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Abstract
The use of batteries became essential in our daily life in electronic devices, electric vehicles and energy storage systems in
general terms. As they play a key role in many devices, their design and implementation must follow a thorough test process
to check their features at different operating points. In this circumstance, the appearance of any kind of deviation from the
expected operation must be detected. This research deals with real data registered during the testing phase of a lithium iron
phosphate—LiFePO4—battery. The process is divided into four different working points, alternating charging, discharging
and resting periods. This work proposes a hybrid classifier, based on one-class techniques, whose aim is to detect anomalous
situations during the battery test. The faults are created by modifying the measured cell temperature a slight ratio from their
real value. A detailed analysis of each technique performance is presented. The average performance of the chosen classifier
presents successful results.
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1 Introduction

The increasing concern about the environmental impact caused by greenhouse gases emission has
resulted in the development of policies that seek to palliate this situation [14]. In this context, many
efforts are focused on the promotion of electric vehicles technology. From 2012 to 2018, the number
of electric vehicles has been multiplied by 30 [15]. Nowadays, one of the main problems with electric
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680 Hybrid One-class Classifier to Detect Faults in Power Cells

vehicles is the driving range, which is directly linked with the storage system. Then, in the race for
improving electric vehicles, the quality and features of batteries are crucial.
However, the use of batteries is important not only in the electric mobility field. It can solve

the problem of intermittent energy generation from renewable sources, by storing energy to avoid
power cuts [12]. In this field, the batteries are able to save electrical energy if the generation is
greater than the demand and, then, they can give back this saved energy in case the demand exceeds
the production. It is also important to remark that this application is also extremely related to the
reduction of environmental impact caused by fossil fuels [12]. This global trend shows that batteries
represent a significant piece to build a sustainable future. Hence, the research community has
focused their interests on the improvement of electrical energy storage systems. The implementation
of smart grids to efficiently manage the energy produced by wind or solar power systems is presented
as a feasible alternative to the power grid structure [25].
Besides the energy storage systems for renewable energies and the electric vehicles, the portable

electronic devices, such as laptops, headphones or cellphones, are also demanding greater autonomy,
fast charging and less weight and power losses [11].
From a technical point of view, the battery operation is based on electric and chemical reactions.

The battery features depend on the chemical elements present in it. In this case, a lithium iron
phosphate—LiFePO4—(LFP) power cell is studied, whose use is very common in electric vehicles.
Some of the reasons for its wide-spread use are its high voltage, great power density, low self-
discharge, long service life and no memory effect [16].
The positive features described above, along with the wide variety of applications where the

batteries are essential, emphasize the importance of ensuring their optimum performance. Then,
during the test process, it is mandatory to determine the correct operation and the lack of degradation.
From a given application, anomalies [29], also known as outliers [26] or novelties [4], can be defined
as instances that present an unexpected behaviour [10].
In [7], a virtual sensor to predict the state of charge (SOC) of an LFP power cell is implemented.

This is carried out using artificial neural networks and support vector regression, combined with
clustering algorithms. This kind of research is not only focused on LFP power cells. In [9], a
hydrogen-based fuel cell is modelled to predict the dynamic behaviour during normal operation.
A hybrid topology is also considered to predict the voltage value of the cell, achieving good
performance in the prediction. In [3], the hydrogen flow is modelled through a similar approach,
to tackle the problem of nonlinearity in hydrogen-based fuel cells. These works emphasize the idea
of the importance of grouping the dataset prior to the model stage.
The use of this virtual sensor could represent an interesting tool to determine anomalies. However,

this idea presents a critical weakness, which is the need of the previous system knowledge, necessary
to determine the normal operating range of a battery. The need of a fault criteria is one of the
motivations of the present work.
Hence, the main idea of this work is to implement an unsupervised system capable of detecting

anomalies. To do so, the use of one-class techniques has shown a really good performance in a wide
variety of fields, such as industry or medicine [8, 18, 21]. The main basis of one-class techniques
rests on the fact that only information about correct operation is available [29]. Then, instances that
do not belong to the known class are labelled as anomalies.
This work deals with the anomaly detection in a LFP power cell during the test stage. As this

process is commonly divided into four phases, a one-class classifier for each phase is implemented.
Different techniques are tested over each phase with the aim of achieve the best performance. Given
the unfeasibility of having real data from anomalous situations, they are artificially generated by
modifying different percentages the battery temperatures: 5%, 10%, 15% and 20%.
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Hybrid One-class Classifier to Detect Faults in Power Cells 681

This paper is structured as follows: after the introduction section, the LFP power cell is described
in next section. Then, the techniques applied are detailed in Section 3. Section 4 describes the
experiments carried out to implement the fault detection system. Section 5 presents a detailed
analysis of the results, and finally, the conclusions and future works are introduced in Section 6.

