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Abstract

Study objectives

To investigate inter-scorer agreement and scoring time differences associated with visual

and computer-assisted analysis of polysomnographic (PSG) recordings.

Methods

A group of 12 expert scorers reviewed 5 PSGs that were independently selected in the con-

text of each of the following tasks: (i) sleep staging, (ii) scoring of leg movements, (iii) detec-

tion of respiratory (apneic-related) events, and (iv) of electroencephalographic (EEG)

arousals. All scorers independently reviewed the same recordings, hence resulting in 20

scoring exercises per scorer from an equal amount of different subjects. The procedure was

repeated, separately, using the classical visual manual approach and a computer-assisted

(semi-automatic) procedure. Resulting inter-scorer agreement and scoring times were

examined and compared among the two methods.

Results

Computer-assisted sleep scoring showed a consistent and statistically relevant effect

toward less time required for the completion of each of the PSG scoring tasks. Gain factors

ranged from 1.26 (EEG arousals) to 2.41 (leg movements). Inter-scorer kappa agreement

was also consistently increased with the use of supervised semi-automatic scoring. Specifi-

cally, agreement increased from = 0.76 to K = 0.80 (sleep stages), = 0.72 to K = 0.91 (leg

movements), = 0.55 to K = 0.66 (respiratory events), and = 0.58 to = 0.65 (EEG arousals).

Inter-scorer agreement on the examined set of diagnostic indices did also show a trend

toward higher Interclass Correlation Coefficient scores when using the semi-automatic scor-

ing approach.
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Conclusions

Computer-assisted analysis can improve inter-scorer agreement and scoring times associ-

ated with the review of PSG studies resulting in higher efficiency and overall quality in the

diagnosis sleep disorders.

Introduction

The analysis of polysomnographic sleep recordings (PSGs) constitutes one of the most time-

consuming tasks in the daily work of a Sleep Center. A typical PSG examination contains

somewhere between eight up to twenty-four hours of continuous neurophysiological activity

recording. Common PSG data include, among others, different traces of electroencephalo-

graphic (EEG), electrooculographic (EOG), electrocardiographic (ECG), electromyographic

(EMG), and respiratory activity [1]. Likewise, analysis of the PSG can be organized into differ-

ent subtasks, for instance, analysis of the macro and micro structure of sleep, characterization

of the respiratory function, or the scoring of limb movement activity.

Clinical findings over the last years have uncovered the negative consequences that Sleep

Disorders exert over health, contributing to the general public awareness. This situation has

led to a steady increase in the demand for PSG investigations, which represents a challenge for

the already congested sleep centers. Clinician’s time is expensive and scant. In addition, the

large amount and the complexity of the associated data, makes of PSG analysis a task prone to

errors and to subjective interpretations [2]. Indeed, despite homogenization procedures pro-

moted by development and usage of clinical standard guidelines [1,3], different grades of

intra- and inter-expert variability have been reported in the literature, affecting the resulting

PSG outcomes, which vary among the specific references or tasks subject to evaluation [4–9].

In this context, the use of automatic scoring algorithms presents potential advantages. First, as

computer analyses produce deterministic (repeatable) outputs, they have the capacity to over-

come the variability associated with intrinsic human subjectivity, thereby contributing to stan-

dardization of the process and overall quality improvement. On the other hand, automatic

scoring would result in great savings in terms of scoring time, hence human resources, reduc-

ing overall costs of the diagnosis. Literature, in fact, is rich on examples that focus on the devel-

opment and validation of automatic analysis methods in different areas related to the scoring

of sleep studies [5,10–19]. However, despite recent advances and the promising man-machine

agreement results reported in some of these works, reliance on automatic scoring among the

clinical community remains low [15,20,21]. Moreover, there are still open questions on

whether “are we there yet”, in terms of acceptable performance and enough generalization

capabilities of these algorithms as compared to well-trained human clinicians [2].

An alternative approach is the so-called “semi-automatic” scoring, whereby an automatic

algorithm performs a preliminary first analysis pass, after which the results are reviewed by an

expert clinician who corrects possible miss-scorings produced by the computer program.

Because of the expert supervision, the procedure can still be safely implemented in the clinical

practice: would the (full) automatic scoring algorithm make a mistake (e.g. due to data of vary-

ing quality and/or different patient phenotypes) the error can still be detected and corrected by

the supervising expert. An open question remains, though, as to whether economics of semi-

automatic scoring still apply, in particular, because of keeping expert intervention as part of

the process, and evaluation of its possible role in reducing the baseline levels of manual inter-

scorer variability.
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The main goal of this study is to evaluate the possible benefits of using semi-automatic anal-

ysis for the scoring of PSGs in comparison to baseline levels of human performance. Perfor-

mance, in the context of this study, is characterized by the use of objective (quantifiable)

metrics regarding the respective scoring times and resulting levels of inter-rater scoring vari-

ability. Specifically, in this study, experiments are carried out, independently and systemati-

cally, in the context of the following four (usually, the most important) PSG analysis subtasks:

sleep staging, scoring of leg movements, and detection of respiratory (apneic-related) events

and of EEG arousals.

Our work is of interest, as the topic has barely been examined in the available literature,

with perhaps some few exceptions regarding the specific subtask of sleep staging [10,20,22,23].

Regardless, to our knowledge, no previous studies have attempted to examine the hypothesis

on whether semi-automatic scoring can contribute to reduction of inter-scorer variability in a

systematic way. Likewise, we believe this is the first study to systematically address possible

scoring time differences between the manual and semi-automatic approaches.

To have objective (measurable) references of the levels of scoring performance is as well of

fundamental importance to allow implementation of quality control mechanisms in the

patient care. Our work contributes as well by adding to the existing literature on manual scor-

ing, taking into account that evolution of the scoring methods and reference clinical guidelines

motivates reassessment of the existing references, for which some of them might be outdated.

