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Abstract: This paper deals with new methods capable of solving the optimization problem con-
cerning the allocation of DNA samples in plates in order to carry out the DNA sequencing with
the Sanger technique. These methods make it possible to work with independent subproblems of
lower complexity, obtaining solutions of good quality while maintaining a competitive time cost.
They are compared with the ones introduced in the literature, obtaining interesting results. All the
comparisons among the methods in the literature and the laboratory results have been made with
real data.
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1. Introduction

Currently, digital transformation, which consists of initiatives to explore the benefits
of using modern digital technology, has had a substantial impact on many fields. Digital
transformation may affect processes and products and may be applied to organizational
structures across a company. Different strategies and potential impacts of digital transfor-
mation have been analysed in [1]. In [2,3] reviews regarding different approaches used
to implement digital transformation and how those approaches affect companies have
been made.

In particular, the healthcare and clinical sector have also been greatly affected by
digital transformation. For example, Ref. [4] presented a review on how adopting of
modern technologies may impact the performances of healthcare related businesses.

The rise of digital transformation and its adoption has created a situation where
competition between different laboratories is intense; labs seek ways to offer the best
services to their clients, by reducing operating costs, queues and waiting times. For
example, an optimization problem for laboratory staff assignment was developed in [5],
and an appointment scheduling problem was studied in [6].

This is the context in which Health in Code (Health in Code: https://www.healthincode.
com, accessed on 16 November 2022) operates. Health in Code is a company specialized in
cardiovascular genetics, by conducting multiple studies for the detection and prevention
of genetic diseases and other pathologies. To carry out these experiments, it is necessary
to extract the DNA (abbreviation of deoxyribonucleic acid) of the patients from samples
of tissue, saliva, blood, etc. Once the DNA sample has been extracted, it will be treated to
sequence the fragment of the DNA sample of interest for the corresponding study. The
chosen fragment may depend on what future pathologies should be detected in the patient.

DNA sequencing is the process that is used to determine the order of the four nu-
cleotides, namely, Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), that make
up the DNA molecule. This procedure was considered in the Sanger method [7]. The
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method, which is also referred to as dideoxynucleotide sequencing and chain termination
sequencing, consists of the following steps:

• DNA extraction (from samples of tissue, saliva, blood, etc.) and dilution treatment;
• Polymerase chain reaction (PCR): an effective process for replicating segments of DNA;
• PCR product purification: to remove elements that are used in the PCR process to

obtain high-quality DNA samples for sequencing;
• DNA sequencing: to sort the DNA fragments by size in a sequencing machine so that

the original piece of DNA can be decoded.

Although all these steps are essential in the Sanger method, this paper focuses on
the PCR technique (Kary B. Mullis: https://www.mayoclinicproceedings.org/article/S0
025-6196(11)62225-8/fulltext, accessed on 16 November 2022). The polymerase chain
reaction is a method for amplifying DNA to generate millions of copies of one or several
pieces of DNA. To perform this reaction, the DNA samples accompanied by chemical
reagents are deposited into PCR plates. Then, the plates are placed into thermocyclers (A
thermocycler, which is also known as a thermal cycler, is a laboratory machine that allows
several temperatures to be set in a block of a plate), which heat the wells up to the reaction
temperature of the chemicals. It should be noted that, depending on the DNA fragment to
be replicated, the samples must be mixed with a specific reagent and processed at a certain
temperature. Moreover, the temperature at which the samples will be processed will also
play a key role in determining the position of the samples into the plates.

Laboratories usually employ generic management software, known as LIMS (Labo-
ratory Information Management System), that allows large portions of laboratory tasks
to be automated, improving their efficiency. However, in such a specific scenario as the
one faced by Health in Code, where many different experiments are being performed,
commercial software often suffers from performance issues. In addition, processing
each plate is costly both in time and money (up to several thousand euros [PCR Prices:
https://sct.uab.cat/genomica-bioinformatica/en/content/prices, accessed on 16 Novem-
ber 2022]). Thus, applying the correct techniques when organizing the experiments, namely,
allocating the samples in the PCR plates, could result in substantial savings for the company,
allowing it to become more competitive and more attractive to the market.

To solve the DNA-sample allocation problem, Ref. [8] proposed methods capable of
greatly improving the behaviour of commercial software. As far as we know, no other
framework has addressed this topic. Notice that this problem could remind us of the bin
packing problems studied in [9,10] and, in particular, the bin packing with fragmentable
items introduced by [11]. However, although in the DNA-sample allocation problem
the samples must be packed in the plates, the specific constraints such as the different
temperature ranges and the presence of control reagents make not possible to apply the
different techniques of bin packing to solve these problems.

Thus, to organize adequately DNA samples in the PCR plates, Ref. [8] developed
an integer linear programming model. Since the model could only be solved for small
instances, they designed a heuristic based on the simulated annealing technique to deal
with bigger instances. Due to the success of the heuristic algorithm, it was implemented in
the laboratory, becoming part of a custom LIMS software application developed to meet the
specific needs of Health in Code, known as nextLIMS (nextLIMS: https://www.nextlims.
com/, accessed on 16 November 2022).

However, even though the method in [8] meets the laboratory requirements, there is
room for improvement. So, in this paper new methods to achieve this goal are studied.
These methods take advantage of the internal structure of the problem to find new ways
of breaking it down, minimizing the complexity of the problems to be solved. They are
called two-stage methods, since in the first stage the problems will be solved for each
temperature separately. The second stage considers the solutions of the subproblems from
the first stage to find a global solution to the original problem. In accordance with this
philosophy, two approaches have been proposed: the first one is based on solving an integer
linear programming model at each stage and the second combines a heuristic algorithm
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at the first stage with the integer linear programming model to find the solutions at the
second stage. The new methods allow to obtain better results at a lower computational cost.
In addition, since in the first stage several subproblems can be solved separately, different
multicore implementation techniques can be applied to reduce the computational times.
In this framework, it is shown the utility of several multicore techniques. Thus, new use
cases could be addressed, such as long term assignments (e.g., weekly or even monthly
scheduling).

The remainder of the paper is structured as follows: Section 2 introduces the problem,
accompanied by a revision to the methods presented in [8]. Section 3 provides the details of
the developed methods, which constitute the main contribution of this work. The achieved
results are presented in Section 4, and Section 5 concludes the paper.

2. The Problem

The problem addressed in this article was previously defined and studied in [8].
In summary, the goal is to arrange a set of DNA samples accompanied by a chemical
reagent on laboratory plates in the best possible way. Each well of the plate is filled with
a mixture of a DNA sample and a chemical reagent and the plate is then placed in the
thermocycler, which heats each of the wells so that the chemicals react. Both the chemical
reagent and the processing temperature depend on the fragment of the DNA sample to
be sequenced. To understand the choice of different temperatures and chemical reagents
for the DNA samples, let us suppose that the laboratory is interested in studying the risk
of genetic diseases, for instance. Thus, the laboratory must determine, using the DNA
samples of the clients, whether the clients will develop a particular disease. However, since
the disease will be detected by evaluating a specified region of DNA, the DNA sample
will be mixed with a reagent and processed at the necessary temperature for amplifying
this region.

The plates used are of standard size, with 96 wells distributed in 8 rows and 12 columns.
However, it should be noted that a thermocycler is not able to set a different temperature
for each well; instead, its operation is based on splitting the plates into strips, groupings of
8 rows by 2 columns of wells and setting the temperature of each of these strips. This means
that the user must avoid placing chemicals that react at different temperatures in the same
strip. Another important detail to take into account is that the difference in temperature
between two consecutive strips cannot exceed 5 degrees centigrade due to the operation of
the thermalcyclers. Notice that, although the strips in a plate must satisfy these temperature
conditions, the temperature in the strips is not fixed, but rather is selected by the user.

It is common to perform the same test on multiple DNA samples, where each sample
is mixed with the same reagent; such a set of samples is known as a group. Finally, to
ensure that each experiment is performed correctly, it is necessary to reserve a well for one
control reagent for each group present on a plate.

Since plate processing is costly in both time and money, the objectives originally
defined involve minimizing the number of plates needed (first objective) and keeping the
groups together, thus minimizing the total number of occupied wells (second objective).
Finally, it involves maximizing the plates occupation rate (third objective). Thus, a solution
for the problem indicates where the DNA samples and the corresponding reagents should
be placed and it is evaluated by means of the objective functions, that is, the number of
occupied plates, the number of occupied cells and the occupation percentage of each plate.

Figure 1 shows an example of a plate as used in the laboratory. In addition to the
physical division of the plates into rows and columns, the strips defined by the thermal
cycler are marked. Each coloured cell represents a well occupied by a DNA sample, and
each of the different colours represents a different group. In addition, the control reagent
for each group is always placed first (represented by the wells containing circles). Thus,
this plate is composed of 7 groups (indicated by the control reagent at the first cell of each
group). The first group is represented by the blue colour and is formed by 11 DNA samples
mixed with the reagent and another occupied cell with the control reagent. The cells in



Mathematics 2022, 10, 4359 4 of 31

the first strip will be processed at 50 degrees centigrade. In the second and third strip
the samples of three different groups can be found (represented by the yellow, the orange
and the brown colour). All of them will be processed at the same temperature, 52 degrees
centigrade, although the reagents of the groups are different. Notice that the difference
between consecutive strips is not greater than 5 degrees centigrade. Moreover, the total
number of occupied cells is 74 and the occupation percentage of the plate is 77.08%.

