In-Transit Molecular Dynamics Analysis with Apache Flink

Henrique C. Zanuz
Bruno Raffin

henrique.colao@gmail.com
bruno.raffin@inria.fr
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG
38000 Grenoble, France

ABSTRACT

In this paper, an on-line parallel analytics framework is proposed
to process and store in transit all the data being generated by a
Molecular Dynamics (MD) simulation run using staging nodes in
the same cluster executing the simulation. The implementation and
deployment of such a parallel workflow with standard HPC tools,
managing problems such as data partitioning and load balancing,
can be a hard task for scientists. In this paper we propose to lever-
age Apache Flink, a scalable stream processing engine from the
Big Data domain, in this HPC context. Flink enables to program
analyses within a simple window based map/reduce model, while
the runtime takes care of the deployment, load balancing and fault
tolerance. We build a complete in transit analytics workflow, con-
necting an MD simulation to Apache Flink and to a distributed
database, Apache HBase, to persist all the desired data. To demon-
strate the expressivity of this programming model and its suitability
for HPC scientific environments, two common analytics in the MD
field have been implemented. We assessed the performance of this
framework, concluding that it can handle simulations of sizes used
in the literature while providing an effective and versatile tool for
scientists to easily incorporate on-line parallel analytics in their
current workflows.

1 INTRODUCTION

At the dawn of exascale computing, scientists are taking advan-
tage more than ever of the evolving massively parallel computa-
tional resources available. Computational science simulations are
increasingly generating more output data, due to the continuous
improvements in the computational infrastructure and in the paral-
lel numerical algorithms. Unfortunately, the I/O subsystem in HPC
environments has not evolved at the same pace than processors
and memories, so the storage and analysis of all that huge amount
of data have started to become the real bottleneck in the scientist
workflow.

Furthermore, there is an inherent need to simplify the creation
of analysis code that can exploit all these heterogeneous resources.
On the one hand, the need is to exceed the classic analytics pipeline
based on a post-hoc approach to bypass the I/O bottleneck; and on
the other hand, to get beyond a sequential analysis by leveraging
the HPC infrastructure for enabling efficient analyses at large scale,
but limiting the complexity of programming and deploying paral-
lel algorithms at a relatively low level as required when relying
on the classical HPC programming models (MPI/OpenMP, data
partitioning and distribution...).

Omar A. Mures
Emilio J. Padréon
omar.alvarez@udc.gal
emilio.padron@udc.gal
Univ. Corunia, Facultade de Informatica
15071 A Corufia, Spain

This paper explores an alternative approach based on Big Data
frameworks. We use Apache Flink, a distributed streaming dataflow
engine, to process in transit the data from the simulation. We lever-
age Flink high level stream processing programming model, and its
runtime that takes care of the deployment, load balancing and fault
tolerance. The analytics results are next written as soon as available
in a scalable NoSQL database, using Apache HBase, a key-value
database on top of HDFS. Both the results from the analytics and
the raw data produced by the numerical simulation are stored in
this database. Then, traditional post-hoc data processing based on
batch analytics is also possible in our framework, as the output
data from the simulation are stored after being analyzed in Flink.
Besides, the same analysis kernels can be (re)used for the on-line
in transit and the post-hoc data processing.

The numerical simulation used for the experiments is a Molec-
ular Dynamics (MD) parallel mini-app, CoMD, that emulates the
representative workloads of a real full scale MD simulation. At
every given timestep, each CoMD process outputs the positions of
all the atoms it simulates, giving what is commonly called an MD
trajectory. Various analyses on these data are usually performed to
extract meaningful knowledge.

The overall set-up consists in using multiple dedicated nodes
of a cluster to run CoMD (simulation), Flink (analysis) and HBase
(storage). Two common compute kernels for MD analytics were im-
plemented to demonstrate the expressivity of Flink’s programming
paradigm: a position histogram of atoms and an atom neighbor
computation based on a cutoff distance.

2 STATE OF THE ART

Traditional MD analysis tools associated with large MD simulation
codes are mainly focused on post-hoc trajectory analysis. Gro-
macs [14] offers several trajectory analysis tools, for example. The
included algorithms are mostly coded in C and only some of them
are parallel. In terms of usability, each analysis is a different pro-
gram. No framework for developing new analytics is provided, so
whatever new analysis needed has to be coded from scratch. MD-
Analysis [15] or VMD [13] are classical post-hoc trajectory analysis
tools. They rely on MPI and/or OpenMP parallelization that are
often complex to deploy at large scale and difficult to use efficiently
by computational biologists. VMD has been extended to support in
situ rendering [19].

Several in situ and in transit frameworks report experiments
with MD simulations to demonstrate their scaling abilities. They
all rely on HPC based approaches, mainly MPI+X, used in different
ways [8-10, 22, 23]. To our knowledge these approaches mainly led
to research prototypes and have not yet been adopted by scientists.

