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1 | INTRODUCTION

Complex indicators based on more than one variable play an important role in public statistics.
For a finite population, partitioned in domains or small areas, examples of such indicators are the
ratios of domain means or the domain means of ratios. In the first case, we may have the quotient
between the mean annual expenditure on food of the households from a given territory and the
corresponding mean annual expenditure on all items of expenditure. In the second case, we have
the domain mean of the proportions of annual household expenditures used for food.
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One way to estimate a ratio of domain means is to estimate the numerator and denominator
separately and independently and substitute in its expression. This approach leads to the use of
plug-in estimators, which have the problem of being biased even though their components are
unbiasedly estimated. There are two additional inconveniences. The first one is not considering
the correlation between the variables that intervene in the definition of the population parame-
ters of the ratio type. The second one is that the asymptotic property of unbiasedness cannot be
assumed for estimators of domain indicators if sample sizes are small.

For estimating domain means of households ratios of food expenditure, as well as for other
nonlinear bivariate parameters, the statistical literature presents few model-based contributions.
For covering this gap, Erciulescu et al. (2018) gave an interesting proposal. They discussed some
methods of applying benchmarking constraints to a triplet (numerator, denominator, ratio), at
multiple stages of aggregation, where the denominator and the ratio are modeled and the numera-
tor is derived. This manuscript follows a different approach by introducing predictors of ratio-type
domain indicators based on unit-level bivariate models.

Small area estimation (SAE) gives statistical methodology to estimate parameters of popula-
tion subsets, called domains or small areas. The word “small” refers to sample size and not to
population size. To overcome the problem of having a small sample size in a domain, SAE com-
plements the data of the target variable with data of auxiliary variables, information taken from
other domains and correlation structures. All this can be done by fitting models to the available
data for the entire population and building estimators based on the selected model. This is the
unit-level model-based approach. Alternatively, models can be used for aggregated data and then
inferential procedures are based on area-level models.

This paper defines domain parameter as a function of the values taken by one or more objec-
tive variables in all units of the population. The mathematical expression (formula) of a domain
parameter is therefore relevant. If the target variables are continuous, then it is possible to esti-
mate linear domain parameters with empirical best linear unbiased predictors (EBLUP) based
on linear mixed models (LMM). However, domain parameters are often nonlinear or defined by
non-continuous target variables. In those cases, it is quite common to estimate domain param-
eters with empirical best (or Bayes) predictors (EBP) based on LMMs or on generalized LMMs
(GLMM). This paper deals with the estimation of domain parameters that are nonlinear func-
tions of two continuous variables and puts special emphasis in the estimation of ratios of domain
means and domain means of ratios.

As the domain parameters of interest depend on several target variables, the use of multi-
variate models is recommended. Since the first works of Fay (1987), Datta et al. (1991, 1999),
the statistical literature contains some applications of these models to the SAE setup. Concern-
ing area-level multivariate models, Molina et al. (2007), Lépez-Vizcaino et al. (2013, 2015) and
Esteban et al. (2020) derived predictors for totals of employed and unemployed people and
for unemployment rates based on multinomial-logit or compositional mixed models. Morales
et al. (2015), Porter et al. (2015), Benavent and Morales (2016, 2021) or Arima et al. (2017) studied
the problem of estimating poverty indicators, including the nonlinear poverty gap. Marchetti and
Secondi (2017) and Ubaidillah et al. (2019) estimated household consumption expenditures by
applying Fay-Herriot models. Erciulescu and Opsomer (2019) predicted employee compensation
components by using a hierarchical Bayes bivariate Fay-Herriot models.

Concerning unit-level multivariate models, Fuller and Harter (1987) introduced the multivari-
ate nested error regression (NER) model and Datta et al. (1998) applied this model to hierarchical
Bayes prediction of small area mean vectors. For analyzing unit-level multivariate data in SAE,
Ngaruye et al. (2017), Ito and Kubokawa (2021) and Esteban et al. (2022) gave EBLUPs of domain

SUORIPUO)) PUE Sl 91p 295 [7702/Z V0] ve AmsqrT aunu0 [ T B30 spEpEsRAn] & § 197100 |1 11 1/0pmwo i miqan o sdig wog papeoume ¥ TIOT 69RELIFT

fapmk

SFIROIT SUDNRI) SANEDL) apqeoipide owp A poumnanT am E IR () EN J0 S Ky SRIGr] S g v



ESTEBAN ET AL.

1701
Scandinavian Journal of Statistics—l—

means and totals to treat problems of repeated measures, posted land prices, and expenditure data,
respectively. Furthermore, Erciulescu et al. (2019) employed a bivariate hierarchical Bayesian
unit-level model for estimating cropland cash rental rates at the county level.

On the other hand, the EBPs are widely employed when the domain parameters of interest
are nonlinear. Since the first works of Jiang and Lahiri (2001) and Jiang (2003), where EBPs of
functions of fixed effects and small-area-specific random effects were developed under GLMMs,
some authors have extended their procedures and applied EBPs in the SAE context. For example,
Boubeta et al. (2016, 2017) and Hobza and Morales (2016); Hobza et al. (2018) derived EBPs of
small area poverty proportions based on area-level Poisson mixed models and unit-level logit
mixed models, respectively. Erciulescu and Fuller (2016) introduced predictors under alternative
specifications of generalized mixed models. Erciulescu and Fuller (2018) constructed bootstrap
prediction intervals for small area means from unit-level nonlinear models. Marino et al. (2019)
and Hobza et al. (2020) proposed EBPs under semi-parametric and parametric unit-level GLMMs.
Chandra et al. (2017, 2018) and Chandra and Salvati (2018) introduced SAE predictors of spa-
tially correlated count data. Torabi (2019) proposed a class of spatial GLMMs to obtain small
area predictors of esophageal cancer prevalence. This uncomplete list of contribution shows the
high impact that the EBP approach has in SAE. We refer to Rao and Molina (2015) or to Morales
et al. (2021) for a more complete list of references.

Based on the NER model, the seminal paper of Molina and Rao (2010) introduced the basic
theory for calculating EBPs of domain nonlinear parameters, depending on one continuous target
variable, under unit-level LMMs. Molina et al. (2014) and Guadarrama et al. (2016) assumed that
a transformation of the study variable follows a NER model. Their results where later extended
to the two-fold NER model by Marhuenda et al. (2017), to log-normal models by Molina, and
Martin (2018), to data-driven transformations by Rojas-Perilla et al. (2020) and to to unit-level
mixed models with skewed distributions by Graf et al. (2019) and Diallo and Rao (2018). However,
the statistical literature has not yet treated the problem of constructing EBPs, based on bivariate
NER models, for estimating domain nonlinear parameters defined by two continuous variables.
The new best predictors are unbiased under the distribution of the selected model. This is the
main contribution of this paper.

By following Gonzilez-Manteiga et al. (2007, 2008), this article introduces a parametric boot-
strap procedure for estimating the mean squared errors (MSE) of the EBPs. As the optimality
properties of the best predictors might not hold for EBPs when the number of domains and the
domain sample sizes are small, an empirical research is carried out. In addition to the math-
ematical developments, Monte Carlo simulations empirically investigates the properties of the
EBPs and the corresponding MSE estimators. Finally, the new statistical methodology is applied
to data from the 2016 Spanish Household Budget Survey (SHBS). The target is to estimate means
of ratios and ratios of means of food expenditures in Spanish households at the province level.
Both indicators are employed in macro- and micro-economic studies, respectively.