Furthermore, for some of the examined scoring tasks, literature references of related quality

metrics examined in this work have never been reported before.

Methods

Study database

PSG data for this study has been gathered by retrospective inspection of the Haaglanden Med-

isch Centrum (HMC, The Hague, The Netherlands) Sleep Center patient database. The pre-

sample dataset comprised 2801 recordings, corresponding to the most recent full-year data in

the HMC database at the time (2019). The final inclusion dataset, involving 20 PSG recordings,

was selected from this initial sample using an automatic selection procedure implemented

with the aim to minimize the risk of selection bias. The automatic selection procedure is

described in further detail in the later section “Selection of PSGs”.

All data were originally acquired in the course of common clinical practice. PSG data con-

sisted of raw biomedical signals following standard acquisition procedures described in the

AASM guidelines [1]. SOMNOscreenTM plus devices (SOMNOmedics, Germany) were used

as the acquisition hardware. Scoring annotations resulting from regular clinical examination

workflow accompanied each recording. Clinical scorings were carried out by HMC expert

sleep technicians including the analysis of sleep stages, EEG arousals, and detection of respira-

tory events following the standard AASM guidelines [1], and scoring of leg movements

according to the WASM2016 manual [3]. Both the raw signals’ data and the resulting clinical

scoring annotations were digitally stored using the EDF+ format [24].

All recordings were de-identified and subrogate study numbers were assigned to each

patient prior their inclusion in this study, thus avoiding any possibility of individual patient

identification. Under these conditions the study obtained approval of the local Medical Ethics

Committee (Medisch Ethische Toestsingscomissie Zuidwest Holland) under code MTEC-19-

065, who considered that the protocol did not fall under the scope of the Medical Scientific

Research Involving Human Subjects Act (WMO) and that no explicit informed consent was

required by participants. Study has as well obtained written permission from the database

owner for publication.
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Rescoring task

In the present study a group of 12 expert scorers were prompted to review 5 PSGs that were

independently selected in the context of each of the following tasks: (i) sleep staging, (ii) scor-

ing of leg movements, (iii) detection of respiratory events, and (iv) detection of EEG arousals.

All scorers were experienced sleep technicians from the same center (HMC), who have a com-

pleted training certification, and that regularly and autonomously participate in the daily scor-

ing routine of the sleep department. Sleep technicians with uncompleted training or

undergoing supervision were excluded from this study.

Rescoring was repeated, separately for each task, using first a purely manual (visual), fol-

lowed by a semi-automatic scoring approach. A total of 20 different PSG recordings were

included in the final study dataset, hence resulting in a total 40 different scoring exercises per

scorer. Each participant scorer was tasked to review the exact same recordings, and on each

case scoring was limited to the specific task under consideration. In all cases, scoring was

blindly performed to both the patient identity (by using de-identified recordings) and to the

results of possible previous scorings (e.g. that could take place during regular clinical work-

flow, from other scorers, or during a previous self-rescoring subtask).

To avoid learning effects, at least 4 months of separation between these two manual and

semi-automatic scoring moments were scheduled. For reference, an average amount of 70

PSG recordings are scored by each sleep technician due to the normal sleep lab activity during

that period. Scorers were also not informed about the fact that manual and semi-automatic

scorings would involve the exact same recordings.

All scoring tasks took place using the Polyman software [25]. For each task, a timer was

automatically set in the background by the program (unavailable to the human scorer). The

tick counting was automatically paused if no mouse or keyboard interaction was detected dur-

ing more than a minute, and the offline time was subtracted from the total scoring time. The

resulting active scoring time periods were saved separately in a file for later analysis.

Scoring took place between Time In Bed (TIB) periods only (between “lights off” and “lights

on” markers), which were provided as pre-filled annotations. For the scoring of leg move-

ments, respiratory events, and of EEG arousals, the pre-filled clinical hypnogram was also pro-

vided as additional source for contextual interpretation and to avoid divergence of initial

conditions. Scorers were instructed to stick to the scoring of the relevant events in the context

of the specific target task, not being allowed to change any pre-filled contextual information,

when supplied.

For implementation of the semi-automatic scoring process, the annotations that resulted

from the output of the corresponding automatic analysis algorithms were provided, in addi-

tion, at the start of the scoring. Scorers were instructed to review these scorings by adding,

deleting, or editing the event’s onset and offset times, where corresponds, and according to

their own expertise. Details regarding the development and validation of the automatic scoring

algorithms that were used for this purpose have been reported in past works. The reader is

referred to check the corresponding references regarding the automatic scoring of sleep stages

[26], leg movement activity [27,28], respiratory events [29,30], and EEG arousals [31,32]. A

free-version of the Polyman software and source code for non-licensed versions of automatic

scoring are also accessible online [33].

Selection of PSGs

For each of the target scoring tasks (i.e. sleep staging, leg movements, respiratory events, and

EEG arousals) 5 PSGs were independently and automatically selected from the initial pre-sam-

ple dataset. Sampling size was determined by the limited time availability of the expert scorers
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allocated for the study. Under these circumstances, independent per-task selection was pre-

ferred, rather than recording-level selection, with the aim to obtain the best-fit representatives

for each task, avoiding unnecessary within-subject dependencies for sticking with the same

PSG for all the four scoring tasks (i.e. the same PSG, for instance, might represent an interest-

ing sleep staging analysis scenario, but contain irrelevant leg movement or EEG arousal scor-

ing cases).

With that in mind, an automatic selection procedure was implemented with the objective

to minimize the chance of selection bias and obtain a balanced representation of scoring diffi-

culty for each task. The underlying hypothesis correlates scoring difficulty with scoring time

and inter-scorer variability: the more difficult a PSG becomes for manual scoring, the more

time it would take and the more inter-scorer variability would be associated to its scoring, and

viceversa. Regardless, within the implemented procedure no specific exclusion criteria were

applied to filter out recordings due to specific patient conditions, or poor signal quality. A suf-

ficient condition was that the recording had been accepted for manual scoring during regular

clinical workflow, a condition that, by definition, was already satisfied by all recordings

included in the pre-sample dataset. The underlying motivation was to reproduce, as close as

possible, the same conditions as in real clinical practice and consider the most complete repre-

sentation of the general patient phenotype.