Computational biologists have considered the map/reduce model
as an alternative to traditional HPC parallelization approaches to
speed up the post-hoc MD trajectory analysis. Himach [20] was
the first MD analysis framework to provide parallel execution ca-
pabilities inspired by Google’s Map-Reduce. The authors initially
considered Hadoop as a target, but due to its poor performance
they developed a dedicated map/reduce framework based on MPI,
Python and using VMD for the analysis kernels. Himach has a
run-time responsible for assigning the tasks to the processors, co-
ordinating the parallel I/O requests, storing and managing inter-
mediate values (temporary key-value pairs) and orchestrating the
data exchange between processes. Himach focuses on a temporal
parallelization where each key-value is one simulation timestep
with all atom positions. It shows a reasonable good performance
and scalability, almost linearly until 32 MPI processes but degrading
from that point due to I/O and communications.

On [17], the authors compare three general purpose task-parallel
frameworks, Spark, Dask and RADICAL-Pilot, with respect to their
ability to support post-hoc MD analytics on HPC environments.
They also assess them in comparison to classical HPC MPI ap-
proaches. Their experiments show that Spark outperforms Dask
when it comes to communication intensive tasks and iterative al-
gorithms, due to the in-memory RDDs. Dask’s low and high level
APIs prove to be more versatile than Spark, although both have
showed some limitations, requiring work-arounds to implement the
analytics. Radical-Pilot proved to be more useful for coarse-grained
task-level parallelism and when it is necessary to integrate other
existing HPC analytics frameworks (such as MDAnalysis). Even
though none of them outperformed their MPI counterpart, their
easier programming paradigm and not so big performance gap still
creates a strong case for using them for MD analytics.

If many tools have extended the map/reduce model for stream
processing, very few works have attempted to combine this model
with in situ analytics for large parallel simulations. The SMART [21]
in situ framework proposes to rely on the map/reduce model to
define in situ analysis. Implemented on top of MPI and OpenMP
it outperforms Spark, but lacks features like support for in transit
processing or fault tolerance. DataSpace [7] is not a map/reduce
framework but adopts the key/value storage concept to automati-
cally index data produced by parallel simulations and store them
in the memory of in transit nodes. Analytics query this in-memory
database to get the needed data. DataSpace relies on MPL

Many stream processing frameworks designed for internet and
IoT applications exist, Spark, Flink and Storm being the most visible
ones. For sake of conciseness refer to surveys like [5] for compara-
tive studies.

3 IN TRANSIT PARALLEL ANALYTICS
FRAMEWORK FOR MD SIMULATIONS

The architecture of the proposed framework connects the CoMD
simulation parallelized with MPI to Flink worker nodes using Ze-
roMQ. Flink executes the analysis scripts in parallel and in-memory
as soon as a new timestep is received, then injecting results to the
HBase distributed database, that takes care of storing the results
using its local disks (see an example of an 8 nodes configuration

Henrique C. ZanUz, Bruno Raffin, Omar A. Mures, and Emilio J. Padrén

CoMD

CoMD

oMQ

= ,——.-

CoMD

ALl

Figure 1: Diagram of the proposed framework deployed on
8 nodes: the MD simulation (CoMD) running in 4 nodes;
2 nodes executing the on-line analytics with Flink, receiv-
ing the data stream through ZeroMQ; and other 2 nodes in
charge of storing data (raw data from the simulation and re-
sults from the analytics) in a distributed database (HBase).

in Figure 1). An additional node is used to run both the Flink job
manager and the HBase master.

3.1 Parallel Simulation

CoMD [11] is a mini-app for MD simulations, i.e. a simplified version
of an actual MD application, sharing the same features and patterns
in terms of operations, workload and work balance. We use the MPI
version of CoMD, where each MPI updates the states of a fixed and
different set of atoms at each timestep.

3.2 Distributed Stream Processing

Apache Flink [4] is an open source analytics engine supporting both
stream and batch processing. Flink is a distributed, high-performing,
highly availably and fault-tolerant framework. Flink is the result of
the Stratosphere project [2], an open source platform for massively
parallel Big Data analytics. It includes various level of optimizations
like Parallelization Contracts (PACTs) [3]. To our knowledge Strato-
sphere/Flink has never been used for analyzing MD trajectories.

Flink stream processing model relies on the dataflow model as
defined in [1]. It enables to continuously trigger the execution of
map/reduce-like scripts [6] on windows of data regularly extracted
from data streams. If the window operates on keyed data, i.e. data
that are partitioned according to a key defined by the user, the
operations are executed in parallel.

A Flink script is transformed into a dataflow graph, taking into
account the parallelization opportunities supported by the different
operators being used. At execution, one TaskManager in each Flink
worker node performs the operations over the input data. Each
TaskManager provides one task-slot per core in the node, usually
called sub-tasks. At specific points of the execution, the streams
might be split into stream partitions that can be distributed or
re-assigned to other sub-tasks. In opposite to a MPI based program-
ming, the user does not need to explicitly control the distribution
of data and computation.