The paper derives statistical methodology for SAE under the unit-level model-based approach.
This is to say, it assumes the prediction theory for finite population inference. See for example, Val-
liant et al. (2000) for a description of this theory. Therefore, this paper does not take into account
the sampling design distribution and related issues in the derivation of the predictors and in the
study of their properties. The proposed statistical methodology is based on a bivariate NER model,
where the error term is normally distributed. Like many other SAE methods, our proposal fol-
lows the parametric statistical inference approach. That has advantages and disadvantages. The
advantage is that we introduce a predictor with optimality properties under the assumption that

SUORIPUO)) PUE Sl 91p 295 [7702/Z V0] ve AmsqrT aunu0 [ T B30 spEpEsRAn] & § 197100 |1 11 1/0pmwo i miqan o sdig wog papeoume ¥ TIOT 69RELIFT

fapmk

SFIROIT SUDNRI) SANEDL) apqeoipide owp A poumnanT am E IR () EN J0 S Ky SRIGr] S g v



1702 | ESTEBAN ET AL.
Scandinavian Journal of Statistics

the assumed hypotheses are fulfilled. The drawback is that these hypotheses are not always ful-
filled in practice. Therefore, it is necessary to make a diagnosis of the model before accepting it
as a working tool to calculate predictors of small area parameters.

The rest of the paper is organized as follows. Section 2 introduces the bivariate NER model.
Section 3 derives the EBPs of additive and nonadditive domain parameters, including predictors
of domain ratios. Section 4 describes a parametric bootstrap procedure to estimate MSEs of the
introduced predictors. Section 5 carries out simulation experiments to investigate the behavior of
the predictors of ratio-type domain parameters and the MSE estimators. Section 6 gives an illustra-
tive application to data from the SHBS of 2016, where the target is the SAE of means of ratios and
ratios of means of household annual food expenditures by provinces. Section 7 summarizes some
conclusions. We give Data S1 with several appendices. Appendix A gives alternative mathematical
derivations for the best predictors of random effects. Appendices B and C contain complementary
simulation results. Appendices D, E, and F present further insights on the application to real data.

2 | THE MODEL

Let U be a population of size N partitioned into D domains or areas U,,..., Up of sizes Ny,..., Np
respectively. Let N = Ejled be the global population size. Let y5; = (ygj1.¥aj2) be a vector of
continuous variables measured on the sample unit j of domain d, d = 1,...,D, j= 1,..., Ng. For
k=1,2, let xqjx = (Xgjk1,---, Xdjkp,) be a row vector containing p; explanatory variables and let
Xgj = diag (xdjl,xdﬂ)yp with p = p1 + p». Let f be a column vector of size px containing regres-

sion parameters and let g = (g, §, ' . The population homoscedastic bivariate NER BNER)
p 1 P2) pop
model assumes that

Vij=Xgif+ug+eg, d=1,...D, j=1,..,Ng. (€))

where the vectors of random effects {u4} and random errors {eg;} are independent with multi-
variate distributions

ug ~ N2(0, Vug),  egj ~ Na(0, Vigj),

and variance-covariance matrices that do not vary with units or domains, that is,

2 2
o Pu120u10y2 2 Pe120e10e2
Vud = ul 2 El Vedj = el 2 El
Pul20u10u2 O Pel20ul10e) )

with parameters 0; = 62,0, = 62,,03 = pu12, 01 = 02,05 = 62 and s = p1,. Let I,,, be the m x m

identity matrix. We define the 2Ny X 1 vectors and the 2Ny X p and 2N X 2 matrices

yd= 1;'2}%(}@'), eq = 1§g}vd(€dj), Xg= 1;'2}%()(5;), Zg= 1;’2}\!#(12)'

Model (1) can be written in the domain-level form

Vi=Xgf+ Zqgug+eq, d=1,...,D, (2)
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where ug ~ Na(0, Vug), eq ~ Nan,(0, Veq) are independent and Vg = diag (Veqj). We define the
1<j<N,
2N x 1 and 2D x 1 vectors and the 2N X p and 2N X 2D matrices

= col = col = col X = col (Xy), Z= diag(Zy).
y= ol Ga). e= col (ea), u= col (ua), S8 (Xa), 1;11%( )

Model (1) can be written in the linear mixed model form
y=Xp+Zu+e. (3)

where u ~ Nyp(0, V), e ~ Non(0, Vy) are independent, V,, = diag (V,4) and V, = diag (V4).
1<d<D 1<d<D
As this paper assumes the prediction theory, where the only source of randomness comes from

the distribution of vector y, derived from model (3), the inference is carried out based on a fixed
subset (called sample), s, of the finite population U. Lets = nglsd andr= nglrd, withsnr=0
and sU r = U, denote the subsets containing the “sample” and “out-of-sample” units. Let y; and
Vds be the subvectors of y and y; corresponding to sample elements and y, and yg, the subvectors
of y and y4 corresponding to the out-of-sample elements. Without lack of generality, we can write
Vi = (y:is, y:ir)’. Define also the corresponding decompositions of Xy, Zg4, Vg and V3.

As we assume that sample indexes are fixed, the sample subvectors ygs follow the marginal
models derived from the population model (2), that is,

Vas = XasP + Zgsug +egs, d=1,...,D,

where ug ~ Na(0, Vig), €ds ~ Non, (0, Veqs) are independentand Vg s = diag (Vegj). Ford = 1,..., D,

l<j<ng
the vectors y; are independent with yas ~ Ny, (kds, Vis), Hds = XasP, Vis = stV“dZ:is + Veds. When
the variance component parameters are known, the best linear unbiased estimator (BLUE) of #
and the best linear unbiased predictor (BLUP) of u4, d = 1,..., D, are

Bp = AV Xy X{Vilys,  lipa = VuaZ) V! (vas — Xashp) - (4)

This paper estimates the model parameters by using the residual maximum likelihood (REML)
method. See e.g. McCulloch et al. (2008) for a description of this method and Esteban et al. (2020)
for the derivation of the updating equation of the Fisher-scoring algorithm that calculates the
REML estimators of the BNER model. By substituting parameters by REML estimators in (4), the
empirical BLUE and BLUP are obtained.

The out-of-sample subvectors yg4, follow the marginal models derived from the population
model (2), that is,

Yar = XarP + Zgrug +egr, d=1,..,D,

where ug ~ N2(0, Vi), €dr ~ Nov,—n,)(0, Ved,r) are independent and Veg, = diag (Vegj). The
ng+1<j<Ny

vectors ygr are independent with ygr ~ Ny, _n, (4dr, Var), piar = XarP, Vir = Zd,VudZ;r + Vedr. The
covariance matrix between yg, and yg; is

Virs = cOV(Yar, Yds) = cov(Xarf + Zarua + €dr, XasP + Zasua + eds) = Zarvar(ua)Zly. = ZarVudZ) .
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The distribution of y4,, given the sample data y;, is
YdrlVs ~ Ydr|yds ~ N(;udrls-: Vdr|s)- (S)
The conditional (Ng — ng) X 1 mean vector is

Harls = pdr + VarsV 3 OVds — Has) = XarB + ZarVudZy V3! (vas — XasP)
= XarB + ZarVeaZ), {Ve;i{s - V;d}szds(v +naV] ) A m} Vas — Xash).
The conditional covariance matrix is
Vars = Var — VarsVy Vasr = ZarVuaZly, + Vear — ZarVuaZh V3, ZasVuaZ),
= ZarViaZh, + Veisr = naZarVadV i VaaZh, + n2ZarVaaV b (Vi + naV )_1 ViViaZ,,.

Ifng # 0andj € rg = Ug — sq,j > ng, the conditional 2 X 1 mean vector is
1 Mg
Hdijls = Xdif + Vud {Iz - HdVe:i} (ngl + HdV;i}) } edj(ydj XiiB)-
=1
If ny = 0 andj € ry, the conditional 2 X 1 mean vector is

Hdjls = XgjP.