2 LFP Power Cell

The present work faces the problem of power cell degradation by implementing a fault detection
system over a LFP power cell used in electric vehicles. The proposal is developed to detect anomalies
during the testing process described in this section.

2.1 The battery

As explained in the Section1, the use of batteries presents a very feasible alternative to store
energy, whose potential is still for development. These kind of systems store the electrical energy by
means of chemical elements that present the ability of generating electricity through electrochemical
reactions [12]. Focusing on their structure, batteries have an electrolyte and two different electrodes,
which are an anode and a cathode. The chemical reaction that generates the electron flow is known
as red-ox. When the battery is charging, a reduction process occurs in the anode, while the cathode
is oxidized. Otherwise, when the battery is discharging, the electrodes oxidized and reduced are
swapped [12]. This cycle can be repeated a finite number of times, depending on the use of the
battery, becoming to a critical point where the battery capacity reaches high levels of degradation
[30].
From a considerable number of different batteries types, the lithium-ion ones are very common.

They are frequently used in many portable devices and most electric vehicles [28]. They can generate
relatively high voltage, which results in greater energy density, comparing it with other batteries,
including a lighter design [12]. Their long life cycle, non-existent memory effect and low self-
discharge rates, complement this interesting kind of batteries [28, 30].

2.2 Capacity confirmation test

One of the main features of a battery is its capacity, measured in ampere-hour. To calculate this
value, a capacity confirmation test is carried out to these devices by demanding a constant current
during a certain period [1]. Before the test starts, the battery is fully charged, which represents
an SOC of 100%. Then, the test begins when the battery supplies a constant current until a certain
voltage threshold, indicated by the manufacturer, is exceeded. This minimum level is called discharge
voltage. After this period, the battery is left to rest until it recovers the initial voltage level and the
charging process begins. This is done by supplying a constant current to the device that is stopped
when a maximum voltage threshold is reached. Furthermore, during the whole process, the SOC
value is measured and registered to assess the battery performance [1].

A specific equipment is commonly used to develop the capacity confirmation test. This device
is in charge of demanding and supplying constant current to the battery while its state is measured.
Besides the current, voltage and SOC, the temperatures at two different cell points are registered. A
schematic example of the capacity confirmation test is shown in Figure 1, where voltmeter, ammeter
and temperature sensors are presented.
Although both sensors are located in two different places inside the battery, their measurements

should not present great differences. This occurs due to the fact that lithium-ion cells have a
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682 Hybrid One-class Classifier to Detect Faults in Power Cells

FIGURE 1. Capacity confirmation test diagram.

homogeneous temperature distribution. Furthermore, for each measurement point T1 and T2, two
redundant sensors are placed to detect erroneous readings.
The present research deals with a battery LiFeBATTX-1P [2], composed of a LiFePO4 cell, whose

nominal capacity is 8A · h, with 3.3V of nominal voltage.
The four different stages of a capacity confirmation test detailed above are adapted to the LiFePO4

according to next steps.

1. Charging phase.A constant current is send from the tester to the battery, resulting in a voltage
rise from 3V up to 3.65V .

2. Resting phase with battery charged. The current f low stops at 3.65V and the voltage
decreases to the nominal value of 3.3V .

3. Discharging phase. During this stage, a constant current is demanded by the tested until the
voltage reaches 2V .

4. Resting phase with battery uncharged. Once the voltage is 2V , the current f low stops and,
consequently, the voltage rises up to 3V . Hence, it can be repeated the process from Step 1.

