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ABSTRACT

Tuberculosis is an infectious disease that mainly affects the lung tissues. Therefore, chest X-ray imaging
can be very useful to diagnose and to understand the evolution of the pathology. This image modality
has a poorer quality in contrast with other techniques as the magnetic resonance or the computerized
tomography, but chest X-ray is easier and cheaper to perform. Furthermore, data scarcity is challenging
in the domain of biomedical imaging. In order to mitigate this problem, the use of Generative Adversarial
Network models for image generation has proved to be a powerful approach to train the deep learning
models with small datasets, representing an alternative to classic data augmentation strategies. In this
work, we propose a fully automatic approach for the generation of novel synthetic chest X-ray images
to mitigate the effect of data scarcity in order to improve the tuberculosis screening performance using
3 different publicly available representative datasets: Montgomery County, Shenzhen and TBX11K. Firstly,
this approach trains image translation models with a large-sized dataset (TBX11K). Then, these models are
used to generate the novel set of synthetic images using small-sized and medium-sized datasets (Mont-
gomery County and Shenzhen, respectively). Finally, the novel set of generated images is added to the
training set to improve the performance of an automatic tuberculosis screening. As a result, we obtained
an 88.41% + 5.27% of accuracy for the Montgomery County dataset and a 90.33% + 1.41% for the Shen-
zhen dataset. These results demonstrate that the proposed method outperforms previous state-of-the-art
approaches.

© 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

those purposes because it offers several advantages, as it is cheap,
non-invasive, and easy to capture, in contrast with more advanced

Tuberculosis is an infectious disease caused by the bacillus My-
cobacterium tuberculosis that can be transmitted through the air
[1]. While the tuberculosis can damage several parts of the body,
the main affectation is caused in the lungs. This disease is included
within the 10 main causes of death worldwide. As reference, in
2019, around 10 million people were infected with tuberculosis
causing, in addition, more than 1.4 million deaths [2].

Chest X-ray imaging has been widely used to diagnose and to
assess the evolution of several pulmonary diseases such as pneu-
monia and, more recently, it has also proven its suitability in di-
agnosing the COVID-19 affectation. This image modality is used for
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imaging techniques as the computerized tomography (CT) [3] or
the magnetic resonance (MRI) [4]. However, despite these advan-
tages, the quality of the captures from chest X-ray devices is con-
siderably poorer, which is reflected in a lower level of detail, an
aspect that implies a more challenging diagnostic process for the
clinicians.

Moreover, in the last years, biomedical imaging domains have
been supported by computer-aided diagnosis (CAD) systems, that
can help the clinicians to make decisions. As the diagnostic process
is a tedious and error-prone task, automatic methods emerge as
useful techniques to mitigate these problems. In that sense, deep
learning strategies, very relevant in the current biomedical imaging
discipline, have shown great potential in dealing with challenging
problems obtaining satisfactory and robust results. In fact, as the
tuberculosis is still a challenging disease in many countries, some
works have addressed the problem of the automatic tuberculosis
screening.
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As reference, we can find several remarkable contributions, such
as the work from Pasa et al. [5] that proposes a novel and efficient
deep network architecture that maintains a satisfactory effective-
ness despite being simpler and faster than previous models of the
state of the art. The contribution from Alfadhli et al. [6] uses clas-
sical computer vision techniques to extract features from images
and Support Vector Machines (SVMs) to perform the classification.
On the other hand, the work from Lopes et al. [7] takes advan-
tage of pretrained models as feature extractors, using those fea-
tures as an input for a Support Vector Machine. The work from
Hwang et al. [8] proposes a deep convolutional neural network
approach to tackle the tuberculosis screening, which is based on
the well-known AlexNet architecture [9]. On the other hand, Jaeger
et al. [10] propose a methodology that performs lung region seg-
mentation followed by feature extraction using classical computer
vision techniques based on color, texture, and shape characteristics
that are finally used as input of an SVM model to perform a binary
classification. Finally, the work from Ali et al. [11] proposes the ap-
plication of a modular convolutional neural network architecture to
solve problems in the scope of malaria detection, diabetic retinopa-
thy detection and tuberculosis detection.