Ifng # 0 andj € rg,j > ng, the conditional 2 X 2 covariance matrix is
Vats = Vats = Vaa + Vedj = 1aVuaV s Vad + n2VaaV (V;dl + ”dVe}})_lVeE}V“d'
If ng = 0 andj € rg, the conditional 2 X 2 covariance matrix is
Vijis = Vais = Vua + Vegj.-
Appendix A of Data S1 gives an alternative derivation of the conditional distribution (5). More
concretely, it shows the out-of-sample element y4; = (ygj1. ¥aj2) .j € r4, conditioned to the sampled

vector ygs, has the representation

Yij =Xy +ila+eq, jE€ra d=1..,D,
where egj ~ N2(0, Vig)), ilta ~ Na(jig, V) are all independent, with
fia = ViiVaa + 13 Vei) "' Gg = XaB), Vi = 13" VaaViad + 13 Vet)™ Vea,

= Iy I oy
Ya = nd Ej:l}'ded = nd EFlej-
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3 | EBPSOFDOMAIN PARAMETERS
3.1 | EBPs of additive parameters
Let z4j = (Z4j1.Zdj2)’ be a vector of continuous positive variables measured on the sample unit

j of domain d, d=1,...,D, j=1,...,ng. This section consider additive domain 2x 1 or 1x 1
parameters that can be written in the form

Ny
1
61= > h@g), d=1...D, 6)
Ny =

where h is a known measurable function R? — R!, t = 1,2. Examples of real-valued function
h: R*w— Rare h(zgj) = z4j1, h(zaj) = Zdj2, and h(z4j) = Zaj/(Zgj1 + Zdj2). The corresponding domain
parameters (means of marginal variables or of unit-level ratios) are

1 1 1wz
Zai=— Y zajp, Zar=— ¥ Zap, Ai=—9» ———, d=1,...,D. (7
Nqg ;;1 Ng ;;1 Na = zap + zap

In applications to real data z41 and zgj» might not follow normal distributions, as may happens
with expenditure variables that are typically asymmetric. This is why we assume that there exist
a one-to-one transformation g : R? — R? such that Vdj = g(zq;) follows the BNER model (1). We
further assume that g is separable, i.e.

Ydj = 8(Zgj) = (gl(Zdjl),gz(Zdjz))’, =8 0g) = (gl_l(ydjl),gg_,l(ydjz))’,
whereg; : (0,00) — Rand g, : (0,0) — R are one-to-one functions. Ford = 1,..., D, we write (6)
and (7) as functions of ygj and y4p, that is,

Ny Ny
_ 1 S PN NN U« JES P
8q = Nd;h(g Wa), Za = N ;gl Wap),

Ny -1
1 Z & )

Ny
- 1 0
Zar=10,8 Wap), Ad= .
Ny ;;1 2 Ve Ni & g7 an) + &' 0a2)

The best predictor (BP) of §; is

~B
od

Jjery

Ny
1 _
=E, lﬁd;h(g )

The conditional distribution (5) depends on the vector y = (#’,8’) of unknown model parame-
ters, which must be estimated, that is,

B, |he ' 0g)

| = B, [ne 0wy

v
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i = (ﬁ’ , é’]’ be an estimator based on sample data y;. The EBP of &, is
~eb _
b4 = — {Zh(g 04) + ZE \ [h(g O’d_;))l}’s,'#] }
Jjery

For a general function h, the expected value above might be not tractable analytically. When this
occurs, the following Monte Carlo procedure can be applied.

(a) Estimate the unknown parameter y = (f’, 8’)’ using sample data (y;, X;).
(b) Replacing y = (f', ') by the estimate § = (8 .0 ]’ obtained in (a), draw L copies of each
nonsample variable yg; as

¥y ~ Nolgns, Va), j€ra, d=1,...D, £=1,.,L.

where
( R (WS R | -1 -1\7!, o1 .
. X4 + f/udzds Veds — VedsZas (f/ud + naVedj ) stf’eds (as — XasP) if ng #0,
Mdjls = 4
deﬁ if ng =0,
and
’ -1 2 “1f -1 -1\ 1.1 .
v, Vid + Ved,- - ndf/udf/edjpud + ndf/u,dpedj(f/ud + ndf/edj ) f/edjf/ud if ng #0, ®)
|5 = 4
ij + Vedj if ng =0.

(c) The Monte Carlo approximation of the expected value is
1 &
Ey, [h(g_l(ydj))lys;lfj] = E;h (g—l y(dj’))) , je ¥d. d= 1,...,D.

The Monte Carlo approximation of the EBP of 6, is

‘“b~_25<f>, 50 = d(_zh(g o)+ X (£ ‘“"))). ©)

jery
Remark 1. In many practical cases the values of the auxiliary variables are not available for all
the population units. If in addition some of the variables are continuous, the EBP method is not
applicable. An important particular case, where this method is applicable, is when the number
of values of the vector of auxiliary variables is finite. More concretely, suppose that the covariates
are categorical such that Xy € {Xq1,...,Xor}, then we can calculate S(f) as

T Ny—ng,
o= | Brcton + 3 w(09))| 1)
=1 j=

where Ny = #{j € Uy : Xy = Xo,} is available from external data sources (aggregated auxiliary
information), ng; = #{j € sq : Xgj = Xor},}’g:; ~ No(fgys V), d=1,...,D,j = 1,...,Ng — ngs, t =
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1....,T,¢ =1,...,L, where

~ —_ _ —_ —_ _1 _ ~
Xoif + ViaZ, { Vets = VeasZas(Vad + naVs ) Z0, Vs }@ds —Xash) ifng #0,

ﬁdﬂs = (11)
Xo:ﬁ if ng =0,
and Vs was defined in (8).
3.2 | EBPs of nonadditive parameters

Let z4j = (Z4j1.Z4j2)" be a vector of continuous positive variables measured on the sample unit j of
domaind,d =1,...,D,j=1,...,n4. Define zg = 1ir:_ol (zgj). This section consider domain 2x 1 or
sj=ny

1 x 1 parameters that can be written in the form
64 = h(za), (12)

where h is a known measurable function R*¢ - R, t = 1, 2. A domain parameter is the ratio

Z Tz
Ry = é, where h(zg) = N = . (13)
Zin+Zip 2 Zai + Zdp2)

As in Section 3.1, we assume that there exist a one-to-one transformation g : R? = R? such that
Vdj = 8(zg;) follows the BNER model (1). We further assume that g is separable, that is
r

Vi = 8za) = (81@an), @) s 24 = €' 0a) = (&7 0ap)- &5 ' Gap2))

where g; : (0,00) = R and g; : (0, 0) = R are one-to-one functions. For ease of notation, we
define the 2n4 x 1 vectors

Zd =g—1(yd)=lgcjghd (g_l(ydj))" d=1,...,D.
We can write (12) and (13) as functions of ygj; and ygp, i.e.
Ny
Ejzdlgl 'Wan)

64 =h(g'(va), Ra= -
2_?21 (87" @ap) + &' 0Vai2))

The BP of §; is
B
b4 = Ey, [h@Eg ' Ga)lys] -

The conditional distribution (5) depends on the vector y = (#’,8") of unknown model parame-
ters, which must be estimated, that is,

E,, [hg ' 0a)lys] = Ey, [AE 05 w] -
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Let §y = (ﬁ’, 9’]’ be an estimator based on sample data y;. The EBP of &, is

~eb

bq = Ey, [n@ ' wa)lys; 9] .

For a general function h, the expected value above might be not tractable analytically. When
this occurs, we can apply a following Monte Carlo procedure with the same steps (a) and (b) of
Section 3.1 and with the following new steps

(c) Construct the vectors

¥ =col (), V2 =col (va), ¥ = (e ,yff) :

Jery Y jesy

(d) The Monte Carlo approximation of the EBP of §; is

L
Szb ~ %Zh(g (yg’p)] ), d=1,...,D.