OA
B
C
D
E
F
G
H

1 2
O

O

3 4

O

5 6
O

O

7 8 9 10
O
11 12

T: 50 ºC T: 52 ºC T: 52 ºC T: 53 ºC T: 53 ºC T: 57 ºC

Figure 1. Example of a plate as used in the lab.

2.1. Integer Linear Programming Model

To solve this problem, Ref. [8] proposed an Integer Linear Programming (ILP) model
capable of tackling the problem in its entirety, dealing with all the constraints on the
presence of control reagents and the difference in temperature between strips.

That ILP model was implemented and tested in this paper; however, the original
constraints have been adapted to include another interesting feature of the problem that
was not previously considered. The model now allows empty strips to be inserted into a
plate when the difference between adjacent temperatures is greater than 5 ◦C (for instance,
if the difference between two adjacent temperatures is 6 ◦C, now is possible to add an empty
strip between the strips of both temperatures). This can help to improve the solutions
provided by the original model. Throughout this work, it will be referred to as ILP1 and it
is presented below.

The model parameters consider the distribution of the set of groups, {1, . . . , n}, where
Ni represents the number of samples that make up the i-th group. In addition, each group is
defined by its reaction temperature, Ti. Since different groups may share the same reaction
temperature, it will be introduced the subset of distinct temperatures {T1, . . . , Tm} ⊆
{T1, . . . , Tn} with index j. It is also important to know the maximum temperature value
present in the problem, Tmax. Finally, the samples must be placed on a set of plates
{1, . . . , p}, where each plate, indexed by q, has been assigned the weight wq.

The variables consider each strip l ∈ {1, . . . , 6 · p}. For each strip, a temperature tl
must be selected, as well as the number of samples in each group, nil . In addition, it is
necessary to know whether the control reagent for a group is present in the strip, which
is reflected by using the binary variable xil . Finally, it is necessary to know whether each
strip l has been assigned the temperature T j, which also uses a binary variable, yjl . The
ILP1 model is as follows:

min z =
n

∑
i=1

p

∑
q=1

wq

6·q

∑
l=6·(q−1)+1

(nil + xil) (1)

subject to:

6·p

∑
l=1

nil = Ni, ∀i ∈ {1, . . . , n} (2)

n

∑
i=1

(nil + xil) ≤ 16, ∀l ∈ {1, . . . , 6 · p} (3)
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m

∑
j=1

yjl · T j = tl , ∀l ∈ {1, . . . , 6 · p} (4)

m

∑
j=1

yjl ≤ 1, ∀l ∈ {1, . . . , 6 · p} (5)

yjl ≥
∑

i:Ti=T j

nil

n

∑
i=1

Ni

, ∀l ∈ {1, . . . , 6 · p},

∀j ∈ {1, . . . , m} (6)

nil − xil ≥ 0, ∀l ∈ {1, . . . , 6 · p},
∀i ∈ {1, . . . , n} (7)

6·q

∑
l′=6·(q−1)+1

Ni · xil′ − nil ≥ 0, ∀i ∈ {1, . . . , n},

∀l ∈ {6 · (q− 1) + 1, . . . , 6 · q},
∀q ∈ {1, . . . , p} (8)

6·q

∑
l=6·(q−1)+1

xil ≤ 1, ∀i ∈ {1, . . . , n}, ∀q ∈ {1, . . . , p} (9)

tl + tl+k ≤ 5k + Tmax(2−
m

∑
j=1

yjl −
m

∑
j=1

yjl+k) (10)

∀k ∈ {1, . . . , 5}, ∀l ∈ {6 · (q− 1) + 1, . . . , 6 · q− 1}, ∀q ∈ {1 . . . , p}

tl+k − tl ≤ 5k + Tmax(2−
m

∑
j=1

yjl −
m

∑
j=1

yjl+k) (11)

∀k ∈ {1, . . . , 5}, ∀l ∈ {6 · (q− 1) + 1, . . . , 6 · q− 1}, ∀q ∈ {1 . . . , p}

tl ≥ 0, nil ∈ N, xij ∈ {0, 1}, yjl ∈ {0, 1}, ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m}
∀l ∈ {6 · (q− 1) + 1, . . . , 6 · q− 1}
∀q ∈ {1 . . . , p}

Note that, except for the modifications mentioned above, the structure of the ILP1
model is identical to the originally proposed model.

The objective function, (1), minimizes the total cost of sample allocation by multiplying
the total occupation of each plate by the weight of the plate. By fixing wq = q for all q, all
three objectives can be satisfied; first, the number of plates to be used is minimized, second,
the number of occupied wells is minimized; third, the percentage of occupation of the first
plates is prioritized over that of the last plates.

Constraints (2) and (3) ensure that all samples are processed and that no strip capacity
is exceeded. Constraints (10) and (11) address the constraint of temperature difference
between adjacent strips, which must be less than or equal to 5 ◦C. Notice that these two
constraints have been modified from the original model to include intermediate empty
strips between samples with widely different temperatures, avoiding the risk of leaving
unnecessary gaps in a plate. Constraints (4) and (5) ensure that a valid temperature is
assigned to each non-empty strip. Constraint (6) ensures that the temperature of each
strip coincides with the reaction temperature of the groups contained within it. Finally,
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constraints (7)–(9) guarantee that each group present on a plate is accompanied by exactly
one control reagent.

2.2. Heuristic

To solve the performance problems incurred by ILP1, Ref. [8] introduced a heuristic
algorithm capable of generating quality solutions at low cost, referred to as Algorithm 1
(A1). This algorithm is based on the simulated annealing technique introduced by [12]. It
starts from an initial solution and explores the solution space by executing two different
movements.

These movements can be seen in Figures 2 and 3. Figure 2 shows the strip exchange
movement, which consists of exchanging two strips whenever the constraints are satisfied.
In this example, the third strip of plate 1 is exchanged by the fifth strip of plate 2. This
movement has incremented the occupation percentage of plate 1 in detriment of the
occupation percentage of plate 2, which could derive in a better solution according to the
third objective. Figure 3 shows the grouping movement, which joins samples of the same
group, scattered over several plates into one plate. In this case, all the samples of the green
group have been moved to plate 1, whereas the samples of the orange group have been
moved to plate 2. This movement improves the second objective, since the green group has
one control reagent instead of two. Note that any group needs a control reagent in each
plate with some sample of this group.

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

T: 50 ºC T: 52 ºC T: 53 ºC T: 57 ºC T: 58 ºC T: 60 ºC

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

T: 61 ºC T: 63 ºC T: 60 ºC T: 58 ºC T: 56 ºC T: 57 ºC

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

T: 50 ºC T: 52 ºC T: 56 ºC T: 57 ºC T: 58 ºC T: 60 ºC

A
B
C
D
E
F
G
H

1 2 3 4 5 6 7 8 9 10 11 12

T: 61 ºC T: 63 ºC T: 60 ºC T: 58 ºC T: 53 ºC T: 57 ºC

Algorithm 1 strip exchange movement

Plate #1 Plate #1

Plate #2 Plate #2

Figure 2. Algorithm 1 strip exchange movement example.
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H

1 2 3 4 5 6 7 8 9 10 11 12

T: 60 ºC T: 63 ºC T: 60 ºC T: 58 ºC T: 53 ºC T: 57 ºC

Algorithm 1 samples regroup movement

Plate #1 Plate #1

Plate #2 Plate #2

Figure 3. Algorithm 1 regrouped samples movement example.

3. The Two-Stage Approach

Due to the way the thermocycler operates, samples that require different tempera-
tures are never located in the same strip. This means that groups of samples of different
temperatures can be arranged independently. Therefore, the problem can be solved for
each temperature separately. The advantage of this approach is that it greatly reduces
the complexity of the optimization problems to be solved for two reasons: first, fewer
samples must be allocated in each case and second, when all the samples share the same
temperature, the constraints that handle the temperature difference between strips do not
need to be considered, resulting in simpler models.

Because a global solution is required, all these partial solutions must be merged into a
single one that is applicable for the entire instance, by minimizing the number of plates,
the total occupation and the occupation of the first plates over that of the last ones.

According to this approach, the problem is solved by using a customized two-stage
method. The first stage filters and solves the sample allocation problem for each tempera-
ture, which consists of a variant of the bin packing problem with item fragmentation, where
each group forms an item. The second stage combines subproblem solutions from the first
stage to generate a global solution to the problem that optimizes the considered objectives.

It should be noted that this two-stage method considers all the constraints of the
original problem but does not tackle them all at once. Instead, it uses a more intelligent
approach to deal with them separately. The first stage focuses on the constraints concern-
ing the control reagent that must accompany the groups on their respective plates and
ignores the constraints concerning temperature, which is possible since each subproblem is
composed of samples that share the same temperature. Only in the second stage do the
temperature constraints come into play. This method can be seen as a two-level variant of
the overall allocation problem posed in Section 2.1, working first on one part of the problem
(the allocation of the samples into strips) and then on another part (the final location of the
strips on the plates).

Figure 4 shows the general structure of the method. The main idea is to filter the
problem samples based on the temperatures present in the instance. Each subproblem
associated with each temperature is solved separately, that is, the samples that share
temperature in a set of plates are assigned, these are accumulated in a global solution and
the ordering process is carried out on it to maximize the occupation of the first plates over
that of the last plates.
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Two-Stage Method

TEMPERATURE #1: 58 ºC
TEMPERATURE #2: 60 ºC
TEMPERATURE #3: 65 ºC

60 ºC 65 ºC

PLATE #1 PLATE #2

58 ºC

First Stage: Samples assignment and groups packing.