The current and voltage measured during one test cycle is shown in Figure 2. When the current
f lows from the battery to the tester, it is considered negative and it is considered positive otherwise.
The charge and discharge phases are represented with green and red traces, respectively, while the
rest phases are represented with black traces
In addition to the current and voltage, the energy flow, in ampere-hour, can be monitored by

integrating the current over time. The upper side of Figure 3 represents the energy balance at the
battery during the capacity confirmation test, in terms of SOC (%) (%), with the same trace colour
criteria as Figure 2. At the bottom of Figure 3, the evolution of temperature during one cycle is
presented.
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FIGURE 2. Voltage and current during one test cycle.

FIGURE 3. Energy and temperatures measured in one cycle.

2.3 Dataset and fault emulation

During the testing process described in the previous subsection, the state of the cell is assessed
with a sample rate of 1 Hz. The variables registered are the current, the voltage, the SOC and the
two temperatures measured by the sensors. As the test procedure consisted on 9 cycles, which are
divided into four different steps, the total number of samples are the following.

• Charging phase: 6610 samples.
• Resting phase with battery charged: 967 samples.
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FIGURE 4. Temperature deviations during one test sample.

• Discharging phase: 6620 samples.
• Resting phase with battery uncharged: 975 samples.

The real data registered correspond to a correct operation, and the objective of this work is to
detect faults in the battery. Then, 25% of the dataset is randomly chosen to emulate the occurrence of
anomalies. These instances were modified by changing the temperature measured a certain deviation,
which, according to battery manufacturer, would represent the appearance of degradation. In this
work, a comparative analysis of the capabilities of different one-class techniques is sought. Hence,
the temperature deviation represented a 5%, 10%, 15% and 20% of the original measurement. Due
to the fact that the two temperature sensors should have similar behaviour, the deviation is applied
over both of them. Figure 4 represents an example of how fault situations are emulated during one
test cycle by deviating a 5% of the correct measurement.

3 Methods

This section introduces the hybrid classifier approach proposed to detect anomalies during the
capacity confirmation test. Furthermore, a brief explanation of each of the tested techniques is
presented.

3.1 Classification approach

As stated in Subsection 2.2, the anomaly detection process must face the possibility of dealing with
different operating points. Consequently, a hybrid classifier is implemented according to Figure 5.

The best classifier for each operating regime is chosen following the procedure shown in Figure 6.
For a given phase p, each of the k methods detailed in next subsection are tested. Furthermore,
different n hyperparameters are swept for each technique. Finally, the classifier with the best result
is the one chosen for the hybrid topology.
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FIGURE 5. Hybrid classifier approach.

FIGURE 6. Schematic process to obtain the best classifier for a phase p.

3.2 Anomaly detection techniques

The different techniques considered to implement the fault detection system are detailed in this
subsection.

3.2.1 Gaussian classifier The use of probability density functions can approximate the behaviour
of the training set. A simple and direct way to apply this approach consists of using a Gaussian
function to model the target class [10]. Then, once the Gaussian function is calculated, the criteria to
determine the anomalous nature of a test sample are based on its probability density value.
This technique has been used in many different applications, giving especially successful results

when the data are normally distributed [6]. Furthermore, its simplicity results in extremely low
computation times, which is one of the main strengths of this method [29].

3.2.2 Parzen density estimation This density estimation method aims to model the data by means
of the use of non-parametric Parzen density estimator (PDE). In this case, a Gaussian kernel is
combined with the covariance matrix over each target instance during the training process [17].
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686 Hybrid One-class Classifier to Detect Faults in Power Cells

A key feature that is also shared with Gaussian model technique is that the behaviour of the
achieved classifier has an extremely close relationship with the nature of the target set. Unsuccessful
results should be achieved when the data size is not significantly great or the number of outliers in
the training set is high [6].

3.2.3 Principal component analysis The use of principal component analysis (PCA) has been
commonly used for dimensional reduction tasks [31]. However, this technique can be configured as
a one-class reconstruction method [21]. The main basis of this technique rests in the fact of finding
the direction with greater data variability, known as components [31]. These vectors can be used to
perform a linear projections of the original data over lower data dimensions.
Then, the criteria to determine the anomalous behaviour of a test sample is based on the

reconstruction error. This is defined as the difference between the original point and the projected
data. This approach makes the assumption that anomalies will result in high reconstruction error
[29].