3.3 Key-value Store

Apache HBase is an open-source distributed database based on
Google proprietary BigTable. It is a non-relational database that

In-Transit Molecular Dynamics Analysis with Apache Flink

runs on top of a distributed file system, commonly the Hadoop
File System (HDFS). HBase can be seen as a distributed, sparse,
persistent and multidimensional sorted map, indexed by a row key,
a column key and a timestamp.

The worker nodes in HBase are called RegionServers. Each Re-
gionServer contains an arbitrary number of regions. Each region
is responsible for storing rows of one specific table, based on an
interval of row-keys. The actual content of the rows are stored in
HFiles on the underlying HDFS File System. An HBase master node
coordinates the RegionServers and assigns their row-key intervals.

3.4 Putting the Pieces Together

Two connectors are needed in Flink to glue all the components
together and get the whole system as depicted in Figure 1, with
Flink receiving the data stream from CoMD, then processing the
data and sending the raw data and the analysis results to the storage
nodes. On the one hand, a source connector is used for the streaming
data ingestion via ZeroMQ, and on the other one a sink connector
is needed for dumping all data on the database.

The ZeroMQ [12] (or OMQ) asynchronous message library is used
to connect the parallel simulation with Flink. ZeroMQ is datatype
agnostic and provides its own sockets, which are able to send and
receive atomic messages over different transport layers, such as
TCP, multi-cast, inter-process and in-process communications. In
this work, we rely on the ‘Push-Pull’ pattern.

Currently, Flink lacks an official ZeroMQ source connector (it
was available in times of Stratosphere, but was not migrated to
Flink due to license issues), so we have developed our own connec-
tor [16]. The connector enables parallel connections: each CoMD
process directly connects to a different thread on Flink nodes, these
threads being distributed on the different Flink nodes and handling
data to the local Flink sub-tasks. From Flink programming inter-
face point of view, this is seen as a single stream that is actually
distributed, effectively enabling parallel processing even before this
data streams be keyed.

Flink includes an official HBase connector. So implementing the
sink was more straightforward. The trajectory raw data are stored
in one table where the rows are identified by a “MPI Rank_Timestep’
key, so as to favor a partitioning of data based on their MPI rank.
As most of the time queries need the data for a full timestep, this
scheme reduces the risk for hotspots. The results from the analytics,
way smaller than the raw trajectory, are stored in another table.

3

4 EXPERIMENTAL RESULTS

This whole environment runs on an homogeneous cluster with
nodes having 2 processors Intel Xeon E5-2630 v3, with 8 Cores/CPU
(i.e. a total of 16 cores per node), 128 GB, 2 x 558 GB HDD as storage
and a 10 Gbps Ethernet network.

The first set of experiments used 8 simulation nodes (125 MPI
CoMD processes, applying a 5 x5 X 5 3D space partitioning), 1 Flink
node with 16 task-slots and 1 HBase node. CoMD simulated a 32
million atoms model, which represents in number of atoms about
half of the HIV virus molecular structure [18].

The amount of streamed and processed data is controlled through
the frequency of the timesteps output by CoMD: from every timestep
down to one every 20 iterations. These trajectories are fully stored

in HBase a couple of minutes after CoMD finishes. To limit data
buffering throughout the workflow, low heap memory limits were
imposed on Flink and HBase: 6 GB for Flink TaskManagers and
30 GB for HBase RegionServers.

These experimented saving frequencies are high compared to
the standard of MD simulations. Real MD simulations iterate at
high speed (250 it/s or more is common). Only a fraction of these
timesteps are usually saved (1/500 or even less) to limit the trajec-
tory size and the impact on the simulation performance [8].

Three different on-line analysis scenarios were used for each
experiment: a simple raw data injection, with no analysis at all; a
low-demanding data processing that computes a position histogram
of the atoms; and a high demanding analytics that computes the
list of neighbors for each atom, i.e. at a distance lower than a given
cutoff value. Histogram computation and neighbor identification
are common analysis patterns for MD analytics [17]. The Flink
pseudocodes for both algorithms are shown in Figure 2.

ZeroMQ ensures that messages stay in order and that none is
lost. But we have to make sure that data processed together contain
all and only the atoms from the same timestep. For that purpose
we rely on Flink time event windows. The simulation timestep value
contained in every message sent by CoMD is used as watermark.
Flink splits the data streams according to tumbling windows of size
one, i.e. once all messages for the next timestep have been received,
ensuring the integrity of the data processed for each window.

For both algorithms we rely on Morton indexing (z-order curve),
used to partition the space for the position histogram or as acceler-
ation data structure when searching for neighbors.

For the position histogram, the data from the messages are first
split (locally with a flatmap), associating with each atom the cor-
responding z-index. Because the data stream is parallel (one data
source per MPI process) this operation is executed in parallel on
Flink workers. Then a keyby shuffles the data so that all atoms
belonging to the same z-cell are gathered together on the same
Flink worker. This operation is combined with a reduction to count
the number of atoms per cell. Again this shuffling/reduce operation
is performed in parallel.