Second Stage: Subproblems solutions merging.

Sample set

Figure 4. Two-stage method diagram.

The general structure is simple enough to be understood at a glance; the complexity
lies in the choice of the best method to solve each stage. Below, the two-stage method is
described into detail, as well as the different approximations used to solve it. Figure 5
shows the decomposition of the different methods.

A2

Two-stage methods decomposition

M1 ILP2 ILP3

M2 ILP3ILP4

Method First stage Second stage

Figure 5. Two-stage method decomposition.

3.1. Method 1. ILP Approach

To reach the optimal solution in each of the stages, a method was developed, hence-
forth called Method 1 (M1), that uses ILP models to solve each stage, as presented below.
The first ILP model solves the problems for the groups of each temperature independently.
The second one considers the solutions of the problems at the first stage to find a global
solution by rearranging the strips to improve the first and third objectives.

3.1.1. Method 1. First Stage ILP Model

The goal of the first stage is to address groups that share temperature. At this stage, the
groups will be fragmented into as few strips as possible. Although this consideration does
not seem important when all the samples have to be processed at the same temperature,
it plays a fundamental role in the second stage of the method by avoiding unnecessary
calculations.

For each temperature T j, where j ∈ {1, . . . , m}, an ILP model was solved, as shown
below. From now on, it will be referred to as ILP2.
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Because the temperature T j is the same for every group in the subproblem, the pa-
rameters for the model are the set of groups {1, . . . , nj}, the number of samples Ni that
compose them and the set of plates {1, . . . , p} available, in the same way as in ILP1.

As with ILP1, for each strip l, the model variables involve the number of samples
assigned from each group, nj

il , as well as the presence of the control reagent, xil . In addition,
the presence of the group control reagent at the plate level will also be determined by
means of the binary variable ziq. Finally, it is necessary to know if there is at least one
sample of a group in the strip, represented by the binary variable vil . It should be noted
that no decision needs to be determined regarding temperatures, as those are set by the
subproblem itself.

Min
p

∑
q=1

wq

6q

∑
l=6(q−1)+1

nj

∑
i=1

(nj
il + xil + vil) (12)

subject to

6·p

∑
l=1

nj
il = Ni, ∀i ∈ {1, ..., nj} (13)

nj

∑
i=1

(nj
il + xil) ≤ 16, ∀l ∈ {1, . . . , 6 · p} (14)

xil − nj
il ≤ 0, ∀i ∈ {1, . . . , nj}, ∀l ∈ {1, . . . , 6 · p} (15)

vil − nj
il ≤ 0, ∀i ∈ {1, . . . , nj}, ∀l ∈ {1, . . . , 6 · p} (16)

Nivil − nj
il ≥ 0, ∀i ∈ {1, . . . , nj}, ∀l ∈ {1, . . . , 6 · p} (17)

ziq ≤
6q

∑
l=6(q−1)+1

nj
il , ∀i ∈ {1, . . . , nj}, ∀q ∈ {1, . . . , p} (18)

Ni · ziq ≥
6q

∑
l=6(q−1)+1

nj
il , ∀i ∈ {1, . . . , nj}, ∀q ∈ {1, . . . , p} (19)

6q

∑
l=6(q−1)+1

xil = ziq, ∀i ∈ {1, . . . , nj}, ∀q ∈ {1, . . . , p} (20)

nj
il ∈ N ∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , 6 · p}

xil , ziq, vil ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , 6 · p}
∀q ∈ {1, . . . , p}

The objective function, (12), is similar to the objective function of the original model.
The only difference is that in this case the group fragmentation among the different strips
should be minimized.

Note how most of the constraints are similar to those of the original model, which is
the case for constraints (13)–(15) and (18). On the other hand, constraints (16) and (17) are
specific to this model and establish the presence of a group in a particular strip, reducing
fragmentation. Constraint (19) prevents samples from being placed on a plate without
a control reagent. Finally, constraint (20) assures that only one control reagent will be
assigned to each plate per group.

This model guarantees that the objectives defined for the original problem will be
optimized but it is applied only to the subproblems of the first stage. That is, the total
number of non-empty plates is minimized, as well as the total occupation while maximizing
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the percentages of occupation. It is important to emphasize that achieving optimality of the
subproblems of the first stage does not guarantee optimality for all the objectives in the
global model.

All the subproblems generated in this stage are independent and can be solved sepa-
rately. However, because of the number of samples and groups present, their complexity
varies considerably. Although it is possible to find the optimal solution in a short time for
most subproblems, for others, finding the optimal solution is computationally expensive.

3.1.2. Method 1. Second Stage ILP Model

In this second stage, a global solution is pursued based on the merged solutions of
the subproblems at the first stage. In this step it is necessary to consider the temperature
difference constraint for adjacent strips because different temperatures may be mixed in
the same plate. It should be noted that while any solution generated by merging the ones
obtained by all the subproblems of the first stage is always feasible; without any additional
processing it may be a poor quality solution, as many empty strips could exists between
temperatures. The objective in this stage will be to rearrange the strips so that all those
empty strips will be occupied, leaving empty plates that can be filtered and eliminated.
This stage tackles the first objective (filtering the plates) and the third objective (maximizing
the occupation of the first plates). However, the second objective cannot be improved in
this stage, because the number of control reagents and their locations do not change.

The ILP model that describes this situation (ILP3) is as follows.
The model parameters are obtained from the configuration of the solutions of all the

subproblems of the first stage. On the one hand, the set {1, . . . , r} of all the strips of the first
stage is considered. For each strip l in this set, the occupation of the strip is known, αl and
its assigned temperature, tl . On the other hand, the binary parameter zl reflects whether
all the reagent controls are present, whereas the binary parameter δl indicates if the strip
is empty.

The only variables of the model are the ones that allow to determine the position k in
the final solution for each strip l of the first stage, denoted by slk. Formally:

min.
p

∑
q=1

wq

6q

∑
k=6(q−1)+1

r

∑
l=1

αl · slk, wq = q, ∀q ∈ {1, . . . , p} (21)

subject to:

r

∑
l=1

slk = 1, ∀k ∈ {1, . . . , 6 · p} (22)

6p

∑
k=1

slk = 1, ∀l ∈ {1, . . . , r} (23)

slk ≤ s(l−1)(k−1) + zl , ∀l ∈ {1, . . . , r}, ∀k ∈ {1, . . . , 6 · p} (24)

sl(6(q−1)+1) ≤ zl , ∀q ∈ {1, . . . , p}, ∀l ∈ {1, . . . , r} (25)

r

∑
l=1

sl(k+j) · tl −
r

∑
l=1

slk · tl ≤ 5j + Tmax · (
r

∑
l=1

slk · δl +
r

∑
l=1

sl(k+j) · δl),

∀q ∈ {1, . . . , p}, ∀j ∈ {1, . . . , 5}, ∀k ∈ {6 · (q− 1) + 1, . . . , 6 · q− j} (26)
r

∑
l=1

slk · tl −
r

∑
l=1

sl(k+j) · tl ≤ 5j + Tmax · (
r

∑
l=1

slk · δl +
r

∑
l=1

sl(k+j) · δl),

∀q ∈ {1, . . . , p}, ∀j ∈ {1, . . . , 5}, ∀k ∈ {6 · (q− 1) + 1, . . . , 6 · q− j} (27)
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slk ∈ {0, 1}, ∀l ∈ {1, . . . , r}, ∀k ∈ {1, . . . , 6 · p}

It can be seen that the objective function, (21), is defined with a familiar expression,
because the idea is still to organize the samples such that the occupation of the first plates
is maximized. The difference in this case is that the number of occupied wells is fixed
regardless of the operation, because neither the quantity nor the location of the control
reagents of the groups will be modified.

Constraints (22) and (23) ensure that each strip is allocated only once and that all strips
present in the first stage will be allocated somewhere in the global solution. Constraints
(26) and (27) address the temperature difference constraint for adjacent strips. Finally,
constraints (24) and (25) ensure that groups fragmented into more than one strip will not
be separated into distinct plates along the solution, as that would create feasibility issues.

3.2. Method 2. Heuristic Approach

Unlike M1, this method, known as M2, uses a heuristic algorithm to solve the sub-
problems of the first stage. It will be referred to as the Algorithm 2 (A2). However, both
methods share the same model, ILP3, as the preferred solver for the second stage.

The starting point for A2 is A1, as presented in Section 2.2, but adapted to this new
situation. Specifically, A2 consists of only one movement type, strip exchange, and it is
responsible of organizing the solution’s strips in the best possible way. The other movement,
the sample grouping, has been replaced by a post-processing operation on the plates, whose
main function is to optimize the occupation of each plate independently, reducing the
fragmentation and dispersion of the samples that make up the groups. In addition, this
processing gives greater freedom to the strip exchange movement.

As shown in Algorithm 1, this post-processing operation is executed for each iteration
performed by the simulated annealing, that is, each time a complete cooling cycle is made.
This gives the algorithm time to explore the solution space and readjust the current solution.
Figure 6 shows an example of the process.

Algorithm 1: Simulated annealing with regroup post-process

currentSol ← initialSol
for i = 0 to maxIter do

T ← Tmax
while T ≥ Tmin do

newSol ← stripExchange(currentSol)
if di f f erence(newSol, currentSol) >= 0 then

currentSol ← newSol

else

threshold← e
di f f erence

T

if generateRandom() < threshold then
currentSol ← newSol

T ← α ∗ T

postProcess(currentSol)

return bestSol
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0 self-contained strips 3 self-contained strips

Algorithm 2 post-processing diagram.

