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THE SPIN REPRESENTATION OF THE
UNITARY GROUP

por

MARIA J., WONENBURGER (1)

RESUMEN

Dada una forma hermitiana f no degenerada, definida sobre el
cuerpo conmutativo F, y siendo el automorfismc involutivo aso
ciado a f distinto de la identidad, se define una forma cuadratica
(O asociada a f. Entonces las transformaciones unitarias y seme-
janzas unitarias respecto a f son transformaciones ortogonales y
semejanzas respecto a ). La representaciéon espinorial del grupo
ortogonal definido por Q induce una representaciéon del grupo uni-
tario definido por f. Llamamos a esta representacion del grupo
unitario 5u representacion espinorial.

En el caso de que la caracteristica de F sea cero o mayor que
la dimension de M sobre F, se demuestra que la representacion
espinorial del grupo unitario es completamente reducible y se ha-
llan sus componentes irreducibles de las que se determinan algu-
nas propiedades. La representacion espinorial del grupo unitario
puede extenderse a una representacion del grupo de semejanzas
unitarias, obteniéndose para este caso la misma descomposicion
en componentes irreducibles.

Finalmente, el método usado para el estudio de la representa-
cion espinorial del grupo unitario permite definir representaciones
del grupo proyectivo de semejanzas unitarias en grupos ortogo-
nales. Es posible que estas representaciones puedan ser obtenidas
también usando las componentes homogéneas del algebra exte-

(1) This paper is the translation of the author's doctoral dissertation presented
to the Universily of Madrid and written under the guidance of Professor G. Ancochea.
The research was supported by the Fundacién March.
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rior del espacio M, pero nuestra definicién nos proporciona mejo-
res medios para efectuar su estudio, que sera llevado a cabo en

un proximo articulo.

IXTRODUCTION

The Clifford algebra [4] is an algebra defined by a quadratic
form. If Q is a quadratic form on the vector space M over the
field K, we will denote the Clifford algebra‘of the form Q by
¢ (Q); C(Q) is an algebra over K. The definition of this algebra
as well as the subalgebra C* (Q) and the study of their properties
can be found in [1], [5], [6], [11] and [15], bemng [5] the most
complete study.

We will consider only the case of a space M even dimensional
over K, i. €. WM : K)= 2. Then C(Q) is a _cc.antra] simple al-
gebra over K of dimension 2** and, therefore, it is isomorphic
to a total matric algebra over a sfield R who.se C:en‘ter i§ K. The
algebra C (Q) contains a subspace over K which is identified with

the vector space M. Any basis of this subspace is a set of gene-

rators over K. 7
Let ¢ be an invertible element of C(Q). Then ¢ defines an

‘nner automorphism taking the element b mto ¢=* b c. The set of
invertible elements of C (Q) defining inner automorphisms which
leave invariant the subspace M form a group which is called the
Clifford group. The transformations induced in M by these auto-
morphisms are orthogonal transformations with respect to
The mapping 7. which takes an element ¢ of the Clifford group
into the orthogonal transformation induced in M by the inner
automorphism defined by ¢ is a homomorphism: of the Clifforg
group on the orthogonal group O (Q). The kernel of this homg.
morphism consists of the multiplicative group of non-zero ele.
ments of K.

Since C(Q) is a simple algebra all its irredudible representa-
tions are equivalent. Any one of these representations, which ara
called spin representations, induces a representation of the Clif.
ford group.

C (Q) has an involutive anti-automorphism leaving invariant
the elements of M. This anti-automorphism will be denoted

=8 =

by *. If ¢ is an element of the Clifford group, ¢ ¢* is an element
of K called the norm of c.

Let f be a hermitian form on the vector space M of dimension
% over the field F. -Let K the subfield of I consisting of the ele-
ments invariant under the involutive automorphism J of F asso-
ciated to the hermitian form. Then there exists a quadratic form
on M considered as a vector space over K such that the unitarian
transformations of M with respect to f are orthogonal transfor-
mations with respect to Q (cf. [12] and [17]). Of course the con-
verse is not true.

We take the subgroup U (f) € O (Q) of orthogonal transfor-
mations of Q which are unitarian transformations of f. The spin
representation of the Clifford group induces a representation of
the subgroup A consisting of the elements of the Clifford group
which are mapped by 7 into elements of U (f). We called this in-
duced representation the spin representation of the unitary group
and its study forms the main subject of this paper.

In order to find the irreducible components of the spin repre-
sentation of U (f) it is sufficient to know the structure of the
algebra G over K generated by the elements of A, It does not
seem easy to find directly the structure of G, so that we start
defining a subalgebra D (f) of C*(Q). Then we show that, when
the characteristic of K is zero or greater than (M : F), D (f) is
semisimple and we determine its simple components.