Nevertheless, deep learning-based models need a considerable
amount of data to be trained, which is scarce in many domains,
as is the case of the biomedical imaging modalities. To mitigate
the problem of data scarcity, several contributions have proposed
the use of different strategies. As reference, some works have stud-
ied the application of incremental learning schemes [12] that con-
sist of training with a subset of diseases that keeps growing on
each incremental step but, at the same time, avoiding the forget-
ting problem, training with few amounts of images of the previous
steps. These schemes have been properly adapted to medical imag-
ing, in domains such as Optical Coherence Tomography (OCT) for
eye fundus analysis [13] and chest X-ray imaging [14]. However,
these schemes are unsuitable for scenarios where the number of
classes is small as, for instance, in binary problems. For such cases,
several authors have proposed different data augmentation tech-
niques [15]. The most traditional data augmentation techniques
consist on applying trivial transformations to the images such as
random rotations, translations or pixel intensity changes to artifi-
cially increase the dimensionality of the original datasets. As trivial
transformations could be insufficiently representative of the great
variability of these domains, one of the alternatives proposed in
the last years is the synthetic image generation, taking advantage
of Generative Adversarial Network architectures (GANs) [16]. These
models are able to generate realistic synthetic images representa-
tive of the domain.

There are several approaches of Generative Adversarial Net-
works. Particularly, in the field of image generation using image
translation models, we can find several implementations, such as
the Contrastive Unpaired Translation (CUT) [17]. Basically, these
models are able to convert images from certain scenarios to other
different scenarios without the necessity of paired data. Then, this
emerges as a powerful approach for synthetic image generation.
However, translation models can also be affected by data scarcity,
as training with insufficient data can lead the models to perform
useless transformations on images.

Some works have tackled the use of generative models in the
context of chest X-ray imaging. As reference, the work from Ma-
lygina et al. [18] uses a specific GAN implementation for image
translation, CycleGAN [19], to improve the pneumonia classifica-
tion on chest X-ray images using the novel set of generated images
and, therefore, avoid the effect of high-imbalanced datasets. More
recently, the use of CycleGAN in this context has been also taken
into account to improve the COVID-19 screening. As reference, the
work from Moris et al. [20] proves the utility of generating syn-
thetic chest X-ray images provided by portable devices in the con-
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text of COVID-19, using the CycleGAN to perform a translation in
3 different scenarios. Later, the same authors proved in [21] that
using the novel set of images generated by the CycleGAN improves
the performance of the automatic COVID-19 screening. Moreover,
the work from Bargshady et al. [22] also proposes the generation
of synthetic chest X-ray images with the CycleGAN to improve the
performance of a fine-tuned Inception V3 model to distinguish be-
tween COVID-19 and non-COVID-19.

In this work, we propose a fully automatic approach to gener-
ate useful and representative samples for the tuberculosis screen-
ing in chest X-ray image datasets. To do so, we take into account
an image translation architecture to convert healthy samples to
their hypothetical versions with tuberculosis affectation and vice
versa. Then, the novel set of synthetic images is added to the orig-
inal dataset to improve the performance of the screening model.
To mitigate the problem of data scarcity in this restricted domain,
we train the translation models using a large-sized dataset, the
TBX11K, while the image generation is performed with small-sized
and medium-sized datasets (Montgomery County and Shenzhen,
respectively). To the best of our knowledge, this is the only work
that addresses the adaption of the contrastive unpaired transla-
tion network for synthetic chest X-ray image generation to improve
tuberculosis screening. Given the used imaging modality and the
proposed methodology, our contribution is suitable for challenging
scenarios as health emergency centers or screening programs.