=1

Remark 2. Under the categorical covariate setup of Remark 1, we can write the elements of y
as Ya5 = Vg1, ydgg) where d, i and j denote domain, category and individual, respectively. We

approximate RS as

Eggl_l@djl) + E:—JENd' ndlgl_l(yfi?l)

L
1
_Z (19)
gz Fl(‘gl "an) + g210)d12)) + EL:lsz‘ n& (gl (yg(i?l) +& (yfif;z))

where Ny = #{j € Uy : Xgj = Xo} is available from external data sources (aggregated aux-
iliary information), ng = #{j € sq : Xgj = Xot}, yfi? (yfi?v yL?E) ~ No(fgqs: V), d=1,....D,
j=1,....Nat —na, t =1,...,T, £ =1,...,L, where fig,, and f/d|s were defined in (11) and (8)

respectively.

4 | PARAMETRIC BOOTSTRAP MSE ESTIMATOR

Analytical approximations to the MSE are difficult to derive in the case of complex parameters.
‘We therefore propose a parametric bootstrap MSE estimator by following the bootstrap method
for finite populations of Gonzalez-Manteiga et al. (2007, 2008). We present the case of additive
domain parameters. The modifications to deal with nonadditive parameters are straightforward.
The steps for implementing this method are

1. Fit the model (1) to sample data (y,,X;) and calculate an estimator ¢ = (ﬁ’ , é’)’ of =
p'.0'y.

2. Ford=1,...,D,j = 1,..., Ny, generate independently u’, ~ N(0, V.uq) and ez ~ N, Vedp)-

3. Construct the bootstrap superpopulation model £* using {u }, {e 1, {de} and f, that is,

&y =deﬁ+u§+e;j, d=1.,..,D,j=1,..,Ng. (15)
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4. Under the bootstrap superpopulation model (15), generate a large number B of i.i.d. boot-

strap populations {y;;b) 1 d=1,...,D,j=1,. .,Nd} and calculate the bootstrap population
parameters
13
#(b) —17.#(b)
5,7 ==Y h(g'05"). b=1...B
4

5. From each bootstrap population b generated in Step 4, take the sample with the same indices
~ebx(b
s C U astheinitial sample, and calculate the bootstrap EBPs, 6; ¢ ), as described in Section 3.1

using the bootstrap sample data y; and the known values Xy;.
6. A Monte Carlo approximation to the theoretical bootstrap estimator

MSE, (Sf’*) = Ep. [(Sff* - 5;) (Sff* - 5;)’]

B
ebs 1 aeb=(b) #(b ebx(b) «(b !
e (i) =35 (0 sP) 5. oo

b=1

The estimator (16) is used to estimate MSE(Sﬁb).

Hall and Maiti (2006a, 2006b) and Erciulescu and Fuller (2016, 2018) derived parametric
double-bootstrap algorithms for estimating the MSE of predictors of “model-based” small area
parameters. Their domain parameters of interest are functions of elements of the assumed pop-
ulation model. Although these approaches are asymptotically more efficient, the corresponding
methodologies are not directly applicable to domains parameters of the form (6) or (12), which
are functions of z;. The aforementioned methods could be adapted to the EBPs of additive and
non-additive parameters, but they may still have the drawback of computational cost in many of
the applications to real data, where the population sizes of the domains, Ny, are very large. This is
the case of the SHBS, treated in Section 6. Nevertheless, the fast double bootstrap approach of Erci-
ulescu and Fuller (2016) is not computationally intensive, as it requires one sample at the second
level. The adaptation of their approach to bivariate NER models is thus an interesting alternative.

5 | SIMULATIONS

This section presents simulation experiments for investigating the EBPs and the MSE estima-
tors. We carry out the simulations with a correlation structure similar to that of the application
to real data. This is to say, with positive correlation parameters p,12 and pe12. We generate
artificial population data as follows. Take p1 =py =2, p=4, p1 = (b1, f12)’ = (10,10, fr =
(P, po) = (10,10Y.Fork=1,2,d =1,...,D,j = 1,..., ng, generate Xy; = diag(xgj1, Xgj2)2x4, Where
Xaj1 = (Xgj11, Xdj12)» Xdjz2 = (Xajp1, Xdj22), Xgj11 = Xajp1 = 1, Xgp2 ~ Bin(1,1/2), xgj2 ~ Bin(1,1/2). For
d=1,...,D,j=1,...,Ng, simulate ug ~ N2(0, Vyq) and egj ~ Na(0, Vg;), Wwhere

Vig = o 031/611/62 Vg = 04 06/61+/65
u 93\/19_1@ ) , ’ 96\/@\/9_5 s ,
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with 8, = 0.50, 6; = 0.75, 84 = 0.75, 65 = 1.00 and 6;
only four different matrices Xy;. They are

Xgj11  Xdj12 | 0 0
Xgj =
0 0 |xdj21 Xgj22

1 0(0 O

Xo1 = X =
0 0|1 O
1 1({0 O

Xoz = ,Xpa =
0 0|1 O

where

1 0
0 0

11
0 0

= 0.6, 6 = 0.4. The simulations generate

) € {Xo1, Xo2, Xo3, Xoa }»

0 0
11 /)

The simulations apply the same transformations as in the application to real data, that is,
81(z4j1) = log zgj1 and g»(zaj2) = log zaj, so that zgj1 = exp{ygj} and z4p = exp{yap}, d = 1...., D,
Jj =1,...,Ng. We apply the function rmvnorm of the R package mvtnorm for generating multivariate
normal vectors.

5.1 | Simulation1

The target of Simulation 1 is to investigate the behavior of the EBPs, fiﬁb and Rfib, based on the
BNER model. For this sake, we carry out a simulation experiment with I = 200 Monte Carlo
iterations. We further take, L = 200 and N = 200, d = 1...., D. The steps of Simulation 1 are

Ng, k = 1, 2. Construct the population matrices Xy and Z4
D,t=1,...,T, T = 4, calculate

1. Generate xgi,d=1,....D,j=1,...,
of dimensions 2Ng X p and 2Ny X 2 respectively. Ford = 1,...,

Nd;=#{je Uy :
Hd;=#{jESd :

Xi=Xo)=#{jel N: j<NyXj=Xo},
Xj=Xo}=#{j€I N: j<naX;=Xo}.

2. Repeat I = 200 times (i = 1,...,200)
2.1. Generate the populatlons random vectors u“) ~ Ny(0,V,q), e “) ~ Non, (0, Veq), ¥

1....,D. Calculate zfi‘)l = exp {yfi?l} ;:)2 _

(l)

Xqp + Zdu“) + e(’) where Vg = diag (Veqj), d
1<j<N,

exp {yfi‘}z}, d=1,..,D,j=1,...Ng
2.2. Calculate the domain ratio parameters, that is,

(l) Ny (D)
AD = Z o Ry = Zan d=1...D
d z(l) @’ d ENd @ +2Nd @’ e
djl dj2 =1 d_;l 1 d_ir2

2.3. Extract the sample (y(” de) d=1,..,D,j=1,.., ng,with ng € {3,5,10,25,50,100}.

dj?
2.4. Calculate the REML estimators f 1?, ﬁ(lg, ﬁ;?, ;2, ém, »(x)
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2.5. Ford=1,...,D,t=1,..., T, calculate

,.(n) — XOtﬁm + p-(!) {f/(!) 1 0-(!) lzds(f,(t) 1 + ndf/(i)-_l ) dsp-igs—l} Vs —deﬁ(i)),