In chapter II we make a further study of D (f) in order to
prove that it coincides with G. Therefore we can coriclude that,
when the characteristic of K fulfills the conditions mentioned
above, the spin representation of U (f) is a direct sum of inequi-
valent irreducible representations.

In [16] we have defined in C (Q), considered as a vector es-
pace over K, a gradation with indices 0,1, .... (M : K). Then
C* (Q) is the sum of the subspaces of even degree and the Clif-
ford group is the set of invertible elements which define inner
automorphisms homogeneous of degree zero. Moreover the inner
automorphisms of C (Q) which induce in C*(Q) homogeneous
automorphisms of degree zero are the automorphims of C* Q)
associated to a similitude of Q. With respect to this gradation
D (f) is a homogeneous subspace of C*(Q) and if a similitude
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of Qis a unitarian similitude with respect to f, the automorphism
£ C+ (Q) associated to this similitude induces in D (F) an inner
dutomorphlsm
Using these results, in chapter III we obtain faithful repre-
sentation of the projective group of unitarian similitudes of Q
into orthogonal groups. To do this we define a non degenerate
quadratic form on the subspaces of D (f) of degree

%z, . i=1, 2, i, (MER),

and consider the transformations induced in those subspaces by
the automorphisms of C*+(Q) associated to the similitudes of 0
which are unitarian similitudes with respect to f.

CHAPTER I

We start this chapter recalling the definitions of hermitiay
nitarian similitudes and, at the same time, we gset
These definitions will be given with the ge.
our purpose: in [9] chap. I, §§ 56,9 the
al definitions.

forms and u
down our mnotation.
nerality needed for
reader can find more gener

The subalgebra D (f) of C(Q) is defined and studied, as we]]
as the involutive anti-automorphism induced in it by the anti.

antomorphism* of C (Q).

§1

Let F be a field of characteristic different from 2 and J an

involutive automorphism of F different from the identity. The
elements of F will denoted by small Greek letters. Let

K={ua|d =ua, aEF;

be the subfield of elements of F invariant under J. Then F "
a quadratic extension of K obtained adjoining any element 0 sych
that 67 = — 6 and therefore 6° = p € K,

Let M he a left vector space over F whose elements will be
denoted by small Latin letters. It is said that f(x,y) is a her

mitian form on M relative to the automorphism J if it is a
function with values in T satisfying the following conditions,

I) it is hiadditive, 1. e.,

Fl&y + may 9) =S(%, ) + (20 3): S, 3 3=
= f(x, »1) + F(#, 72);

1I) sesquilinear,
fla, y)=01f(x,p) and [(x, tpy)=f(x,7)¥; and

I1I) reflexive,

Sl = (il ) )

1f S is a linear transformation of M, u# S will be the image
of w €M under S. It is said that the linear transformation S is
a unitarian similitude of ratio p with respect to f (or a similitu-

de of f) if
/(‘ S y I SJ == :'-_f(-r_-_‘l") 5

When p =1, the unitarian similitude S is called a unitarian
transformation. We denote by Tg,: the untarian similitudes de-
fined by

2o +50 = (o + ﬂ 0y a,

which are called unitarian 1'101n0t"étics.

When f(#,v) =0 for every y € M implies # =0, it is said
that the form f is non-degenerate, In what follows M will always
he a finite dimensional vector space over F and f a non-degene-
rate hermitian form on M.

Since M is a vector space over F, it has an underlying struc-
ture of vector space over KcF, and (M:K)=2(M : F).

Taking
(2 ) =1 (ay0) = Fay 1),
(v, y) is a non-degenerate symmetric bilinear form on M, con-

sidered as a vector space over I, associated to the quadratic
form Q (¥) = % (x, ).
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Any unitarian similitude with respect to f is a similitude of
the same ratio with respect to (). The unitarian similitudes of
the form f are the similitudes of O commuting with the simili-
tude T defined by the unitarian homotecy Ty (cf. [17]).

Let C(Q) ke the Clifford algebra of the quadratic form Q
and ¥, 4, ..., #,, an orthogonal basis of M with respect to Q.
If we consider C(Q) as a graded vector space, the elements

Xp iy e iy Gy < .. < Uiy OC=l1=_2

form a basis of the subspace of degree L. As usual, we haye
identified the subspace of degree 1 with the elements of M.