The rest of the manuscript is structured as follows. Firstly, in
Section 2, we describe the 3 public datasets that were used for the
development of the work as well as the steps of the methodologi-
cal proposal. In Section 3 we present the obtained results and their
discussion. Finally, Section 4 states the main conclusions obtained
in the same way as some possible lines of future work.

2. Marerials and methods

The proposed methodology is divided into 2 different alterna-
tives to prove both the performance of the model when training
with only original images and when adding the novel set of gener-
ated images to the original datasets. In the first alternative, called
baseline, the screening models are trained using only the origi-
nal images from the input datasets. For the second alternative, we
train 2 CUT models for image translation as a data augmentation
approach, adding the novel set of generated images to the origi-
nal dataset to improve the performance of the original screening
model. An overview of the proposed methodology can be seen in
Fig. 1 with both alternatives. As it can be observed, the first alter-
native (the baseline) has only one part, the automatic tuberculosis
screening itself, while the second alternative (the data augmenta-
tion approach) has 2 different parts: the synthetic image genera-
tion followed by the automatic tuberculosis screening.

2.1. Chest X-ray images datasets

3 datasets were used for the development of this work. The
first 2 are representative of a small and a medium-sized dataset,
the Montgomery County [23] and the Shenzhen [23] datasets, re-
spectively. Lastly, the third dataset, TBX11K, is representative of a
large-sized dataset [24].

Montgomery County dataset (available at [25]). This dataset,
often abbreviated as “Montgomery dataset”, was acquired from the
tuberculosis control program of the Department of Health and Hu-
man Services of Montgomery County in the United States having
138 subjects (58 normal and 80 pathological), being representative
of a small dataset.

Shenzhen dataset (available at [26]). This dataset was re-
trieved from subjects that underwent routine care at the Shenzhen
Hospital, China. This dataset has 662 samples, with 326 normal
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Fig. 1. Overall description of the methodology, showing the 2 alternatives: the baseline and the data augmentation approach. The dashed line represents the additional step

necessary for the data augmentation approach.

cases and 336 with evidence of tuberculosis affectation, being rep-
resentative of a medium-sized image dataset.

TBX11K dataset (available at [27]). TBX11K is a large-sized
dataset of 11,200 samples (5,000 healthy cases, 5000 patients that
present pathological affectation different from tuberculosis and
1200 that present different types of tuberculosis evidence). Due to
the confusing notation of some samples, it being difficult to know
their actual class, and in order to balance the dataset, only 1600
were randomly selected (with 800 healthy samples and 800 tuber-
culosis samples).

2.2. Baseline

In this alternative, the automatic tuberculosis screening is per-
formed using only the original images of the small-sized and the
medium-sized datasets (Montgomery and Shenzhen, respectively).

Network architecture and training details of the automatic
tuberculosis screening. We adapted the architecture proposed by
Pasa et al. [5] due to its demonstrated suitability for this problem
to carry out this part of the methodology. This deep architecture is
composed of 5 convolutional blocks that end up on a global av-
erage pooling layer, a fully connected layer and a softmax with
2 outputs. Moreover, all the images are resized to a resolution of
512 x 512 and the models are trained for 1750 epochs instead of
the 150 epochs in the original work to ensure convergence. We
use the Adam algorithm as the optimizer, with a learning rate of
a=8x10">, a value of B; =0.9 and a value of B, =0.999. As
data augmentation, elastic deformations with a probability of 80%
are performed, with the same parameters as in the reference work.
To understand the behavior of the models, a 5-fold cross valida-
tion is performed with a mini-batch size of 4. To assess the ef-
fectiveness of the screening models, we considered the metrics of
accuracy, F1-Score and AUC. To train the models, cross-entropy was
used as the loss function, which is defined in Eq. (1):

N
L=-Y"yi-logy

(1)

2.3. Data augmentation approach

For this part of the methodology, the synthetic image gener-
ation is performed adapting the Contrastive Unpaired Translation
(CUT) paradigm [17] due to its suitability for image translation.
Firstly, 2 different CUT models are trained with the large-sized
dataset TBX11K to perform the translation between the classes
Normal and Pathological and vice versa (therefore, each model per-
forms the translation in only one direction). Once the translation
models are trained, we perform the image generation using the
Montgomery dataset and the Shenzhen dataset, respectively. After
the novel sets of generated images are obtained, the automatic tu-
berculosis screening model is trained following the same details as
stated in the baseline alternative but, in this case, the synthetic
images are added to the original datasets to obtain the augmented
datasets. In particular, these generated images are added to the
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training set, while the validation and the test are performed with
only original images.