Hans edj
~ (i) ~ (i) ~ (i) A (1) ~ (i1~ (i) A (D) ~ (D1 ~ (i1 A~ (i)—1 A~ (I}—1 ~ (i)
Vae=Via+ Ve — 1V 0uaVesj Via +13V0aV i (Vud + naVg; ) Vedi Vud-

2.6. Ford=1,...,D,j=1,....Ngy —ng, t=1,...,T,¢ = 1,..., L, generate
@) _ ,,G) | (f) (i) (i)
Yagj (y dgl’ydgz) ( Ky t‘/dIS)’

(i) _ (i) (if’) i)
andcalculatezd 1 =exp {ydgl} » 2y = €XP {ydgz}

2.7. Ford = 1,...,D, calculate the EBPs A db(:') and Rd , that is

(l) T Ni—n (it')
dt —Fhde Z d.gll

eb(l) Z Z (i) dﬂ (i) +Z Z (lb") i) |’ (17)

F1%g tZgp =1 =1 L+

L (0] Ny—ng, (i)
Reb(i) _ l E_;—lzdﬂ + 2;:12 ngl

d T O , 0 Nu—na { (i) | _(i£) (18)
e — e
=1 (Zd_ir]. + zdﬂ.) + 2;:12 (ngl +zdgz)

3. For '?S) { A0 REM)} 0 {A?,RS)} d=1,...,D, calculate

Bd('?)__Z(erbm i2) REd(’?)=( Z(ﬁe"“’ “))2)”2’ =%i§

D
2100, RRE () = 5100, AB(r) = —Z|Bd(a)|

RBa(n) =
1 D
RE(r) = = 3 REa(1), RAB= BZIRBM)I, RRE= - ZRREd(n).
d=1 d=1 d=1

Simulation 1 takes sample sizes depending (variable) and not depending (constant) on d. The
considered constant sample sizes are ng = 3, 5,10, 25, 50,100, d = 1,..., D. In the case of variable
sample sizes, the ng’s are drawn at random from the set {2, 3,...,20}. Simulation 1 makes this
selection before starting the loops, so that the samples sizes are the same in all the iterations.
This case is called ng = 10,. Tables 1, 2, 3, and 4 present the average absolute and relative perfor-
mances measures for D = 25, 50,100, 200. We observe that the EBPs are basically unbiased and
that the MSEs decrease as the sample sizes ng increase. These results indicate that the optimality
properties of the BPs are inherited by the EBPs. The performance measures remain stable as the
number of domains D increases, with small fluctuations due to the number of Monte Carlo itera-
tions (I = 200). This is somehow expected because the rate between the number of observations
and the number of domains quantities, A3 and Ry, d = 1,..., D, to predict remains constant as the
number of domains D increases.

For studying the effect of deviations from normality, we change the multivariate normal dis-

tributions of ug) and e(‘) in step 2.1 by multivariate skew-normal and Student’s ¢ distributions,
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TABLE 1 AB(y) with Ny = 200

D n
25 A®
Reb
50 A®
Reb
100 A®
=¢h
200 A®
Reb
TABLE 2
D n
25 A
ﬁeb
50 A
Reb
100 A%
ﬁeb
200 A%
=eh
TABLE 3
D 1
25 A
ﬁeb
50 A
Reb
100 A%
ﬁeb
200 A%
=eh

ng=3
0.0030
0.0083
0.0029
0.0145
0.0022
0.0088
0.0024
0.0086

ng=>5
0.0021
0.0066
0.0023
0.0072
0.0019
0.0065
0.0023
0.0060

RE(n) with N; = 200

ng=3
0.0475
0.1215
0.0461
0.1146
0.0455
0.1098
0.0449
0.1087

RAB(y) in %, with N; = 200

ng=3
0.5930
1.7489
0.5925
3.0777
0.4510
1.8718
0.4810
1.8249

ng=>5
0.0390
0.1004
0.0389
0.0957
0.0380
0.0928
0.0377
0.0916

ng=>5
0.4312
1.4044
0.4515
1.5197
0.3891
1.3810
0.4675
1.2685

ESTEBAN ET AL.

ng =10,
0.0015
0.0045
0.0016
0.0049
0.0018
0.0060
0.0017
0.0057

ng =10,
0.0311
0.0793
0.0315
0.0785
0.0310
0.0771
0.0305
0.0751

ng =10,
0.2942
0.9409
0.3200
1.0194
0.3601
1.2520
0.3458
1.2065

ng =10
0.0015
0.0046
0.0019
0.0047
0.0017
0.0052
0.0016
0.0049

ng =10
0.0292
0.0748
0.0295
0.0736
0.0293
0.0728
0.0291
0.0718

ng =10
0.2903
0.9618
0.3821
0.9856
0.3357
1.0983
0.3198
1.0427

ng =25
0.0012
0.0031
0.0011
0.0029
0.0011
0.0031
0.0010
0.0028

ng =25
0.0193
0.0520
0.0196
0.0511
0.0193
0.0503
0.0192
0.0509

ng =25
0.2515
0.6658
0.2172
0.6090
0.2263
0.6520
0.1980
0.5874

ng =50
0.0008
0.0020
0.0009
0.0023
0.0008
0.0023
0.0008
0.0022

ng = 50
0.0134
0.0381
0.0136
0.0384
0.0136
0.0386
0.0135
0.0383

ng = 50
0.1715
0.4195
0.1825
0.4865
0.1542
0.4901
0.1643
0.4722

ng =100
0.0004
0.0015
0.0005
0.0015
0.0005
0.0014
0.0005
0.0015

ng = 100
0.0087
0.0273
0.0087
0.0274
0.0086
0.0269
0.0087
0.0269

ng = 100
0.0854
0.3308
0.0979
0.3277
0.1012
0.3021
0.0962
0.3249
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TABLE 4 RRE(y) in %, with N; = 200

D n ng=3 ng=>=5 ng =10, ng =10 ng =25 ng =50 ng =100
25 A® 9.6226 7.8797 6.2522 5.8851 3.8985 2.7157 1.7634
ffb 25.9849 21.3923 16.8070 15.8288 11.0848 8.1627 5.8238
50 A® 9.3201 7.8455 6.3447 5.9508 3.9476 2.7463 1.7532
Rd' 24.4787 20.3999 16.6696 15.6100 10.9063 8.1760 5.8287
100 A® 9.1647 7.6393 6.2438 5.9145 3.8943 2.7373 1.7372
R 23.3933 19.6736 16.3651 15.5579 10.7073 8.2119 5.7284
200 A® 9.0275 7.5733 6.1196 5.8423 3.8611 2.7210 1.7465
Rd' 23.1056 19.4270 15.9273 15.2669 10.8071 8.1225 5.7151

TABLE 5 Empirical skewness and kurtosis, with I = 2 - 10° replicates

Skew-normal, a; = 0 Student’s t
Measure v; a; =0 a; =2 a =5 a; =10 df =15 df =10 df =5
Skewness Vi 0.0000 0.0497 0.0575 0.0591 0.0004 —0.0025 0.0192
Via 0.0000 0.4445 0.8272 0.9337 0.0002 —0.0051 —0.0245
Kurtosis Vi 0.0000 —0.0313 —0.0259 —0.0249 0.5519 1.0226 6.2916
Via 0.0000 0.2472 0.5656 0.6778 0.5433 0.9982 6.6255

keeping the same mean and variance component parameters. The simulations of skew-normal
and Student’s t random vectors are carried out with the functions rMSN and rmvt of the R pack-
ages sn and mvtnorm, respectively. We generate bivariate skew-normal random vectors with
skewness parameters (a1, a2) = (0,0), (0, 2), (0, 5), (0,10) and bivariate Student’s t vectors with
degrees of freedom v = 15, 10, 5. We recall that (a1, a2) = (0, 0) yields to the multivariate normal
distribution, which is now simulated from function rMSN of R package sn and not from rmvnorm
of mvtnorm, as before. Table 5 presents the empirical skewness and kurtosis calculated from sim-
ulated random vectors v; = (i1, V), i = 1,...,2 - 10°. For the sake of comparison, we include the
case of normality (a1, @2) = (0, 0) and its theoretical measures.