C+ (Q) as vector space over K is the sum of the subspaces of

even degree,

It is known that we can associate to any similitud: of Q an
automorphism of C*(Q) (cf. [9], pag. 72 [10], [11]). A com-
plete definition of these automorphisms given in an unpublished
paper by N. Jacobson is reproduced in [16]. It follows from the
definition that such automorphisms are homogeneous of degree
zero with respect to the gradation of C*(Q). The automorphisms
associated to the similitudes of Q. S and S’ coincide if znd only
if S = ST, 2€K, Given any similitude S, there exist inverti-
ble elements of C(Q) which define inner automorphisms of this
algebra inducing in C*(Q) the  automorphism associated to §
(cf. [16]); in particular, if S is an orthogonal transformation
the inner automorphism defined by any element of the {lifford
group mapped by 7 into S induces in C*(Q) the automorphism
associated to S. The mapping which takes a similitude of Q into
the automorphism of C*(Q) associated to it is a homomorphism_

Since any unitarian similitude U with respect to f is a simii-
tude of O, we can associate to U an automorphism of C+(Q):
in particular, if U is a unitarian transformation by its associated
automorphism we will mean the inner automorphism of C(Q)

defined. by any element of the Clifford group mapped by .

into U.
S

Derixition.—D (f) is the subalgebra of C*(Q) consisti’ng of
the elements invariant under the automorphisms of C*+(Q) as-
sociated to the unitarian homot¥ties.

D (f) is an algebra over K and it follows from its definition
that it is a homogeneous subspace of C*(Q) considered as a
graded vector space.

If x,, &a, ..., x4, is an orthogonal basis of M with respect to
f, the elements

Ziy Fay oy Fmy Pr=02y, yo=025, ..., y.=102,

form an orthogonal basis with respect to Q. When o + B6,
B &0, is an element of I of norm 1, i. e,

N(@—480)=(«+Bb)(@—Bh=a —pf=1,
let U, be the quasi-symmetry defined as follows,
U= @+ B0y =ax;+Byis a;Ui=2; for j &4

and therefore

U= 0 x)Us=0(a B0z, —abx + Bpr—

=ay:;+Boxi; ¥ U;=16 x; Uy = ;.

Lemma 1. The automorphism of C(Q) associated to the uni-
tarian transformation U is the inner automorphism defined by

the element

Proor. Since C(Q) is generated by its elements of degree 1,
it is sufficient to prove that on these elements the automorphism
associated to U, coincides with the inner automorphism defi-

ned by ;.




The inverse of wu; is

i ey N et BT
:( 2(1[;-0.) )—‘( (1—;—2&)" FP)
14+ 2afa?—pf

- =1 since «® —pfit=1.

ﬁi‘

(2(13;{—&))"‘ .

Since i, commutes with a3, y, for j i
- T —1 e P e e T
w; A miy= =% Us; ;I =y; =2y,
As to a; and y,.

M) B (_li“_ —i (r,.)—i,,,-u,.,.) .

oty = (

7 °
1 2 (1 —l— 0'.] T
' ,1‘.,-( 1+ = 1 Q (_1_,'_')_41 ;r:_u‘,,,.) =(._(T_.. ) .
f ' g ,
2 21 4+ a) |1
. jii =D (;tf,-)_ 1 _17,-_;1»_,-) a— (-i) -
B = i
< 9 !
)0(1+a) —JI— A(I'T_G)J,’ :f/?[,-—{-l,—r_—_lr U
B-,; L ﬁ i
ol 4a) -1 (2a(l4n)  2(1+a
;= (—?—) ( e e 3 p .1,) =
i’

which proves the lemma.

The unitarian homotyé(:y defined by « + 80, if N (2 + £0) =1,
is equal to the transformation U = U, U,... U, and the automor.
phism of C(Q) associated to U coincides with the inner auto.
morphism defined by u = 1, #; ... .

First of all we are going to study the unitarian homofecies
defined by elements of norm 1. We take any element of the form

il

p + 6 and divide its square w® +2 + 2p 6 by its norm p®—p:
so we get the element of norm 1,

TR Il 3
e S
pE—p = pr—ip
Then
14w 2 2
3 o 2 = F

and the automorphism of C (Q) associated to the unitarian homo-
t"ecy U coincides with the inner automorphism defined by

u=]]+Qr)rap)=p+ . it
-=1

where

7E= 2 Q (‘1""1.)7 'Q(xy)" .. Q ('r":i)k L Wiy e X Vs

T
and the sum extends over all combinations of /i indices.

Lemma 2. When K has at least n elements, the necessary con-
dition for an element ¢ € C* (Q) to belong to D (f) is that it com-
mutes with 2, 2=1,2, ..., n.