Hence, for each of the four scoring subtasks, the following selection procedure was sched-

uled using the human-automatic agreement as subrogate of the associated scoring difficulty:

i. First, taking as reference the complete pre-sample dataset (2801 PSGs) full automatic analy-

sis (no human intervention at all) of each recording was performed. This analysis led to a

list of automatically scored events La(i), for each recording i, related to the corresponding

scoring task under consideration.

ii. Using the list of automatically-generated events, La(i), each PSG was compared with the

corresponding list of events that resulted from clinical manual examination, Lc(i). Con-

fronting La(i) with Lc(i), a preliminary metric of performance agreement between the two

scoring outputs, Kac(i), was obtained. Specifically, Kac was calculated using the Cohen´s

Kappa statistic [34]. Details on the implementation of Kac for each of the four target sub-

tasks are described in the section “analysis methods”.

iii. By repeating this operation through all 2801 PSGs available in the initial pre-sample data-

set, a distribution DKac of Kac(i) values was obtained.

iv. Using DKac as reference, uniform sampling was performed to select the target number

(n = 5) of recordings to be included in each subtasks’ final study dataset. Specifically, the 5

recordings whose associated Kac(i) performance metrics represent the middle of each

inter-quartile range, plus the median, were selected as representatives of their respective

populations. In other words, the recordings with performance scores representing the

12.5th, 37.5th, 50th, 62.5th and 87.5th percentiles of each DKac distribution were selected

for the final study dataset.

Effectively, the above described procedure is preferable over random resampling as it avoids

potential selection of outliers by chance (i.e. extreme favorable or unfavorable cases for the

automatic algorithm) that might bias the resulting sample. Similar selection procedures were

scheduled during the validation of different automatic scoring algorithms that were reported

in the past [26,32]. Correlation analyses for the validation of the selection hypothesis are pro-

vided and discussed in S4 Appendix.
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Table 1 summarizes the general demographics and PSG descriptors of the resulting patient

study sample. Data are presented stratified among the corresponding task-specific subgroups.

Analysis methods

Analysis of inter-scorer agreement is carried out in the first place by discretizing the recording

time into non-overlapping analysis mini-epochs. Each analysis mini-epoch is assigned the cor-

responding scorer’s output in the context of the specific target subtask. Duration of the mini-

epochs are task-related as well. In the case of the sleep scoring, analysis epochs have the stan-

dard duration of 30s and take possible values according to the AASM clinical guidelines, that

is, either W, N1, N2, N3, or R [1]. In the context of the leg movements, respiratory events, and

EEG arousals’ scoring subtasks, each mini-epoch takes a binary value noting the presence or

absence of event, respectively, if overlapping or not with the events marked by the scorer.

Analysis mini-epoch duration is set to 0.5s for all the three subtasks.

Time discretization in the above terms leads to the construction of k-dimensional contin-

gency tables (k = 5 for sleep staging, k = 2 otherwise) from which standard metrics of agree-

ment for categorical data can be derived. Within each task, agreement between each of the

twelve scorers’ pair combination (n = 66 per recording) is calculated using the Cohen’s kappa

statistic. The use of the Cohen’s kappa is motivated given its widespread use in the field, as well

as its robustness in the case of imbalanced class distributions as it corrects for agreement due

to chance [34].

Inter-scorer agreement is also evaluated among the diagnostic indices resulting from the

respective scorings. Following the list of recommended parameters to be reported in PSG stud-

ies [1,3], a representative subset for each of the subtasks targeted in this study is selected. In

particular, sleep quality-related parameters of Sleep Efficiency (SE), Sleep Onset Latency

(SOL), and Wake After Sleep Onset (WASO) [35], in relation to the sleep scoring task; Apnea-

Hypopnea Index (AHI), Apnea Index (AI), Hypopnea Index (HI) and Oxygen Desaturation

Index (ODI), in relation to the scoring of respiratory events; Arousal Index (ArI), in relation

Table 1. Summary of general demographics and PSG descriptors in the study dataset.

Task group

Parameter Sleep staging Leg movements Respiratory events EEG arousals All

n 5 5 5 5 20

Age (years) 52.0 [47.0, 57.0] 57.0 [51.0, 68.0] 59.0 [57.0, 61.0] 55.0 [52.0, 63.0] 57.0 [51.8, 61.5]

Male (n, %) 5 (100%) 1 (20%) 3 (60%) 3 (60%) 12 (60%)

Time In Bed (TIB, hours) 7.5 [7.4, 8.0] 7.3 [7.0, 7.3] 6.5 [6.4, 7.4] 8.1 [7.2, 8.2] 7.3 [7.0, 8.0]

Total Sleep Time (TST, hours) 5.9 [5.9, 7.1] 6.7 [5.9, 6.7] 6.0 [5.8, 6.1] 7.3 [5.5, 7.4] 6.0 [5.7, 7.0]

Sleep Latency (SL, min) 4.6 [3.0, 5.4] 1.8 [1.5, 3.3] 9.7 [2.6, 14.5] 1.9 [1.0, 21.5] 3.1 [1.6, 16.2]

Stage R latency (min) 69.5 [40.0, 174.0] 104 [64.5, 124.0] 59.0 [52.0, 138.0] 83.5 [80.0, 85.0] 81.8 [58.0, 127.0]

Wake After Sleep Onset (WASO, min) 72.8 [24.7, 124.0] 53.0 [39.9, 68.2] 38.9 [28.1, 52.2] 89.6 [46.7, 100.4] 52.6 [27.3, 106.3]

