of the first
filtering step. Actually, the second threshold is equal to the
highest frequency that ensures that the number of selected
k-mers is greater than the length of the genome.

This step requires another traversal of the reads, and
the k-mers that pass this second threshold are indexed into
a Cuckoo hash again, but now, they are stored with the
positions within the reads where they appear,8 that is, a
list of pairs (read, positions inside read), thus creating an
index of the appearances of the solid k-mers.

This index is the key element for the subsequent step of
Flye, that is, the assembly phase. To perform the assembly,
Flye uses a variation of the de Bruijn graph called A-
Bruijn graph. However, the graph is never created and Flye
implements it “virtually” by means of this index. The nodes
are the reads and the edges are simulated by searching
“on the fly” overlaps between reads. Therefore, since that
operation is very frequent, this operation must be fast. The
overlaps are computed by taking all the k-mers of a read,
and, for each one, this index gives all the reads where that
k-mer is also found. With this information, Flye computes
the overlapping reads.

The creation of this index consumes O(LR ∗ Nr) time.
In space, we need O(S2) bits for the hash table, plus O(S ∗
Cov) bits for the appearances of the k-mers9, being Cov the
average coverage of the dataset. Thus, the worst-case space
complexity is O(S2 + S ∗ Cov).

8. Each k-mer can occur an arbitrary number of times within a read.
9. There is another filter in this phase, and the number of k-mers

considered decreases, but we keep S as the number of solid k-mers.

Algorithm 1: FlyeWalk (AllReads, MinOvelap,
HashTable)

1 Contigs← empty set of contigs
2 UnprocessedReads← AllReads
3 IndexOfReads← BuildIndex(AllReads, HashTable)
4 for each Read in UnprocessedReads do
5 ChainOfReads← ExtendRead (UnprocessedReads,

Read, IndexOfReads, MinOverlap)
6 ContigSequence← Consensus(ChainOfReads,

AllReads, MinOverlap, IndexOfReads)
7 add ContigSequence to Contigs
8 remove Overlap(ChainOfReads) from

UnprocessedReads
9 end

10 return Contigs

2.2.3 Assembling contigs

As previously explained, Flye does not use a real de Bruijn
graph that is traversed seeking for contigs, but simulates
this graph navigation by obtaining all the possible overlaps
between reads. More precisely, the construction of contigs
is done by checking the overlaps between a processed read
and others, while considering several restrictions.

Algorithm 1 shows this process. The algorithm starts by
obtaining for each read all its overlapping reads. The process
uses the index described in Section 2.2.2. The procedure
BuildIndex processes all reads, each one is traversed position
by position. The k-mer starting at the processed position is
used to query the index and, if it is solid, it gives all the
overlapping reads.

Once the overlaps have been computed, the process
continues with the for in Line 4, which processes the reads in

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

61

6

Algorithm 2: ExtendRead(UnprocessedReads, Read,
MinOverlap, IndexOfReads)

1 ChainOfReads← empty sequence of reads
2 while true do
3 NextRead← FindNextRead(UnprocessedReads,

Read, MinOverlap,IndexOfReads)
4 if NextRead = empty string then
5 return ChainOfReads
6 else
7 add NextRead to ChainOfReads
8 Read← NextRead
9 remove Read from UnprocessedReads

10 end
11 end

random order. Then, in Line 5, each read is extended using
the function ExtendRead, which is shown in Algorithm 2.
Given a read Read, ExtendRead finds an unprocessed read
that overlaps with Read by at least MinOverlap base pairs.
This is done during the call of the function FindNextRead.
Flye does not waste much time checking if the next read
fits well in the current path; it just chooses one that overlaps
MinOverlap base pairs with the current read and fulfils other
simple conditions. This process continues until it cannot find
another read overlapping the last processed read.

Finally, Consensus constructs the consensus of all
reads that contribute to the processed ContigReads.
The process is as follows. Let Read1, Read2, . . . ,
Readn be the reads in ContigReads. Let prefix (Read i)
be the overlapping region between consecutive reads
Read i−1 and Read i, let suffix (Read i) be the suffix
of Read i after the removal of prefix (Read i), and
let concatenate(ChainOfReads) be the concatenation
suffix (Read1)||suffix (Read2)|| . . . ||suffix (Readn).
Then, all reads from the dataset are aligned to
concatenate(ChainOfReads) using the method minimap2
[57]. The consensus is taking by the majority vote. Finally,
the reads considered in the consensus step are removed
from the UnprocessedReads (Line 8), and therefore they are
not considered anymore.

In this process, with O(N2
r) time, the Consensus is the

dominant cost.

3 OUR PROPOSAL: COMPACT FLYE

In this section, we describe our memory-efficient variant of
Flye assembler, where we use compact data structures. We
detail how our proposal addresses each of the phases of the
method.

3.1 Counting k-mers
3.1.1 Approximate counting
Our aim is to perform the same filtering, but without using
such a large amount of memory. Moreover, we do not
want to penalise the temporal efficiency; thus, our target
is also to maintain the execution times in the same order of
magnitude or even improve them.

The original method uses 8-bit counters for this phase,
allocating a hash table of size GenomeSizeFactor ∗ 415 ∗ 8

bits, where GenomeSizeFactor is set to 1 or 16 depending
on the size of the genome. This large space hardly provokes
collisions. For example, in the case of k-mers of length 15,
those 8-bit counters for all the 415 possible combinations
would require 8 GB.

Instead, we propose an adaptive solution that is able to
store the same number of entries as the hash tables of Flye
(both, of 1 GB and 16 GB), but using much less space. For
the approximate counting, instead of allocating a complete
byte for the counters of k-mers, we use just t bits, being
t the given threshold, which is a number between 2 and
5. When a new appearance occurs, the first bit set to 0 is
changed from 0 to 1. For instance, if the threshold is 5, then
each entry initially has the value 00000. The first appearance
changes the entry to 10000, the second to 11000, the third
one to 11100, and so on. With this approach, to perform the
update, it is only necessary to access the memory location
and flip just one bit, rather than adding 1 to the memory
location, which requires moving the data to the Arithmetic
Logical Unit of the processor and executing an operation of
addition.

With this approach, we do not have a real count, that
is, we do not know how many times an entry has been
processed. This is not a problem, as at this step of the
process, we are only interested in those entries that have
been found t times or more, and thus, their corresponding
k-mer passes this filtering step. Recall that in Flye, this
is an approximate counting, as each entry can accumulate
appearances of different k-mers.

Our approach is able to filter as many k-mers as Flye
does, but only requiring GenomeSizeFactor ∗ 415 ∗ t bits. Of
course, the key of a low space requirement is that we are
assuming that the threshold value is small, between 2 and
5, otherwise valuable k-mers would be removed. Therefore,
in the worst case, our structure is always cheaper than 1 GB
or 16 GB (the value of the hash table of Flye), independently
of the genome size.

Figure 2 shows an example of this process under the
brace labelled “approximate counting”. More concretely, we
have two reads composed of different k-mers, and we will
filter those that have more than 3 appearances (t = 3). Thus,
our data structure contains 3 bits per entry, and only those
entries having their third bit set to 1 pass this filter. We
denote b the bitmap composed of the last bit of all entries,
as indicated in the figure. Observe that entry 5 has reached
the threshold, due to the occurrences of two different k-mers
that have the same hash value, namely two appearances of
k32 and two appearances of k14. After the third appearance,
additional occurrences are no longer recorded.

Although the conceptual description is that shown in
Figure 2, we implemented it in a faster way, to avoid the
sequential search of the first bit set to 0. Specifically, the first
t − 1 bits of each entry are joined in a unique bitmap. In
addition, the bits are completely flipped so the first 1 is set
in the least significant position. Then, given the t− 1 bits of
an entry, when a new occurrence should be registered, we
simply shift one bit to the left and we introduce a 1-bit on the
right. The leftmost bit, which is lost, is used to update the
corresponding entry of the tth bit, which is stored separately
from the others in bitmap b. For example, if the entry is 001,
first it is shifted one bit to left, and the leftmost bit (0), is used

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
ly.

62 Chapter 2. Articles

7

0

0

1s
t a

pp
ea

ra
nc

e

9
10
11
12
13
14

15

16

0GenomeSizeFactor*415

…
…

..

0

1

2n
d

ap
pe

ar
an

ce
3r

d
ap

pe
ar

an
ce

1
2
3

4

5
6

7
8

1

0
1

0

1
0

0
0
1

0

0

0

0

0

0

…
…

..

0

1
1

0
0

0

1
0

0
0
0

0

0

0

0

0

0

…
…

..

0

1
1

0
0

0

1
0

0
0
0

0

0

0

b

entry

approximate counting exact counting

position 1 2 3 4 5 6 7 8 ….
k24 k13 k54 k32 k13 k54 k44 k4 ….

hash 6 4 11 5 4 11 5 14 ….

read1

k32 k44 k13 k14 k13 k54 k14 k14 ….
hash 5 5 4 4 4 11 4 4 ….

position 1 2 3 4 5 6 7 8 ….
read2

1

key

k13 4

freq

3k14

2 k32 2 2k44

3 3k54

EC

Fig. 2: Example of the k-mer counting.

to update the corresponding entry at b, and we introduce a
1 on the right, obtaining 011. Therefore this method has a
cost of O(1), regardless of t.

An alternative implementation is using a counter of
logd(t)e bits, which would save some space. In this case,
the bitmap corresponding to the first t − 1 bits is replaced
by an array of counters of dlog(t − 1)e bits, while bitmap b
is kept. When a new occurrence of a k-mer appears and the
corresponding value at the counter is already t − 1, we set
the 1-bit of the corresponding entry of bitmap b. In practice,
we will use the method shown in Figure 2 when k ≤ 15,
and the counter of dlog(t− 1)e bits when k > 15.

The time cost for this step is the same of Flye, that is,
θ(Lr ∗Nr). The space consumption is GenomeSizeFactor ∗
415 ∗ t bits if k ≤ 15 and GenomeSizeFactor ∗415 ∗ (logd(t−
1)e+ 1) when k > 15.

3.1.2 Exact counting

Once the approximate counting has been done, we create a
new data structure, denotedEC, to support the exact count-
ing. This data structure has as many entries as positions set
to 1 in the k-mer bitmap b, that is, rank1(b, size(b)) entries.
At each entry, we store a pointer to a list of pairs, each pair
containing a k-mer that has passed the first filtering and an
integer counter for storing the exact number of occurrences.
Then, in a second traversal of the reads, for each read k-mer
kr that satisfies b[hash(kr)] = 1, we compute its position
pos = rank1(b, hash(kr)). In case kr is already stored at
EC[pos], we increase its counter by one. Otherwise, a new

pair (kr, 1) is added to the list pointed to by the pointer in
EC[pos].

In our example of Figure 2, when the traversal reaches
position 4 of read1, which is the first appearance of k32,
EC[2] is empty10, therefore we write (k32, 1) in the list
pointed to by EC[2]. When the traversal of read1 reaches
position 7, k-mer k44 is also hashed to position 5, but the
list pointed to by EC[2] has only one pair, with key k32,
therefore a new pair (k44, 1) is added to the list pointed to by
the pointer in EC[2]. It is important to remark that the use
of a list of pairs at each entry does not damage the execution
times significantly, as these lists are generally short.11

Here we can see one of the main differences between
our method and Flye. If we compare Figures 1 and 2,
we can see that compact Flye uses a simple bitmap of
GenomeSizeFactor ∗ 415 bits to index the k-mers, and the
collisions, such as in the case of k13 and k14, are stored in
a list pointed to by an entry of EC. However, as explained,
the lists of collisions are short. Instead, in Figure 1, Flye uses
the Cuckoo hash table, which gives constant time access but
requiring a big amount of memory and also time, due to
reallocations. We can see how the entries of k13 and k14 are
separated. Thus, compact Flye reduces the memory usage
in exchange of probably increasing time processing when
accessing to those counters in next steps of the process.