3.2.4 Minimum spanning trees The main basis of minimum spanning trees (MSTs) is focused on
obtaining a set of edges of an undirected connected graph with the lowest total weight [24]. This
method, which has been applied initially to develop telecommunications and power grids, can also
be considered for one-class classification tasks [29].
Once the tree is calculated using only data from the target set, the criteria to detect an anomalous

test instance are based on the distance to the nearest edge. If this distance is higher than a given
threshold, then the anomaly is detected [23].

3.2.5 Support vector data description The support vector data description (SVDD) is a one-class
technique classified as a boundary method. This technique has its origin in the commonly used
support vector machine, which aims to project the data over a high-dimensional feature space. Then,
a hyperplane is constructed looking for the maximum distance between the target set and the origin.
From this basic concept, SVDD performs a similar process. In this case, a hypersphere containing

all training instances is implemented instead of an hyperplane [29]. The criteria to identify the
anomaly occurrence are based on the membership of the test sample to the hypersphere [29].

4 Experiments to Validate the Proposal

Before the description of all experiments, it is important to remark that this research has two main
objectives. First, a detailed analysis of the performance of five different one-class techniques is going
to be performed. In addition to the hyperparameters inf luence of each technique, the inf luence of the
fault nature will also be assessed. For this reason, the faults are generated using different percentage
deviations. The second main objective is to achieve the best hybrid classifier. This means that, for
each of the four operating points, the technique with the best performance is chosen to detect faults
during the capacity confirmation test of a LiFePO4 battery.
From this goals, the experiments carried are the one summarized below.

1. The dataset is divided into four phases, as explained in Subsection 2.3 (Charging phase, resting
phase with battery charged, discharging phase and resting phase with battery uncharged).

2. For the data belonging to each phase, four different outlier generation processes are tested: the
temperature measurements are modified as 5%, 10%, 15% and 20%.
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TABLE 1. Hyperparameters tested for each technique.

Technique Hyperparameter Tested values

Gaussian model Outliers fraction in the target set (Θ) 0:5:20
Regularization parameter (β) 0:0.001:0.01

PDE Outliers fraction in the target set (Θ) 0:5:20
Width parameter (α) 0:0.01:0.1

PCA Outliers fraction in the target set (Θ) 0:5:20
Number of components (nc) 1:1:nvar

MST Outliers fraction in the target set (Θ) 0:5:20

SVDD Outliers fraction in the target set (Θ) 0:5:20
Width of RBF kernel (σ ) 1:0.5:5

3. Hence, for each anomaly detection set, the five techniques detailed in the previous section are
applied.

4. Finally, for each technique, several hyperparameters and data preprocessing are tested using a
10k-fold cross-validation. The different data conditioning tested are the following.

• Data normalization using a 0 to 1 criteria. For each variable, the maximum registered is
converted to 1 and the minimum to 0. The intermediate values are scaled accordingly.

• Data normalization using the z-score criteria. This value measures, for each variable, the
number of standard deviations that a value is away from the mean [27].

• The data are not preprocessed and treated without conditioning.
5. The hyperparameter tested are summarized in Table 1.

Finally, the criteria to determine the best classifier configuration are based on the area under the
receiving operating curve (AUC), which calculates a relationship between true positive rate and false
positive rate. This indicator shows a representative value of the classifier behaviour, regardless the
class distribution [5, 13].

5 Results and Comparative Analysis

The best results obtained for each capacity confirmation test phase, anomaly generation method
and technique are summarized in this section. In addition to the best AUC reached, the configured
hyperparameters and preprocessing for these results are presented. ‘With the aim of giving a general
idea of the throughput of each technique, the authors also present the computation time. However,
this value might be subjected to the processor features and could not offer a direct idea of the
technique performance. Then, for each test run, the highest computation time was assigned a 100
%, while the rest of times are proportionally graded. For example, if the slowest technique needs 10
seconds to train the classifier, this should present the 100%, and any technique with 5 seconds of
training time should be graded with a 50% of computation effort.’
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TABLE 2. Best results for battery charging set.