Sleep Efficiency (SE, %) 91.1 [74.2, 94.5] 88.6 [83.8, 90.9] 89.9 [84.7, 92.8] 83.0 [76.6, 90.5] 89.2 [76.0, 93.2]

Arousal Index (ArI, n/TST) 4.7 [1.8, 17.6] 14.3 [13.4, 16.0] 19.8 [9.6, 23.4] 9.6 [7.9, 13.7] 13.5 [7.5, 20.7]

Apnea-Hypopnea Index (AHI, n/TST) 9.1 [6.0, 9.4] 5.1 [0.6, 20.7] 6.2 [5.8, 13.1] 7.2 [3.0, 20.6] 6.7 [5.0, 20.6]

Oxygen Desaturation Index (ODI, n/TST) 10.7 [10.5, 10.8] 1.4 [0.6, 24.8] 9.9 [5.5, 15.4] 9.9 [2.8, 15.7] 10.2 [4.4, 18.0]

Leg Movement Index (n/TST) 52.3 [9.0, 56.5] 32.0 [21.0, 57.7] 14.2 [8.6, 39.8] 30.0 [19.3, 43.2] 31.0 [12.9, 53.4]

Periodic Leg Movement Index (PLMI, n/TST) 13.0 [0.3, 45.7] 13.8 [13.4, 49.0] 0.8 [0.4, 26.7] 22.4 [4.1, 28.4] 13.6 [0.7, 32.8]

PSG descriptors correspond to values resulting from retrospective examination in the clinical database, i.e. prior to the multi-expert rescoring procedures carried out in

this study. Distributions are characterized using the median and the corresponding interquartile ranges.

https://doi.org/10.1371/journal.pone.0275530.t001
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to the scoring of EEG arousals; and Leg Movement Index (LMI) and the Periodic Leg Move-

ment Index (PLMI), in relation to the leg movements’ scoring task. LMI and PLMI indices are

calculated according to the WASM2016 scoring guidelines, the former being defined as the

number of leg movements � 0.5s after bilateral combinations per hour of sleep, with the latter

including respiratory-related LMs as well in the counts [3]. Inter-scorer agreement among the

resulting indices on each case (n = 12 per recording) is evaluated using the Intraclass Correla-

tion Coefficient (ICC) [36]. Specifically, a two-way absolute single-measures variant of the sta-

tistic, ICC(A,1), is used [37]. A Matlab implementation for calculation of this coefficient has

been used whose source code is available at [38].

Hypothesis testing is carried out to check for significant differences between the manual

and semi-automatic scoring approaches. For this purpose, the reference level for statistical sig-

nificance is set to α = 0.05. Differences are examined using the paired version of the Wilcoxon

signed rank test among all the matched kappa scorer pair combinations (n = 66 per recording,

n = 330 in total for each task). Analogous analysis is performed for checking out differences in

the respective scoring times among the matched individual scorers (n = 12 per recording,

n = 60 in total for each task). For each test the corresponding effect size is reported using the

Cohen’s D statistic. Statistical significance on inter-scorer ICC agreement differences among

diagnostic indices is also evaluated. For this purpose, the a priori expected agreement (r0) for

the semi-automatic approach is set to match the effective ICC levels achieved with manual

scoring.

Results of the above-mentioned analyses are presented in the subsequent section by aggre-

gating the respective scorings among the five recordings involved within each scoring task. In

order to keep the main text extension attainable, individualized per-recording results are pro-

vided as Supplementary Information (S1–S3 Appendixes). In this case, manual vs. semi-auto-

matic differences in diagnostic indices are examined, again, using paired analyses.

Comparison of the respective variance distributions is examined using the Brown-Forsythe

(unpaired) test. For the latter, i.e. comparison of distribution’s variance, the corresponding

manual and semi-automatic indices are first mean normalized within their respective distribu-

tions to avoid possible bias due to differences in the respective population means.

Results

Analysis of scoring time

Fig 1 shows the median scoring time associated with the completion of the different analysis

tasks according to the followed approach, i.e. manual or semi-automatic. Values on the bar

plot are shown in minutes and aggregate the results among the five recordings involved on

each case.

Table 2 expands the results of Fig 1 and shows the results of the associated statistical analy-

ses involving the two scoring approaches. Data in Table 2 unveil a consistent and statistically

relevant effect toward less time required for the completion of each task when using the semi-

automatic scoring approach. Gain factors vary per task, with the largest time savings relating

to the scoring of leg movements, followed by the analysis of the respiratory activity, and a less

pronounced effect associated with the sleep staging task and the scoring of EEG arousals. The

associated effect sizes on each case support these interpretations. In this regard, notice that a

positive sign on the corresponding index indicates that the overall effect (in this case scoring

time) is bigger in the manual scoring scenario, with the associated absolute value being an

indicative of how much bigger the effect is.

When comparing absolute time values among the different tasks, our results show that

detection of leg movements is the most time-consuming task when using manual analysis.
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Scoring of respiratory events is relatively the quickest. The trend changes a bit when using the

semi-automatic approach, resulting in sleep staging being the slowest, with analysis of respira-

tory activity remains as the fastest task.

Individualized per-recording and per-scorer analyses for each task can be found, respec-

tively, in Tables A1-A4 and Figs A1-A4 in S1 Appendix.

Analysis of kappa agreement

Fig 2 shows the global kappa agreement results per scoring task when comparing manual and

semi-automatic scoring approaches. Values on the bar plot represent the median expert paired

agreements among the five recordings within the corresponding task.

Table 3 shows results of the statistical analyses between the corresponding manual and

semi-automatic scoring differences. Moreover, results are subcategorized for some of the tasks

into different contexts of clinical interest. In particular, differences between wake and sleep

Fig 1. Differences in scoring time between manual and semi-automatic scoring approaches. Median scoring time

per task is shown in minutes.

https://doi.org/10.1371/journal.pone.0275530.g001

Table 2. Analysis of scoring time differences per task between manual and semi-automatic approaches.