For the neighbor search, we use a z-indexing defined according
to the cutoff radius. A flatmap associates with each atom a z-index
for its z-cell but also for each z-cell it is neighbor of. This leads to
duplicate the atom data 27 times for a 3D simulation like CoMD.
Then the data are shuffled to gather all atoms with the same z-index
together through the keyby, leading to gather all atoms belonging
to the same neighborhood together. Then, a local operation (apply)
computes the neighbor list for each atom.

The first experiment looked at analyzing the stability of the
framework to cope with a state-of-the-art input pressure. Since
MD simulations might run for extensive periods and generate huge
trajectories, we want to be sure the system can reach and sustain a
steady state, with non-increasing demand for buffering resources
along time. Therefore, we tested our workflow with different fre-
quencies of data outputs.

The maximum sustainable throughput is obtained at 71 MB/s (or
8.875 MB/s/node) when CoMD sends data every 11 iterations, for the
direct data injection (Flink simply forwards the data to HBase) and
the histogram computation. For both experiments CoMD produces

Alg. 1: Position histogram
CoMDStream.FlatMap:
Emit foreach atom 1 tuple: <Timestep,BucketIndex,b 1>
.KeyBy (BucketIndex)
.Window by Timestep
.Sum(2)

Henrique C. ZanUz, Bruno Raffin, Omar A. Mures, and Emilio J. Padrén

Alg. 2: Neighbor identification

CoMDStream.FlatMap:
Emit foreach atom+neighbor_cell 1 tuple: <Atom,CellIndex>
.KeyBy (CellIndex)
.Window by Timestep
.Apply (Select_Neighbor_Atoms)

Figure 2: Analysis kernels used in the experiments

63 GB of data eventually stored into HBase with an additional
500 KB for storing the histogram results.

Figure 3 shows some interesting data about the behavior of the
system with the maximum experimented sustainable throughput
(Figure 3a) and with the minimum unsustainable one (Figure 3b). In
both subfigures, the graph on the left shows the cumulated number
of messages processed throughout time at each point of the system.
In this graph, three cumulative histograms are overlaid. The orange
one counts the number of messages generated by CoMD; the blue
one, the number of messages received by Flink and the green one,
the number of messages handled by HBase. In the Figure 3a CoMD
produces data every 11 iterations. The system is able to handle the
data at the same rate it is produced by the simulation: CoMD gener-
ation, Flink processing and HBase ingestion histograms are almost
perfectly superimposed. On the other hand, setting CoMD to pro-
duce one output every 10 iterations (Figure 3b) leads to a growing
gap between the CoMD histogram and the almost matching Flink
and HBase histograms. After about 200s Flink and HBase start to
lag behind CoMD. After investigation, it appears that HBase is not
able to cope with the data pressure. HBase imposes back pressure
to Flink very quickly (both histograms almost match) that in turn
imposes back pressure on ZeroMQ. The different buffers involved
in this chain from HBase to ZeroMQ (ZeroMQ maintains buffers
on the sender and receiver) get filled but are large enough to avoid
impacting CoMD execution that proceeds at the same pace. After
750s CoMD finishes to produce messages while ZeroMQ, Flink and
HBase keep on working for some extra time to empty the buffers.
The right curves show that HBase accumulates data into buffers
and flushes them at a regular pace.

The neighbor computing analysis leads to a significantly lower
sustainable throughput of 1.10 MB/s. The bottleneck is clearly the
overload of Flink as the data are replicated 27 times and need to
be shuffled when keyed. We are exploring alternative algorithms
that hopefully will achieve significantly better performance, ad-
dressing the issue of data duplication and optimizing the neighbor
computing.

We also ran a weak scalability test, scaling both the workload
and the number of processors, running the histogram computation
on a 4 times bigger set-up, with 512 CoMD processes on 32 nodes
and 64 cores for Flink and HBase (4 nodes each). The number of
atoms in the simulation was also multiplied by 4, generating a tra-
jectory of 256 GB. The maximum sustainable throughput achieved
reached 100 MB/s, only 40% more than with a four time smaller
configuration.

For situating these performance according to execution in a more
traditional HPC context let consider the results of [8], running a
Gromacs MD simulation on a supercomputer. They test different in

situ processing scenarios with FlowVR, saving simulation outputs
to disk or performing some analytics. The closest scenario where
all data produced are saved to disk, the simulation produces about
35 MB/s of data when running on 256 cores, and 75 MB/s when
running on 512 cores. This is below the sustainable bandwidth we
achieved with our set-up (this comparison should obviously be
considered with care as it is not a direct comparison of the very
same simulation running on the same machine).

5 CONCLUSION AND DISCUSSION

This paper investigates the HPC & BigData convergence for the
on-line analysis of parallel simulation outputs. We presented early
results using Flink to process in transit data produced by a parallel
MD simulation and store the raw data from the simulation as well
as the analytics results to HBase. We managed to achieve a sus-
tainable throughput of 71 MB/s for 125 simulation processes (resp.
100 MB/s with 512 simulation processes) while saving 63 GB of raw
results to HBase (resp. 256 GB) and computing a histogram. It also
revealed performance issues when scaling or with the neighbor
computations, but that should not be considered definitive as this
early work leaves room for many possible improvements.