Deviation Technique AUC (%) Preproc. Configuration Effort (%)

5% Gauss 100.000 0–1 β=0.01 Θ=0 0.006
PDE 85.485 ZS α=0.05 Θ=0 3.795
PCA 99.990 0–1 nc=4 Θ=0 0.026
MST 99.990 — — Θ=0 3.223
SVDD 99.848 ZS σ=3.5 Θ=0 100.000

10% Gauss 100.000 0–1 β=0.005 Θ=0 0.008
PDE 89.717 ZS α=0.05 Θ=0 4.701
PCA 99.990 0–1 nc=4 Θ=0 0.045
MST 99.990 — — Θ=0 5.617
SVDD 99.879 ZS σ=4 Θ=0 100.000

15% Gauss 99.990 — β=0 Θ=0 0.056
PDE 91.646 ZS α=0.1 Θ=0 3.614
PCA 99.990 — nc=1 Θ=0 0.074
MST 100.000 — — Θ=0 3.973
SVDD 99.889 ZS σ=4 Θ=0 100.000

20% Gauss 100.000 0–1 β=0.006 Θ=0 0.003
PDE 92.990 ZS α=0.03 Θ=0 3.505
PCA 99.990 0–1 nc=4 Θ=0 0.031
MST 100.000 — — Θ=0 3.671
SVDD 99.909 ZS σ=4.5 Θ=0 100.000

The results achieved for detecting anomalies during the charging process of the capacity
confirmation test are shown in Table 2. The experiments carried out over the set comprised data
from the resting phase with the battery charged, led to the results in Table 3. The performance of
each one-class technique when detecting faults during the battery discharging phase are presented
in Table 4. Finally, the best results for the resting phase with the battery discharged are shown in
Table 5.

5.1 Comparative analysis

This subsection highlights the main features of each technique according to the results achieved and,
consequently, determines the best hybrid classifier configuration.

5.1.1 One-class classifiers analysis

Gaussian model. The Gaussian one-class classifier presented a remarkable low computation effort.
In all experiments, it is the one with the lowest computation time. In spite of its simplicity and speed,
its performance is remarkable for all training sets, regardless the temperature deviation. On the other
hand, the value ofΘ is always 0, which means that the target set does not present a significant number
of outliers. This feature is shared with the rest of techniques. Focusing on the parameter β, it does
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TABLE 3. Best results for resting with charged battery set.

Deviation Technique AUC (%) Preproc. Configuration Effort (%)

5% Gauss 99.931 ZS β=0.002 Θ=0 1.875
PDE 90.833 ZS α=0.03 Θ=0 64.884
PCA 99.931 — nc=1 Θ=0 64.884
MST 99.931 — — Θ=0 52.759
SVDD 99.444 ZS σ=5 Θ=0 100.000

10% Gauss 99.931 — β=0.002 Θ=0 2.521
PDE 91.944 ZS α=0.04 Θ=0 28.078
PCA 99.861 — nc=1 Θ=0 36.734
MST 99.931 — — Θ=0 53.420
SVDD 98.958 ZS σ=2 Θ=0 100.000

15% Gauss 99.931 — β=0.003 Θ=0 2.802
PDE 91.389 ZS α=0.02 Θ=0 78.437
PCA 99.931 — nc=1 Θ=0 10.167
MST 99.931 — — Θ=0 76.309
SVDD 99.583 ZS σ=5 Θ=0 100.000

20% Gauss 99.931 — β=0.001 Θ=0 1.732
PDE 92.014 ZS α=0.03 Θ=0 58.332
PCA 99.861 — nc=2 Θ=0 10.145
MST 99.931 — — Θ=0 66.192
SVDD 99.514 ZS σ=4 Θ=0 100.000

not follow a clear pattern, since its value varies from one experiment to another. Finally, the good
results achieved using this technique indicates that the dataset may present a normal distribution.

Parzen Density Estimator Unlike Gaussian classifier, this method does not present an extremely
good performance. Although the AUC values are the lowest and the computation effort is the second
or third greatest, it is interesting to remark that it presents the trend of increasing performance when
the temperature deviation increases. The optimum values of α are also below 0.05, even though it
was tested up to 0.1. Regarding the best preprocessing approach, this technique performs better with
z-score normalization.