Before After

Figure 6. Diagram of post-processing applied to A2. Before processing there is no available strips to
exchange (highlighted in red). However, after processing 3 strips are now self-contained and can be
moved out (highlighted in green).

Note that each colour represents samples belonging to the same group. As shown,
before processing the plate, no individual strip can be moved out because there is no space
left for additional control reagents. Red arrows show which groups are present in more than
one strip. After processing the plate, several strips are now self-contained, which means
that they can be exchanged. Thus, this process provides more freedom to the exchange
movement.

To process the plates in each subproblem, the Bin Packing model with item fragmenta-
tion as proposed in [11] has been adapted. This process will be referred to as ILP4.

The model is applied to each of the plates separately, taking as parameters the dis-
tribution of the samples of the groups present in each strip. Again, the variables vil are
considered. The objective is to minimize the dispersion of the groups in strips, so that these
can be used by the exchange movement.

Min
nj

∑
i=1

6

∑
l=1

vil (28)

subject to:

6

∑
l=1

nj
il = Ni, ∀i ∈ {1, . . . , nj} (29)

n

∑
i=1

nj
il ≤ 16, ∀l ∈ {1, . . . , 6} (30)

nj
il

Ni
≤ vil , ∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , 6} (31)

nj
il ∈ N, vil ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀l ∈ {1, . . . , 6}

This model is valid for this process because it tackles each plate separately, where all
strips share temperature and no control reagent can leave the plate in any way. The model
treats all the samples in a group, including the control reagent, as a single fragmentable item
to be packed using the strips as containers. The objective function, (28), minimizes the total
number of fragments. Constraints (29) and (30) ensure that all samples will be allocated
and that the capacity of the strips will not be exceeded. The constraint (31) controls the
assignment of groups to strips.
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Although this is an exact algorithm based on the model’s implementation, the fact
that it is executed on individual plates means it has a short execution time, despite the
complexity of the problem.

4. Results and Discussion

The goal of this section is to present the results obtained by the models developed in
the paper, as well to investigate the impacts of the various improvements proposed for their
implementation. Comparisons with other solvers in the literature will also be presented.
First, the adopted dataset is analysed to describe its main properties.

4.1. Dataset Analysis

In the study, 30 real daily data files were considered, all of which are included in
Section A.1 in the Appendix A. Each data file corresponds to a working session in the
laboratory of the company Health in Code. Figure 7 shows a breakdown of these files
according to the relevant parameters which include the number of samples, the number of
groups and the different processing temperatures. Clearly, the temperature range is limited
and does not necessarily depend on the number of samples in the file. In addition, data
files were classified into three subsets based on their number of samples. Thus, small files
have up to 434 samples, medium files have up to 1128 samples and large files have up to
3783 samples.
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Summary of data files.

Figure 7. Summary of all 30 available data files.

In Section 3.1.1 it is mentioned that the complexity of the subproblems is highly
variable. To illustrate this characteristic, Figure 8 shows the temperature breakdown of
a particular file that represents a typical situation in our data files. Two conclusions can
be drawn. First, the temperature range is restricted to between 50 ◦C and 70 ◦C. Second,
due to factors such as the type of experiments performed by this laboratory, where some
reagents are widely used, some temperatures are more common than others. An identifier
was assigned to each of the data files so that they can be located easily.
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File 30 (3783 samples) temperature breakdown

Figure 8. Example of the temperature distribution in a concrete data file.

4.2. Comparison of the Different Approaches

This section is devoted to the results obtained by the methods studied and proposed
in the previous section. All of these methods were implemented in Python 3.7. To ensure
fair comparisons, all the experiments were executed multiple times for the same duration
(600 s) on a single PC equipped with an Intel 8700K CPU, 64 GB RAM and Windows 10. In
addition, the ILP models were solved using Gurobi 8.1.

4.2.1. M1 vs. ILP1

To compare these two methods under the same conditions, they were both executed
for 600 s and the obtained results were collected. However, ILP1 was unable to obtain a
feasible solution within that time for larger files. For this reason, the comparison between
M1 and ILP1 involves only the small size files, the largest ones that ILP1 managed to
solve within the established time. These solutions are detailed in Appendix A.2 in the
Appendix A.

Figure 9 shows a comparison between M1 and ILP1. Note that for each subset of files,
all the objectives were compared, namely, the total number of plates used, the total number
of occupied wells and the occupation rate of the plates.

Although the solutions achieved by ILP1 are good, M1 improves them consistently. For
example, M1 reduces the number of plates in file 18, as well as reduce the total occupation
across the entire test suite. Finally, the occupation rate achieved by M1 is better in general
terms, filling more plates up to a 100%, especially for larger problems even though M1 uses
a fairly lower amount of wells.
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Figure 9. Comparison of M1 and ILP1 on small and medium size files.

4.2.2. M2 vs. A1

Figure 10 shows a comparison between M2 and A1. Clearly, M2 obtains better results.
First, it reduces the number of total plates in two instances (files 22 and 30). The total
occupation is similar for the smallest files, but the difference becomes greater as the file size
increases, eventually, M2 achieves an improvement of up to 50 wells. It should be noted
that M2 is able to catch up with plates occupation rate even considering that it occupies
a fewer number of wells. In both cases, best solution found is compared, details about
best and worst solutions of these methods can be seen in Appendex A.3 and A.5 in the
Appendix A. Note that, due to its stability, even the worst solution achieved by M2 is
clearly better than the best one of A1.
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Figure 10. Comparison of M2 and A1 on all available files.

4.2.3. M1 vs. M2

Figure 11 shows a comparison between the two methods proposed in this work, M1
and M2. Both methods achieve solutions of similar quality; in fact, there are no differences
in the total number of plates in any file. In addition, the total occupation achieved by both
methods is almost identical, the differences amount to only a few wells in favour of the
one method or the other. M1 achieves a better occupation rate in general, most notably on
the larger files, in fact, it is these files for which M1 reduces the total occupation. The M1
solutions are detailed in Appendix A.4 in the Appendix A.

Furthermore, note that M2’s first stage is a heuristic method, which means that it
would be desirable to ensure its convergence so far as possible. Figure 12 shows a study of
this phenomenon using files 22 and 30 and solving each 20 times. The left part of the figure
shows how increasing the execution time ensures that the algorithm reaches an optimal
number of plates more times. As shown in the right part of the figure, the total occupation
decreases and stabilizes as the execution time increases.
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Figure 11. Comparison of M1 and M2 on all available files.
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Figure 12. Evolution of M2 solutions over time, files 22 and 30.

4.3. Improving the Performance of the First Stage. Multicore Execution

Because the subproblems of the first stage are independent, several techniques can be
explored to minimize their resolution time. Examples of these techniques are listed below
and depicted in Figure 13.

Sequential Execution (Full CPU per job)

J6

Pending Jobs

J5 J4 J3 J2
J1

J1

J1

J1

CPU Usage

Multicore Execution (One job per core)

J9

Pending Jobs

J8 J7 J6 J5
J1

J3

J2

J4

CPU Usage

Figure 13. Examples of different execution methods.
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The independent first stage subproblems allows multicore execution techniques to be
explored to minimize their resolution time. In this case, multicore execution means that
more than one subproblem can be solved simultaneously, with each of subproblem sharing
CPU resources. This is usually accomplished by assigning one CPU core to each task.

In this paper, various multicore implementation techniques have been explored, as
summarized below.

• #Cores. In this case, it is desirable to instantiate as many processes as there are
available cores; thus, each subproblem is assigned to a full core.

• #Jobs. In this approach a different process is instantiated for each subproblem, which
means that there will be more processes than cores. However, because the majority of
the subproblems are solved in seconds, their impact is imperceptible.

• 2Jobs. Finally, because it have been seen that there are at most two subproblems that
are very time consuming, it tries to share resources halfway.

Figure 14 shows a performance comparison of these approaches on the most complex
subproblems in file 30. The figure shows that a greater computing capacity results in a
better performance; however, the disadvantage is that assigning greater capacity means
that fewer subproblems can be solved at once. However, as Table 1 shows, because the
majority of these subproblems can be solved in fractions of a second, it is preferable to
prioritize the most complex subproblems (the ones with 60 ◦C and 61 ◦C).

Table 1. Subproblems detailed for file 30, 3783 samples.

Instance: 3783_260111KAPA35 Temps: 17 Groups: 171 Samples: 3783

Temp. Groups Samples Problem Size Time Gap

50 ◦C 3 42 75 × 57 0.0064 0.0
51 ◦C 1 6 29 × 19 0.001 0.0
52 ◦C 2 12 52 × 38 0.0013 0.0
53 ◦C 1 6 29 × 19 0.0011 0.0
54 ◦C 10 181 462 × 380 13.8452 0.0
55 ◦C 10 102 462 × 380 0.9911 0.0
56 ◦C 3 40 75 × 57 0.0019 0.0
57 ◦C 6 45 144 × 114 0.0278 0.0
58 ◦C 13 224 889 × 741 0.5663 0.0
59 ◦C 8 92 372 × 304 2.0234 0.0
60 ◦C 55 1645 19,511 × 16,720 4303.7317 0.0299
61 ◦C 32 844 5712 × 4864 1618.5057 0.0137
62 ◦C 15 340 1023 × 855 5.5391 0.0
63 ◦C 7 105 327 × 266 0.0829 0.0
64 ◦C 1 18 29 × 19 0.0012 0.0
65 ◦C 2 17 52 × 38 0.0019 0.0
66 ◦C 2 64 52 × 38 0.0019 0.0
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Figure 14. Evolution of the objective function for different multicore approaches.