Network architecture and training details of the image trans-
lation models. For the first part of the methodology, the CUT
paradigm is adapted to our problem. In contrast with other image
translation models, this paradigm only converts from one scenario
to another, making it necessary to train 2 models for each dataset
(ie., one to convert from Normal to Pathological and another to
do the opposite translation). Both models are trained during 200
epochs using the Adam algorithm [28] and all the input images
are converted to grayscale and resized to a resolution of 512 x 512
instead of the original resolution of 256 x 256. Moreover, the mini-
batch size is set to 1 and the learning rate is set to a constant value
of a =0.0002.

The CUT model has a generator G and a discriminator D. G is
an encoder-decoder that is based on a ResNet architecture with 6
residual blocks. It receives an original image a from class A as the
input and returns its translated version b that presumably should
belong to class B as the output. On its hand, D is a 70 x 70 Patch-
GAN.

The CUT is trained using a loss composed of several elements.
The first component is the adversarial loss that is computed us-
ing the output of the discriminator D, with the mean square error
(MSE). Particularly, it is necessary for the discriminator to learn to
classify the translated images as 1 and the original images as 0.
Then, the adversarial loss can be expressed as stated in Eq. (2):

Lean(G,D,A, B) = Epp(D(b))? + Eq.a(D(G(a)) — 1)° (2)

The second component is the PatchNCE loss, a loss based on the
idea of the contrastive learning [29], whose aim is to maximize
the association between a patch from the original image, denoted
as query, and its correspondent patch in the translated image, de-
noted as positive sample, which must be considerably greater than
the association between that original patch and random patches
different from the positive sample, which are denoted as negative
samples. To do so, a number N is chosen to specify how many
negative samples must be taken into account. To make the com-
parison between patches, some specific layers from the encoder of
the generative model are selected, as after being trained for image
translation, their weights can be used as features.

Then, the layers selected from the encoder are connected to a
multilayer perceptron of 2 layers (denoted as H). The final result
is a K-dimensional vector for each patch. To make the comparison
among patches, the cosine similarity is computed on each pair of
K-dimensional vectors. Therefore, to solve the problem, the similar-
ity between the query patch and the positive patch is maximized
while the similarity between the query patches and the random
selected negative patches is minimized. This means that a (N+1)-
classification problem is solved. With the cosine similarities re-
sults, the softmax function is used to normalize the outputs in the
range [0, 1]. It is important to note that the distance among sam-
ples is scaled with a temperature value of T =0.07. To compute
the loss of a specific query patch v with its corresponding positive
patch v* and the set of selected N random negative samples v,
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the expression denoted in Eq. (3) is used:

l(v,vt,v) =

_log exp(vrt/7) (3)
exp(uvt [T)+3 | exp(vv; /T)

This step produces a stack of features denoted as {z}; =
[H;(G{_,,,c(a))] where | specifies the particular layer that is being
referred andt refers to the total number of layers. Moreover, for
each layer, there is a specific number of spatial locations §;. Thus,
the PatchNCE loss is defined as stated in Eq. (4):

EPutdiNCE(GHA}—Ea-vAZZI(p z.z %) (4)
i—1s21

Finally, to train the generative model, the adversarial loss and
the PatchNCE loss are combined. Furthermore, the PatchNCE loss is
also computed on images of class B Lpgpnce (G, H, B) as a particu-
lar implementation of the identity loss that is used by several un-
paired translation models as, for example, the CycleGAN. This pre-
vents the appearance of unexpected changes made by the trans-
lation model. Moreover, 2 wt values are also added: A4 and Ap.
These coefficients weight the contribution that both the PatchNCE
loss and the identity loss make. Particularly, for the configuration
used in this work, both values are 1.0. Joining all the components,
the final expression to minimize is specified in Eq. (5):

L =Ly (G,D,A, B) + A Lpgance (G, H, A)+ (5)
AeLpgennce (G, H, B)

On the other hand, it is important to note that the discriminator
model is only trained to minimize the adversarial loss previously
stated in Eq. (2).