Principal component analysis The PCA classifiers has the second-lowest computation effort, which
is a really interesting feature, especially, taking into consideration that the performance is among the
three best for all sets. Focusing on the number of components, this value is not always the same and
changes depending on the tested set. Regarding the data conditioning, training with raw data offer
better results in all cases.

Minimum spanning tree The results obtained with this technique are always between the two best
in all experiments, and they are achieved using raw data instead of data conditioning. Although
this technique competes with Gaussian or PCA in terms of AUC, it is important to emphasize the
significant computation effort, especially comparing it with those two techniques.

Support vector data description This last one-class technique has the main disadvantage of having
a great computation effort, being the slowest method. When the dataset is greater (charging and
discharging sets), it has a computation effort more than 30 times greater than the second-slowest
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TABLE 4. Best results for battery discharging set.

Deviation Technique AUC (%) Preproc. Configuration Effort (%)

5% Gauss 99.990 — β=0 Θ=0 1.875
PDE 92.893 ZS α=0.01 Θ=0 64.884
PCA 99.990 — nc=2 Θ=0 64.884
MST 99.990 — — Θ=0 52.759
SVDD 99.445 ZS σ=3 Θ=0 100.000

10% Gauss 99.990 — β=0 Θ=0 2.521
PDE 91.058 0-1 α=0.04 Θ=0 28.078
PCA 99.990 ZS nc=3 Θ=0 36.734
MST 100.000 0-1 — Θ=0 53.420
SVDD 99.879 ZS σ=4 Θ=0 100.000

15% Gauss 99.990 — β=0 Θ=0 2.802
PDE 93.438 ZS α=0.03 Θ=0 78.437
PCA 99.990 — nc=1 Θ=0 10.167
MST 100.000 — — Θ=0 76.309
SVDD 99.899 ZS σ=4 Θ=0 100.000

20% Gauss 99.990 — β=0.005 Θ=0 1.732
PDE 95.151 ZS α=0.01 Θ=0 58.332
PCA 99.990 — nc=1 Θ=0 10.145
MST 100.000 — — Θ=0 66.192
SVDD 99.899 ZS σ=4 Θ=0 100.000

method. In the rest of cases, the difference is not so remarked, although it is significant. This feature
is especially negative when an online training process is implemented. Regarding the preprocessing
stage, this technique performs better with z-score normalization, showing significant better results
than the obtained with other conditioning. The width of RBF σ is not constant for all cases, varying
from 2 to 5, depending on the set.

5.1.2 Hybrid one-class classifier After the presented results and the detailed analysis of each
classifier, the proposed fault detection system would have the following topology.

• Charging phase.

– 5 % temperature deviation: Gaussian classifier with raw data, β=0 and Θ=0.
– 10 % temperature deviation: Gaussian classifier with 0-1 normalization, β=0.005 and

Θ=0.
– 15 % temperature deviation: MST classifier with raw data and Θ=0.
– 20 % temperature deviation: Gaussian classifier with 0-1 normalization, β=0.006 and

Θ=0.

• Resting phase with battery charged.

– 5 % temperature deviation: Gaussian classifier with z-score normalization, β=0.002 and
Θ=0.

– 10 % temperature deviation: Gaussian classifier with raw data, β=0.002 and Θ=0.
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TABLE 5. Best results for resting with discharged battery set.

Deviation Technique AUC (%) Preproc. Configuration Effort (%)

5% Gauss 99.932 — β=0.001 Θ=0 1.999
PDE 90.274 ZS α=0.02 Θ=0 33.822
PCA 99.932 0–1 nc=2 Θ=0 8.412
MST 100.000 — — Θ=0 30.397
SVDD 99.396 ZS σ=5 Θ=0 100.000

10% Gauss 99.932 — β=0.005 Θ=0 1.191
PDE 90.411 ZS α=0.03 Θ=10 33.844
PCA 99.932 — nc=1 Θ=0 5.544
MST 100.000 — — Θ=0 33.294
SVDD 99.247 ZS σ=3 Θ=0 100.000

15% Gauss 99.932 — β=0.005 Θ=0 0.780
PDE 90.890 ZS α=0.01 Θ=10 24.987
PCA 99.931 — nc=2 Θ=0 5.861
MST 100.000 ZS — Θ=0 36.924
SVDD 99.589 ZS σ=5 Θ=0 100.000

20% Gauss 99.932 — β=0.001 Θ=0 1.646
PDE 90.274 ZS α=0.01 Θ=0 43.535
PCA 99.932 — nc=2 Θ=0 17.205
MST 99.932 — — Θ=0 36.570
SVDD 99.315 ZS σ=5 Θ=0 100.000

– 15 % temperature deviation: Gaussian classifier with raw data, β=0 and Θ=0.
– 20 % temperature deviation: Gaussian classifier with raw data, β=0.001 and Θ=0.