Scoring task Manual Semi-Auto Gain factor p-value Effect size

Sleep staging 32.62 [21.74, 48.64] 24.54 [16.25, 39.81] 1.33 0.0005� 0.4297

Leg movements 44.53 [31.00, 65.30] 18.50 [12.63, 26.73] 2.41 < 0.0001� 1.3475

Respiratory events 23.81 [17.62, 46.72] 14.58 [10.46, 20.68] 1.63 < 0.0001� 0.9474

EEG arousals 27.50 [21.22, 37.65] 21.78 [15.96, 28.59] 1.26 0.0011� 0.4233

Altogether 134.92 [113.08, 187.65] 80.59 [66.75, 107.89] 1.67 < 0.0001� 1.7527

n = 60 resulting from all twelve scoring experts and the five analyzed recordings for each of the corresponding tasks. Distributions are characterized using the

corresponding median and interquartile ranges in minutes. Gain factors are calculated on each case as the ratio between the corresponding median scoring times.

�Statistically significant result.

https://doi.org/10.1371/journal.pone.0275530.t002
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periods are reported for leg movements, as well as for different types of respiratory (apneic-

related) events. For the analysis of leg movements, the individual kappa scores for each indi-

vidual channel (left / right leg) were averaged together before statistical analysis was executed.

Results from Table 3 show that statistically significant differences between manual and

semi-automatic scoring are reached regardless of the specific task or the event subtype. A con-

sistent trend toward higher inter-scorer agreement associated with the use of semi-automatic

scoring is shown. Notice the associated effect sizes overall show a negative sign, being indica-

tive of the general smaller agreement achieved in the manual scoring scenario. The highest

absolute effect in this context is associated with the leg movements’ detection task.

When comparing among the different tasks, the highest (either manual or semi-automatic)

agreements are achieved in the case of the sleep staging and leg movements’ detection tasks.

Fig 2. Agreement comparison between manual and semi-automatic scoring approaches. Median Kappa agreement

for each task is shown by aggregating all the expert pair combinations throughout the five corresponding recordings.

https://doi.org/10.1371/journal.pone.0275530.g002

Table 3. Overall kappa inter-scorer agreement per scoring task and comparison between manual and semi-automatic approaches.

Scoring task Context Manual Semi-auto p-value Effect size

Sleep staging TIB 0.76 [0.69, 0.80] 0.80 [0.76, 0.83] < 0.0001� -0.7146

Leg Movements TIB 0.72 [0.64, 0.79] 0.91 [0.86, 0.95] < 0.0001� -2.0223

Wake 0.67 [0.57, 0.77] 0.89 [0.82, 0.94] < 0.0001� -1.7121

Sleep 0.75 [0.65, 0.81] 0.92 [0.86, 0.95] < 0.0001� -1.6704

Respiratory events Apnea, Hypopnea, RERA (TIB) 0.55 [0.43, 0.78] 0.66 [0.53, 0.89] < 0.0001� -0.8315

Apneas (TIB) 0.74 [0.35, 0.88] 0.88 [0.57, 0.98] < 0.0001� -0.3783

Hypopneas (TIB) 0.46 [0.36, 0.53] 0.61 [0.51, 0.68] < 0.0001� -0.9569

EEG Arousals TIB 0.58 [0.48, 0.65] 0.65 [0.56, 0.71] < 0.0001� -0.6166

n = 330 resulting from all distinct combinations of expert scorer pairs (n = 66) on each of the five recordings involved in the corresponding scoring task. Distributions

are characterized using the corresponding median and interquartile ranges. TIB = Time in Bed.

�Statistically significant result.

https://doi.org/10.1371/journal.pone.0275530.t003
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For the latter, higher agreement is obtained during sleep periods than during wakefulness.

With regard to the analysis of respiratory activity, and attending to the different event sub-

types, higher agreement is achieved for the scoring of apneas than of hypopneas. Finally, reli-

ability associated with the scoring of EEG arousals reaches agreement levels similar to those

obtained for the identification of respiratory events in general (i.e. apneas, hypopneas and

RERAs altogether).

Individualized per-recording analyses for each of the tasks are supplied in Tables B1-B8 in

S2 Appendix.

Analysis of derived diagnostic indices

Table 4 examines inter-scorer agreement among the selected list of diagnostic parameters for

the manual and semi-automatic scoring approaches. Agreement is evaluated using the Inter-

class Correlation Coefficient (ICC).

When comparing absolute ICC values among the different tasks, a trend can be seen toward

higher inter-scorer agreement when using the semi-automatic scoring approach, with the only

exception of SOL. Regardless of the scoring approach, the highest absolute values of agreement

are achieved for indices SE, AI, and WASO (ICC > 0.99 in all cases). Agreement associated

with the scoring of apneas probably contributes to the relative high scores achieved for the

AHI too. Detection of hypopneas, as reflected by HI on the other hand, shows relative lower

levels of ICC agreement. HI is, in fact, is the index where the lowest overall agreement is

achieved, followed by ArI. For all the examined indices, and regardless of the scoring

approach, the obtained values represent significant scores when no a priori agreement is

assumed in the null hypothesis (p < 0.0001 for all indices when r0 = 0).

For examining statistical significance of the observed differences between the manual and

semi-automatic approaches, the null hypothesis is set to match baseline ICC levels obtained

during manual scoring (column r0 in Table 3). In this case, significant differences are obtained

for the indices of WASO, LMI, PLMI, AI and ODI. For SE, AHI, HI and ArI, the trend

remains consistent toward higher ICC values when using the semi-automatic scoring

Table 4. Comparison of inter-scoring agreement among diagnostic indices between manual and semi-automatic approaches.