We are currently working on refining the analytics algorithms,
using different Flink operators for increasing performance, moving
to a different machine with InfiniBand network and SSD disks. We
are also considering using a different storage. HBase was chosen
as being standard in the Big Data domain, but other storage sys-
tems like Cassandra are known to have significantly better write
performance.

This work also shows that Flink offers both a high level program-
ming model easy to master, and an advanced runtime discharging
the user of many time consuming aspects such as data communi-
cation, data partitioning, load balancing and fault tolerance. The
programmer does not have to control data localization, i.e. to know
explicitly the data each node keeps. He/She only has to control data
aggregation by relying on data indexing with keys. Once the data
are stored on HBase, the user can also query and process these data
post-hoc without changing of programming environment. An HPC
based approach would require more expertise and development
time, often for the benefit of better performance. We discussed our
approach with a few computational biologists that find it very ap-
pealing to trade some performance for saving on human expertise
and time.

ACKNOWLEDGMENTS

Experiments ran on the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria and including CNRS, RENATER,
several Universities and other organizations. This work is partially

In-Transit Molecular Dynamics Analysis with Apache Flink

Heap Memory usage
Cumulated data sent by CoMD (GB)
20 30 40 50

0 10 60
[Raw CoMD data] Cumulation of treated messages
20
60 &
[comD o
. [
7500 . F“nk 50]
c
B HBase <
D o
€ w08 §
% 5000 w0 g_ 10
Q
3 o) —+— HBase
s 2 —e— Flink
= ©
20 @
2500
10
0 0 0
0 250 500 750 0 250 500 750
Time (s) Time (s)
Dispatched messages Memory usage
(a) Sustainable throughput: 8.875 MB/s/node (for a total of 71 MB/s)
Heap Memory usage
Cumulated data sent by CoMD (GB)
0 10 20 30 40 50 60
[Raw CoMD data] Cumulation of treated messages
20
0 &
[comD]
. [
7500 . Fllnk 50 El
[l HBase <
7§
— o
(&) 173
g 5000 w0 3 10
8 g —*— HBase
2 2 —e— Flink
= 20 gﬂ)
2500 = I
10
0 0 0
0 250 500 750 1000 [250 500 750
Time (s) Time (s)

Dispatched messages

Memory usage

(b) Unsustainable throughput: 9.75 MB/s/node (for a total of 78 MB/s)

Figure 3: Analyzing the stability of the framework for two different throughputs with the Histogram analytics

supported by the Ministry of Economy and Competitiveness of REFERENCES

Spain, Project TIN2016-75845-P (AEI/FEDER, UE), and from the [1]
Galician Government under the Consolidation Program of Com-

petitive Research Units (Competitive Reference Groups, ED431C
2017/04).
[2

—

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
FernAgndez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-
Order Data Processing. Proceedings of the VLDB Endowment 8 (2015), 1792-1803.

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Frey-
tag, Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl,
et al. 2014. The Stratosphere Platform for Big Data Analytics. The VLDB Journal

3

=

[14

[15]

[16]

[17

(18]

[19

[20

[21]

[22]

23, 6 (2014), 939-964.

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao,
Volker Markl, Erik Nijkamp, and Daniel Warneke. 2011. MapReduce and PACT-
Comparing Data Parallel Programming Models. In Proc. of Datenbanksysteme
fAijr Business, Technologie und Web (BTW 2011). 25-44. http://stratosphere.eu/
assets/papers/ComparingMapReduceAndPACTs_11.pdf

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 38, 4 (2015), 28-38. http://sites.computer.org/debull/A15dec/issuel.
htm

Subarna Chatterjee and Christine Morin. 2018. Experimental Study on the Perfor-
mance and Resource Utilization of Data Streaming Frameworks. In Proc. of 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID). 143-152. https://doi.org/10.1109/CCGRID.2018.00029

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107-113. https://doi.org/10.
1145/1327452.1327492

Ciprian Docan, Manish Parashar, and Scott Klasky. 2012. DataSpaces: an Interac-
tion and Coordination Framework forAaCoupled Simulation Workflows. Cluster
Computing 15, 2 (2012), 163-181. https://doi.org/10.1007/s10586-011-0162-y
Matthieu Dreher and Bruno Raffin. 2014. A Flexible Framework for Asynchronous
in Situ and in Transit Analytics for Scientific Simulations. In Proc. of 2014 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 277—
286. https://doi.org/10.1109/CCGrid.2014.92

M. Dreher, K. Sasikumar, S. Sankaranarayanan, and T. Peterka. 2017. Manala: A
Flexible Flow Control Library for Asynchronous Task Communication. In Proc.
of 2017 IEEE International Conference on Cluster Computing (CLUSTER), Vol. 00.
509-519. https://doi.org/10.1109/CLUSTER.2017.31

Laurent Colombet Estelle Dirand and Bruno Raffin. 2018. TINS: A Task-Based Dy-
namic Helper Core Strategy for In Situ Analytics. In Proc. of SupercomputingAsia
(SCAsia) 2018. Singapore.