3. Results

To validate the proposal, we performed 2 different experiments
for each target dataset (i.e., Montgomery and Shenzhen), for a to-
tal of 4 experiments. The first experiment belongs to the base-
line and, therefore, the automatic tuberculosis screening model is
trained only with the original images. For the second experiment,
the novel set of generated images by the CUT models (trained with
the large-sized TBX11K dataset) is added to the training set to im-
prove the performance of the screening process.

Regarding the training of the image translation models, Fig. 2
shows the losses when training the CUT models with the TBX11K
dataset for both pathways, Normal to Pathological and Pathological
to Normal, respectively. From that evolution, it can be concluded
that the losses tend to achieve a convergence as the training pro-
gresses.

Moreover, the results of the baseline are shown in Table 1.
There, it can be seen that the results are acceptable for both
datasets. In the same way, it can be concluded that the results
that were obtained for the Shenzhen dataset are slightly better
in comparison with the Montgomery dataset, as expected. This is
due to more severe data scarcity in the case of the Montgomery
dataset, as this is the smallest one. In fact, it can be seen that this
is noticeable not only in terms of effectiveness but also in terms

Table 1
Results obtained for the baseline with the 2 target
datasets (Montgomery and Shenzhen).
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Fig. 2. Training losses evolution for the translation models trained with the TBX11K
dataset. (a) Model that translates from Normal to Pathological. (b) Model that trans-
lates from Pathological to Normal.

Table 2
Results obtained with the data augmentation using the
target datasets (Montgomery and Shenzhen).

Montgomery Shenzhen
Accuracy 88.41% +£5.27% 90.33% + 1.41%
Recall 88.59% +£9.88% 88.40% + 2.51%
Specificity 89.38% £9.07% 92.21% +£2.18%
Precision 86.24% + 12.04% 92.28% +1.22%
F1-Score 86.32% £6.37% 90.27% £ 1.17%
AUC 0.8713 £ 0.0707 0.9088 + 0.0229

Montgomery Shenzhen
Accuracy 88.35% £ 6.28% 89.42% +2.30%
Recall 81.80% £12.04%  8B.11% +3.42%
Specificity 91.53% £ 6.95% 90.60% + 4.44%
Precision 86.35% £ 13.77% 90.90% + 3.23%
F1-5core 82.89% +£9.64% 89.41% +£2.16%
AUC 0.8652 +0.0784 0.8846 +0.0379

of robustness. Particularly, in the case of the Montgomery dataset,
the standard deviation values are always higher or equal to 6.28%
and, in the case of the recall and the F1-Score, these values are
even greater than 12.00%. On the other hand, the results of the
Shenzhen dataset always have values of standard deviation that are
equal or smaller than 4.44%.

In the case of the data augmentation approach, the results can
be seen in Table 2. Once again, the results in the case of the Shen-
zhen dataset are more satisfactory than those obtained with the
Montgomery dataset. In this case, it can also be seen in effective-
ness as well as in robustness. In particular, the average values of
the metrics are always lower than 90% in the case of the Mont-
gomery dataset, while these are always higher than 90%, except in
the case of the recall, where this value is an 88.40%.
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Fig. 3. Training accuracy evolution for the baseline and the data augmentation ap-
proach. The solid line shows the mean value of the folds, and the shadowed area
shows the standard deviation. (a) Montgomery dataset. (b) Shenzhen dataset.