Table 6 presents the relative performance measures for D = 50, ng = 10, Ng = 200. We observe
that relative biases and root-MSEs have a moderate increment as the skewness parameter
increases. However, these measures are more sensible to the decrease of the degrees of freedom of
the multivariate Student’s f distribution. For the nonlinear parameter Ry, the increase in RRE is
more noticeable; that is, the increase of kurtosis makes EBP less efficient and therefore we should
be more cautious when applying it.

5.2 | Simulation 2

For investigating the behavior of the bootstrap-based MSE estimators of predictors Azb and ﬁzb, we
take I = 200,L = 200, Ng = 200,D = 50and ng = 10,d = 1,..., D. A second objective of simulation
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TABLE 6 RAB(x) and RRE(;) with D = 50, ny = 10, Ny = 200

RRE

Skew-normal, a; =0 Student’s ¢
n a =0 a, =2 a =5 a; =10 df =15 df =10 df =5
A 0.3035 0.3055 0.3278 0.3419 0.3018 0.3222 0.3636
Reb 1.0152 1.1382 1.5557 1.6195 0.9955 1.0379 2.1487
A 5.8948 5.8620 5.7729 5.7572 6.2152 6.3045 6.9143
Reb 15.4235 15.4207 15.1357 15.0809 18.3089 20.6769 37.5347

2 is to give recommendations on how many bootstrap replicates B should be applied so that the

MSE estimator is acceptably accurate. The steps of Simulation 2 are

1. For D = 50, generate xgj;, d = 1,...,D,j = 1,..., Ng, k = 1, 2. Construct the population matrices
Xjj of dimensions 2 X p.

2. Take MSE4(17) = RE4(17)%, n € {Agq, Ry}, d = 1,..., D, from the output of Simulation 1.

3. Repeat I = 200 times (i = 1,...,200)

3.1

3.2

3.3.

3.4.

Generate the populations random vectors uﬁ) ~ N3(0, Viug), e(? ~ N3(0, Vegj) and yg? =
Xy +u +¢0, d=1,..,D j=1,..,Ng (N =200). Calculate 0, = exp {3, }, 2, =
exp {yfi')z} d=1,..D,j=1,.,Nq.

Extract the sample (y4j, Xgj), d = 1.....D, j = 1...., nq (ng = 10).

Calculate the REML estimators ﬂli, ﬁ‘fi, ﬂ’(f;i, ﬁ(;;, 9(1”, 96 and the EBPs Aem) REM” d=
1,....,D.

Repeat B times, B = {50,100, 200,400} (b = 1,..., B).

(a) Generate the bootstrap population vectors uzﬁb) ~ Ny (0, V), e;;ib) ~ N,(0, Vedj),

#(ib) _ i) (ib) *(ib) _ .
vy = X560 +u +e®, d=1,.,D, j=1..,Ng,

where V4 = V44(81,82,03) and Vg = Ve84, 85, G6). Calculate z*('b) = exp { y;;‘lb) },

=(ib 2(ib
zd_:;) = exp {yd(;)}, d=1,...,D,j=1,..,Ng.

(b) Calculate the bootstrap domain ratio parameters, that is,

*(lb) ENd z*("b)
A® _ Z Zan +(ib) _ j=1%dj1 i1l D
d N *(xb) +z #(ib) * d ENd «(ib) N ENd P =1,....,D.
Zqn T g =1%dj1 i=1%dj2
(c) Extract the bootstrap sample (™, Xg ), d = 1,....D,j = L,....ng

b) ~x(ib) ~#(ib) ~#(ib) A~(ib ~%(ib
(d) Calculate the bootstrap REML estimators ﬂl(ll ), ﬂl(zl ), ﬂz? ), ﬂzg ), 6’1(l ), 96“ ).

(e) Calculate the EBPs A ™, "™ and R} ™, d =1....,D, as in (17) and (18), with
L = 200.
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i (i be(ib (1] (1 (1]
3.5. For r‘gd(’b) IS {Azb (lb),RZ @ )}, nd“b) € {Ad(’b),Rd“b)}, d=1,...,D, calculate

2
*(1) ebs(ib) _ *(:b)
mse, Z(ﬁ Mg ) :
b:
3.6. For rg“) {AS),RS)} ﬁeb(’) {Azbm,fl;bm }, d = 1,..., D, calculate the coverage
G =1 ( Je (ﬁ“b(“ — 2075 mse"'?, 170 + 29675 mse’, " 2))

4. Ford=1,....D,h € {fisb, R;b }, calculate

I I 1/2
Ba(i) = 1 X, (mse; - MSE() ), RE(d) = (%Z(mse;“) - MSEd(a))z) ,
=1

i=1
Ba(# RE;(#
RBy@) = —2P_100,  RRE4() = ﬁ%

D
1
100, AB(#) = = ) |Ba(#
) . AB() DQ a@,

D D D
RE() = 5 Y REa()). RAB() = 7 ¥, |RBa(A)l. RRE() = 5 Y RRE(i).
d=1 d=1 d=1

5. Ford =1,...,D, ng € {A4, R4}, calculate the coverage rates

D
Zc*(”, Ci=5YCy
d=1

Tables 7 and 8 present the average absolute and relative performance measures, respectively,
for D = 50, B = 50,100, 200,300, 400, and ng = 10, Ng = 200,d = 1.,..., D. We note that the absolute
biases of A? are smaller than the absolute biases of ﬁzb, while their corresponding relative abso-
lute biases are similar. This is due to the division by the corresponding Monte Carlo approximation
to the true MSE. We observe that the MSEs of the MSE estimators decrease when the number of
bootstrap resamples B increases. However the biases of the MSE estimators remain stable when
Bincreases. It is remarkable that RRE(#) is below 15% if B = 200 and it is around 12% if B = 400.

Table 9 presents the coverage rates C, for D = 50, B = 50,100, 200,300, 400 and ng4 = 10, Ng =
200, d = 1,..., D. They remain stable and close to the nominal value 0.95 even in the case B = 50.
Therefore, the confidence interval based on the asymptotic normal distribution works “well” if
the data is simulated from the model. To obtain more accurate results, it should be necessary to
increase the number of Monte Carlo iterations. We have not carried out Simulation 2 with more
iterations because of the high computational time.

TABLE 7 10°AB(f) (left) and 10°RE(#) (right) with D = 50, ny = 10, N; = 200
B 50 100 200 300 400 50 100 200 300 400
A® 00732 00744 00736 00744 00731 01878 0.1503 01251 0.1165 0.1087

R 0.3903 0.4346 04186 04370 04270 1.1833 09584 0.7672 0.7235  0.6757
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TABLE 8 RAB(#) (left) and RRE(#) (right), in %, with D = 50, ng = 10, N = 200
B 50 100 200 300 400 50 100 200 300 400

A® 8.146 8.277 8.178 8.265 8.123 21.417 17.100 14.177 13.181 12.268

R 7.218 7.995 7.734 8.061 7.923 21.923 17.740 14.246 13.440 12.565

TABLE 9 C,,with D =50, ng = 10, Ny = 200

B 50 100 200 300 400 Nominal
Ca 0.940 0.945 0.948 0.944 0.938 0.950
Cr 0.943 0.944 0.947 0.944 0.940 0.950
Rbiases — Aeb Rbiases — Reb
5. 8 — _ —_

10

=10

-20
L

Bs0 EIIOD Bz00 Baoo B400 EISD B100 Bz00 B300 B400

FIGURE 1 Relative biases of the mean squared error estimators for fi;b (left) and R:}b (right)

Figure 1 contains the boxplots of the empirical relative biases (Rbiases), in %, of the parametric

bootstrap estimators of the MSEs of the predictors Azb (left) and Rff (right). Figure 2 presents the
corresponding boxplots for the relative empirical relative root-MSEs (RRMSEs). More concretely,
Figures 1 and 2 plot the quantities RB4(f) and RRE;(#), d = 1,...,D, for § € {fizb, ﬁzb}, respec-
tively. The first figure shows that the bootstrap MSE estimators are rather unbiased, with a small
tendency to under estimation. The second figure suggests running around B = 400 iterations in
the bootstrap resampling procedure for obtaining good approximations to the MSEs of the EBPs.