Index (TST) Summary of index distributions ICC r0 ICC p-value

Manual Semi-auto Manual Semi-auto

SE (%) 89.11 [68.05, 94.87] 90.31 [70.59, 94.86] 0.99 (0.98–1.00) 1.00 (0.99–1.00) 0.9938 0.0665

SOL (min) 5.27 2.50, 107.41] 4.11 [2.31, 104.81] 0.87 (0.69–0.98) 0.84 (0.62–0.98) 0.8720 0.5589

WASO (min) 86.20 [22.27, 151.77] 79.18 [23.02, 139.51] 0.99 (0.98–1.00) 1.00 (0.99–1.00) 0.9924 0.0481�

LMI 25.27 [19.78, 70.19] 31.73 [20.89, 61.82] 0.92 (0.79–0.99) 0.98 (0.93–1.00) 0.9227 0.0166�

PLMI 13.91 [9.20, 61.70] 14.14 [12.79, 53.70] 0.94 (0.82–0.99) 0.98 (0.93–1.00) 0.9351 0.0282�

AHI 5.86 [3.71, 12.47] 6.54 [4.70, 14.61] 0.99 (0.96–1.00) 0.99 (0.98–1.00) 0.9878 0.1901

AI 1.26 [0.31, 3.46] 1.57 [0.00, 3.54] 1.00 (0.99–1.00) 1.00 (1.00–1.00) 0.9962 0.0441�

HI 3.10 [2.38, 4.87] 4.55 [3.13, 6.68] 0.60 (0.31–0.93) 0.75 (0.48–0.96) 0.6010 0.1160

ODI 6.48 [4.24, 14.38] 12.04 [6.01, 15.89] 0.84 (0.62–0.98) 0.98 (0.95–1.00) 0.8370 <0.0001�

ArI 17.57 [12.98, 25.64] 18.38 [13.82, 25.41] 0.68 (0.39–0.95) 0.77 (0.48–0.97) 0.6824 0.2290

n = 60 resulting from all twelve scoring experts and the five analyzed recordings for each of the corresponding tasks. Summary index distributions are characterized

using the respective median and interquartile ranges. Agreement is characterized in terms of Interclass Correlation Coefficient (ICC) with 95% confidence intervals.

r0 = null hypothesis for baseline ICC score; SE = Sleep Efficiency; SOL = Sleep Onset Latency; WASO = Wake After Sleep Onset; (P)LMI = (Periodic) Leg Movement

Index; AHI = Apnea-Hypopnea Index; AI = Apnea Index; HI = Hypopnea Index; ODI = Oxygen Desaturation Index; ArI = Arousal Index.

�Statistically significant result.

https://doi.org/10.1371/journal.pone.0275530.t004
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approach, albeit analyses do not reach statistical relevance. Only for SOL higher ICC values are

obtained under manual scoring, nevertheless not reaching the level of statistical significance.

Individualized per-recording analyses are supplied in Tables C1-C10 in S3 Appendix. In

this case manual vs. semi-automatic differences are examined both using paired Wilcoxon

sign-rank and unpaired Brown-Forsythe tests, as described in the methods section.

Discussion

The main goal of this study was to evaluate the possible benefits of using semi-automatic scor-

ing of PSGs in comparison to classical manual visual approach. For this purpose, we have indi-

vidually considered four of the most common subtasks involved in the analysis of PSGs: sleep

staging, scoring of leg movements, detection of respiratory events, and of EEG arousals. On

each case, quantifiable metrics of performance regarding the scoring time, and inter-scorer

agreement, have been examined and compared among the two methods. To our knowledge,

this is the first study to systematically address the differences between manual and semi-auto-

matic scoring.

Our experimentation has shown that the use of semi-automatic analysis has benefits in the

form of faster scoring and higher inter-scorer agreement. Faster scoring can help lowering

down the associated diagnostic costs, and have a contribution toward reducing waiting lists as

a consequence of the more efficient scoring production rate. Higher inter-scorer agreement

translates to better consistency and reliability of the PSG outcomes, and therefore improved

quality of the diagnosis. The trend is consistent across all the four examined tasks. Differences

between the two approaches have achieved statistical significance both for the scoring time

and the expert agreement. The impact of these differences on a subset of derived diagnostic

indices, analyzed in terms of ICC agreement, has shown a more heterogeneous pattern. While

statistical significant differences have been observed for indices of WASO, LMI, LMI, AI and

ODI, statistical significance was not reached for indices of SE, SOL, AHI, HI and ArI. Still, for

all the examined indices with the exception of SOL, the trend was consistent toward higher

ICC values when using the semi-automatic scoring approach.

Structured and more detailed analysis of the main findings of this study in the context of

the state-of-the-art is provided in the following subsections.

Scoring time

To the authors knowledge this is the first study reporting and comparing the time associated

with the scoring of respiratory events (both for the manual and semi-automatic approaches).

Our data shows a median gain factor of 1.63 when using semi-automatic scoring. That we

know of, and excluding preliminary estimations from our own group [32,39], this is also the

first study to report on time associated to manual and semi-automatic detection of leg move-

ments and EEG arousals. Specifically, a 2.41 gain factor (44.53 minutes for the manual

approach, and 18.50 minutes when using the semi-automatic procedure) for the leg move-

ments’ detection task was obtained. This is similar to the reference previously reported in

Roessen et al. [39], who nevertheless used an older version of the associated clinical scoring

guidelines. With regard to the scoring of EEG arousals, a gain factor of 1.26 (median of 27.50

minutes for manual vs. 21.78 for semi-automatic) was obtained in the present study, not far

from results reported previously in [32], and using the same clinical reference and automatic

scoring algorithm, but on a different selection of PSG recordings. Last, with respect to sleep

staging, some works can be found that have already examined the associated scoring times

[10,22,23]. Anderer et al. [10], for example, have reported an average improvement from 84 to

5 minutes when using semi-automatic scoring, resulting in a gain factor of 5, well above the
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results reported in this study. This could be explained by quality control mechanism imple-

mented in their approach [40], considerably reducing the number of epochs subject to human

supervision (on average, only 4% of epochs were changed by the 2 experts involved in [10]).