Multinode Execution

Furthermore, if sufficient computational capacity is available, it is possible to use more
than one node, (more than one machine) to solve the subproblems. For example, in an ideal
situation where at least one node exists for each job, the total execution time will be the
time required by the most challenging subproblem. This situation is depicted in Figure 15.
In addition, note that each node resource can be assigned in a multicore configuration
if needed.

Multinode Execution
Pending Jobs

Node #2 CPU Usage

J1

Node #1 CPU Usage

J1

J1 J1

J2 J2

J2 J2

J6

J5

J4

J3

J7

J8

Figure 15. Multinode execution diagram.

To show the potential impact of increasing the number of nodes on the overall per-
formance of the first stage, an experiment was carried out. Two nodes were available
with the same characteristics and used to execute the different subproblems of each file.
The procedure is as follows: each node is assigned a subproblem to be solved and when
that process ends, it reports the solution and is assigned a new one. After this process
finishes, the second stage solver is executed to obtain the global solution and the total time
consumed is reported. The results are shown in Figure 16, showing that the execution time
achieved by the multinode approach is always lower.
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4.4. First Stage Impact on the Second Stage

The second stage performance is affected by the quality of the solutions reached in
the first stage. Figure 17 shows a comparison of the execution time depending on the
method used to solve the first stage. It is easy to see that the model always finds the optimal
solution in a reasonable time, consuming approximately 1 min in the worst case for the
largest instance. In addition, it should be noted that the solutions provided by M1 generally
require less time because M1 is capable of reducing the group fragmentation, which means
that the second stage model can pack the strips more efficiently.
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Figure 17. Second stage execution time comparison, depending on the first stage solver.

4.5. Proposed Methods vs. LIMS (Labware)

Labware is a commercial software package used bin the laboratory; therefore, its
results define the baseline on against all other proposals should be compared. In this
regard, Figure 18 shows a comparison between the methods proposed in this work and
Labware. The results of the proposed methods are clearly superior to those provided
by Labware on all the proposed objectives. The number of plates is clearly lower in the
proposed methods and can even be reduced by 50% in the larger cases. Both methods are
capable of reducing the total occupation by tens or even hundreds of samples; however,
Labware is not able to optimize the plate occupation percentage, resulting in a greater
variability.
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Figure 18. Comparison between M1, M2 and Labware for all available files.
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5. Conclusions

This paper deals with a two-stage procedure to efficiently allocate samples in plates
as part of the PCR process. First, the inner structure of the problem was studied and how
to break it into smaller subproblems that can be solved independently. Thus, numerous
simpler problems are tackled instead of a single large one.

To solve the subproblems of the first stage, an ILP model was proposed, being possible
to achieve optimal solutions. Furthermore, to avoid potential scalability issues, a heuristic
algorithm was also developed, solving the problems at a low computational cost while
maintaining the solution quality. For the second stage, an ILP model was developed to
merge the solutions of all the subproblems to form a global solution.

According to this procedure, two new methods in two-stages were proposed: M1 (with
the ILP problem in the first stage) and M2 (replacing the ILP problem with the heuristic
algorithm). Also, multicore and multinode approaches were explored in order to improve
the execution times of the first stage subproblems. Notice that this procedure is not effective
with the methods developed in [8], since the temperatures are not treated independently.

Overall, three objectives are evaluated, namely, the total number of plates used to
allocate all samples and control reagents, the total number of occupied wells in the plates
and the occupation rate of the plates. To ensure a fair comparison, all of the methods and
algorithms were implemented and executed for the same time span on the same computer.
Additionally, the dataset consisted of 30 files of real daily data. It has been shown that both
M1 and M2 methods present similar results. Moreover, they have been superior in terms
of the quality of the solutions to the software previously used in the laboratory and the
heuristic algorithm implemented in [8].

Future lines of research may involve related business challenges. For example, the
laboratory may need to establish priorities or time windows for sample processing. On
the other hand, if the company migrates to weekly scheduling, it might need dynamic
reallocation methods to process samples that arrive on a daily basis. Methods such as M2
could be very useful in these cases.
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Appendix A. Detailed Results

Appendix A.1. Data Files Detailed

All available and studied files are detailed in Table A1, where relevant features are
shown. The number of samples is usually the feature used to classify the potential complex-
ity of the file. The reason is that the number of samples can vary considerably. However,
this is not the case of other features, such as the number of different temperatures or the
number of groups of samples.

Another critical feature of the files is the distribution of the samples in each tempera-
ture. There is great variability in the number of samples processed according to each of the
temperatures. In fact, it can range from one sample to hundreds of samples.
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Table A1. Daily available files detailed.

ID Samples Temps. Groups Samples per Temperature

1 174 13 80 [1,1,2,4,5,16,15,74,25,11,15,3,2]
2 193 14 68 [2,7,13,12,1,3,6,23,11,43,21,45,1,5]
3 233 12 31 [24,2,6,1,6,18,36,46,34,29,21,10]
4 285 18 147 [6,15,11,4,20,12,14,18,11,21,90,27,22,9,2,1,1,1]
5 290 10 87 [3,56,24,74,54,9,45,4,16,5]
6 315 16 99 [4,4,4,2,21,7,6,1,8,5,18,87,126,15,6,1]
7 358 10 35 [1,3,3,5,100,116,60,21,7,42]
8 368 11 27 [8,13,6,13,79,51,80,32,46,27,13]
9 432 14 32 [1,1,13,9,8,4,17,85,20,125,41,50,40,18]

10 434 13 44 [2,12,2,16,8,13,83,98,127,22,13,6,32]
11 501 15 82 [8,6,12,6,6,61,2,105,83,175,10,1,23,1,2]
12 551 15 37 [1,1,12,5,12,5,1,22,53,29,174,107,53,58,18]
13 612 17 107 [10,24,40,10,109,41,18,11,125,60,35,96,9,10,10,2,2]
14 647 12 27 [1,27,4,1,2,142,86,168,66,81,48,21]
15 747 15 37 [2,2,12,15,12,6,2,10,55,63,258,160,92,44,14]
16 797 11 27 [36,13,18,6,6,38,204,168,105,147,56]
17 876 13 120 [20,10,30,12,26,111,100,275,136,110,21,3,22]
18 918 17 184 [12,5,14,3,100,59,9,42,72,33,224,113,187,20,2,17,6]
19 963 15 37 [2,2,17,6,24,10,2,44,88,58,290,176,107,101,36]
20 1128 16 192 [17,21,16,2,114,65,23,48,82,37,306,153,199,36,4,5]
21 1270 17 167 [2,8,34,4,16,9,24,41,65,51,461,324,152,43,4,8,24]
22 1309 17 201 [4,14,36,1,28,24,8,39,65,60,436,298,236,46,6,3,5]
23 1398 18 200 [4,6,23,1,27,31,16,35,59,59,480,328,257,56,1,6,3,6]
24 1473 16 197 [1,9,38,34,35,30,38,73,71,520,364,188,50,11,8,3]
25 1944 15 151 [18,3,77,56,40,22,83,99,823,431,180,66,9,8,29]
26 2071 15 162 [25,28,86,64,29,49,177,232,745,339,172,70,6,7,42]
27 2248 17 165 [28,7,9,4,84,53,39,25,154,30,1011,481,219,64,12,8,20]
28 2496 17 179 [9,16,58,9,25,24,52,83,116,93,913,635,304,85,8,16,50]
29 2703 17 200 [24,15,21,7,126,93,48,46,174,72,1090,563,265,85,16,11,47]
30 3783 17 171 [42,6,12,6,181,102,40,45,224,92,1645,844,340,105,18,17,64]

Tables A2–A4 show the Labware solutions in detail for small, medium and large files,
respectively.

Table A2. Labware solutions detailed for small files.

Labware Solution Detail (Small)

ID Plates Occ. Occupation Rate

1 4 259 [93.75, 81.25, 53.13, 41.67]
2 5 263 [78.13, 72.92, 58.33, 57.29, 7.29]
3 6 265 [76.04, 73.96, 60.42, 40.63, 13.54, 11.46]
4 7 438 [91.67, 84.38, 77.98, 66.67, 66.67, 59.38, 9.38]
5 6 381 [98.96, 85.42, 76.04, 73.96, 57.29, 5.21]
6 6 424 [100.0, 95.83, 95.83, 67.71, 62.50, 19.79]
7 7 396 [97.92, 93.75, 90.63, 59.38, 44.79, 23.96 ,2.08]
8 8 409 [82.29, 80.21, 78.13, 63.54, 48.96, 30.21, 25.00, 17.71]
9 9 478 [91.67, 89.58, 70.83, 61.46, 58.33, 56.25, 33.33, 29.17, 7.29]

10 9 483 [93.75, 91.67, 85.42, 71.88, 60.42, 56.25, 23.96, 17.71, 2.08]
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Table A3. Labware solutions detailed for medium files.