3.1. Comparison between the baseline and the data augmentation
approach

The training accuracy evolution comparison is depicted in Fig. 3.
There, it can be seen that, for both cases and both datasets, the
values achieve convergence as training progresses. The behavior is
very similar in the case of the Montgomery dataset, even though
the data augmentation approach tends to achieve higher values
faster during the first 400 epochs, approximately. From that point
onward, the behavior of both cases is very similar. In the case of
the Shenzhen dataset, the discussion is alike, as data augmenta-
tion tends to achieve high values faster until reaching 600 epochs,
approximately.

Regarding the test accuracy evolution comparison, the values
are depicted in Fig. 4. In the case of the Montgomery dataset, the
data augmentation approach has higher values of accuracy until
800 epochs, approximately, where the performance starts to expe-
rience a slight drop. In the case of the Shenzhen dataset, the per-
formance is very similar between the data augmentation approach
and the baseline, even though the first one is slightly higher from
800 epochs onward, approximately.

Putting the focus on the detailed results that are shown in
Table 1 and 2, it can be seen that data augmentation implies an
improvement of the baseline. In particular, for the Montgomery
dataset, there is an improvement in accuracy from an average per-
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Fig. 4. Test accuracy evolution for the baseline and the data augmentation ap-
proach. The solid line shows the mean value of the folds, while the shadowed area
shows the standard deviation. (a) Montgomery dataset. (b) Shenzhen dataset.

formance of 88.35% to an 88.41%, with a standard deviation value
that decreases from 6.28% to 5.27%. In terms of AUC, the average
value increases from 0.8652 to 0.8713 and the standard deviation
value drops from 0.0784 to 0.0707. Regarding recall, there is an
important improvement in both the average value and in the stan-
dard deviation. In particular, recall improves from 81.80% to 88.59%
in terms of the average value and from 12.04% to 9.88% in terms
of standard deviation. In the same way, there is an important im-
provement for the F1-Score, which raises from 82.89% to 86.32%
for the average value and drops from 9.64% to 6.37% for the stan-
dard deviation value. The precision value is very similar in both
cases, while the specificity is worse, both in average and standard
deviation terms. However, this drop is caused by the important im-
provement of the recall, which is representative of the unbalanc-
ing problem that the original dataset suffers from, but mitigated
thanks to the proposed data augmentation approach.

On the other hand, in the case of the Shenzhen dataset, there
is an improvement in terms of accuracy and AUC. In particular, the
average value of accuracy improves from 89.42% to 90.33%, while
the standard deviation improves from 2.30% to 1.41%. On the other
hand, the AUC average value improves from 0.8846 to 0.9088 while
the standard deviation drops from 0.0379 to 0.0229. The recall and
the F1-Score remain very similar, with a slight improvement both
for the average values and the standard deviation values. Finally,
in terms of specificity and precision, there is also an improvement,
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Table 3
Comparison between the accuracy of our data aug-
mentation approach and the state-of-the-art meth-

ods.

Method Montgomery ~ Shenzhen
Pasa et al. [5] 79.00% 84.40%
Alfadhli et al. [6] 79.10% -

Lopes et al. [7] 82.60% B4.70%
Hwang et al. [8] 67.40% 83.70%
Jaeger et al. [10] 78.30% 84.10%
Sirshar et al. [14] 76.08% 76.73%
Ali et al. [11] - 88.60%
Qurs 88.41% 90.33%

with an average value that raises from 90.60% to 92.21% and a
standard deviation that decreases from 4.44% to a 2.18% in the case
of the specificity and an average value that improves from 90.90%
to 92.28% alongside a standard deviation improvement from 3.23%
to 1.22% in the case of precision.