For studying the effect of deviations from normality, we repeat Simulation 2 by considering
the same nonnormal scenarios as in Simulation 1. Table 10 presents the relative performance
measures for D = 50, ng = 10, Ng = 200. Table 11 gives the coverage rates. We observe that relative
biases and root-MSEs have a moderate increment as the skewness parameter increases. However,
these measures are more sensible to the decrease of the degrees of freedom of the multivariate
Student’s ¢ distribution. In the case of Ry, the coverage rates move away from the nominal value
95% for high values of the kurtosis.

6 | ILLUSTRATIVE APPLICATION TO SHBS DATA

The SHBS is annually carried out by the “Instituto Nacional de Estadistica” (INE), with the objec-
tive of obtaining information on the nature and destination of the consumption expenses, as well
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FIGURE 2 Relative root-mean squared errors (MSEs) of the MSE estimators for fi;b (left) and R:}b (right)

TABLE 10 RAB(y)and RRE(p) with D = 50, ng = 10, N; = 200

Skew-normal, a;, = 0 Student’s t
n a =0 a =2 a = a; =10 df =15 df =10 df =5
RAB A? 8.6813 7.9008 7.9927 8.0333 7.5722 74171 9.8922
IAQEb 9.1284 8.5401 8.3253 8.2471 13.7195 24.9397 67.1476
RRE A? 14.7324 14.2653 14.3236 14.3783 13.2178 13.0384 15.4502

15.5767 15.3870 15.4869 15.5575 17.4954 26.8344 67.2886

TABLE 11 C,, with D= 50, ny = 10, N; = 200

a, =10 a, =2 a, =5 a; =10 df=15 df=10 df=5
Ca 0.9464 0.9384 0.9416 0.9448 0.9448 0.9496 0.9424
Cp 0.9504 0.9344 0.9264 0.9288 0.9312 0.9144 0.7936

as on various characteristics related to the conditions of household life. In the Spanish econ-
omy it is important to have good estimates of consumer spending, since this spending represents,
approximately, 60% of gross domestic product. However, global political measures are not often
satisfactory for regional authorities, which can also develop their own economic strategies. They
need some tools to determine, with precision and reliability, the main variables and consumer
indicators in order to implement their strategies. Among the main consumer indicators are the
local means of food and nonfood annual expenses of households and the ratios of annual food
household expenses. For example, regional authorities are interested in providing aid for vulner-
able families in basic necessities, such as food at province level. For this, it is necessary to know
the mean expenditure of families on this type of goods.

This section presents an application of the new statistical methodology to the estimation of
domain parameters defined as additive functions of two types of expense variables. We deal with
data from the SHBS 0f 2016. The domains are the 50 Spanish provinces plus the autonomous cities
Ceuta and Melilla, so that D = 52. Let z4;; and z4j be the food and nonfood annually expenses of
household j of domain d. The domain mean of food and nonfood household annually expenses
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are
Ny Ny
Zdl = _szjla Zd?. - _ZZdJZ, d= 15 ':D':
j=1 =1

which are additive parameters with h(zg4) = Nl(zdﬂ, Zdj2). For each domain d, the ratio of the mean
d
annually household expenses on food to the mean annually household expenses is

Z,
Rd=¢ d=1,...D,

Zar+ Zap
which are ratios of additive parameters. For each domain d, the mean of the ratios of food
household annually expenses to the corresponding total household annually expenses is

19z
A= =— _J, d=1,...D,
Ndj:l Zdj1 + Zdj2

which are a additive parameters with h(zg;) = z4j1/(zdj1 + Zdj2)- As we do not have a Spanish census
file dated around 2016, we estimate the domain parameters Zg;, Z42, Aq and Ry by using the EBPs

3? defined in (10) and (14), respectively. For this sake, we fit a BNER model to the target variables
z4j and zgj» with categorical covariates that are related to consumption.

Scealy and Welsh (2017) showed that categorical auxiliary variables that influence the house-
hold consumption are the household composition and the area of usual residence. We only use the
household typology because the area of usual residence was not significant. As auxiliary variable,
we thus consider the household composition FC with categories

FC1: Single person or adult couple with at least one members with age over 65,

FC2: Other compositions with a single person or a couple without children,

FC3: Couple with children under 16 years old or adult with children under 16 years old,
FC4: Other households.

The variable FC is treated as a factor with reference category FC4.

For calculating the EBPs of the domain parameters of interest, by means of the formulas (14)
and (10), we need the true population sizes, Ny, of the crossings of provinces with the categories
of the variable FC. We calculate these sizes by using the sampling weights of the Spanish Labor
Force Survey (SLFS). The SLFS sampling weights are calibrated to the population sizes of the
provinces crossed with sex and age groups. These demographic quantities come from the INE
population projection system and are considered the most accurate demographic figures in Spain.
The SHBS sampling weights are calibrated to the population sizes of the autonomous commu-
nity (NUTS 2) crossed with sex and age groups. These weights make the direct estimators of
socioeconomic indicators at the autonomous community level basically unbiased. However, they
introduce a nonnegligible bias in the direct estimators of such indicators at the province level. For
a detailed study of the influence of these weights and the construction of alternative estimators,
see Appendix E in Data S1.
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TABLE 12 Regression parameters and p-values

y x-variable Estimation z-value SE p-Value

W Intercept —0.80 45.29 0.02 0.00
FC1 —-0.36 2894 0.01 0.00
FC2 —-0.61 49.23 0.01 0.00
FC3 -0.14 10.79 0.02 0.00

Y2 Intercept 0.83 42.00 0.02 0.00
FC1 —-0.39 37.24 0.01 0.00
FC2 -0.29 2793 0.01 0.00
FC3 0.01 1.14 0.01 0.25

TABLE 13 Estimation and confidence intervals of variance and correlation parameters

Parameter Estimation L.CI U.CI L.CI.boot U.CI.boot
"51 0.013 0.007 0.018 0.007 0.019
o'iz 0.018 0.010 0.025 0.010 0.026
Pu 0.614 0.421 0.807 0.367 0.774
o2 0.451 0.442 0.459 0.448 0.467
ofz 0.318 0.312 0.324 0.315 0.327
Pe 0.377 0.366 0.389 0.364 0.387

We first fit a BNER model to the expenditure variables zg;; and zgj>. As the shape of the his-
togram estimators of the probability density functions of the model marginal residuals are slightly
skewed, we apply the log transformation. Therefore, we fit a BNER model to y4; = logzg; and
Va2 = log zaj», with zj and z expressed in 10* euros and with the same auxiliary variables. For each
target variable, y; and y,, Table 12 presents the estimates of the regression parameters and their
standard errors. It also presents the asymptotic p-values for testing the hypotheses Hy : i, =0,
k=1,2,r=1,23,4

Table 13 presents the estimates of the variance and correlation parameters with their 95%
confidence intervals, on the left side the asymptotic normality intervals and on the right side
the bootstrap percentile intervals (Shao & Tu, 1995). This table shows that all the estimated
parameters are significantly greater than zero. We remark that correlations p, and p. are sig-
nificantly greater than zero, so that the independent univariate modeling of y; and y, is not
appropriate.