ExMatEx: Exascale Co-Design Center for Materials in Extreme Environments.
2016. CoMD: Classical molecular dynamics proxy application. https://github.
com/ECP-copa/CoMD Online; accessed 2018-08-06.

Pieter Hintjens. 2013. ZeroMQ: Messaging for Many Applications. O’Reilly Media.
William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD: Visual
Molecular Dynamics. Journal of Molecular Graphics 14, 1 (1996), 33-38. https:
//doi.org/10.1016/0263-7855(96)00018-5

Erik Lindahl, Berk Hess, and David Spoel. 2001. GROMACS 3.0: A package for
molecular simulation and trajectory analysis. Journal of Molecular Modeling 7
(2001), 306-317. https://doi.org/10.1007/5008940100045

Naveen Michaud-Agrawal, Elizabeth] Denning, Thomas Woolf, and Oliver
Beckstein. 2011. MDAnalysis: A toolkit for the analysis of molecular dynam-
ics simulations. Journal of Computational Chemistry 32 (2011), 2319-2327.
https://doi.org/10.1002/jcc.21787

Omar A. Mures. 2016. ZeroMQ connector for Apache Flink. https://github.com/
omaralvarez/flink-zeromq Online; accessed 2018-08-06.

Toannis Paraskevakos, André Luckow, George Chantzialexiou, Mahzad Khosh-
lessan, Oliver Beckstein, Geoffrey C. Fox, and Shantenu Jha. 2018. Task-
parallel analysis of molecular dynamics trajectories. CoRR abs/1801.07630 (2018).
https://arxiv.org/abs/1801.07630

Juan R. Perilla and Klaus Schulten. 2017. Physical properties of the HIV-1 capsid
from all-atom molecular dynamics simulations. Nature Communications 8 (19 07
2017), 15959 EP —. http://dx.doi.org/10.1038/ncomms15959

John E Stone, Peter Messmer, Robert Sisneros, and Klaus Schulten. 2016. High
performance molecular visualization: In-situ and parallel rendering with EGL.
In Proc. of IEEE International Symposium on Parallel & Distributed Processing,
Workshops and Phd Forum, Vol. 2016. NIH Public Access, 1014-1023. https:
//doi.org/10.1109/IPDPSW.2016.127

Tiankai Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O.
Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E. Shaw.
2008. A scalable parallel framework for analyzing terascale molecular dynamics
simulation trajectories. In Proc. of 2008 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis. 1-12. https://doi.org/
10.1109/5C.2008.5214715

Yi Wang, Gagan Agrawal, Tekin Bicer, and Wei Jiang. 2015. Smart: A MapReduce-
like Framework for In-situ Scientific Analytics. In Proc. of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC
’15). ACM, New York, NY, USA, Article 51, 12 pages. https://doi.org/10.1145/
2807591.2807650

Fang Zheng, Hongfeng Yu, Can Hantas, Matthew Wolf, Greg Eisenhauer, Karsten
Schwan, Hasan Abbasi, and Scott Klasky. 2013. GoldRush: Resource Efficient in
Situ Scientific Data Analytics Using Fine-grained Interference Aware Execution.
In Proc. of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC '13). ACM, New York, NY, USA, Article 78, 12 pages.
https://doi.org/10.1145/2503210.2503279

Henrique C. ZanUz, Bruno Raffin, Omar A. Mures, and Emilio J. Padrén

[23] F.Zheng, H. Zou, G. Eisnhauer, K. Schwan, M. Wolf, J. Dayal, T. A. Nguyen, J. Cao,

H. Abbasi, S. Klasky, N. Podhorszki, and H. Yu. 2013. FlexIO: I/O middleware for
Location-Flexible Scientific Data Analytics. In Proc. of 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing (IPDPS’13). 320-331. https:
//doi.org/10.1109/IPDPS.2013.46

In-Transit Molecular Dynamics Analysis with Apache Flink

A ARTIFACT DESCRIPTION APPENDIX:
IN-TRANSIT MOLECULAR DYNAMICS
ANALYSIS WITH APACHE FLINK

A.1 Abstract

This section describes the artifacts of this work submitted to ISAV’18.
We describe the environment and the context of the experiments
presented in Section 4. We explain how we compile and execute
CoMD and how we deploy and execute the in transit analytics
pipeline proposed in the paper.

A.2 Description
A.2.1 Check-list (artifact meta information).

e Algorithms: Morton indexing (z-order curve), position histogram,
neighbor identification based on a cutoff distance

e Programs: C binary, Java jars, Python scripts, CoMD, ZeroMQ,
JZMQ, Flink, HBase

e Compilation: C, MP], Java, Maven

Data set: Generated by CoMD

Run-time environment: Flink and HBase appropriately config-

ured with access to JAVA_HOME. Java bindings for ZeroMQ in-

stalled (JZMQ).

o Hardware: Grid 5000’s paravance cluster; each node: 2 x Intel Xeon
E5-2630 v3, 8 cores/CPU, 128 GB, 2 x 558 GB HDD, 2 x 10 Gbps

o Publicly available?: Not yet

A.2.2 How software can be obtained (if available). The framework
we are presenting in this paper is not publicly available yet, but
will be open-sourced in a near future. The whole software stack
will be included in a git repository, including an appliance to ease
the setup and deployment. For more information, feel free to send
a request at emilio.padron@udc.gal.