The worst-case time complexity of our approach is
O(Lr ∗ Nr + S2), since this phase processes the Lr ∗ Nr

input k-mers, and, in the worst-case scenario, all the solid k-
mers are mapped to the same entry, and thus, the S k-mers
are added to just one list pointed to by one entry of EC.
The data structure requires GenomeSizeFactor ∗ 415 bits of
space for bitmap b, which is constant, plus O(S) counters,
therefore the worst-case space complexity is O(S).

3.2 Selecting/Indexing k-mers
Analogously to original Flye, reads are processed again to
index only the k-mers with a number of occurrences higher
than the second threshold.

Figure 3 shows the result of this step with our running
example, assuming that the new threshold is 3 again. As in
the case of the exact count, compact Flye relies on bitmap
b, of GenomeSizeFactor ∗ 415 bits, to index the k-mers, and
now the collisions, such as in the case of k13 and k14, are
stored in an array, ordered by frequency of appearance. In
our example, k13 is the first entry of the list corresponding
to the hash entry 4, since it is more frequent than k14.

Therefore, the worst-case time complexity of our method
isO(Lr∗Nr+S

2), which includes both indexing and sorting
the arrays. In space, we need the GenomeSizeFactor ∗ 415
bits of bitmap b (constant), and O(S ∗ Cov) for storing the
appearances of the solid k-mers.

3.3 Contigs Assembly
As the main goal of this research is to prove the good prop-
erties of compact data structures for the implementation of

10. Since hash(k32)=5, and rank1(b, 5) = 2, then k32 must be
included in the second entry of EC.

11. For instance, in our experiments for the E. coli datasets, the
average number of elements at each list of EC was lower than 2, and
the maximum number of elements was not higher than 5.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

63

8

9
10
11

GenomeSizeFactor*415

1
2
3

4

5
6

7
8

0

0

0

…
…

..

0

1
0

0
0

0

1
0
0

bentry

1
2

key

k13 (read1,2), (read1,5), (read2,3), (read2,5)
(read1,3), (read1,6), (read2,6)

positions

k54

position 1 2 3 4 5 6 7 8 ….
k24 k13 k54 k32 k13 k54 k44 k4 ….

hash 6 4 11 5 4 11 5 14 ….

read1 k32 k44 k13 k14 k13 k54 k14 k14 ….
hash 5 5 4 4 4 11 4 4 ….

position 1 2 3 4 5 6 7 8 ….
read2

k14 (read2,4), (read2,7), (read2,8)

Compact Flye

k13

k54

9
10
11
12
13
14
15

16

…
…

..

1
2
3

4

5
6

7
8

k3

2

k14

X*S

(read1,2), (read1,5), (read2,3), (read2,5)

Flye

(read2,4), (read2,7), (read2,8)

(read1,3), (read1,6), (read2,6)

Fig. 3: Example of the k-mer indexing.

TABLE 1: Time complexities. Lr average length of reads, Nr

number of reads, S the number of solid k-mers.

Compact Flye Original Flye
Approx Count θ(Lr ∗Nr) θ(Lr ∗Nr)
Exact Count O(Lr ∗Nr + S2) O(Lr ∗Nr + S2)
Indexing O(Lr ∗Nr + S2) O(Lr ∗Nr)
Assembly O(Lr ∗Nr + S2 +N2

r) O(Lr ∗Nr +N2
r)

bioinformatics tools, we wanted to compare time and space
results of our proposal with those obtained by the original
software, but without significantly changing the underlying
algorithm. Thus, we maintain the original A-Bruijn algo-
rithm for genome assembly, as changes on the algorithm
would lead to different results with a higher/lower number
of contigs and/or longer/shorter contigs.

3.4 Comparison of time and space
We include a summary of the time complexities for our
proposal and the original method in Table 1. Worst-case
time complexities of the approximate and the exact counting
phases are the same for both approaches. However, these
worst-case scenarios are too pessimistic. For instance, in the
case of compact Flye, the worst-case scenario occurs when
all the keys are mapped to the same entry of the hash table,
and thus it degenerates to a linked list. This is extremely rare
in practice when using well-designed hash functions. In the
case of the original Flye, collisions may cause resizing and
rehashing the table. This may not cause a quadratic time
in the number of solid k-mers, but it actually has a great
impact, and it will be reflected in the experimental section.

In the indexing phase, original Flye has a cost of O(1)
per processed k-mer, whereas the compact version has to
deal with collisions plus the sorting of the arrays. However,
collisions only occur when k > 15, and arrays are short,
therefore, as we will see in the experimental section, only
when k > 15, compact Flye pays a price in time. However,
the use of the index during the assembly phase (employed
to search for overlaps between reads) does not introduce

TABLE 2: Space complexities. GSF denotes
GenomeSizeFactor, S the number of solid k-mers,
Cov the coverage, t the threshold used in the counting, and
outp the assembly output.

Compact Flye Original Flye
Appr. Count GSF ∗ 415 ∗ t GSF ∗ 415 ∗ 8
Exact Count O(S) O(S2)
Indexing O(S ∗ Cov) O(S2 + S ∗ Cov)
Assembly O(S ∗ Cov + outp) O(S2 + S ∗ Cov + outp)

significant changes in times in any case, since the dominant
cost is the quadratic cost in the number of reads, which is
the same for both approaches.

Table 2 shows the space complexity. In the approximate
counting, we use t bits (or logd(t − 1)e + 1, if k > 15) per
entry instead of 8 bits of the original Flye. The second and
more important difference is that in the exact count and
the index, the size of the structure used by the original
approach is tied to the number of collisions, doubling the
data structure when the number of collisions surpasses a
threshold. However, our data structure is only tied to the
simple bitmap b, of constant size, and only increases the
size of the entries linearly with the number of solid k-mers
that passed the first filter (S). On the contrary, in the case of
the original Flye, collisions and therefore duplications pose
a big price in space. These duplications of the hash table are
inherited during the indexing phase, therefore, in the space
complexity the original Flye has an additional S2 term.

As summary, we trade off time for the sake of reduc-
ing space consumption. In the time complexity, the only
significant difference is the presence of an additional S2

term caused by the fact of having linked lists instead of a
constant-time Cuckoo hashing, which is a very pessimistic
scenario that does not occur in practice, as lists are generally
short. The counterpart is that the original Flye has in its
space complexity that additional S2 term in the exact count-
ing, indexing, and assembly phases, precisely due to the use
of that very efficient Cuckoo hashing strategy. However, in

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

64 Chapter 2. Articles

9

practice, the price in space that Flye has to pay is much
bigger in comparison with the worsening in times of the
compact version. Compact data structures are more memory
friendly, and this yields even slight improvements in time in
some cases, as we will see in the experimental section.

4 EXPERIMENTAL EVALUATION

4.1 Experimental framework

All experiments were run on an Intel® CoreTM Xeon es2470
CPU @ 2.3 GHz (32 cores), 64 GB of RAM, over De-
bian GNU/Linux 10 (buster). All programs were coded
in C++. We use version 2.4 of Flye. Our code is available
at https://bitbucket.org/bfreirec1/compactflye. To ensure
the availability of all datasets, we have collected them
and uploaded them into the following repository: https:
//bitbucket.org/bfreirec1/datasets-compactflye.

We have run the tests with two different k-mer sizes: the
k value recommended by Flye for each dataset (k = 15 for
the smallest datasets and k = 17 for the largest datasets),
and a higher k value, more concretely, k = 31, for all
datasets. All experiments were run five times for the small-
est datasets and three times for the largest datasets, and we
report the average results.

We have used five datasets from Oxford Nanopore Tech-
nology (ONT) and PacBio (PB) sequencers, some of which
were used also by the authors of Flye [18]. We describe now
the datasets, and include some properties in Table 3.

• BACTERIA-PB dataset12 contains data gathered with
a PacBio RS II System and P4-C2 chemistry on a size
selected 20kb library of E. coli K12 substr. MG1655.

• BACTERIA-ONT dataset13 also contains reads from
whole-genome shotgun sequencing of the model or-
ganism E. coli K-12 substr. MG1655, but generated on
a MinION device.

• WORM dataset14 contains Pacific Biosciences reads
(coverage 40x) from a Bristol mutant strain of C.
elegans genome of length 100 Mb (6 chr.).

• DROSOPHILA-PB dataset15 contains Pacific Bio-
science reads (coverage 120x) from a subline of the
ISO1 strain of Drosophila melanogaster.

• DROSOPHILA-ONT dataset16 contains reads from
Oxford Nanopore technology (coverage 30x) from
a subline of the ISO1 strain of Drosophila
melanogaster.

4.2 Results

4.2.1 Memory consumption
Figure 4 shows the memory consumption of the original
Flye and that of our improved version. In all cases we
obtain important improvements, ranging from 22% to 47%

12. https://github.com/PacificBiosciences/DevNet/wiki/E.
-coli-20kb-Size-Selected-Library-with-P4-C2

13. http://lab.loman.net/2015/09/24/first-sqk-map-006-experiment/
14. https://github.com/PacificBiosciences/DevNet/wiki/C.

-elegans-data-set
15. https://github.com/PacificBiosciences/DevNet/wiki/

Drosophila-sequence-and-assembly
16. https://www.ebi.ac.uk/ena/data/view/SRR6702603

less space. We require almost half the space for almost all
experiments, except for WORM with k = 31, which uses
78% of the space needed by the original version. The most
remarkable result is observed for DROSHOPILA-ONT with
k = 31. In this case, the physical memory of the machine (64
GB) was not enough for the original Flye. On the contrary,
our version finished successfully, which shows that our
version is more scalable due to better memory usage.

4.2.2 Time performance

Figure 5 shows the processing times of the complete process.
One of the most significant improvements is obtained for
DROSHOPILA-ONT with k = 17 (the recommended setup),
where our method is 13% faster, whereas, as explained,
with k = 31, original Flye did not run in our machine.
In WORM dataset, the results are on a par, whereas in the
smallest datasets, our method is between 5% and 11% faster
with k = 15 and between 8% and 18% with k = 31. For
DROSHOPILA-PB, results are on a par when using k = 17
and 25% faster for k = 31. These results show that improved
memory usage and, therefore better scalability, can even
lead to better runtimes with large datasets when physical
memory is nearly exhausted, or when the datasets are
smaller, but significant parts of the data structures can be
kept in higher levels of the memory hierarchy, like in our
BACTERIA datasets.

We have measured the time spent at each of the four
phases of the assembly process. We show the results in
Figure 6. In the small datasets, the pre-assembly phases
are faster with our bitmap-based data structures compared
to the Cuckoo based hash table of Flye, whereas for the
assembly phase, both methods are on a par.

The time complexity of the approximate count is the
same in both approaches, O(1) per processed k-mer, still
compact Flye obtains an improvement of 33% in the WORM
dataset, but it is on a par in the case of DROSOPHILA-ONT.
However, in the exact count, here we can see clear dif-
ferences. Our method has a worst-case cost of O(S) per
processed k-mer, while the original Flye has O(1) access
time if we exclude the duplications of the Cuckoo hash table
needed to keep that O(1) access time. However, as seen,
each duplication requires a considerable waste of time. This
implies that compact Flye is between 1.20 times and 4.24
times faster than the original version. The counterpart is in
the indexing phase, where compact Flye hasO(Lr∗Nr+S

2)
time due to the sorting of the arrays and the mixture of data
from several k-mers in the lists of the index, which is worse
than the O(Lr ∗ Nr) of the original FLye, and this can be
seen in the largest datasets, where our method is between
37% and 48% slower. Nevertheless, our index based on a
bitmap does not slow down the assembly. As it can be seen
from the figures, both approaches are on a par in all cases.

4.2.3 Analysis of underlying data structures

One question that may arise is that, during the approximate
counting, if instead of using t bits (or logd(t − 1)e + 1 bits)
for counters, a 1-byte counter would be faster. Moreover, is
that solution scalable when the threshold increases? For an-
swering these questions, we present an experiment varying
the value of threshold t, and show the results in Figures 7–8.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

65

10

TABLE 3: Datasets used in the experiments.