Labware Solution Detail (Medium)

ID Plates Occ. Occupation Rate

11 8 605 [100.0, 94.79, 85.42, 83.33, 77.08, 71.88, 59.38, 58.33]
12 10 615 [96.88, 89.58, 89.58, 83.33, 83.33, 75.00, 61.46, 34.38, 19.79, 7.29]
13 9 729 [(100.0)×2, 97.92, 90.63, 88.54, 88.54, 80.21, 78.13, 35.42]
14 11 685 [100.0, 95.83, 84.38, 80.21, 78.13, 76.04, 69.79, 55.21, 34.38, 19.79, 19.79]
15 15 860 [100.0, 93.75, 91.67, 86.46, 84.38, 69.79, 64.58, 62.50, 54.17, 47.92, 45.83, 31.25, 28.13,

18.75, 16.67]
16 26 958 [70.83, 67.71, 67.71, 67.71, 60.42, 54.17, 51.04, 50.00, 46.88, 39.58, 39.58, 39.58, 33.33,

31.25, 30.21, 28.13, 28.13, 28.13, 25.00, 23.96, 19.79, 19.79, 18.75, 18.75, 18.75, 18.75]
17 17 1127 [100.0, 98.96, 97.92, 96.88, 94.79, 92.71, 87.50, 87.50, 85.42, 84.38, 67.71, 51.04, 46.88,

36.46, 29.17, 12.50, 4.17]
18 14 1161 [(100.0)×4, 98.96, 95.83, 92.71, 92.71, 90.63, 84.38, 83.33, 82.29, 66.67, 21.88]
19 18 1092 [98.96, 97.92, 96.88, 91.67, 88.54, 85.42, 85.42, 83.33, 76.04, 68.75, 66.67, 50.00, 47.92,

40.63, 25.00, 19.79, 7.29, 7.29]
20 16 1357 [(100.0)×5, 97.92, 97.92, 96.88, 93.75, 91.67, 90.63, 89.58, 82.29, 71.88, 69.79, 31.25]

Table A4. Labware solutions detailed for big files.

Labware Solution Detail (Large)

ID Plates Occ. Occupation Rate

21 17 1522.0 [(100.0)×8, (98.96)×2, 92.71, (90.63)×2, 84.38, 83.33, 80.21, 65.63]
22 20 1834.28 [(100.0)×10, 98.96, 94.79, 90.63, (89.58)×2, 87.5, 85.42, 71.88, 68, 75, 59.38]
23 21 1797.0 [(100.0)×9, (98.96)×2, 97.92, 94.79, 93.75, 92.71, 90.63, 86.46, 83.33, 76.04, 54.17,

4.17]
24 21 1897.0 [(100.0)×10, 96.88, (95.83)×2, 94.79, 92.71, 91.67, 88.54, 86.46, 85.42, 70.83, 57.29,

19.79]
25 47 2436.0 [(100.0)×8, (92.71)×2, (90.63)×2, 88.54, 87.5, (83.33)×2, 81.25, 72.92, 70.83, 67.71,

66.67, 61.46, 57.29, 56.25, 54.17, 52.08, 40.63, (36.46)×2, 35.42, 31.25, 30.21, 29.17,
23.96, 19.79, 17.71, (16.67)×2, 15.63, 11.46, (5.21)×2, (4.17)×2, 3.13, (2.08)×2]

26 41 2566.0 [(100.0)×7, (98.96)×2, (97.92)×2, (96.88)×2, 90.63, 89.58, 88.54, 85.42, 83.33, 82.29,
75.0, 72.92, 70.83, (69.79)×2, 67.71, 66.67, 63.54, 62.5, 50.0, 47.92, 44.79, 31.25,
29.17, 16.67, 10.42, 4.17, (3.13)×2, (2.08)×2]

27 56 2919.0 [(100.0)×8, (98.96)×2, 91.67, (88.54)×3, (87.5)×2, 86.46, (81.25)×2, (77.08)×2,
73.96, (67.71)×2, (66.67)×2, 65.63, (58.33)×3, (51.04)×3, 47.92, 42.71, 33.33, 32.29,
29.17, 17.71, 14.58, (7.29)×3, , 6.25, 5.21, (4.17)×3, (3.13)×5, (2.08)×2]

28 36 3042.0 [(100.0)×12, (98.96)×4, 97.92, 96.88, 93.75, 92.71, 90.63, 88.54, (86.46)×2,
(85.42)×3, (84.38)×2, 79.17, 72.92, 70.83, 68.75, 67.71, 50.0, 5.21]

29 65 3687.0 [(100.0)×12, (98.96)×2, 97.92, 95.83, 93.75, 91.67, (91.67)×5, 89.58, 86.46, 85.42,
84.38, 83.33, (82.29)×2, 79.17, 78.13, 77.08, 72.92, (68.75)×2, (67.71)×2, 65.63,
64.58, 55.21, 41.67, 40.63, (17.71)×2, (16.67)×2, 15.63, 11.46, 9.38, 7.29, (6.25)×2,
(5.21)×2, (4.17)×2, (3.13)×3, (2.08)×5]

30 90 4845.0 [(100.0)×11, 96.88, 94.79, (93.75)×2, 92.71, (91.67)×3, (90.63)×3, 89.58, (88.54)×3,
87.5, (86.46)×4, 85.42, (83.33)×2, 78.13, 77.08, (73.96)×2, (71.88)×3, 70.83,
(59.38)×2, 54.17, 52.08, (51.04)×2, 50.0, (48.96)×4, 47.92, 46.88, 42.71, 41.67,
39.58, (38.54)×2, (35.42)×2, 33.33, 27.08, (22.92)×2, 21.88, 18.75, (16.67)×5, 15.63,
(14.58)×2, 13.54, (11.46)×2, 7.29, (6.25)×2, 5.21, (4.17)×2, (3.13)×2, (2.08)×2]

Appendix A.2. ILP1 Results Detailed

Tables A5 and A6 show ILP1 solutions in detail for small and medium size files. It
can be seen that, as the size of the problem increases, the gap value raises, evidencing the
difficulty of obtaining optimal solutions in a reasonable time. Big size files are detailed in
Table A7, where no feasible solution has been achieved in the time limit provided.
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Table A5. ILP1 results obtained for small size files, limited to 600 s. Runtime column shows time
stamp of best solution achieved.

ILP1 Solution Detail (Small, 600 s)

Id Samples Problem Size Runtime Gap Plates Occ. Occupation Rate

1 174 4792 × 4176 231.26 s 0.046 4 254 [100.0, 92.71, 42.71, 29.17]
2 193 5208 × 4530 521.22 s 0.054 5 262 [100.0, 90.62, 58.33, 18.75, 5.21]
3 233 2171 × 1800 458.68 s 0.072 4 268 [100.0, 90.62, 57.29, 30.21]
4 285 14,700 × 13146 586.64 s 0.055 7 433 [100.0, 97.92, 96.88, 79.17, 42.71,

28.12, 6.25]
5 290 6342 × 5550 196.01 s 0.031 5 377 [(100.0)×2, 96.88, 57.29, 38.54]
6 315 8757 × 7740 586.86 s 0.060 6 414 [(100.0)×2, 95.83, 65.62, 35.42,

34.38]
7 358 2910 × 2430 376.67 s 0.072 5 394 [100.0, 96.88, 88.54, 54.17, 70.83]
8 368 2412 × 1980 398.92 s 0.043 5 401 [100.0, 98.96, 97.92, 73.96, 45.83]
9 432 3952 × 3318 432.53 s 0.048 7 468 [(100.0)×2, 98.96, 88.54, 66.67, 26.04,

7.29]
10 434 5014 × 4284 456.97 s 0.059 7 484 [(100.0)×2, 92.71, 90.62, 84.38, 28.12,

7.29]

Table A6. ILP1 results obtained for medium size files, limited to 600 s. Runtime column shows time
stamp of best solution achieved.

ILP1 Solution Detail (Medium, 600 s)

Id Samples Problem Size Runtime Gap Plates Occ. Occupation Rate

11 501 9810 × 8640 563.24 s 0.052 8 585 [(100.0)×3, 85.42, 94.79, 80.21,
28.12, 20.83]

12 551 5085 × 4320 595.24 s 0.042 8 595 [(100.0)×3, 98.96, 94.79, 78.12,
34.38, 13.54]

13 612 14,084 × 12,528 581.28 s 0.081 9 722 [100.0, 96.88, 100.0, 94.79, 91.67,
92.71, 47.92, 95.83, 32.29]

14 647 4374 × 3618 516.37 s 0.032 9 682 [(100.0)×4, 97.92, 80.21, 25.0, 7.29]
15 747 6347 × 5400 374.14 s 0.035 10 791 [(100.0)×3, 98.96, 98.96, 97.92,

97.92, 80.21, 43.75, 6.25]
16 797 4797 × 3960 553.65 s 0.028 10 832 [(100.0)×4, 98.96, 98.96, 97.92,

80.21, 72.92, 17.71]
17 876 20,496 × 18,288 523.63 s 0.118 12 1006 [(100.0)×3, 98.96, 96.88, 90.62,

89.58, 88.54, 88.54, 84.38, 53.12,
57.29]

18 918 35,940 × 32,424 499.75 s 0.131 14 1111 [100.0, 98.96, 98.96, 96.88, 95.83,
93.75, 92.71, 90.62, 86.46, 82.29,
66.67, 61.46, 53.12, 39.58]

19 963 7609 × 6480 480.25 s 0.039 12 1010 [(100.0)×4, 98.96, 98.96, 96.88,
91.67, 91.67, 89.58, 56.25, 28.12]

Table A7. ILP1 results obtained for big size files, limited to 600 s. No solutions have been found
in time.