A.2.3 Hardware dependencies. The only hardware dependency
is a cluster with nodes connected through an Ethernet network.
Grid 5000 (G5K), a testbed for experiments on high performance
computing, distributed systems, big-data and cloud, was used in this
work. G5K infrastructure is composed of several clusters on several
sites throughout France and Luxembourg. In all the experiments,
all the nodes used were equal and part of one single cluster, in order
to avoid introducing another parameters that can alter the results.
The specifications of the nodes used for all the experiments are: 2 x
Intel Xeon E5-2630 v3, 8 cores/CPU, 128 GB, 2 x 558 GB HDD, 2 x
10 Gbps.

A.2.4 Software dependencies. Our software stack is composed of:

e CoMD 1.1. We use a customized version to provide a stream
data via ZeroMQ

o ZeroMQ library, version 4.1.4
ZeroMQ java bindings (JZMQ), version 3.1.0

e Apache Flink, version 1.3.3

Flink’s Garbage Collector, version G1GC

Apache HBase, version 1.2.6

Apache Hadoop, version 2.7.6

Oracle Java, version 1.8

GNU Gecec, version 4.9

Our experiments were executed on a Debian 8 “Jessie” Operating
System, inside a Kameleon appliance (more on this in A.7).

A.2.5 Datasets. The data stream generated by CoMD is used to
feed the analytics pipeline.

A.3 Installation

o Get and compile (or use a binary package provided by a
GNU/Linux distribution) ZeroMQ version 4.1.4 or above and
the ZeroMQ java bindings (JZMQ), version 3.1.0 (the last
version available).

e Install Oracle Java, version 1.8.

o Install Apache Hadoop, Apache Flink and Apache HBase,
appropriately configured with access to JAVA_HOME.

e Get and compile a modified version of CoMD to provide
the data stream via ZeroMQ. Compile it with MPI support
(default option in the makefile under CoMD/src-mpi).

e Using Maven, create a Jar bundle with the last version of the
analytics to be executed. Include the JZMQ classes in the Jar.

A.4 Experiment workflow
(1) Launch Flink & HBase

% ${FLINK_DIR}/bin/start-cluster.sh
% ${HBASE_DIR}/bin/start-hbase.sh

(2) Create two HBase tables with the following commands

% echo "create 'flink_ingestion', 'data', \
{SPLITS => ['@"',"1","'2","'3","'4",'5",'6"','7",'8",'9"]1}" \
| ${HBASE_DIR}/bin/hbase shell -n

% echo "create 'flink_analytics', 'data', \
{SPLITS => ['e"',"1","'2","'3","'4",'5","'6"','7","'8",'9"]1}" \

| ${HBASE_DIR}/bin/hbase shell -n

—
SY)
=

Execute the Jar package with the analytics in Flink using
Flink CLI

% ${FLINK_DIR}/bin/flink run -d -p ${FLINK_TASKS} \
-c org.inria.flink.${FLINK_EXP_KERNEL} \
${EXP_DIR}/FlinkCoMD_Experiments.jar 3000 2 9000 \
${TMP_DIR} ${COMD_PROCS}

Key parameters:

e FLINK_TASKS: Number of Flink sub-tasks per Flink node.

e FLINK_EXP_KERNEL: Flink analytics to execute.

e COMD_PROCS: Number of CoMD MPI processes.

Execute the modified version of CoMD to generate the data

stream to be analyzed

—
N
=

% mpirun -n ${COMD_PROCS} ${COMD_DIR}/bin/CoMD-mpi \
--nSteps ${TIMESTEPS} --printRate ${OUTPUT_RATE} \
--xproc ${XPROCS} --yproc ${YPROCS} --zproc ${ZPROCS} \
--nx ${XCELLS} --ny ${YCELLS} --nz ${ZCELLS} --portNum 2 \
--port 9000 --hostDir ${TMP_DIR}/ --hwm 3000

Key parameters:

e XPROCS, YPROCS & ZPROCS: Number of CoMD MPI processes for each di-
mension. Constraint: XPROCS X YPROCS X YPROCS = COMD_PROCS.

® XCELLS, YCELLS & ZCELLS: Number of CoMD unit cells per dimension.

(5) Collect experimental results (see A.5)

A.5 Evaluation and expected result

By performing the procedure above, the experiment is launched.
Once CoMD finishes and all the data is persisted in HBase, it is
possible to obtain (from the lines in HBase) the timestamps of
creation, ingestion in Flink and storage in HBase for all the messages
sent by CoMD. Computing a cumulation histogram counting the
number of each type of event throughout the experiment execution
results on the graphs we have shown in this paper.