Est. Gen. Number Aver. Max
Dataset Species Size Techn. Cover. of reads bp bp
BACTERIA-PB E. coli 5 Mbp PB 50x 48,048 8,637 41,331
BACTERIA-ONT E. coli 5 Mbp ONT 50x 50,966 9,753 57,229
WORM C. elegans 100 Mbp PB 40x 1,481,552 10,958 55,460
DROSOPHILA-PB D. melanogaster 175 Mbp PB 120x 3,227,724 9,303 44,766
DROSOPHILA-ONT D. melanogaster 175 Mbp ONT 30x 663,784 6,956 446,050

 0

 500

 1000

 1500

 2000

k=15 k=31

M
em

or
y

(M
B

)

Improved
Original

84
2

15
99

76
2

11
64

(a) BACTERIA-PB

 0

 500

 1000

 1500

 2000

k=15 k=31

M
em

or
y

(M
B

)

Improved
Original

10
78

16
09

88
7

13
81

(b) BACTERIA-ONT

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

k=17 k=31

M
em

or
y

(M
B

)

Improved
Original

19
97

5

28
39

5

19
29

7
24

73
5

(c) WORM

 0

 10000

 20000

 30000

 40000

 50000

 60000

k=17 k=31

M
em

or
y

(M
B

)

Improved
Original

32
98

4

49
71

3

21
10

2

36
25

8

(d) DROSOPHILA-PB

 0

 10000

 20000

 30000

 40000

 50000

 60000

k=17 k=31

ru
n

ou
t o

f p
hy

si
ca

l m
em

or
y

(6
4

G
B

)

M
em

or
y

(M
B

)

Improved
Original

29
40

4

43
29

5
51

33
4

(e) DROSOPHILA-ONT

Fig. 4: Main memory peak (in Megabytes).

Recall that Flye chooses automatically the correct value
for this threshold, ranging between 2 and 5. More specif-
ically, Flye sets t = 2 for WORM and DROSOPHILA-ONT,
t = 4 for BACTERIA-PB and BACTERIA-ONT, and t = 5
for DROSOPHILA-PB. For this experiment, we hard-coded
the values between 2 and 5. However, we must note that, by
doing this, the assembly obtained can be of a lower quality,
or even Flye may not get an assembly at all.

As explained, our method for the approximate counting
is based on identifying the first bitmap with a 0-bit in the
corresponding entry and changing its value to 1. However,
instead of a sequential scan, our implementation requires
constant time by using bitwise shifts. We compare our
approach with that of the original Flye and also with the
use of a 1-byte counter. We can see the time results for
BACTERIA-PB with k = 15 in Figure 7(a), where a counter
using 1 byte is slightly faster for the approximate counting
step, but requiring much more memory, as shown in Figure
8(a). We can also observe that times for our approach remain
stable, regardless of the value of t, and always below the
times of the original Flye. In addition, there are no signif-
icant differences between using t-bits counters and 1-byte
counters when we take into account the subsequent phases
(exact counting and indexing). In terms of space, we can
see in Figure 8(a) that, during the approximate counting
step, the solution using t bits requires more space when
using a larger t, but not as much as the 1-byte counters.
In fact, the space used for the 1-byte counters only for

the approximate counting is even larger than the space
required by the rest of the phases of our improved version.
Moreover, the 1-byte counters also require more space than
the original solution of Flye for the approximate counting.
In any case, the original Flye requires much more memory
for the following steps. In general, we can see that the global
memory consumption tends to decrease when t grows. This
is due to the fact that if the threshold augments, then fewer
k-mers pass the first filter, and thus this may lead to a
decrease in memory consumption.

In Figures 7(b) and 8(b), we can see the same experiment
for WORM dataset with k = 17. In this case, compact Flye
uses a counter of logd(t−1)e bits. Times for the approximate
counting remain in the same order as using 1-byte counters
when t increases. This is expected, as the only difference
is the use of counters using bits not aligned to bytes, and,
as seen, this does not significantly affect the times. In any
case, our approach is clearly faster than the original method,
between 37–70% for this step. In terms of peak memory con-
sumption, we observe the same pattern as the one described
for the smallest dataset. However, for this dataset, there are
no big differences when t decreases, as the number of k-
mers that pass the first filter remains similar for the different
values of t: there is a reduction only of 12% comparing those
k-mers that pass the filter when t = 2 and t = 5 for WORM,
but 83% reduction for BACTERIA-PB. Thus, we can see that
our approach is not only more efficient in terms of space
and time compared to the original Flye, but also more stable

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

66 Chapter 2. Articles

11

 0

 100

 200

 300

 400

 500

 600

 700

 800

k=15 k=31

T
im

e
(s

)

improved
original

64
7

72
9

15
5 18

8

(a) BACTERIA-PB

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

k=15 k=31

T
im

e
(s

)

Improved
Original

64
3 67

9

56
1 61

2

(b) BACTERIA-ONT

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

k=17 k=31

T
im

e
(s

)

Improved
Original

39
91

1
40

53
9

23
95

0

23
60

1

(c) WORM

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

k=17 k=31

T
im

e
(s

)

Improved
Original11

99
15

12
03

62

21
05

0
28

02
2

(d) DROSOPHILA-PB

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

k=17 k=31

ru
n

ou
t o

f p
hy

si
ca

l m
em

or
y

(6
4

G
B

)

T
im

e
(s

)

Improved
Original

30
36

0 34
74

1

10
97

4

(e) DROSOPHILA-ONT

Fig. 5: Processing time (in seconds).

 1

 10

 100

 1000

Aprox Count Exact Count Indexing Assembly

T
im

e
(s

)
lo

g
sc

al
e

Improved
Original

28
.2

8
34

.3
0

29
.8

9 45
.1

2

35
.1

0
42

.8
8

55
0

58
3

(a) BACTERIA-PB k=15

 1

 10

 100

 1000

Aprox Count Exact Count Indexing Assembly

T
im

e
(s

)
lo

g
sc

al
e

Improved
Original

33
.4

3
37

.0
8

40
.0

1 58
.9

2

48
.1

9
56

.0
8

52
5

50
7

(b) BACTERIA-ONT k=15

 1

 10

 100

 1000

 10000

 100000

Aprox Count Exact Count Indexing Assembly

T
im

e
(s

)
lo

g
sc

al
e

Improved
Original

35
5 52

7 73
5 12

69

12
27

89
0

37
56

2

37
53

9
(c) WORM k=17

 1

 10

 100

 1000

 10000

 100000

Aprox Count Exact Count Indexing Assembly

T
im

e
(s

)
lo

g
sc

al
e

Improved
Original

24
58

27
27

74
62 90

21

74
18

52
34

10
26

25

10
30

67

(d) DROSOPHILA-PB k=17

 1

 10

 100

 1000

 10000

 100000

Aprox Count Exact Count Indexing Assembly

T
im

e
(s

)

Improved
Original

75
8

75
7 17

68
75

03

18
49

12
48

25
18

7

24
83

5

(e) DROSOPHILA-ONT k=17

Fig. 6: Processing time (in seconds with log scale) of the different phases.

when the value of t varies, as the space/time results of the
original Flye are very dependant on the number of k-mers
that pass the first filter.

4.2.4 Energy study

Even though energy was not considered during the design
of our proposal, we also measured the energy consumption
of both tools. It was measured using Perf, which uses the In-
tel RAPL (Running Average Power Limit) energy estimates.
As it can be seen in Figure 9, our proposal obtains reductions
in energy consumption for all datasets, with improvements
of 3–8% when k = 15 or k = 17, and reaching an improve-
ment of 26% in the case of DROSOPHILA-PB when k = 31.

5 DISCUSSION

As seen in the previous section, the improved version has
better memory consumption. Flye allocates considerably
large amounts of new memory when an insertion in the
hash table, which uses a Cuckoo strategy, reaches a given
number of collisions. Therefore, as the input size grows, the
amount of memory needed by Flye grows much faster. With
our approach, when the input datasets are huge, our growth
speed is the same as for small cases. Thus, at the early stages
of the process, the allocated memory grows fast, although
not even close to the original Flye, but in the last stages our
rhythm falls heavily.

In principle, better memory usage yields a more scalable
system. A prove of this is that our improved version suc-

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
ly.

67

12

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

T
im

e
(s

)

approx count
exact count

index

t=5t=4t=3t=2

(a) BACTERIA-PB k=15

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

T
im

e
(s

)

approx count
exact count

index

t=5t=4t=3t=2

(b) WORM k=17

Fig. 7: Processing time (in seconds) of each of the steps
(approximate counting, exact counting, and indexing) when
using different data structures and varying the threshold
value (t) for the approximate counting step.

 0

 500

 1000

 1500

 2000

 2500

 3000

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

t b
its

1
by

te

or
igi

na
l

M
em

or
y

(M
B

)

approx count
global

t=5t=4t=3t=2

(a) BACTERIA-PB k=15

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

log
 t

bit
s

1
by

te

or
igi

na
l

M
em

or
y

(M
B

)

approx count
global

t=5t=4t=3t=2

(b) WORM k=17

Fig. 8: Peak memory consumption for the approximate
counting and the complete process when using different
data structures and varying the threshold value (t) for the
approximate counting step.

cessfully assembled DROSOPHILA-ONT with k = 31 in our
machine of 64 GB, whereas the original Flye was not able.

Moreover, as can be observed in Figure 6, the counting
phases are faster in the new version. Observe that our
enhancements are designed, in principle, to save space.
Indeed, observe that in the approximate counting phase, the
process is the same in both implementations, except that in
our version, we do not use a hash table, but a bitmap. In the
exact count and the indexing, we have an additional cost
due to collisions that are kept in the same entry.

Therefore, why our version is faster? We measured the
different procedures included in the exact count, and the
gain is due to the insertion and update procedure of the
hash table. In BACTERIA-PB, this procedure consumes 11.82
seconds in our version, whereas the original version requires
17.82; in WORM, the new version consumes 663.50 seconds
versus the 1077.43 seconds of the original.

To better determine the origin of this improvement,
we measured the cache references using cachegrind.17 In
BACTERIA-PB, our code made 157 billions references to the
instructions cache, whereas the original one required 192
billions references; in WORM, the new version issued 1,840
billions references versus the 2,733 billions of the original.
Moreover, our version required much fewer accesses to the
data. In BACTERIA-PB, it performed 26 billions references
versus the 44 billions of the original; and in WORM, 287
billions versus 717 billions. This shows that Cuckoo hash
is penalized by the doubling procedures.

6 CONCLUSIONS

We have successfully modified the original Flye software
in order to obtain a more efficient version of the same
software, both in terms of space usage and execution time.
The enhancements are mainly found in the k-mer counting
phase, where we were able to obtain the exact same results
with less memory consumption and even faster.

The improvements in memory consumption are consid-
erable, halving the space required in most cases, and in
the processing time from being on a par up to obtaining
decreases of 25%. More importantly, we are able to assemble
datasets that the original Flye is not able to process. In
addition, as a side effect, our method saves between 3–8% of
energy in general, and up to 26% for one of the experiments.

This implies a more scalable and faster software, which
also requires less energy consumption. These memory-,
time- and energy-efficient approaches will contribute to the
advance of in-field analysis that are now becoming possible
thanks to the advances on portable and real-time DNA
sequencing and the appearance of affordable and portable
handheld devices, such as the Oxford Nanopore’s MinION
and SmidgION.

As future work, we plan to further reduce the space
consumption by counting, selecting and indexing the k-
mers in compressed form in main memory. This is not an
easy task, and traditional compressors cannot be used, as
we must be able to decompress a given k-mer individually.
Moreover, this problem becomes even harder, as it requires
an on-line compression of the k-mers, that is, compressing

17. https://www.valgrind.org/docs/manual/cg-manual.html

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

68 Chapter 2. Articles

13

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

k=15 k=31

E
ne

rg
y

(J
)

Improved
Original

13
10

5 14
21

2

35
76 41

05

(a) BACTERIA-PB

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

k=15 k=31

E
ne

rg
y

(J
)

Improved
Original

13
11

7
13

94
1

11
70

3
11

88
6

(b) BACTERIA-ONT

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

k=17 k=31

E
ne

rg
y

(J
)

Improved
Original

79
79

79
83

56
07

43
75

61

45
36

29

(c) WORM

 0

 500000

 1×106

 1.5×106

 2×106

 2.5×106

 3×106

k=17 k=31

E
ne

rg
y

(J
)

Improved
Original

23
74

58
1

24
81

93
2

73
15

8

99
27

0

(d) DROSOPHILA-PB

 0

 50000

 100000

 150000

 200000

 250000

 300000

k=17 k=31

ru
n

ou
t o

f p
hy

si
ca

l m
em

or
y

(6
4

G
B

)

E
ne

rg
y

(J
)

Improved
Original

15
53

87

16
07

82

26
25

49

(e) DROSOPHILA-ONT

Fig. 9: Energy consumption (in Joules).

them during the traversal of the reads, and without storing
all the k-mers in main memory.