Proor. By definition D (f) is elementwise invariant under the
automorphisms of C*(Q) associated to the homotkcies of f,
and therefore, in particular, D (f) is elementwise invariant under
the automorphisms associated to the homotecies of norm 1. This
means that the elements of D (f) must commute with » for any
value of p. € K. Since p" and », belong to the center of C*(Q),
the elements of D (f) commute with

Wty oo pr—, forevery peK. (1)
When K has at least n clements if we give to w » — 1 different
values and different from zero, the expression (1) will give us
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n—1 elements belonging to the centralizer of D (f) in C+(Q).
These elements belong to the vector space over K generated by
Fys ¥ay -oos Tuy and are linearly independent since the determinant
of the matrix formed by the coefficients is a determinant of Van-
deermonde different from zero, Therefore the 7, are linear com-
binations of these e¢lements and commute with the elements
of D (7).
Given a homot’éby Te.g0, where « -+ $0 has any norm and
8 == 0, since the automorphism of C*(Q) associated to this homo-
tecy is the same that the one associated to
T

¢+§0T5"‘= Iu?”’-{-ﬂ

we can suppose that 8 = 1. Let
N(z-t0)—o—p=3, and P=K(3).

We consider M as a vector space OVer K and make the exten-
sion M, = P®, M, so that M, is a vector space over P. If we
call Q, the extension of Q to M,. it is well known that

C (Q) @ P == C ()

(cf. [5] 11.1.5); when y3€K, P =Kand C (Q) = C(Q,). Every
similitude S of Q can be extended in only one way to a similitude
S of Q. ' :

By lemma 1 we know that the automorphism of C*(Q,) asso-
ciated to the orthogonal transformation

74

o
Va

Z; R U; =5

L p
x:U:;= e ey O U;= et
v vt 73 » Yi+ %

coincides with the inner automorphism defined by

l + fl/‘,l/lg- Vs ® 5
#i—=————+ Q) =V0 a1+ Q(x) 1a;yp,
V% d

— ok e

Therefore the automorphism associated to U=U,U,...U, is
the inner automorphism defined by

w=rttytty o tty=V8+a) 4 (VI o) 7y + ...

+ (V§+ CL)"—:- 7 _E_ AECs _il‘ e

On the other hand the automorphism of C* (Q,) associated
to U is the same that the automorphism associated to U'=UT,~.
that is,

U =ax;tyy U =awwmtpr; i=1,2,..%.

This means that the element u € C* (Q,) defines an inner auto-
morphism of C*(Q,) which induces in C*(Q) the automorphisimn
associated to the homotecy Ta.0. Thersfore the elements of
C+ (Q) which commute with the 7, are left invariant by the auto-
morphisms associated to the homotecies Tq,,p, lience they belong
to D (f). We have proved then.

Levmya 3. The condition of lemma 2 is also sufficient,

When +/3 € K it is easy to find the element of C*(Q) which
defines the same inner automorphism that the one defined by .
For, since r, is in the center of C*(Q), u defines the same inner
automorphism that

Taking in account that

Vg =— (Z [2 (.t';ll'l_  (PS (2 (.1,‘;;’] <41 'r"-l _jf'.l Lo B Y (Q (_-L-l)-—-l .

) : e d— YD
e (@) Ly iy e .I',,‘]',,) =10% pp-py ANd (@113 ‘ + —1;

1
we have

o — Vo

o =u(l ‘I‘( )“ ) = (¢ + V&) 4 (a— V‘g)" + o,

r.
N
v

+ @+ VEyr=—"+ («— Voy="]rd ... 27,

therefore o € CF(Q).
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Since every element of C(Q) which commutes with », belongs
to C*t (Q) we can define D (f) as the centralizer of the elements
Fis g st 110 QS

Let us suppose now that K has characteristic p > n or zero.
If we take s=r",h<mn, s is a linear combination of the
rit =1, ..., k., Moreover the coefficient of ., in s is different
from zero, because /30 in a field of characteristic zero or
£ >mn=h. Therefore if an element commutes with », it commu-
tes also with r;, since the #, 1 =1, 2, ..., 5, are linear combina-
tion of powers of »,. When the characteristic of K is zero or
£ > n, K has more than elements, hence we can stablish

LeEmwma 4. If the characteristic of IX is zero or greater than
(M : F), the algebra D (f) is the centralizer of », in C(Q).

§ 2

Now our problem is to find a suitable representation of
C(Q) so that we can determine the centralizer of » in C (Q).
i. e, the algebra D (f). We will make use of tensor products
whose properties can be studied in [3].