Koupparis et al. [22], on the other hand, have reported an average 3 hours for manual scoring

baseline, which could be improved to 45 minutes with the use of semi-automatic scoring.

Younes et al. [23] have shown differences between full and minimal human intervention asso-

ciated to semi-automatic sleep staging involving 50 and 6 minutes, respectively, on average.

Baseline time for manual scoring, however, was not reported in their study. Our data has

shown that 1.33 gain factor in scoring time associated to sleep staging when using semi-auto-

matic scoring, in addition, while improving median inter-scorer agreement from K = 0.76 to

K = 0.80. Even if the full-review semi-automatic sleep staging approach followed in this study

might be suboptimal in terms of possible time gains (e.g. in comparison to partial quality-

check guided as in Anderer et al. [10]), our data suggest that full-review of automatic sleep

staging can still redound in cost savings regardless of what suggested in Svetnik et al. [20]. A

general warning when comparing results from different works in the literature, is that one has

always to bear in mind that relevant differences might exist between the respective population

samples, the analysis methods, or the clinical scoring references valid at the time of the study.

Inter-rater agreement: Kappa scores

There is abundant literature on the analysis of inter-scorer reliability of event markings in the

scoring of sleep studies. Nevertheless, here most of available data regard almost exclusively to

the manual scoring of sleep stages [4–6,13,41–49], with only few examples examining the case

for other scoring tasks [5,50,51]. That we know of, this is the first study to provide results on

the analysis of inter-scorer reliability under the context of semi-automatic scoring for the

detection of leg movements, respiratory events, and EEG arousals.

A recent publication by the authors included a review of the related literature on manual

sleep staging, resulting in kappa coefficients ranging widely between = 0.46–0.89 [26]. This

range is compatible with the median agreement achieved in this study ( = 0. 76) for the manual

scoring task. Inter-scorer agreement of sleep staging in the context of semi-automatic analysis

has been examined previously by Anderer et al. [10], who reported an increase from = 0.76 to

0.99 when manual hypnograms were rescored semi-automatically. Similarly, Younes et al.

[23], obtained an increase in associated paired kappa scores between two scorers from 0.71 to

0.95 with the help of a third scorer. In Koupparis et al., on the other hand, inter-scorer agree-

ment reached a maximum average of = 0.61 with semi-automated analysis of the so-called

hypnospectrogram [22]. In the same line, in Svetnik et al. [20] epoch-by-epoch agreement

between scorers performing full or partial review of automated scoring ranged = 0.60–0.63.

Reference agreement baseline for manual scoring, however, was not reported in the works of

Koupparis et al. and Svetnik et al. In our study we have reported an increase from = 0.76 to =

0.80 with the use of semi-automatic scoring, which is a lower gain than in the works of

Anderer et al. and Younes et al. (up to = 0.95–0.99). The higher agreement in these works can

be regarded to the use of screening quality-management mechanisms and/or computer-

derived features that significantly reduce the number of epochs subject to manual rescoring

[40,52].

Only one past reference was found examining inter-scorer manual agreement in the detec-

tion of leg movements. In the study of Pittman et al. [5] = 0.77 was obtained between two scor-

ing experts on a dataset of 31 PSGs. Notice, however, that agreement reported in Pittman et al.

refers only to the scoring of PLMs, not LMs, and that the scoring reference was based on older

standards (ASDA1993 [53]). Moreover, analysis was constrained to sleep periods only, and its
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associated resolution was 30s. Our results, involving 12 scorers, and using the more recent

WASM2016 scoring standards, resulted in global = 0.72 for manual, and = 0.91 for semi-auto-

matic scoring, when examining LMs during TIB, and using a 0.5s analysis step. Agreement

falls respectively to = 0.67 and = 0.89 during wake periods, and improves to = 0.75 and =

0.92 during TST.

Pitman et al. have reported as well a = 0.82 for the manual scoring of apneas and hypopneas

using the 2001 AASM Medicare scoring definitions on a 30s analysis epoch [5]. With our set-

tings, we have achieved rather lower agreement resulting in median = 0.55 (improving to =

0.66 with semi-automatic scoring). We have obtained higher agreement for the scoring of

apneas (median = 0.74 for manual, = 0.88 for semi-automatic) than for the case of hypopneas

(respectively = 0.46 and = 0.61). This is an expected result, however no study that we know of

had attempted to quantify this difference in terms of kappa agreement so far.

As for the EEG arousal task, some studies can be found reporting kappa values for manual

scoring in the = 0.47–0.59 range [32,50,51]. Once again, some of these studies use older scor-

ing guidelines (ASDA1992) besides other sources of variability, and therefore direct compari-

son has to be carefully considered. Regardless, the reported range is consistent with our

experimental results in the case of manual scoring ( = 0.58). Our study shows, in addition, that

better inter-scorer agreement can be achieved if using semi-automatic scoring (up to = 0.65 in

our dataset).

Inter-rater agreement: Diagnostic indices

We have found three preceding works that examined differences between manual and semi-

automatic scoring related to diagnostic indices reported in our study. In Svetnik et al. no sig-

nificant differences between the two approaches were found in the resulting indices for SOL

and WASO [20]. This result matches our trend in the case of SOL, but not for WASO. Koup-

paris et al., on the other hand, have reported ICC values for WASO of 0.91 under full-editing

semi-automatic review, considerably decreasing to ICC of 0.05 under a minimal editing

approach [22]. In the same work, a similar trend was reported for SE. Punjabi et al. [54],

instead, have found no significant differences in related calculations of SE, which more closely

matches the outcome of our experimentation. Likewise, our work agrees with the results

reported in the work of Punjabi et al., who found no relevant differences among corresponding

ICC scores of AHI and ArI between manual and semi-automatic scoring. We were not able to

find any other references in the literature for the remaining indices examined in our study in

relation to semi-automatic scoring.