We consider a certain throughput value to be stable when no
gap between the three curves (messages created, ingested by Flink
and stored) is observable in any of the repetitions made. Otherwise,
it is classified as unstable.

A.6 Experiment customization

By keeping the same scripts for the experiments, it is still possible
to customize them by tuning a wide set of parameters (as shown in
A.4), such as: the number of atoms computed; the number of nodes
dedicated for each role (simulation, analysis, storage); the number
of iterations the simulation computes; the output interval...

These are some of the specific experiment invocations we have
used in this paper:

o Position histogram analytics, 32 million atoms (63 GB), 71 MB/s
(8.875 MB/s/node), i.e. one timestep is analyzed every 11 it-
erations.

Setup:

- 8 simulation nodes with 125 CoMD MPI processes
— 1 Flink node with 16 task-slots

— 1 HBase node

B

${FLINK_DIR}/bin/flink run -d -p 16 -c org.inria.flink.Histogram \
${EXP_DIR}/FlinkCoMD_Experiments.jar 3000 16 9000 ${TMP_DIR} 125

% mpirun -n 125 --host ${HOST_LIST} ${COMD_DIR}/bin/CoMD-mpi \
--nSteps 825 --printRate 11 --xproc 5 --yproc 5 --zproc 5 \
--nx 200 --ny 200 --nz 200 --portNum 16 --port 9000 \
--hostDir ${TMP_DIR}/ --hwm 3000

e Position histogram analytics in 4x the scale, 32 X 4 million
atoms (252 GB), 100 MB/s (6.25 MB/s/node), i.e. one timestep
is analyzed every 30 iterations.

Setup:

— 16 simulation nodes with 512 CoMD MPI processes
- 4 Flink nodes with 64 task-slots

— 4 HBase nodes

% ${FLINK_DIR}/bin/flink run -d -p 64 -c org.inria.flink.Histogram \
${EXP_DIR}/FlinkCoMD_Experiments.jar 3000 64 9000 ${TMP_DIR} 512

% mpirun -n 512 --host ${HOST_LIST} ${COMD_DIR}/bin/CoMD-mpi \
--nSteps 2250 --printRate 30 --xproc 8 --yproc 8 --zproc 8 \
--nx 320 --ny 320 --nz 320 --portNum 64 --port 9000 \
--hostDir ${TMP_DIR}/ --hwm 3000

A.7 Notes

To enable experiment reproducibility, we relied on different soft-
ware tools that enabled us to control the full deployment and execu-
tion of experiments, from the OS up to the last lever software used.
Due to the strong coupling that these tools has with G5K and its
batch scheduler, OAR™*, we maintain a specific git repository with
all the deployment stuff, in addition to the main repository with
the Flink analysis kernels. This repository will be open-sourced as
well, along with the main one.

The use of these tools is not actually a strong requirement to
deploy and run the experiments, but it is recommended mainly by
two reasons:

o The first one is building the system image that will be used
on the experiment nodes, allowing us to precisely control
what is installed on them. This is done through the use of

Henrique C. ZanUz, Bruno Raffin, Omar A. Mures, and Emilio J. Padrén

Kameleon Image Builder***, a tool that allows the creation
on systems images based on scripts.

e The second reason is to completely automatize the exper-
iments workflow. For that a python script was made. This
script uses Execo™**, a G5K python API that allows running
remote commands over SSH and lower level commands,
such as requesting and deploying nodes. In more details, this
python script was used to set-up the configuration of the
software stack, to configuring the clusters for Flink, HBase
and CoMD, to launch the experiments and to recover and
log the interesting data from the experiments in a result file.
This script receives as input a YAML file which describes
which experiments will be executed, their parameters and
the amount of nodes dedicated for each role in this environ-
ment.

Regarding the execution of the experiments, this python script
was executed on a separate node from the ones used on the set-
up. This node runs the regular G5K system image, not the ones
customized by us. After being launched, this script is the one in
charge of reserving the master and slave nodes for the experiments.
As explained on the paper, the slave nodes were used to run the
CoMD MPI processes, the Flink’s TaskManagers (workers) and
HBase’s RegionServers (workers). The master node is used to launch
the MPI processes on the other nodes, run Flink’s JobManager
and HBase’s Master process. Even though the master node was
assigned with several tasks, those task were not compute-intensive.
In addition, it has not showed any symptom of being overloaded
during our experiments, staying with low memory and CPU usages.

A.8 References

* Grid 5000 (G5K): https://www.grid5000.fr

** OAR: https://github.com/oar-team/oar

*** Kameleon: https://github.com/oar-team/kameleon

9% Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas,
Adrien Leébre, and Takahiro Hirofuchi. Using the EXECO toolbox to
perform automatic and reproducible cloud experiments. In 1st Inter-
national Workshop on UsiNg and building ClOud Testbeds (UNICO,
collocated with IEEE CloudCom 2013, Bristol, United Kingdom,
December 2013. IEEE.