ACKNOWLEDGMENTS

This research has received funding from: the European
Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie [grant agreement No
690941]; CITIC Research Center, funded by “Consellerı́a
de Cultura, Educación e Universidade from Xunta de
Galicia”, supported in an 80% through ERDF Funds,
ERDF Operational Programme Galicia 2014-2020, and the
remaining 20% by “Secretarı́a Xeral de Universidades”
(Grant ED431G 2019/01); Xunta de Galicia/FEDER-UE un-
der Grants [IG240.2020.1.185; IN852A 2018/14] and Min-
isterio de Ciencia e Innovación under Grants [TIN2016-
78011-C4-1-R; PID2019-105221RB-C41; PID2020-114635RB-
I00; FPU17/02742].

REFERENCES

[1] P. Muir, S. Li, S. Lou, D. Wang, D. J. Spakowicz, L. Salichos,
J. Zhang, G. M. Weinstock, F. Isaacs, J. Rozowsky et al., “The real
cost of sequencing: scaling computation to keep pace with data
generation,” Genome biology, vol. 17, no. 1, p. 53, 2016.

[2] A. Sboner, X. J. Mu, D. Greenbaum, R. K. Auerbach, and M. B.
Gerstein, “The real cost of sequencing: higher than you think!”
Genome biology, vol. 12, no. 8, p. 125, 2011.

[3] H. Stevens, Life out of sequence: a data-driven history of bioinformatics.
USA: University of Chicago Press, 2013.

[4] R. Leinonen, H. Sugawara, M. Shumway, and I. N. S. D. Collabo-
ration, “The sequence read archive,” Nucleic acids research, vol. 39,
no. suppl 1, pp. D19–D21, 2010.

[5] Z. D. Stephens, S. Y. Lee, F. Faghri, R. H. Campbell, C. Zhai, M. J.
Efron, R. Iyer, M. C. Schatz, S. Sinha, and G. E. Robinson, “Big
data: Astronomical or genomical?” PLOS Biology, vol. 13, no. 7,
pp. 1–11, 07 2015.

[6] Y. Liu, B. Schmidt, and D. L. Maskell, “Parallelized short read
assembly of large genomes using de bruijn graphs,” BMC Bioinfor-
matics, vol. 12, no. 1, p. 354, 2011.

[7] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and
K. Yelick, “Parallel de bruijn graph construction and traversal
for de novo genome assembly,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’14). IEEE, 2014, pp. 437–448.

[8] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr, C. Aluru,
R. Egan, L. Oliker, D. Rokhsar, and K. Yelick, “Hipmer: An
extreme-scale de novo genome assembler,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’15). ACM, 2015, pp. 14:1–14:11.

[9] J. Meng, B. Wang, Y. Wei, S. Feng, and P. Balaji, “Swap-assembler:
scalable and efficient genome assembly towards thousands of
cores,” BMC Bioinformatics, vol. 15, no. 9, p. S2, 2014.

[10] C. Gamboa-Venegas and E. Meneses, “Comparative analysis of de
bruijn graph parallel genome assemblers,” in 2018 IEEE Interna-
tional Work Conference on Bioinspired Intelligence (IWOBI). IEEE,
2018, pp. 1–8.

[11] D. Kleftogiannis, P. Kalnis, and V. B. Bajic, “Comparing memory-
efficient genome assemblers on stand-alone and cloud infrastruc-
tures,” PloS one, vol. 8, no. 9, p. e75505, 2013.

[12] R. Chikhi, A. Limasset, and P. Medvedev, “Compacting de bruijn
graphs from sequencing data quickly and in low memory,” Bioin-
formatics, vol. 32, no. 12, pp. i201–i208, 2016.

[13] N. R. Brisaboa, R. Cao, J. R. Paramá, and F. Silva-Coira, “Scal-
able processing and autocovariance computation of big functional
data,” Software: Practice and Experience, pp. 123–140, 2018.

[14] H. Plattner and A. Zeier, In-memory data management: technology
and applications. Springer, 2012.

[15] G. Jacobson, “Succinct static data structures,” Ph.D. dissertation,
Carnegie-Mellon University, Pittsburgh, PA, Jan. 1989, tech Rep
CMU-CS-89-112.

[16] G. Navarro, Compact Data Structures – A practical approach. New
York, NY: Cambridge University Press, 2016.

[17] R. González, S. Grabowski, V. Mäkinen, and G. Navarro, “Practical
implementation of rank and select queries,” in Poster Proc. Volume
of 4th Workshop on Efficient and Experimental Algorithms (WEA),
2005, pp. 27–38.

[18] Y. Lin, J. Yuan, M. Kolmogorov, M. W. Shen, M. Chaisson, and
P. A. Pevzner, “Assembly of long error-prone reads using de bruijn
graphs,” Proceedings of the National Academy of Sciences, vol. 113,
no. 52, pp. E8396–E8405, 2016.

[19] M. Kolmogorov, J. Yuan, Y. Lin, and P. A. Pevzner, “Assembly of
long, error-prone reads using repeat graphs,” Nature biotechnology,
vol. 37, no. 5, pp. 540–546, 2019.

[20] A. D. Tyler, L. Mataseje, C. J. Urfano, L. Schmidt, K. S. Antonation,
M. R. Mulvey, and C. R. Corbett, “Evaluation of oxford nanopore’s
minion sequencing device for microbial whole genome sequencing
applications,” Scientific Reports, vol. 8, no. 1, 07 2018, 11907.

[21] L. E. Kafetzopoulou, S. T. Pullan, P. Lemey, M. A. Suchard,
D. U. Ehichioya, M. Pahlmann, A. Thielebein, J. Hinzmann et al.,
“Metagenomic sequencing at the epicenter of the Nigeria 2018
Lassa fever outbreak,” Science, vol. 363, no. 6422, pp. 74–77, 2019.

[22] R. M. Idury and M. S. Waterman, “A new algorithm for dna
sequence assembly,” Journal of Computational Biology, vol. 2, no. 2,
pp. 291–306, 1995, pMID: 7497130.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

69

14

[23] J. D. Kececioglu and E. W. Myers, “Combinatorial algorithms for
dna sequence assembly,” Algorithmica, vol. 13, no. 1, p. 7, Feb 1995.

[24] Z. Li, Y. Chen, D. Mu, J. Yuan, Y. Shi, H. Zhang, J. Gan, N. Li,
X. Hu, B. Liu, B. Yang, and W. Fan, “Comparison of the two major
classes of assembly algorithms: overlap-layout-consensus and de-
bruijn-graph,” Briefings in Functional Genomics, vol. 11, no. 1, pp.
25–37, 2012.

[25] P. A. Pevzner, H. Tang, and M. S. Waterman, “An eulerian path
approach to dna fragment assembly,” Proceedings of the National
Academy of Sciences, vol. 98, no. 17, pp. 9748–9753, 2001.

[26] B. G. Jackson, P. S. Schnable, and S. Aluru, “Parallel short sequence
assembly of transcriptomes,” BMC Bioinformatics, vol. 10, no. 1, p.
S14, 2009.

[27] A. I. Tomescu and P. Medvedev, “Safe and complete contig assem-
bly through omnitigs,” Journal of Computational Biology, vol. 24,
no. 6, pp. 590–602, 2017.

[28] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,
vol. 21, no. suppl 2, pp. ii79–ii85, 2005.

[29] P. A. Pevzner, H. Tang, and G. Tesler, “De novo repeat classification
and fragment assembly,” Genome research, vol. 14, no. 9, pp. 1786–
1796, 2004.

[30] P. Ferragina and G. Manzini, “Indexing compressed text,” J. ACM,
vol. 52, no. 4, p. 552–581, Jul. 2005.

[31] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short dna sequences to the
human genome,” Genome biology, vol. 10, no. 3, p. R25, 2009.

[32] H. Li and R. Durbin, “Fast and accurate short read alignment with
burrows–wheeler transform,” Bioinformatics, vol. 25, no. 14, pp.
1754–1760, 2009.

[33] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and
J. Wang, “Soap2: an improved ultrafast tool for short read align-
ment,” Bioinformatics, vol. 25, no. 15, pp. 1966–1967, 2009.

[34] N. Välimäki and E. Rivals, “Scalable and versatile k-mer indexing
for high-throughput sequencing data,” in Bioinformatics Research
and Applications. Springer Berlin Heidelberg, 2013, pp. 237–248.

[35] K. Sadakane, “New text indexing functionalities of the compressed
suffix arrays,” Journal of Algorithms, vol. 48, no. 2, pp. 294–313,
2003.

[36] F. Claude, A. Fariña, M. Martı́nez Prieto, and G. Navarro,
“Compressed q-gram indexing for highly repetitive biological
sequences,” in Proceedings of the 10th Int. Conf. on Bioinformatics
and Bioengineering (BIBE), 2010, pp. 86–91.

[37] T. C. Conway and A. J. Bromage, “Succinct data structures for
assembling large genomes,” Bioinformatics, vol. 27, no. 4, pp. 479–
486, 01 2011.

[38] A. Bowe, T. Onodera, K. Sadakane, and T. Shibuya, “Succinct de
bruijn graphs,” in Algorithms in Bioinformatics. Springer Berlin
Heidelberg, 2012, pp. 225–235.

[39] R. Chikhi, A. Limasset, S. Jackman, J. T. Simpson, and
P. Medvedev, “On the representation of de bruijn graphs,” in
Research in Computational Molecular Biology, R. Sharan, Ed. Cham:
Springer International Publishing, 2014, pp. 35–55.

[40] E. A. Rødland, “Compact representation of k-mer de bruijn graphs
for genome read assembly,” BMC Bioinformatics, vol. 14, no. 1, p.
313, 2013.

[41] J. He, H. Yan, and T. Suel, “Compact full-text indexing of versioned
document collections,” in Proceedings of the 18th ACM conference on
Information and knowledge management, 2009, pp. 415–424.

[42] J. He, J. Zeng, and T. Suel, “Improved index compression tech-
niques for versioned document collections,” in Proceedings of the
19th ACM international conference on Information and knowledge
management, 2010, pp. 1239–1248.

[43] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Relative lempel-ziv
compression of genomes for large-scale storage and retrieval,” in
Proceedings of the 17th International Symposium on String Processing
and Information Retrieval (SPIRE), 2010, pp. 201–206.

[44] G. Navarro and V. Sepúlveda, “Practical indexing of repetitive
collections using relative lempel-ziv,” in 2019 Data Compression
Conference (DCC), 2019, pp. 201–210.

[45] S. Deorowicz and S. Grabowski, “Robust relative compression of
genomes with random access,” Bioinformatics, vol. 27, no. 21, pp.
2979–2986, 2011.

[46] S. Kreft and G. Navarro, “On compressing and indexing repetitive
sequences,” Theoretical Computer Science, vol. 483, pp. 115–133,
2013.

[47] S. Kuruppu, S. J. Puglisi, and J. Zobel, “Optimized relative lempel-
ziv compression of genomes,” in Proceedings of the 34th Australasian
Computer Science Conference, 2011, pp. 91–98.

[48] T. Gagie, P. Gawrychowski, J. Kärkkäinen, Y. Nekrich, and S. J.
Puglisi, “A faster grammar-based self-index,” in International Con-
ference on Language and Automata Theory and Applications. Springer,
2012, pp. 240–251.

[49] G. Jacobson, “Space-efficient static trees and graphs,” in Proceed-
ings of the IEEE Symposium on Foundations of Computer Science
(FOCS), 1989, pp. 549–554.