Figure 3 plots the histograms of the D = 52 standardized EBPs of the random effects of the
fitted BNER model for food (left) and nonfood (right) expenditures. The standardization of i
and #ig; is carried out by subtracting their mean value and dividing by their SD. It also prints
the corresponding probability density function estimates. The shapes of the densities are quite
symmetrical, which indicates that the distributions of the random effects are not very far from the
normal distributions. Since D is too small to obtain a good non-parametric estimate of the density
functions, the definitive conclusions can not be drawn.
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FIGURE 3 Histograms of standardized random effects

Figure 4 plots the histograms of the n = 22,010 standardized residuals (sresiduals) of the fitted
BNER model for the first (left) and second (right) response variables. The standardization of ég;
and égj, is carried out by subtracting their mean value and dividing by their SD. It also prints the
corresponding probability density function estimates. The curves of the estimated densities have
longer left tails and slightly skewed shape. Nevertheless, we could admit that the distributions of
standardized residuals is not too far from normality.

Figure 5 plots the standardized residuals versus the predicted values of the fitted BNER model,
which correspond to the logarithms of food (Y1) and nonfood (Y2) expenditures. In both cases,
the main cloud of residuals is situated symmetrically around zero without any recognizable
pattern.

Appendix D of Data S1 includes the results derived from using the transformations cube-root
and fifth-root. Density figures D.2 and D.5 of standardized residuals are quite symmetrical and
show that distributions are not too far from normality. Dispersion graphs D.3 and D.6 of standard-
ized residuals versus predicted values show that the clouds of points are situated symmetrically
around zero without any recognizable patterns. Table D.5 presents the skewness and kurtosis of
the standardized residuals for the three transformations. It shows skewness close to zero in all
cases and smaller kurtosis in case of the log transformation. Table D.6 presents the skewness and
kurtosis of the random effects and leads to similar conclusions. For the marginal random effects,
the Jarque-Bera normality test does not reject normality in any of the cases. In what follows, we
present the EBPs based on the BNER model with the log transformation. Data S1 gives additional
information about EBPs in two appendixes. Appendix E discusses the influence of the SLFS sam-
pling weights on the estimation of the population sizes appearing in the formula of the EBPs.
For this sake, it constructs alternative EBPs with population sizes estimated from SHBS sampling
weights.
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FIGURE 4 Histograms of standardized residuals
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FIGURE 5 Standardized residuals versus predicted values (in 10* euros)

Direct estimators of small area parameters are not very precise because the sample size is
small in the domains. However, they are approximately unbiased estimators under the distri-
bution of the sample design. For this reason, the comparison of model-based predictors with
direct estimators is of interest to researchers. In particular, the predictors are expected to follow
the pattern of the direct estimates, but in a smoothed way. Appendix F presents some figures
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FIGURE 6 Z (left) and their relative root-mean square errors (MSEs) in % (right) of household annual
expenditures in food by Spanish provinces
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FIGURE 7 R;! in % (right) and their relative root-mean square errors (MSEs) in % (right) of household
annual expenditures in food by Spanish provinces

containing plots of direct and EBP estimates and plots of the corresponding estimates of the
relative root-MSEs (RRMSE). It also gives tables with condensed numerical results.

Figure 6 (left) maps the means of the household annual expenditures in food by Spanish
provinces. Figure 6 (right) maps the estimated RRMSE in %. These figures show that expenditures
on food is rather variable between provinces.

Figure 7 (left) and Figure 8 (left) plot the ratios of means and the mean of ratios of household
expenditures in food by Spanish provinces in %. Figure 7 (right) and Figure 8 (right) plot the cor-
responding RRMSESs in %. An interesting feature observed here is that within some autonomous
regions, the province percentages of food expenditure, R4, could be rather variable. The same
happens for the province means of household percentages of food expenditure A4. This happens
mostly in the Autonomous Regions of Andalucia, Aragén, Castilla Leén or in Galicia, where
there are many provinces and some of them are more deprived than others. In contrast, there are
other regions, such as Catalufia and Basque Country where the variability of the estimated ratios
is smaller.
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FIGURE 8 Ratios A; in % (right) and their relative root-mean square errors (MSEs) in % (right) of
household annual expenditures in food by Spanish provinces

7 | CONCLUSIONS

This paper introduces small area predictors of expenditure means and ratios based on the BNER
model (1). Best predictors minimize the MSE, within the class of unbiased predictors, under the
model distribution. This optimality property approximately holds if we substitute true model
parameters by consistent estimators, as the REML estimators are. The paper proposes estimating
the MSEs of the EBPs by parametric bootstrap. As far as we know, this is the first time that EBPs
for nonlinear bivariate parameters are introduced.

Two simulation experiments are carried out to empirically investigate and to check the behav-
ior of the EBPs and the MSE estimators when the number of domains or the domain sample
sizes are small. This is to say, in scenarios where the asymptotic properties might not hold.
Simulation 1 investigates the biases and the MSEs of the EBPs. This simulation shows that
the EBPs are basically unbiased, even in cases with rather small sample sizes, and that the
MSEs decrease as the sample sizes ny increase. Simulation 2 gives the recommendation of doing
B = 400 iterations when applying the introduced parametric bootstrap procedures for estimating
the MSEs.

For studying the effect of deviations from normality, Simulations 1 and 2 also changes the
multivariate normal distributions of random effects and errors by multivariate skew-normal and
Student’s t distributions, keeping the same mean and variance component parameters. These
simulations illustrate how efficiency measures worsen with increasing skewness or kurtosis of
multivariate distributions. Data S1 contains additional simulations. Appendix B carries out new
variants of Simulations 1 and 2 for studying the effect of correlations between the components
of the random effects and errors in the behavior of the EBPs and MSE estimators. Appendix C
moves apart from the unit-level model-based theory, where the sample is a deterministic subset of
the population. In the new simulations the samples and the corresponding sizes are random and
depends on the target vector y. The main findings are that the EBPs are not much affected because
of the implemented informative sampling scenarios, but the parametric bootstrap estimators of
their MSEs are drastically affected.

The introduced EBP methodology is applied to data from the SHBS of 2016. The target is to
estimate province means of food and nonfood household annual expenditures, ratios of province
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means of household annual expenditures and province means of ratios of household annual
expenditures. The estimation procedure takes into account the correlation between the two target
variables. The paper also compares the model-based estimates with direct estimates and it shows
that introduced EBPs have lower MSEs.

The new methodology is not universal. It is limited to the assumed hypotheses. A key
point is the need of having an auxiliary census files if the fitted model contains continu-
ous auxiliary variables. This is a drawback that limits the applicability of the methodology,
since there are few countries that maintain updated population censuses. However, it does not
reduce the applicability to zero. The EBP approach, introduced by Molina and Rao (2010),
can be applied using recent population censuses. For example, the World Bank traditionally
used the Elbers et al. (2003) census-based methodology to map poverty in developing coun-
tries. On the other hand, the method is applicable to business surveys, where it is common
to have a census of companies. The restriction of having a census is circumvented in the
case that categorical explanatory variables are used. This is the example of the application
to SHBS data, since Spain does not maintain an updated population census. It is true that
in this case the predictive power of the model is reduced, but thus the whole model intro-
duces valuable information that allows the construction of more efficient predictors than direct
estimators.

We finally recall that we have carried out a research under the unit-level model-based
approach. The corresponding extensions to the model-assisted or informative sampling approach
will allow incorporating sampling design features into the statistical methodology, including
point estimation and bootstrap MSE estimation.
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