Therefore, these results demonstrate that the data augmenta-
tion approach implies a performance improvement that leads the
automatic screening system to have better effectiveness as well
as better robustness, both demonstrated with the average values
and with the standard deviation values, respectively. Similarly, the
experiments that use the Montgomery dataset demonstrate that
this methodology can help to mitigate the problem of unbalanced
datasets, an aspect that is considerably accused in this particular
case (80 normal cases against 58 pathological cases). It should be
noted that, as data scarcity and the problem of dealing with unbal-
anced datasets are common issues in biomedical imaging, the ex-
trapolation of this synthetic domain-related image generation ap-
proach to other scopes is extremely powerful.

3.2. Comparison with the state-of-the-art

The comparison between our method and the main state-of-
the-art methods for the automatic tuberculosis screening can be
seen in Table 3. In this comparative, we have selected a representa-
tive sample of the works that are most related to our contribution
and that use at least one of the reference datasets also considered
in this work (Montgomery County and Shenzhen datasets). Partic-
ularly, we take as reference the accuracy values that were obtained
for the data augmentation approach. These results demonstrate
that the method herein proposed beats the performance of the
main state-of-the-art methods for automatic tuberculosis screen-
ing. A noticeable performance improvement can be seen when tak-
ing as reference the work of Lopes et al. [7] (the one with the
best performance with the Montgomery County dataset from the
state-of-the-art), as accuracy increases from 82.60% to 88.41% with
the Montgomery dataset while it increases from 84.70% to 90.33%
with the Shenzhen dataset. On the other hand, the work from Ali
et al. [11], that achieves the best performance with the Shenzhen
dataset from the state-of-the-art, is outperformed by almost 2% of
accuracy as this value improves from 88.60% to 90.33%.

4. Conclusion

This work presents a fully automatic synthetic image genera-
tion approach to improve the tuberculosis screening on 2 different
low dimensional chest X-ray images datasets. The methodology is
divided into 2 different parts. Both of them were performed us-
ing different deep network architectures, where the first part con-
ducts the synthetic image generation process, while the second
part uses the novel set of generated images to improve the per-
formance of the screening process. For the synthetic image gen-
eration, the data augmentation approach takes advantage of the
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Contrastive Unpaired Translation (CUT) paradigm, a deep learning
image translation model able to synthesize a novel set of relevant
and useful chest X-ray images, representative of the variability of
the domain, translating Normal samples to their Pathological ver-
sion and vice versa. Particularly, in this methodology, we trained 2
CUT models to perform both image translation pathways using a
large-sized dataset, as is the TBX11K, to mitigate the data scarcity
effect. After that, we generated novel sets of synthetic images us-
ing the small-sized Montgomery and the medium-sized Shenzhen
datasets, respectively. Finally, the novel sets of generated images
are used to build the augmented datasets that, at the same time,
are used to train the deep learning automatic screening model. To
do so, the novel sets of synthetic images are only added to the
training sets, while the validation and the test sets have only orig-
inal images. Regarding the screening model, we adapted a previ-
ous proposal of a custom state-of-the-art deep network architec-
ture specifically designed for this purpose.

To validate the proposal, we conducted 2 experiments for each
target dataset (i.e, Montgomery and Shenzhen). The first experi-
ment trains the screening model with only original images, while
the second experiment validates the result of adding the novel set
of generated synthetic images. These results demonstrate that the
data augmentation approach improves the performance of the au-
tomatic tuberculosis screening model for both datasets in terms
of accuracy and can help to deal with the problem of training
with considerably unbalanced datasets, as is the case of the Mont-
gomery dataset. In the same way, the method herein proposed
beats the performance of other main state-of-the art approaches
for automatic tuberculosis screening using chest X-ray imaging by
a wide margin. In particular, using the data augmentation ap-
proach, the system obtained 88.41% + 5.27% for accuracy using the
Montgomery dataset and an accuracy of 90.33% &+ 1.41% in the case
of the Shenzhen dataset. Overall, this contribution represents a
powerful domain-related approach to mitigate the data scarcity
problem by improving the performance of an automatic tuberculo-
sis screening method with respect to other state-of-the-art propos-
als. Therefore, the proposal could be extrapolated to other biomed-
ical imaging domains, as it is a common issue in these scopes.
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