[50] Raman, Raman, and Rao, “Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets,” in Proceedings
Symposium on Discrete Algorithms (SODA), 2002.

[51] D. Clark, “Compact pat trees,” Ph.D. dissertation, University of
Waterloo, 1997.

[52] M. Kokot, M. Długosz, and S. Deorowicz, “Kmc 3: counting and
manipulating k-mer statistics,” Bioinformatics, vol. 33, no. 17, pp.
2759–2761, 2017.

[53] G. Rizk, D. Lavenier, and R. Chikhi, “Dsk: k-mer counting with
very low memory usage,” Bioinformatics, vol. 29, no. 5, pp. 652–
653, 2013.

[54] P. Melsted and J. K. Pritchard, “Efficient counting of k-mers in dna
sequences using a bloom filter,” BMC Bioinformatics, vol. 12, no. 1,
p. 333, 2011.

[55] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, p. 422–426, Jul. 1970.

[56] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122 – 144, 2004.

[57] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,”
Bioinformatics, vol. 34, no. 18, pp. 3094–3100, 05 2018.

Borja Freire received his bachelor degree in
Computer Science at the University of A Coruña
in 2016 and master degree in Bioinformatics at
the same university in 2018. He is now a PhD
student of the Doctorate Program in Computer
Science at University of A Coruña, and he has
been awarded a FPU fellowship to complete his
doctorate.

Susana Ladra received the bachelor’s degree in
mathematics from the National Distance Educa-
tion University (UNED), in 2014, and the mas-
ter’s in computer science engineering and the
Ph.D. degree in computer science from the Uni-
versity of A Coruña, in 2007 and 2011, respec-
tively. She is currently an Associate Professor
with the Universidade da Coruña. She is the
Principal Investigator of several national and in-
ternational research projects. She has published
more than 40 articles in various international

journals and conferences. Her research interests include design and
analysis of algorithms and data structures, and data compression and
data mining in the fields of information retrieval and bioinformatics.

José R. Paramá has PhD in computer science
from the University of A Coruña. Since 1997 he
is a professor at the University of A Coruña, and
since 2008, Associate Professor. He has par-
ticipated in more than twenty research projects
funded by European, regional and national ad-
ministrations, and in more than thirty R&D con-
tracts. He is the author of more than thirty sci-
entific publications and more than sixty scientific
conferences.

1545-5963 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

70 Chapter 2. Articles

Appendix A

Resumen del trabajo
realizado

En este capítulo se presenta un resumen del trabajo realizado durante la tesis. En
la sección A.1 se presenta una breve introducción y la motivación para la realización
de esta tesis. Además, se introducen brevemente los temas de trabajo que se han
desarrollado durante la tesis. En la sección A.2 se introducen cada uno de los
algoritmos desarrollados para los distintos problemas tratados. En la sección B.3
se presentan las conclusiones a las que se llegaron tras el desarrollo de la tesis.
Finalmente, este capítulo se cierra con la sección B.4, donde se abordan diferentes
líneas de investigación para mejorar y ampliar en un futuro nuestras contribuciones
aquí expuestas.

A.1 Introducción
Durante los últimos veinte años la biología ha vivido una de sus etapas de máximo
esplendor gracias a la creación de las máquinas de secuenciación. Dichas máquinas
permitieron paralelizar el proceso de obtención de secuencias biológicas produciendo
las conocidas como lecturas de nueva generación, NGS del inglés Next Generation
Sequencing, o lecturas de segunda generación. Como es evidente esto permitiendo
que empezarán a producirse de manera masiva lecturas puesto que era más barato y
rápido que los antiguos métodos de Sanger o de descomposición química. A partir
de disciplinas como las ciencias de computación entraron al procesamiento de estas
secuencias desde múltiples vertientes distintas: algoritmia, inteligencia artificial,
matemáticas, etc. La que inicialmente tuvo mayor aceptación y relevancia puesto
que permitía resolver problemas hasta el momento prácticamente impensables fue
la algoritmia y el reto principal eran los algoritmos de ensamblaje. Dentro de este
campo surgió el interés por ensamblar genomas de organismos procariotas para

71

72 Appendix A. Resumen del trabajo realizado

posteriormente saltar a grandes organismos eucariotas. Hoy día tenemos genomas
ensamblados de prácticamente cualquier especie conocida. Sin embargo, desde el
momento de su instauración ciertos temas se han resistido y no tiene aún hoy una
solución y son problemas abiertos. Algunos de los retos abiertos más populares
en este campo son aquellos que implican algoritmos de ensamblaje múltiple como:
reconstrucción de haplotipos, transcriptómica o meta transcriptómica, entre otros.
Dado que es imposible abarcarlos todos en esta tesis nos hemos centrado en la
reconstrucción de haplotipos, y de manera más precisa en la reconstrucción de
haplotipos víricos. El interés del estudio de haplotipos, y particularmente los víricos,
viene de que los virus están formados íntegramente por información codificante y de
que estos presentan un ratio de mutación superior al resto de organismos. La primera
de las propiedades supone un problema puesto que cualquier mutación afectará a
una proteína funcional bien dejándola igual, mutación silenciosa, o cambiándola,
y por tanto afectando a su función. En el segundo caso puede la mutación puede
acabar con la función de la proteína y por tanto afectar a la supervivencia del virus,
cambio positivo en caso de ser un virus dañino, o por el contrario puede dotar a
dicho virus de mayores niveles de: agresividad, resistencia, replicación, contagio, etc.
Una vez aclarado esto es evidente que si el ratio de mutación es elevado solo agrava
la situación haciendo que la probabilidad de que se incremente alguna propiedad
perniciosa se incremente. Es por esto que es de vital importancia desarrollar métodos
para la reconstrucción lo más precisa posible de los haplotipos contenidos en una
muestra dada. Además, estos métodos deben ser eficientes en tiempo y espacio
aprovechando las características propias de los virus, como es su pequeño tamaño.
Todos los problemas de reconstrucción de haplotipos suelen presentan un escenario
similar y un objetivo parejo. Sin embargo, suelen diferenciarse tanto en las hipótesis
a priori y en las restricciones finales del problema. De manera general el problema se
podría enunciar como: “Dada una muestra o muestras S, que contienen un número de
genomas G desconocidos cada uno de estos con una proporción relativa Pi. Obtener
dichos G y dichas Pi.”. En nuestro caso, como ya se comentó previamente, nos
centramos en la reconstrucción de haplotipos víricos. En este caso las muestras
suelen ser más profundas de lo habituales, es decir se hacen más pasadas por cada
sección del genoma del virus, estas solo contienen el virus y sus variantes, y el
genoma de todos los virus está contenido en dicha muestra. A mayores los niveles de
exigencia suelen ser altos puesto que se pide llevar a niveles de similitud inferiores al
1% e incluso recuperar variantes con proporciones inferiores nuevamente al 1%.

Al margen de las lecturas NGS durante la última década surgió un nuevo tipo
de lecturas de secuenciación conocidas como lecturas de tercera generación, o TGS
por sus siglas en inglés Third Generation Sequencing. A diferencia de las NGS estas
eran mucho más largos y erróneas. Inicialmente supuso un problema puesto que
su alto nivel de errores hacía impracticables la mayoría de soluciones ideadas para
NGS. Sin embargo, su longitud las hacía ideales para el tratamiento de repeticiones
en tándem puesto que son capaces de cubrirlas íntegramente. Estas propiedades

A.2. Objetivos 73

han promovido que durante los últimos años mucha investigación se haya centrado
en la definición de técnicas de corrección de estas lecturas, así como en adaptar
soluciones previas de NGS. En la actualidad, ya contamos con ensambladores de
TGS como Flye, análogo al clásico ensamblador SPAdes de NGS, e incluso están
surgiendo aproximaciones de reconstrucción de haplotipos basados íntegramente en
lecturas de tercera generación.

A.2 Objetivos
Durante esta tesis nos hemos centrado en dos temas fundamentalmente: la
reconstrucción de haplotipos víricos y el ensamblaje de lecturas de tercera generación.
En el primer caso, el objetivo era desarrollar una solución íntegramente basada
en grafos de Bruijn que fuese competitiva en resultados con las aproximaciones
existentes y que conservase las propiedades de estos grafos. En el segundo, nuestro
objetivo era la optimización en tiempo o/y en espacio de los procesos de ensamblaje
de tercera generación. El objetivo último era hacer viable la ejecución de Flye,
ensamblador de tercera generación, en dispositivos de uso personal. En esta sección
se describen brevemente las aportaciones que se hizo en cada uno de estos campos.

A.2.1 Reconstrucción de haplotipos víricos
Al comienzo de la tesis la reconstrucción de haplotipos víricos era un tema cuyas
soluciones estaban todas basadas en el uso de referencias o en el uso de grafos de
solapes. Si bien el uso de referencia está totalmente justificado y es viable en ciertas
ocasiones, no lo es siempre. De hecho, para casos de infecciones largas o donde
la cepa del virus es desconocida las técnicas basadas en referencia sueles producir
sesgos graves en los ensamblajes. Por otro lado, las técnicas basadas en grafos de
solapes si que presentaban buenos resultados. Pero como toda técnica basada en este
tipo de grafos necesitan realizar el alineamiento por pares de todas las lecturas de
secuenciación, y esto en muchos casos es impracticable. Por lo tanto, los resultados
en ese punto o eran imprecisos o eran demasiado lentos. Por lo que una solución
con resultados competitivos en precisión pero que ofreciese un beneficio en tiempo
podría ser útil. A la hora de realizar ensamblajes generales suelen usarse dos tipos
de aproximaciones basadas en grafos: las overlap layout consesus, OLC, o las de
de Bruijn. Las segundas a diferencia de las primeras no escalan con el número de
lecturas sino que típicamente lo hacen con el tamaño del genoma. De modo que
son, casi siempre, varios órdenes de magnitud más rápidos. Sin embargo, a costa de
esta velocidad suelen perder algo de precisión puesto que pasan de trabajar con las
lecturas completas a trabajar con ngrams, conocidos como k-mers. Debido a que
sabíamos de la existencia de este trade-off eficiencia-tiempo decidimos enfocar el
problema de la reconstrucción de haplotipos a través de grafos de de Bruijn. Si bien
existía alguna opción la mayoría no ofrecían resultados comparables a los grafos

74 Appendix A. Resumen del trabajo realizado

de solape y además perdían las propiedades de eficiencia por usar procesamientos
demasiado complejos. Como resultado conseguimos desarrollar dos herramientas
diferentes:

• La primera de las herramientas desarrolladas ha sido viaDBG. viaDBG es la
primera herramienta basada en grafos de De Bruijn competitiva en resultados
con sus análogas basadas en grafos de solape. Sin embargo, frente a estas
presenta que mantiene las propiedades de los grafos de de Bruijn y se presenta
varios órdenes de magnitud más rápida que estas. La idea detrás de viaDBG
sigue la misma línea que las herramientas desarrolladas hasta aquel momento
y era la enumeración de cliques. En la mayoría de aproximaciones esta
enumeración se hacía o sobre el propio grafo de solapes (HaploClique) o
sobre versiones reducidas de este, PeHaplo o SAVAGE, lo que hacía que
dicha enumeración implicase nuevamente un coste alto. Sin embargo, viaDBG
usaba la enumeración de cliques sobre grafos construidos para cada par de
nodos adyacentes a partir de su información de emparejados. Por lo tanto, se
beneficiaba de la bondad de los cliques para la identificación de haplotipos.
Pero no tenía penalización de tamaño pues los grafos que construía eran
típicamente pequeños. A mayores de esto, viaDBG era una herramienta
íntegramente basada en grafos de De Bruijn por lo que su construcción, pulido
y compactación eran muy eficientes. Pese a que viaDBG en líneas generales
funcionaba bien tenía tres problemas importantes:

– Presentaba una fragmentación del ensamblaje en ocasiones mayor que
el resto de herramientas. Esto se puede observar en valores lígeramente
inferiores de la métrica N50. Esto a nivel biológico se traduce en unas
reconstrucciones parciales de los genomas y no en un full-haplotype
reconstruction.