• Discharging phase.

– 5 % temperature deviation: Gaussian classifier with raw data, β=0 and Θ=0.
– 10 % temperature deviation: MST classifier with 0-1 normalization and Θ=0.
– 15 % temperature deviation: MST classifier with raw data and Θ=0.
– 20 % temperature deviation: MST classifier with raw data and Θ=0.

• Resting phase with battery uncharged.

– 5 % temperature deviation: MST classifier with raw data and Θ=0.
– 10 % temperature deviation: MST classifier with raw data and Θ=0.
– 15 % temperature deviation: MST classifier with z-score normalization and Θ=0.
– 20 % temperature deviation: Gaussian classifier with raw data, β=0.001 and Θ=0.

It can be derived from these results that, for each operating point of the battery, four different
classifiers are taken into account. However, if a classifier performs well with 5% of temperature
deviation, it does not mean that it detects properly the 20% deviations. The best way to face this
problem is to use an or logic gate. Hence, for a given operating point, the fault is detected if at least
one of the four classifiers indicate it.
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6 Conclusions and Future Works

The present work deals with the fault detection in a capacity confirmation test performed over a
LiFePO4 battery. Five different one-class techniques are proposed to implement a hybrid intelligent
system capable of detecting slight deviation in the battery temperature. This tool could represent a
really important breakthrough since it can help the manufacturer to identify the early deterioration in
a battery. The contribution of this paper is especially important, taking into consideration the great
potential of this kind of batteries in an immediate future.
The increasing interest of one-class classification techniques to solve fault detection problems

emphasizes the importance of the present work. A detailed analysis of each one is carried out,
remarking the main strengths and weaknesses of each one. Gaussian classifier has shown really good
results with very low computation effort. However, this fact can be the result of normally distributed
data, so this method could lead worse results with high non-linear data. The MST performed almost
as good as Gaussian, although it implies a significantly greater training times. Focusing on improving
the computation effort with good results, PCA has a remarkable performance. The SVDD classifiers
present the main disadvantage of high computation cost, while PDE offered the worst results in all
experiments.
The main idea of studying the computation effort is related to the possibility of establishing

an edge computing topology, where the fault detection is implemented in a decentralized envi-
ronment. This innovative idea is suitable not only for fast techniques like PCA or Gauss but
also for more computationally expensive techniques since processors are dedicated to specific
tasks.
In addition, due to the difficulty of obtaining real anomalies, a fault generation method is

developed to check the behaviour of the classifiers. This method could be applied to a wide range of
cases, such as the alteration in sensors or actuators operation.
Although the anomaly generation is suitable for the case of study, in future works, the implemen-

tation of different methods to obtain a dataset of faults could be interesting. Instead of percentage,
different criteria, such as standard deviation, variance or even a time series approach, would present
a useful tool to check classifiers performance [20].
This work addresses the problem of battery degradation. However, it could be possible that the

fault is detected due to a measurement error. Then, developing imputation techniques or intelligent
models to replace the wrong measurement would allow to dispense with recurrent sensors and
recover the missing data [19].
The proposed hybrid topology divides the dataset into four groups, depending on the phase

of the capacity confirmation test. Further works could consider the possibility of applying
clustering techniques over each set, to divide the data into different subgroups. In addition
to clustering, the application one-class techniques based on random projections, such as
NCBoP or APE [22], could help to achieve interesting results, especially if the data are well
separated.
Finally, the proposed method could be improved in future works by retraining the system after a

certain time. This would be interesting, since the battery can evolve due to its use, so the new data
should be taken into consideration to implement the classifier.
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