Id Samples Problem Size Runtime Gap Plates Occ. Occupation Rate

20 1128 39,972 × 36,090 - - - - -
21 1270 39,828 × 35,904 - - - - -
22 1309 50,151 × 45,360 - - - - -
23 1398 52,792 × 47,766 - - - - -
24 1473 51,820 × 46,854 - - - - -
25 1944 48,750 × 43,884 - - - - -
26 2071 56,562 × 51,000 - - - - -
27 2248 62,454 × 56,376 - - - - -
28 2496 74,849 × 67,680 - - - - -
29 2703 88,584 × 80,256 - - - - -
30 3783 105,111 × 95,040 - - - - -

Appendix A.3. A1 Results Detailed

This section presents the results obtained by A1 for all sizes, detailing the objectives
and other relevant information. Best and worst solutions achieved for small size files are
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shown in Table A8. It is easy to see that A1 is not able to always obtain the same solution
in the established time. In larger files, such as the ones shown in Tables A9 and A10, the
behaviour is similar. In any case, the most important objective, namely, the total number of
plates, is always the same.

It should be noted that differences between solutions are present in the total number
of occupied wells and the occupation rate of the plates, where better solutions reduce the
number of occupied wells, thus reducing the count of used control reagents. Improving the
occupation rate of the plates by itself does not improve the quality of a solution, because
this improvement may be caused by the use of larger amounts of control reagents, which
worsens the solution as a whole.

Table A8. A1 best and worst solutions obtained for small files, limited to 600 s.

A1 Solution Detail (Small, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

1 4 254 [100.0, 91.67, 52.08, 20.83] 4 256 [100.0, 89.58, 56.25, 20.83]
2 5 261 [100.0, 83.33, 48.96, 35.42, 4.17] 5 267 [100.0, 82.29, 57.29, 34.38, 4.17]
3 4 265 [91.67, 77.08, 68.75, 38.54] 4 268 [97.92, 70.83, 68.75, 41.67]
4 7 432 [100.0, 97.92, 80.21, 75.0, 51.04,

35.42, 10.42]
7 435 [100.0, 97.92, 85.42, 62.5, 55.21,

47.92, 4.17]
5 5 377 [(100.0)×2, 91.67, 68.75, 32.29] 5 379 [(100.0)×2, 90.62, 66.67, 37.5]
6 6 417 [(100.0)×2, 94.79, 57.29, 56.25,

26.04]
6 420 [(100.0)×2, 97.92, 81.25, 41.67,

16.67]
7 5 398 [(100.0)×2, 95.83, 80.21, 38.54] 5 406 [(100.0)×2, 98.96, 82.29, 41.67]
8 5 403 [(100.0)×3, 75.0, 44.79] 5 410 [(100.0)×3, 73.96, 53.12]
9 7 474 [(100.0)×3, 98.96, 61.46, 23.96,

9.38]
7 479 [(100.0)×3, 97.92, 60.42, 30.21,

10.42]
10 7 492 [(100.0)×3, 95.83, 67.71, 34.38,

14.58]
7 497 [(100.0)×3, 96.88, 73.96, 37.5, 9.38]

Table A9. A1 best and worst solutions obtained for medium files, limited to 600 s.

A1 Solution Detail (Medium, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

11 8 596 [(100.0)×4, 97.92, 75.0, 42.71, 5.21] 8 599 [(100.0)×5, 78.12, 40.62, 5.21]
12 8 600 [(100.0)×5, 73.96, 37.5, 13.54] 8 608 [(100.0)×5, 73.96, 43.75, 15.62]
13 9 731 [(100.0)×4, 96.88, 86.46, 81.25, 62.5,

34.38]
9 738 [(100.0)×4, 96.88, 89.58, 81.25,

68.75, 32.29]
14 9 697 [(100.0)×6, 79.17, 37.5, 9.38] 9 703 [(100.0)×6, 85.42, 35.42, 11.46]
15 10 804 [(100.0)×6, 98.96, 78.12, 45.83,

14.58]
10 813 [(100.0)×6, 98.96, 82.29, 44.79,

20.83]
16 10 847 [(100.0)×7, 90.62, 68.75, 22.92] 10 853 [(100.0)×7, 93.75, 65.62, 29.17]
17 12 1019 [(100.0)×8, 98.96, 91.67, 58.33,

12.5]
12 1023 [(100.0)×8, 98.96, 76.04, 73.96,

16.67]
18 13 1119 [(100.0)×7, 98.96, 98.96, 95.83,

78.12, 50.0, 43.75]
13 1124 [(100.0)×9, 95.83, 67.71, 58.33,

48.96]
19 12 1030 [(100.0)×9, 92.71, 46.88, 33.33] 12 1037 [(100.0)×9, 89.58, 54.17, 36.46]
20 15 1364 [(100.0)×11, 95.83, 94.79, 72.92,

57.29]
15 1371 [(100.0)×12, 94.79, 72.92, 60.42]
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Table A10. A1 best and worst solutions obtained for large files, limited to 600 s.

A1 Solution Detail (Large, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

21 17 1484 [(100.0)×12, 96.88, 94.79, 70.83,
64.58, 18.75]

17 1490 [(100.0)×12, 98.96, 88.54, 65.62,
53.12, 45.83]

22 18 1544 [(100.0)×13, 96.88, 91.67, 67.71,
38.54, 13.54]

18 1548 [(100.0)×12, 98.96, 96.88, 90.62,
57.29, 56.25, 12.5]

23 19 1630 [(100.0)×13, 96.88, 91.67, 76.04,
60.42, 52.08, 20.83]

19 1632 [(100.0)×13, 93.75, 76.04, 70.83,
59.38, 54.17, 45.83]

24 19 1702 [(100.0)×14, 98.96, 97.92, 69.79,
62.5, 43.75]

19 1706 [(100.0)×14, 97.92, 85.42, 82.29,
69.79, 41.67]

25 23 2129 [(100.0)×18, 91.67, 91.67, 87.5,
76.04, 70.83]

23 2132 [(100.0)×19, 94.79, 90.62, 81.25,
54.17]

26 25 2271 [(100.0)×20, 95.83, 91.67, 85.42,
59.38, 33.33]

25 2285 [(100.0)×19, 98.96, 97.92, 92.71,
83.33, 70.83, 36.46]

27 27 2471 [(100.0)×22, 97.92, 87.5, 84.38,
69.79, 34.38]

27 2476 [(100.0)×22, 97.92, 96.88, 95.83,
61.46, 27.08]

28 30 2713 [(100.0)×23, 95.83, 93.75, 89.58,
86.46, 64.58, 62.5, 33.33]

30 2732 [(100.0)×23, 98.96, 97.92, 92.71,
79.17, 67.71, 66.67, 42.71]

29 32 2960 [(100.0)×26, 97.92, 90.62, 89.58,
73.96, 72.92, 58.33]

32 2966 [(100.0)×27, 94.79, 90.62, 82.29,
69.79, 52.08]

30 44 4023 [(100.0)×38, 89.58, 87.5, 85.42, 62.5,
61.46, 4.17]

44 4034 [(100.0)×37, 97.92, 94.79, 83.33,
76.04, 59.38, 50.0, 40.62]

Appendix A.4. M1 Results Detailed

Detailed results for M1 are shown in Tables A11–A13.

Table A11. M1 solutions detailed for small files, limited to 600 s.

M1 Solution Detail (Small, 600 s)

ID Plates Occ. Occupation Rate

1 4 254 [(100.0)×2, 43.75, 20.83]
2 5 261 [100.0, 85.42, 56.25, 28.12, 2.08]
3 4 264 [91.67, 75.0, 72.92, 35.42]
4 7 432 [(100.0)×2, 94.79, 78.12, 55.21, 17.71, 4.17]
5 5 377 [(100.0)×2, 92.71, 75.0, 25.0]
6 6 414 [(100.0)×2, 96.88, 86.46, 39.58, 8.33]
7 5 394 [(100.0)×2, 85.42, 81.25, 43.75]
8 5 395 [100.0, 87.5, 86.46, 80.21, 57.29]
9 7 465 [100.0, 94.79, 93.75, 81.25, 70.83, 39.58, 4.17]

10 7 479 (100.0)×2, 89.58, 88.54, 63.54, 51.04, 6.25]

Table A12. M1 solutions detailed for medium files, limited to 600 s.

M1 Solution Detail (Medium, 600 s)

ID Plates Occ. Occupation Rate

11 8 583 [(100.0)×3, 97.92, 94.79, 73.96, 35.42, 5.21]
12 8 590 [(100.0)×2, 97.92, 94.79, 85.42, 77.08, 53.12, 6.25]
13 9 720 [(100.0)×4, 98.96, 92.71, 78.12, 65.62, 14.58]
14 9 676 [(100.0)×2, 98.96, 87.5, 84.38, 83.33, 80.21, 62.5, 7.29]
15 10 787 [(100.0)×3, 98.96, 97.92, 90.62, 84.38, 83.33, 58.33, 6.25]
16 10 828 [(100.0)×4, 98.96, 92.71, 88.54, 79.17, 78.12, 25.0]
17 12 997 [(100.0)×8, 95.83, 80.21, 57.29, 5.21]
18 13 1103 [(100.0)×9, 91.67, 76.04, 58.33, 22.92]
19 12 1006 [(100.0)×6, 97.92, 97.92, 95.83, 71.88, 70.83, 13.54]
20 15 1321 [(100.0)×9, 98.96, 94.79, 88.54, 81.25, 66.67, 45.83]
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Table A13. M1 solutions detailed for large files, limited to 600 s.