– Era incapaz de realizar estimaciones de las frecuencias relativas de cada
una de las hebras reconstruídas.

– Presentaba un ratio de duplicación más elevado de 2 en alguna ocasión,
lo que sugería que en ocasiones sobreestimaba el número de haplotipos
en la muestra.

• La segunda herramienta desarrollada ha sido ViQUF. Esta originalmente se
pensó como una versión 2.0 de viaDBG puesto que ambas estaban basadas
en grafos de De Bruijn y buscaban resolver el mismo problema. Sin embargo,
ViQUF presentaba finalmente tantas mejoras y cambios respecto a viaDBG
que finalmente decidimos tratarla como una herramienta nueva. Si bien los
objetivos, inputs y grafo inicial son los mismos, la lógica cambia totalmente
con respecto a viaDBG. ViQUF está basado en el grafo de ensamblaje, o
versión compacta del grafo de De Bruijn, por lo que sus nodos no son k-
mers sino unitigs. Esto representó otra complejidad añadida puesto que la

A.2. Objetivos 75

información de emparejados ya no iba asociada a un k-mer sino a un unitig y
casuísticas como que un unitig se emparejase consigo mismo podían ocurrir.
Sin embargo, el mayor cambio vino a la hora de realizar la inferencia de los
haplotipos y estimar las frecuencias relativas de estos. Como recordatorio,
viaDBG se basaba en construir un grafo no dirigido, un grafo de alcance, y
calcular cliques en este para inferir el número de haplotipos. En lugar de esto,
ViQUF construye un DAG, grafo acíclico dirigido, preservando los valores de
abundancias de los nodos y aristas, que previamente ha calculado, traduce
este grafo en una red de flujo (asociando demandas a los nodos, capacidades
y costes a las aristas) calculando apropiadamente las capacidades en función
del grafo original y asociando funciones de coste convexas para asegurar la
resolución lineal. Finalmente, resuelve sobre cada uno de estos DAGs un
problema conocido como el máximo flujo con el mínimo coste y descompone
heurísticamente el flujo calculado en caminos. A diferencia de viaDBG esta
metodología es más formal (mayor inteligibilidad), produce menos caminos
espurios (menor fragmentación), el flujo asignado a un camino sirve de proxy
de su abundancia real y es sustancialmente más rápido. Como resultado
final obtuvimos una herramienta que nuevamente superaba en tiempos a su
predecesora y mejoraba los resultados de viaDBG y competía con las versiones
más modernas de SAVAGE, VG-Flow y Virus-VG.

Es importante remarcar que ambas herramientas viaDBG y ViQUF se basan en
grafos de De Bruijn que previamente en este contexto solo había sido usado de
manera satisfactoria por MLEHaplo. Sin embargo, esta usa el grafo de De Bruijn
como base para generar un conjunto de caminos candidatos. Posteriormente estima
la verosimilitud de este conjunto de caminos candidatos y determina la siguiente
población. Además, MLEHaplo se basa en una búsqueda aleatoria de soluciones a
través de la enumeración de caminos en un grafo. Por tanto, sus tiempos son en la
mayoría de casos superiores a las aproximaciones basadas en grafos de solape. De este
modo podemos decir que viaDBG y ViQUF representan las primeras aproximaciones
competitivas para la reconstrucción de haplotipos víricos basadas íntegramente en
grafos de De Bruijn.

A.2.2 Ensamblaje de tercera generación compacto
Las dos últimas décadas, han supuesto avances increíbles en el campo de la biología
computacional o biotecnología. La aparición de las NGS y posteriormente las TGS
supuso un cambio mayúsculo en como conocer la información genética de los distintos
organismos. De hecho, las técnicas desarrolladas basadas en NGS han permitido
ensamblar cientos de miles de genomas de diferentes virus, bacterias, animales
y humanos a lo largo de estos veinte años. Sin embargo, siempre con las NGS
no eran capaces de resolver ciertas secciones del genoma como son las secciones
repetitivas. Dichas secciones pueden componerse de pequeñas secuencias que se

76 Appendix A. Resumen del trabajo realizado

repiten en tándem, las NGS no pueden capturar secuencias repetitivas muy largas, o
simplemente secuencias repetitivas largas. Como solución a este problema surgieron
las lecturas de tercera generación caracterizadas por una gran longitud y tasa de
errores elevadas. Su longitud las hace ideales para el tratamiento de estas secciones
puesto que una sola lectura puede cubrirlas íntegramente. Desafortunadamente, su
gran tasa de error hace que su manejo sea complejo, y que procesos de corrección
previos sean necesarios.

Originalmente, las técnicas de manejo corrección o guiado de los ensamblajes
basadas en lecturas TGS eran de carácter híbrido mezclando tanto lecturas NGS
y TGS. Sin embargo, esto implicaba que para una muestra dada se tenían que
realizar procesos de secuenciación separados con ambas tecnologías. Esto no era
económicamente rentable puesto que la secuenciación pese a ser más barata que
antaño sigue siendo cara. Además, las lecturas TGS eran inservibles para el
resto de herramientas y técnicas disponibles puesto que estas no contemplaban
las lecturas de tercera generación. Esta entre otras razones ha motivado la aparición
de aproximaciones totalmente basadas en TGS.

En el ensamblaje NGS uno de los ensambladores más populares es SPAdes.
SPAdes es un ensamblador desarrollado en la Universidad de St Petesburgo por
el grupo de algoritmia biotecnológica. SPAdes está basado en el concepto de
assembly graph, basado a su vez en el grafo de de Bruijn, y este presenta múltiples
versiones dependiendo del problema a resolver: metaSPAdes para metagenómica,
rnaSPAdes para transcriptómica, hybridSPAdes para ensamblaje híbrido entre
secuencias NGS y TGS, plasmidSPAdes para el ensamblaje de plásmidos, o por
último biosyntheticSPAdes para la reconstrucción de clusters de genes. Del mismo
laboratorio y bajo la misma supervisión se desarrolló Flye la que hoy es y pretende
ser en el futuro la herramienta principal de procesamiento de lecturas de tercera
generación a nivel mundial. Flye como en el caso de SPAdes está basado en el grafo
de ensamblaje y usa reducciones del grafo similares para a través de un recorrido
finalmente producir el conjunto de contigs óptimo. Sin embargo, SPAdes usa, cuando
es necesario, herramientas de corrección de errores como BayesHammer, IonHammer
para la eliminación de información no genómica. En que en el caso Flye la corrección
de errores no se puede hacer con estas herramientas puesto que no están adaptadas
a TGS. Por tanto, en Flye para la clasificación de información como genómica o no
genómica se han de usar mecanismos ad-hoc. Para resolver esto Flye maneja dos
estructuras de datos conocidas como filtros bloom y cuckoo que hacen un conteo
inexacto y exacto de los k-mers respectivamente. Estas dos estructuras pese a estar
optimizadas requerir de:

• Grandes usos de memoria, por ejemplo la estructura Bloom implementada en
Flye usa siempre 1 o 16Gb de memoria, pero no valores intermedios.

• Escalado no continuo presentando saltos o incrementos, por ejemplo la
estructura cuckoo dobla su tamaño cada vez que un número N de colisiones
ocurren.

A.3. Discusión y conclusiones 77

Nuestro trabajo en Compact-Flye presentamos una solución a ambos problemas.
Presentamos una estructura de datos tipo hash con vectores de bits que permite
reducir el tamaño, hacer que los incrementos de tamaño sean lineales y además
competir en tiempo, llegando incluso a ser sustancialmente más rápidos en casos
de k-mers de tamaños reducidos. Además, evitamos tener que reservar grandes
cantidades de memoria cuando no es necesario. Como resultado final obtuvimos una
herramienta capaz de resolver el ensamblaje de un genoma basándose en lecturas de
tercera generación y que podía ser ejecutado en dispositivos de memoria reducida.

A.3 Discusión y conclusiones

Como se ha podido observar el tema principal de la tesis es el desarrollo de soluciones
a problemas biológicos basándonos en grafos de de Bruijn. Por un lado, se han
desarrollado viaDBG y ViQUF que son las primeras soluciones competitivas a la
reconstrucción de haplotipos víricos basadas íntegramente en grafos de de Bruijn.
Por otro lado, se ha desarrollado Compact-Flye una versión compacta del conocido
ensamblador de secuencias de tercera generación Flye, nuevamente basado en grafos
de de Bruijn.

En el caso de la reconstrucción de haplotipos el objetivo principal era obtener
una versión eficiente en espacio y tiempo que ofreciese unos resultados comparables
a las técnicas que representaban el estado del arte en aquel momento. Para ello nos
basamos en un grafo teórico presentado en 2012 conocido como el grafo de Bruijn
aproximado emparejado. Con estos dos trabajos, viaDBG y ViQUF, no solo hemos
dado una nueva solución al problema de la reconstrucción de haplotipos. Sino que
también hemos demostrado que la inclusión explícita de información de emparejados
en el proceso de ensamblaje, y no como post procesado, es beneficioso. Además,
hemos propuesto e implementado dos opciones de cómo realizar dicha inclusión.
Esto supone un avance importante puesto que se abre la puerta a poder realizar
estos procesos en ensambladores genéricos y apoyar a procesos de resolución de
repeticiones.

En el caso del ensamblaje de tercera generación no hemos propuesto un nuevo
método en ensamblaje o hemos mejorado la precisión de la metodología actual. Sin
embargo, a través del uso ingenioso de estructuras de datos sencillas como hash
y bitvectors ofrecemos una alternativa más rápida y barata al proceso de conteo
de k-mers basado en cuenta inexacta, filtrado, y cuenta exacta. Todo esto, como
se puede observar en los resultados obtenidos, supone que ciertos ensamblajes solo
viables en computadores con cientos de gigas de memoria puedan realizarse en
dispositivos de uso más cotidiano.

78 Appendix A. Resumen del trabajo realizado

A.4 Trabajo futuro
En esta sección proponemos varias consideraciones que pueden ser interesantes para
un futuro de cara a mejorar la precisión y el rendimiento de nuestras contribuciones.
Entre ellas podemos destacar las siguientes líneas de investigación:

• Realizar un benchmarking con datos reales de las aproximaciones publicadas
en la para medir el funcionamiento real de las técnicas en la actualidad. A día
de hoy la mayoría de pruebas se realizar sobre un data set real pero que es
antiguo y en el último año ha empezado a comentarse que es poco fiable dado
que contiene más cosas de las que inicialmente se dijo que tenían.

• A nivel del estudio en grafos de De Bruijn sería necesario estudiar la posibilidad
de reducir los ratios de duplicidad y el número de contigs reportados. Para
eso sería necesario perfeccionar los sistemas de ajuste de flujo entre pares de
nodos adyacentes y que el número de splits reales se ajustase mejor al número
de hebras reales.

• Otra línea de investigación que ha surgido recientemente es la reconstrucción
de haplotipos a través de lecturas de tercera generación. Si bien es un tema
que en la actualidad solamente tiene una aproximación y ha sido publicada
en 2022, ya hemos planteado una nueva aproximación basada en ViQUF y
programación lineal y entera.

• Otro problema identificado surge de que las muestras se toman en instante
t0 = 0 y sin embargo las secuencias se obtienen en un instante t1 = t. Una
posible nueva línea de investigación es estudiar como son los procesos de
difusión y transporte de los virus a lo largo del cuerpo en una infección. Una
posible vía de estudio es adecuar procesos de difusión de contaminantes en un
fluido, incluyendo información estocástica para simular procesos de mutación
y transporte.

Bibliography

[AMO91] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Some
recent advances in network flows. SIAM Review, 33(2):175–219, 1991.

[BARS17] Jasmijn A. Baaijens, Amal Zine El Aabidine, Eric Rivals, and
Alexander Schönhuth. De novo assembly of viral quasispecies using
overlap graphs. Genome Research, 27:835–848, 2017.

[BAT12] Sadakane Kunihiko Bowe Alexander, Onodera Taku and Shibuya
Tetsuo. Succinct de bruijn graphs. WABI 2012, pages 225–235, 2012.