In the context of manual analysis, on the other hand, one can find several other past studies

reporting on inter-rater related ICC agreement scores [5–7,54–60]. The specific values of

agreement vary per study. Danker-Hopfe et al. [6] and Kuna et al. [60], for example, have

reported ICC values for SE of 0.91 and 0.77 respectively, which is below the agreement

obtained in this study (ICC = 0.99). Reliability on PLMI has been reported by Pittman et al. [5]

(ICC = 0.93) and Bliwise et al. [55] (ICC = 0.91–0.99), however, using older definitions of the

index [61,62]. This is relevant as recent studies [63–65] have pointed out to significant differ-

ences in the resulting PLMI calculations when using as reference the latest clinical scoring

guidelines. The agreement results are nevertheless comparable to the levels obtained in our

work (ICC = 0.94), which use the recent WASM2016 standards [3]. Under this reference, our

study is in fact the first one to set a reference for the inter-expert agreement associated with the

LM and PLM indices (ICC = 0.92 and 0.94, respectively). With regard to PSG respiratory-

derived indices, possibly the most widely reported is the AHI, with reliability scores for manual

scoring ranging widely between ICC 0.54–0.99, depending on the consulted study
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[5,7,11,54,60]. Most likely, these differences are to a great extent driven by the specific rule

used for the scoring of hypopneas. As stated before, it is widely accepted that agreement

regarding scoring of hypopneas is lower as compared to that of apneas. This can also be

observed by comparing ICC agreement values associated with AI and HI indices in the refer-

enced literature. This is also the case in our study, with ICC agreement for the manual deriva-

tion of respiratory related indices following the expected trend of higher agreement for AI

(ICC = 0.99) in comparison to HI (ICC = 0.60). Finally, reliability reports of ArI, related to

manual scoring of EEG arousals, show even more variability across the existing literature

(ICC = 0.09–0.96 [5,41,54–58]). Our results fit approximately in the middle of that range

(ICC = 0.68) improving to ICC = 0.76 when using semi-automatic scoring.

Limitations and concluding remarks

Some limitations of our study have to be mentioned. First, it is important to remark that abso-

lute values of the various investigated performance scores are associated with one specific sleep

lab. This study does not involve analysis of inter-scorer variability across multiple centers, and

thus results might not generalize to other centers. In such scenario, the respective values of

scoring agreement are expected to be lower in comparison due to the greater amount of vari-

ability involved [2,60]. This study neither has attempted to quantify the corresponding levels

of intra-scorer variability within any of the two examined approaches (manual or semi-auto-

matic). Thus, it cannot completely be ruled-out that some of the differences between manual

and semi-automatic approaches could be influenced by a component of intra-scorer variability

effect, at the individual scorer level at least. Nevertheless, the relative high number of involved

experts (12 in our study) should contribute to limit its the impact on the global results. In addi-

tion, although a 4-month separation between manual and semi-automatic rescoring could be

regarded as a safe margin in practice, randomized order would have probably been a better

choice from a methodological point of view.

It should also be remarked that quality indicators derived from the semi-automatic scoring

procedure are likely modulated by the reliability and performance of the specific automatic

analysis algorithms used in the first instance. One might speculate with the idea that the better

the algorithm, the higher the improvement on expert agreement with respect to the manual

approach. However, there is no actual evidence that allows us to support this hypothesis. The

usage of alternative automatic scoring methods might lead to different results. Regardless, our

results support the hypothesis that semi-automatic algorithm can improve scoring quality in

terms of both speed and resulting inter-scorer agreement. Also interesting, inter-scorer reli-

ability studies available through literature, and this is no exception, implicitly assume that the

outcome of all human scorers is equally valid. This might be a risky assumption, although

there is no clear formula to discern who (out of a set of human experts) represents the best ref-

erence, and who does not. This propounds an interesting line of future research linked to

another non-less interesting debate: can (full) automatic scoring outperform human experts?

Of course, in terms of its capacity to correctly identify the relevant events associated with the

physiological activity’s ground truth. There is no debate that automatic analysis can outper-

form manual scoring in terms of speed (and our study has shown this is also possible under a

semi-automatic context). If, like in this case, the standard reference is subject to variability

associated with human decision, it does not seem very plausible that any automatic algorithm

could perform beyond the limit set by the average human agreement. After all, as stated before,

deviations from such a reference do not necessarily correlate with the quality of the associated

scorings. This is a subject that deserves more study.
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Last but not least, one another important limitation of this study relates to the number of

PSGs involved in the evaluation of each analysis subtask. The relative high number of sleep

experts involved (12 for our study) partially counteracts this fact, and indeed, the number has

proven enough to reach statistical significance among many of the reported hypothesis tests.

However, a higher number of PSGs per task would be in general desirable. More specifically,

for those cases in which the reported trends did not achieve significant effects, the question

remains open on whether this could be attributed to the relative small PSG sample size. Notice,

on the other hand, that post-hoc power analyses were consciously omitted because no useful

conclusions are expected from them [66]. A higher sample size would also contribute to spread

the bias risk due to demographic and physiological subject variability. Unfortunately, the cho-

sen sample size was imposed by the available resources; thus this was not a design parameter

we were able to tune. As noticed, scoring of PSG data is complex and time-consuming, and

expert’s time is expensive and scant.

In conclusion, our results provide an updated reference for inter-scorer agreement levels

and scoring times associated with both manual and semi-automatic scoring of PSG studies.

We have systematically analyzed and compared the resulting differences, showing that the use

of semi-automatic scoring can improve both speed and consistency of the PSG analysis out-

comes. With a more efficient production rate diagnostic costs can be reduced and diagnostic

times can be shortened. Enhancement of inter-scorer agreement, in addition, results in higher

repeatability and quality of the diagnosis. More work has to be done to investigate generaliza-

tion of these results by increasing the subject sample and its heterogeneity. Future work should

also assess the effects of inter-center and intra-expert scoring variability, and goodness of fully

automatic scoring in comparison to manual and semi-automatic approaches.
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