M1 Solution Detail (Large, 600 s)

ID Plates Occ. Occupation Rate

21 17 1437 [(100.0)×11, 96.88, 90.62, 86.46, 71.88, 46.88, 4.17]
22 17 1510 [(100.0)×12, 98.96, 93.75, 83.33, 58.33, 38.54]
23 19 1599 [(100.0)×12, 98.96, 94.79, 90.62, 81.25, 64.58, 33.33, 2.08]
24 19 1670 [(100.0)×13, 97.92, 94.79, 88.54, 78.12, 56.25, 23.96]
25 23 2100 [(100.0)×16, 98.96, 98.96, 98.96, 95.83, 88.54, 69.79, 36.46]
26 25 2236 [(100.0)×15, 98.96, 98.96, 98.96, 97.92, 95.83, 94.79, 90.62,

77.08, 55.21, 20.83]
27 27 2421 [(100.0)×17, 98.96, 98.96, 98.96, 96.88, 95.83, 89.58, 84.38,

73.96, 59.38, 25.0]
28 30 2685 [(100.0)×22, 97.92, 96.88, 95.83, 94.79, 83.33, 71.88, 51.04, 5.21]
29 32 2912 [(100.0)×21, 98.96, 98.96, 97.92, 96.88, 95.83, 90.62, 85.42,

83.33, 78.12, 67.71, 39.58]
30 43 3977 [(100.0)×36, 97.92, 95.83, 90.62, 85.42, 73.96, 65.62, 33.33]

Appendix A.5. M2 Results Detailed

In terms of comparison between best and worst solutions, M2 behaviour is quite
different from A1. For small size problems, detailed in Table A14, both solutions are
identical, which means that M2 converges. However, as seen with A1, as the size of the
files increase, gaps between solutions begin to appear. However, unlike A1, M2 is able to
reduce the variability of the solutions. For example, as shown in Table A15, in medium
size files there is only one occupied well of difference between best and worst solution. In
addition, occupation rate is almost identical in any case. Lastly, for the largest files, detailed
in Table A16, variability is also small, greater than in medium size files, but overall there is
a gap of less than 10 wells between best and worst solution.

Table A14. M2 best and worst solutions obtained for small and medium files, limited to 600 s.

M2 Solution Detail (Small, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

1 4 254 [100.0, 93.75, 48.96, 21.88] 4 254 [100.0, 93.75, 48.96, 21.88]
2 5 261 [96.88, 81.25, 60.42, 31.25, 2.08] 5 261 [96.88, 81.25, 60.42, 31.25, 2.08]
3 4 264 [92.71, 79.17, 70.83, 32.29] 4 264 [92.71, 79.17, 70.83, 32.29]
4 7 432 [(100.0)×2, 92.71, 80.21, 47.92,

25.0, 4.17]
7 432 [(100.0)×2, 92.71, 80.21, 47.92,

25.0, 4.17]
5 5 377 [100.0, 96.88, 86.46, 72.92,

36.46]
5 377 [100.0, 96.88, 86.46, 72.92,

36.46]
6 6 414 [(100.0)×2, 96.88, 86.46, 39.58,

8.33]
6 414 [(100.0)×2, 96.88, 86.46, 39.58,

8.33]
7 5 393 [98.96, 95.83, 93.75, 81.25,

39.58]
5 393 [98.96, 95.83, 93.75, 81.25,

39.58]
8 5 395 [98.96, 91.67, 84.38, 75.0, 61.46] 5 395 [98.96, 91.67, 84.38, 75.0, 61.46]
9 7 464 [97.92, 97.92, 92.71, 85.42,

69.79, 37.5, 2.08]
7 464 [97.92, 97.92, 92.71, 85.42,

69.79, 37.5, 2.08]
10 7 478 [100.0, 97.92, 94.79, 85.42,

70.83, 44.79, 4.17]
7 478 [100.0, 97.92, 94.79, 85.42,

70.83, 44.79, 4.17]
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Table A15. M2 best and worst solutions obtained for small and medium files, limited to 600 s.

M2 Solution Detail (Medium, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

11 8 583 [(100.0)×3, 96.88, 93.75, 73.96,
38.54, 4.17]

8 583 [(100.0)×3, 96.88, 93.75, 73.96,
38.54, 4.17]

12 8 590 [(100.0)×2, 98.96, 93.75, 87.5,
78.12, 52.08, 4.17]

8 590 [(100.0)×2, 98.96, 93.75, 87.5,
78.12, 52.08, 4.17]

13 9 719 [(100.0)×3, 93.75, 89.58, 87.5,
82.29, 69.79, 26.04]

9 719 [(100.0)×3, 93.75, 89.58, 87.5,
82.29, 69.79, 26.04]

14 9 675 [100.0, 92.71, 92.71, 87.5, 87.5,
86.46, 84.38, 67.71, 4.17]

9 675 [100.0, 92.71, 92.71, 87.5, 87.5,
86.46, 84.38, 67.71, 4.17]

15 10 786 [(100.0)×3, 95.83, 94.79, 90.62,
90.62, 87.5, 53.12, 6.25]

10 787 [(100.0)×4, 94.79, 90.62, 90.62,
84.38, 53.12, 6.25]

16 10 826 [(100.0)×2, 98.96, 96.88, 95.83,
94.79, 90.62, 82.29, 79.17, 21.88]

10 827 [(100.0)×3, 98.96, 95.83, 94.79,
88.54, 82.29, 79.17, 21.88]

17 12 997 [(100.0)×7, 95.83, 87.5, 84.38,
65.62, 5.21]

12 997 [(100.0)×7, 95.83, 87.5, 84.38,
65.62, 5.21]

18 13 1102 [(100.0)×6, 98.96, 96.88, 94.79,
90.62, 76.04, 59.38, 31.25]

13 1102 [(100.0)×6, 98.96, 96.88, 94.79,
90.62, 76.04, 59.38, 31.25]

19 12 1003 [(100.0)×4, 96.88, 94.79, 91.67,
91.67, 90.62, 87.5, 69.79, 21.88]

12 1004 [(100.0)×4, 96.88, 95.83, 94.79,
94.79, 89.58, 87.5, 69.79, 16.67]

20 15 1320 [(100.0)×8, 97.92, 96.88, 93.75,
92.71, 84.38, 68.75, 40.62]

15 1320 [(100.0)×8, 97.92, 96.88, 93.75,
92.71, 84.38, 68.75, 40.62]

Table A16. M2 best and worst solutions obtained for large files, limited to 600 s.

M2 Solution Detail (Large, 600 s)

Best Solution Worst Solution

ID Plates Occ. Occupation Rate Plates Occ. Occupation Rate

21 17 1437 [(100.0)×9, 98.96, 94.79, 93.75,
88.54, 86.46, 76.04, 54.17, 4.17]

17 1442 [(100.0)×10, 97.92, 93.75, 92.71,
85.42, 76.04, 52.08, 4.17]

22 17 1510 [(100.0)×11, 98.96, 93.75, 89.58,
83.33, 72.92, 34.38]

18 1511 [(100.0)×9, 98.96, 96.88, 94.79,
93.75, 87.5, 83.33, 75.0, 41.67, 2.08]

23 19 1598 [(100.0)×11, 98.96, 93.75, 92.71,
88.54, 83.33, 68.75, 36.46, 2.08]

19 1601 [(100.0)×11, 98.96, 96.88, 93.75,
89.58, 82.29, 67.71, 36.46, 2.08]

24 19 1670 [(100.0)×13, 96.88, 93.75, 89.58,
78.12, 64.58, 16.67]

19 1678 [(100.0)×13, 97.92, 95.83, 92.71,
78.12, 64.58, 18.75]

25 23 2100 [(100.0)×14, 98.96, 98.96, 96.88,
95.83, 93.75, 93.75, 91.67, 80.21,
37.5]

23 2107 [(100.0)×15, 98.96, 98.96, 96.88,
94.79, 93.75, 92.71, 81.25, 37.5]

26 25 2238 [(100.0)×12, 98.96, 98.96, 98.96,
98.96, 98.96, 97.92, 93.75, 93.75,
91.67, 88.54, 81.25, 65.62, 23.96]

25 2241 [(100.0)×13, 98.96, 98.96, 98.96,
97.92, 96.88, 94.79, 93.75, 92.71,
88.54, 81.25, 65.62, 26.04]

27 27 2424 [(100.0)×17, 98.96, 96.88, 96.88,
93.75, 92.71, 90.62, 87.5, 81.25,
59.38, 27.08]

27 2428 [(100.0)×18, 98.96, 98.96, 96.88,
93.75, 90.62, 87.5, 76.04, 59.38,
27.08]

28 30 2685 [(100.0)×16, 98.96, 98.96, 97.92,
96.88, 96.88, 96.88, 95.83, 93.75,
93.75, 93.75, 88.54, 77.08, 59.38,
8.33]

30 2689 [(100.0)×17, 98.96, 98.96, 98.96,
98.96, 98.96, 97.92, 94.79, 93.75,
91.67, 84.38, 77.08, 58.33, 8.33]

29 32 2914 [(100.0)×19, 98.96, 98.96, 97.92,
97.92, 97.92, 95.83, 94.79, 94.79,
91.67, 86.46, 81.25, 67.71, 31.25]

32 2920 [(100.0)×22, 98.96, 98.96, 98.96,
96.88, 94.79, 90.62, 85.42, 80.21,
65.62, 31.25]

30 43 3981 [(100.0)×33, 98.96, 97.92, 97.92,
96.88, 94.79, 91.67, 87.5, 83.33,
65.62, 32.29]

44 3983 [(100.0)×34, 97.92, 97.92, 89.58,
87.5, 85.42, 84.38, 78.12, 71.88,
53.12, 3.12]
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