[BCPSC18] Nieves R. Brisaboa, Ricardo Cao, José. R. Paramá, and Fernando
Silva-Coira. Scalable processing and autocovariance computation
of big functional data. Software: Practice and Experience, pages
123–140, 2018.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970.

[BNA+12] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin,
A.S. Kulikov, V.M. Lesin, S.I. Nikolenko, S. Pham, A.D Prjibelski,
A.V. Pyshkin, A.V. Sirotkin, N. Vyahhi, G. Tesler, M.A. Alekseyev,
and P.A. Pevzner. Spades: a new genome assembly algorithm and
its applications to single-cell sequencing. Journal of Computational
Biology, 19(5):455–477, 2012.

[BSS20] Jasmijn A. Baaijens, Leen Stougie, and Alexander Schönhuth. Strain-
aware assembly of genomes from mixed samples using flow variation
graphs. bioRxiv, 2020.

[BVdRK+19] Jasmijn A Baaijens, Bastiaan Van der Roest, Johannes Köster,
Leen Stougie, and Alexander Schönhuth. Full-length de novo
viral quasispecies assembly through variation graph construction.
Bioinformatics, 05 2019. btz443.

79

80 Bibliography

[CB73] Joep Kerboscht Coen Bron. Finding all cliques of an undirected graph.
Communications of the ACM, 16(9), 1973.

[CB11] Thomas C. Conway and Andrew J. Bromage. Succinct data structures
for assembling large genomes. Bioinformatics, 27(4):479–486, 01 2011.

[CCF+21] Sara Castellano, Federica Cestari, Giovanni Faglioni, Elena Tenedini,
Marco Marino, Lucia Artuso, Rossella Manfredini, Mario Luppi,
Tommaso Trenti, and Enrico Tagliafico. ivar, an interpretation-
oriented tool to manage the update and revision of variant annotation
and classification. Genes, 12(3), 2021.

[CFMPN10] F. Claude, A. Fariña, M.A. Martínez Prieto, and G. Navarro.
Compressed q-gram indexing for highly repetitive biological sequences.
In Proceedings of the 10th Int. Conf. on Bioinformatics and
Bioengineering (BIBE), pages 86–91, 2010.

[CK10] Mihai Pop Carl Kingsford, Michael C. Schatz. Assembly complexity
of prokaryotic genomes using short reads. BMC Bioinformatics, 11,
2010.

[Cla97] David Clark. Compact pat trees. PhD thesis, University of Waterloo,
1997.

[CLJ+14] Rayan Chikhi, Antoine Limasset, Shaun Jackman, Jared T. Simpson,
and Paul Medvedev. On the representation of de bruijn graphs. In
Roded Sharan, editor, Research in Computational Molecular Biology,
pages 35–55, Cham, 2014. Springer International Publishing.

[CLM16a] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting
de Bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics, 32(12):i201–i208, 06 2016.

[CLM16b] Rayan Chikhi, Antoine Limasset, and Paul Medvedev. Compacting
de bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics, 32(12):i201–i208, 2016.

[CZS18] Jiao Chen, Yingchao Zhao, and Yanni Sun. De novo haplotype
reconstruction in viral quasispecies using paired-end read guided path
finding. Bioinformatics, 34(17):2927–2935, 2018.

[DF18] Ruofei Du and Zhide Fang. Statistical correction for functional
metagenomic profiling of a microbial community with short ngs
reads. Journal of Applied Statistics, 45(14):2521–2535, 2018. PMID:
30505061.

Bibliography 81

[DG11] Sebastian Deorowicz and Szymon Grabowski. Robust relative
compression of genomes with random access. Bioinformatics,
27(21):2979–2986, 2011.

[DKO+84] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,
Michael R Stonebraker, and David A Wood. Implementation
techniques for main memory database systems. In Proceedings of
the 1984 ACM SIGMOD international conference on management of
data, pages 1–8, 1984.

[DRC+14] Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire
Lemaitre, Pierre Peterlongo, and Dominique Lavenier. GATB: genome
assembly & analysis tool box. Bioinformatics, 30(20):2959–2961, 2014.

[DSH08] Siobain Duffy, Laura A. Shackelton, and Edward C. Holmes. Rates
of evolutionary change in viruses: patterns and determinants. Nature
Reviews Genetics, 9:267–276, 2008.

[DSP12] Esteban Domingo, Julie Sheldon, and Celia Perales. Viral quasispecies
evolution. Microbiology and Molecular Biology Reviews, 76(2):159–216,
2012.

[EGA+20] Anton Eliseev, Keylie M. Gibson, Pavel Avdeyev, Dmitry Novik,
Matthew L. Bendall, Marcos Pérez-Losada, Nikita Alexeev, and
Keith A. Crandall. Evaluation of haplotype callers for next-generation
sequencing of viruses. Infection, Genetics and Evolution, 82:104277,
2020.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements
in algorithmic efficiency for network flow problems. J. ACM,
19(2):248–264, apr 1972.

[FAKM14] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D
Mitzenmacher. Cuckoo filter: Practically better than bloom. In
Proceedings of the 10th ACM International on Conference on emerging
Networking Experiments and Technologies, pages 75–88. ACM, 2014.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.

[FLP21] Borja Freire, Susana Ladra, and Jose R. Parama. Memory-efficient
assembly using flye. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, pages 1–1, 2021.

[FLPS21] Borja Freire, Susana Ladra, Jose Paramá, and Leena Salmela.
Inference of viral quasispecies with a paired de Bruijn graph.
Bioinformatics, 37(4):473–481, 2021.

82 Bibliography

[FLPS22] Borja Freire, Susana Ladra, José R. Paramá, and Leena Salmela.
Viquf: De novo viral quasispecies reconstruction using unitig-based
flow networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, pages 1–13, 2022.

[FM05] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J.
ACM, 52(4):552–581, July 2005.

[GBC+14] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid Oliker,
Daniel Rokhsar, and Katherine Yelick. Parallel de bruijn graph
construction and traversal for de novo genome assembly. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’14), pages 437–448. IEEE,
2014.

[GBC+15] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Steven Hofmeyr,
Chaitanya Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and
Katherine Yelick. Hipmer: An extreme-scale de novo genome
assembler. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’15),
pages 14:1–14:11. ACM, 2015.

[GGK+12] Travis Gagie, Paweł Gawrychowski, Juha Kärkkäinen, Yakov Nekrich,
and Simon J Puglisi. A faster grammar-based self-index. In
International Conference on Language and Automata Theory and
Applications, pages 240–251. Springer, 2012.

[GGMN05] Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo
Navarro. Practical implementation of rank and select queries. In
Poster Proc. Volume of 4th Workshop on Efficient and Experimental
Algorithms (WEA), pages 27–38, 2005.

[GTR+14] F. Di Giallonardo, A. Töpfer, M. Rey, S. Prabhakaran, Y. Duport,
C. Leemann C, S. Schmutz, N. K. Campbell, B. Joos, M. R. Lecca,
A. Patrignani, M. Däumler, C. Beisel, P. Rusert, A. Trkola, H. F.
Günthard, V. Roth, N. Beerenwinkel, and K. J. Metzner. Full-length
haplotype reconstruction to infer the structure of heterogeneous virus
populations. Nucleic Acids Res, 42(14):e115, 2014.

[GVM18] Carlos Gamboa-Venegas and Esteban Meneses. Comparative analysis
of de bruijn graph parallel genome assemblers. In 2018 IEEE
International Work Conference on Bioinspired Intelligence (IWOBI),
pages 1–8. IEEE, 2018.

[Heo21] Yun Heo. Comprehensive evaluation of error-correction methodologies
for genome sequencing data. Bioinformatics, 2021.

Bibliography 83

[HYS09] Jinru He, Hao Yan, and Torsten Suel. Compact full-text indexing
of versioned document collections. In Proceedings of the 18th ACM
conference on Information and knowledge management, pages 415–424,
2009.

[HZS10] Jinru He, Junyuan Zeng, and Torsten Suel. Improved index
compression techniques for versioned document collections. In
Proceedings of the 19th ACM international conference on Information
and knowledge management, pages 1239–1248, 2010.

[IW95] Ramana M. Idury and Michael S. Waterman. A new algorithm for dna
sequence assembly. Journal of Computational Biology, 2(2):291–306,
1995. PMID: 7497130.

[Jac89a] G. Jacobson. Space-efficient static trees and graphs. In Proceedings of
the IEEE Symposium on Foundations of Computer Science (FOCS),
pages 549–554, 1989.

[Jac89b] Guy Jacobson. Succinct Static Data Structures. PhD thesis, Carnegie-
Mellon University, Pittsburgh, PA, January 1989. Tech Rep CMU-
CS-89-112.

[Jon90] M.C. Jones. The performance of kernel density functions in kernel
distribution function estimation. Statistics & Probability Letters,
9(2):129 – 132, 1990.

[JSM+15] Duleepa Jayasundara, I. Saeed, Suhinthan Maheswararajah, B.C.
Chang, S.-L. Tang, and Saman K. Halgamuge. Viquas: an improved
reconstruction pipeline for viral quasispecies spectra generated by
next-generation sequencing. Bioinformatics, 31(6):886–896, 2015.

[JYP88] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou.
On generating all maximal independent sets. Information Processing
Letters, 27(3):119 – 123, 1988.

[KDD17] Marek Kokot, Maciej Dlugosz, and Sebastian Deorowicz. Kmc
3: counting and manipulating k-mer statistics. Bioinformatics,
33(17):2759–2761, 2017.

[KKB13] Dimitrios Kleftogiannis, Panos Kalnis, and Vladimir B Bajic.
Comparing memory-efficient genome assemblers on stand-alone and
cloud infrastructures. PloS one, 8(9):e75505, 2013.

[KM16] Anna Kuosmanen and Veli Mäkinen. Evaluating approaches to find
exon chains based on long reads. bioRxiv, 2016.

84 Bibliography

[KN13] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing
repetitive sequences. Theoretical Computer Science, 483:115–133,
2013.

[KPL+19] L. E. Kafetzopoulou, S. T. Pullan, P. Lemey, M. A. Suchard,
D. U. Ehichioya, M. Pahlmann, A. Thielebein, J. Hinzmann, et al.
Metagenomic sequencing at the epicenter of the Nigeria 2018 Lassa
fever outbreak. Science, 363(6422):74–77, 2019.

[KPZ10] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Relative lempel-
ziv compression of genomes for large-scale storage and retrieval. In
Proceedings of the 17th International Symposium on String Processing
and Information Retrieval (SPIRE), pages 201–206, 2010.

[KPZ11] Shanika Kuruppu, Simon J Puglisi, and Justin Zobel. Optimized
relative lempel-ziv compression of genomes. In Proceedings of the 34th
Australasian Computer Science Conference, pages 91–98, 2011.

[KTM+19] Sergey Knyazev, Viachaslau Tsyvina, Andrew Melnyk, Alexander
Artyomenko, Tatiana Malygina, Yuri B. Porozov, Ellsworth Campbell,
William M. Switzer, Pavel Skums, and Alex Zelikovsky. CliqueSNV:
scalable reconstruction of intra-host viral populations from ngs reads.
bioRxiv, 2019.

[KYLP19] Mikhail Kolmogorov, Jeffrey Yuan, Yu Lin, and Pavel A Pevzner.
Assembly of long, error-prone reads using repeat graphs. Nature
biotechnology, 37(5):540–546, 2019.

[LD09] Heng Li and Richard Durbin. Fast and accurate short read alignment
with burrows–wheeler transform. Bioinformatics, 25(14):1754–1760,
2009.

[LD10] H. Li and R. Durbin. Fast and accurate long-read alignment with
burrows-wheeler transform. Bioinformatics, 26(5):589–595, 2010.

[Li18] Heng Li. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094–3100, 05 2018.

[LSM11] Yongchao Liu, Bertil Schmidt, and Douglas L Maskell. Parallelized
short read assembly of large genomes using de bruijn graphs. BMC
Bioinformatics, 12(1):354, 2011.

[LSSC10] Rasko Leinonen, Hideaki Sugawara, Martin Shumway, and
International Nucleotide Sequence Database Collaboration. The
sequence read archive. Nucleic acids research, 39(suppl_1):D19–D21,
2010.

Bibliography 85

[LTPS09] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg.
Ultrafast and memory-efficient alignment of short dna sequences to
the human genome. Genome biology, 10(3):R25, 2009.

[LYK+16] Yu Lin, Jeffrey Yuan, Mikhail Kolmogorov, Max W. Shen, Mark
Chaisson, and Pavel A. Pevzner. Assembly of long error-prone reads
using de bruijn graphs. Proceedings of the National Academy of
Sciences, 113(52):E8396–E8405, 2016.

[LYL+09] Ruiqiang Li, Chang Yu, Yingrui Li, Tak-Wah Lam, Siu-Ming Yiu,
Karsten Kristiansen, and Jun Wang. Soap2: an improved ultrafast
tool for short read alignment. Bioinformatics, 25(15):1966–1967, 2009.

[Man99] Giovanni Manzini. The Burrows-Wheeler Transform: Theory and
Practice. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[MGMB07] Paul Medvedev, Konstantinos Georgiou, Gene Myers, and Michael
Brudno. Computability of Models for Sequence Assembly. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2007.

[MLL+16] Paul Muir, Shantao Li, Shaoke Lou, Daifeng Wang, Daniel J
Spakowicz, Leonidas Salichos, Jing Zhang, George M Weinstock,
Farren Isaacs, Joel Rozowsky, et al. The real cost of sequencing:
scaling computation to keep pace with data generation. Genome
biology, 17(1):53, 2016.

[MP11] Pall Melsted and Jonathan K Pritchard. Efficient counting of k-mers
in dna sequences using a bloom filter. BMC Bioinformatics, 12(1):333,
2011.

[MPC+11] Paul Medvedev, Son Pham, Mark Chaisson, Glenn Tesler, and
Pavel Pevzner. Paired de Bruijn graphs: a novel approach for
incorporating mate pair information into genome assemblers. Journal
of Computational Biology, 18(11):1625–1634, 2011.

[MRCWM18] Niema Moshiri, Manon Ragonnet-Cronin, Joel O Wertheim, and
Siavash Mirarab. FAVITES: simultaneous simulation of transmission
networks, phylogenetic trees and sequences. Bioinformatics,
35(11):1852–1861, 11 2018.

[MS18] Swati C Manekar and Shailesh R Sathe. A benchmark study of k-mer
counting methods for high-throughput sequencing. GigaScience, 7(12),
10 2018. giy125.

[MSG16] A. Mikheenko, V. Saveliev, and A. Gurevich. MetaQUAST: evaluation
of metagenome assemblies. Bioinformatics, 32(7):1088–1090, 2016.

86 Bibliography

[MWR+15] Raunaq Malhotra, Manjarl Mukhopadhyay Steven Wu, Allen Rodrigo,
Mary Poss, and Raj Acharya. Maximum likelihood de novo
reconstruction of viral populations using paired end sequencing data.
arXiv e-prints, page arXiv:1502.04239, 2015.

[MWW+14] Jintao Meng, Bingqiang Wang, Yanjie Wei, Shengzhong Feng, and
Pavan Balaji. Swap-assembler: scalable and efficient genome assembly
towards thousands of cores. BMC Bioinformatics, 15(9):S2, 2014.

[Mye05] Eugene W. Myers. The fragment assembly string graph.
Bioinformatics, 21(suppl_2):ii79–ii85, 2005.

[Nav16] Gonzalo Navarro. Compact Data Structures – A practical approach.
Cambridge University Press, New York, NY, 2016.

[NB15] Moritz Gerstung Niko Beerenwinkel, Roland F Schwarz. Cancer
evolution: mathematical models and computational inference. System
biology, 2015.

[Niu04] Tianhua Niu. Algorithms for inferring haplotypes. Genetic
Epidemiology, 2004.

[NMKP17] S. Nurk, D. Meleshko, A. Korobeynikov, and P.A. Pevzner.
metaspades: a new versatile metagenomic assembler. Genome
Research, 27:824–834, 2017.

[Now06] Martin A. Nowak. Five rules for the evolution of cooperation. Science,
314(5805):1560–1563, 2006.

[NP16] Nelson Vera Nelson Pérez, Miguel Gutierrez. Computational
performance assessment of k-mer counting algorithms. Journal of
Computational Biology, 34(4), 2016.

[NS19] G. Navarro and V. Sepúlveda. Practical indexing of repetitive
collections using relative lempel-ziv. In 2019 Data Compression
Conference (DCC), pages 201–210, 2019.

[OAM93] James B. Orlin, Ravindra K. Ahuja, and Thomas L. Magnanti.
Network Flows: Theory, Algorithms, and Applications. Prestice Hall,
1993.

[PCSB17] Susana Posada-Cespedes, David Seifert, and Niko Beerenwinkel.
Recent advances in inferring viral diversity from high-throughput
sequencing data. Virus Research, 239:17–32, 2017.

Bibliography 87

[Pla09] Hasso Plattner. A common database approach for oltp and olap using
an in-memory column database. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of data, pages
1–2, 2009.

[PM11] Jonathan K. Pritchard Pall Melsted. Inference of viral quasispecies
with a paired de Bruijn graph. BMC Bioinformatics, 12(-):473–481,
2011.

[PPG+15] Bharath Pattabiraman, Md. Mostofa Ali Patwary, Assefaw H.
Gebremedhin, Wei keng Liao, and Alok Choudhary. Fast algorithms
for the maximum clique problem on massive graphs with applications
to overlapping community detection. Internet Mathematics, 11(4–
5):421–448, 2015.

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal
of Algorithms, 51(2):122 – 144, 2004.

[PRZ+10] S. Prabhakaran, M. Rey, O. Zagordi, N. Beerenwinkel, and V. Roth.
Hiv haplotype inference using a constraint-based dirichlet process
mixture model. In NIPS Workshop on Machine Learning in
Computational Biology, 2010.

[PTT04] Paul A Pevzner, Haixu Tang, and Glenn Tesler. De novo repeat
classification and fragment assembly. Genome research, 14(9):1786–
1796, 2004.

[PTW01] Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An eulerian
path approach to dna fragment assembly. Proceedings of the National
Academy of Sciences, 98(17):9748–9753, 2001.

[PZ12] Hasso Plattner and Alexander Zeier. In-memory data management:
technology and applications. Springer, 2012.

[RLC13a] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. DSK: k-mer
counting with very low memory usage. Bioinformatics, 29(5):652–653,
2013.

[RLC13b] Guillaume Rizk, Dominique Lavenier, and Rayan Chikhi. Dsk: k-mer
counting with very low memory usage. Bioinformatics, 29(5):652–653,
2013.

[Rød13] Einar Andreas Rødland. Compact representation of k-mer de bruijn
graphs for genome read assembly. BMC Bioinformatics, 14(1):313,
2013.

88 Bibliography

[RRR02] Raman, Raman, and Rao. Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In Proceedings
Symposium on Discrete Algorithms (SODA), 2002.

[Sad03] Kunihiko Sadakane. New text indexing functionalities of the
compressed suffix arrays. Journal of Algorithms, 48(2):294–313, 2003.

[SB15] Dan Nettleton Sam Benidt. SimSeq: a nonparametric approach to
simulation of RNA-sequence datasets. Bioinformatics, 31(13):2131–
2140, 2015.

[SLF+15] Zachary D. Stephens, Skylar Y. Lee, Faraz Faghri, Roy H. Campbell,
Chengxiang Zhai, Miles J. Efron, Ravishankar Iyer, Michael C. Schatz,
Saurabh Sinha, and Gene E. Robinson. Big data: Astronomical or
genomical? PLOS Biology, 13(7):1–11, 07 2015.

[SMG+11] Andrea Sboner, Xinmeng Jasmine Mu, Dov Greenbaum, Raymond K
Auerbach, and Mark B Gerstein. The real cost of sequencing: higher
than you think! Genome biology, 12(8):125, 2011.

[SN21] Nicholas Stoler and Anton Nekrutenko. Sequencing error profiles of
Illumina sequencing instruments. NAR Genomics and Bioinformatics,
3(1), 03 2021.

[SR14] L. Salmela and E. Rivals. LoRDEC: accurate and efficient long read
error correction. Bioinformatics, 30(24):3506–3514, 2014.

[Ste13] Hallam Stevens. Life out of sequence: a data-driven history of
bioinformatics. University of Chicago Press, USA, 2013.

[TKRM13] Alexandru I. Tomescu, Anna Kuosmanen, Romeo Rizzi, and Veli
Mäkinen. A novel min-cost flow method for estimating transcript
expression with RNA-Seq. BMC Bioinformatics, 14:S15, 2013.

[TM17] Alexandru I. Tomescu and Paul Medvedev. Safe and complete
contig assembly through omnitigs. Journal of Computational Biology,
24(6):590–602, 2017. PMID: 27749096.

[TMB+14] Armin Töpfer, Tobias Marschall, Rowena A. Bull, Fabio Luciani,
Alexander Schönhuth, and Niko Beerenwinkel. Viral quasispecies
assembly via maximal clique enumeration. PLOS Computational
Biology, 10(3):e1003515, 2014.

[TMCB15] Alexandru Tomescu, Veli Mäkinen, Fabio Cunial, and Djamal
Belazzougui. Genome-Scale Algorithm Design. Cambridge University
Press; Illustrated edition, 2015.

Bibliography 89

[TMU+18] Andrea D. Tyler, Laura Mataseje, Chantel J. Urfano, Lisa Schmidt,
Kym S. Antonation, Michael R. Mulvey, and Cindi R. Corbett.
Evaluation of oxford nanopore’s minion sequencing device for
microbial whole genome sequencing applications. Scientific Reports,
8(1), 07 2018. 11907.

[TTT06] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case
time complexity for generating all maximal cliques and computational
experiments. Theoretical Computer Science, 363(1):28 – 42, 2006.
Computing and Combinatorics.

[VR13] Niko Välimäki and Eric Rivals. Scalable and versatile k-mer indexing
for high-throughput sequencing data. In Bioinformatics Research and
Applications, pages 237–248. Springer Berlin Heidelberg, 2013.

[WAB+12] Andreas Wilm, Pauline Poh Kim Aw, Denis Bertrand, Grace
Hui Ting Yeo, Swee Hoe Ong, Chang Hua Wong, Chiea Chuen Khor,
Rosemary Petric, Martin Lloyd Hibberd, and Niranjan Nagarajan.
LoFreq: a sequence-quality aware, ultra-sensitive variant caller
for uncovering cell-population heterogeneity from high-throughput
sequencing datasets. Nucleic Acids Research, 40(22):11189–11201, 10
2012.

[WH15] Qinghua Wu and Jin-Kao Hao. A review on algorithms for
maximum clique problems. European Journal of Operational Research,
242(3):693–709, 2015.

[WL22] Mumey B. Williams L, Tomescu AII. Flow decomposition with
subpath constraints. IEEE/ACM Trans Comput Biol Bioinform,
2022.

[ZBEB11] Osvaldo Zagordi, Arnab Bhattacharya, Nicholas Eriksson, and Niko
Beerenwinkel. Shorah: estimating the genetic diversity of a mixed
sample from next-generation sequencing data. BMC Bioinformatics,
12:119, 2011.

[ZO12] Beisel C Zagordi O, Däumer M. Read length versus depth of coverage
for viral quasispecies reconstruction. PLoS ONE, 2012.

	Introduction
	Biological background
	Genome, DNA, RNA and genetic variation
	Genome sequencing
	Haplotype reconstruction

	Objectives
	Viral haplotype reconstruction
	viaDBG
	ViQUF

	Improving third-generating sequencing assembly

	Discussion and conclusions
	Articles published during the thesis span
	Projects not published yet

	Articles
	Inference of viral quasispecies with a paired de Bruijn graph
	ViQUF: de novo Viral Quasispecies reconstruction using Unitig-based Flow networks
	Memory-Efficient Assembly using Flye

	Resumen del trabajo realizado
	Introducción
	Objetivos
	Reconstrucción de haplotipos víricos
	Ensamblaje de tercera generación compacto

	Discusión y conclusiones
	Trabajo futuro

	Bibliography