As before we suppose that ) is the quadratic form associated
to the non degenerate hermitian for f defined on the vector space
M over the field F = K (0) and that x,, x,, ..., #, is an orthogo-
nal basis of M with respect to f. Then we know that

oy i=lxy  v=1,2, ..., % (2)

is an orthogonal basis with respect to ().

We consider M as a vector space over K, make the exten-
sion My = F &, M and identify 1 @ & with r. Then the ele-
ments (2) form an orthogonal basis of M; with respect to Q.

The algebra C(Q) can be expressed as a tensor product of
quaternions over K. We define each one of these quat rnions
by a basis of the type 1, 4, 4, k. We have then

C(Qy== (1, 2y, 31y %1 1)1 B o+« B (1, 95, 7, .'a‘. L), -
’ @K LI @l: rl\ ﬂ'rn T'n, ?”— i pe’ HJ";r]u

=
where
10, =0 ()~ o Qa—g) = L2y Py X Py e i q Pig Wi

i—1 i—1
. (]:[ Q () -l'l;_'l’f'a) a, U= (]:[ Q (a)—1 _1';_._;!‘-’).]‘,'.

=1 A=1

Therefore
CQ=C((Q&XRxl"

is also a tensor product of quaternions, but now the quaternions

are taken over F, that is,

C (QF) = ( (1 ] -1-’1,_3’1, Xy -j’l)F)I ®F SiLs ®F ( (l y My Tay PH_ L J-‘,,_F',,)p)”.

(pf =t it =1 Q (i)

is a square in F, there exists an isomorphism of each one of
these quaternions onto the algebra F,, the total algebra of 2x2

matrices with entries in F,
Taking a suitable isomorphism, the element
(} ('1‘1"} k02 Xy Vi € C (Q!‘J

whose square is equal to 1 is mapped into the matrix

1 0
(u —1)‘

1f we denote by e}, e, e,', e,* the matric units

1 0 0 I) (0 ()) (0 0)
(no)‘(oo‘ 10/ ‘o 1
we can write

6-1 2 9 22 (1)) R+ - e (6} — )i R o0 R (L
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In the zilgebra

C(Qp)=(Fs); ®¢ . - R (Fa)u = F:_‘

we will denote by

»’a| R e e
i =
B

the elements of i defined by
B\ Iln 7t
(e"’ll)l e (e”rz)'l s -+ Be (e"':):n; kf' My = 1, 2; J=1,2,...,n.

: ¥ a2 . Ly -
It is readily seen that the 2*" elements u ,,}‘___;';," form a set of

matric units for I,,. Let us order the 2" sets

Bl =
Ba==n¥i'5 Mot s 755),

m =12, in such a way that the set with s, elements equal 2

preceeds the set with s, elements 2 if 5, <s, and among the
sets with the same number of 2 we take any order. We make

4':! _,‘,f:" -~
uml v el — ”r
if the sets P, = (my, my, ..., m,) and P; = (h,, h,, ..., h,) are in
the r-th and s-th places, respectively, in the given order.

With the chosen bases for

Py ® + . @ (F),

and F_, the element 6= Q (x,)" 2, 3, has the form

an

(é’i + e:)l® "'1® (é,ll -_-Eg)i® G3g ® (8:' "i- é’; nE ZEI:‘ l!:_

7

where ¢, is 1 if the set P, has a 1 in the i-th place and e;, is —1
if it has a 2.
Then the element

ere_l Q () 2 i == Z (i' e,-,.) .

r=1 r=1 \i=1

The coefficient Z es of u:* is a sum of elements 1 and —1
r=1

and the number of — 1 is the number & of elements 2 in the

set P,. Therefore the coefficient of u*, is n—2b and

SO Q ()t Ay

is represented by the diagonal matrix

B—diag (#,n—2, 2 —2,s..,n— 27, ..., —n)

where there are (’;) elements equal to n—27, 7=0,1,...,n.

Then the element
o= Q= wean
is represented by the matrix
B' = diag(u 0,(0—2)0,...,—mn ﬂ)
whose charactel_'istic polynomial is
] " ' 3 5] "
Fe—o 2007 =220 L (2 w2

=10 ’ =

i r . 7
if n is odd, where [—T] denotes the greatest integer in = and

) -

|2

T (%) (0l

(:a.' — (n—27) ﬁ) (:t' 4 (e—24)0 x =

=

0

n ?—1 =
— _r("ﬂ) n (.‘t"3 — (n— 2 2)? b)(')

=40

if n is even.
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The matrix

" . f .
B =d1ag(ao,al,...,a,~, e oyl

where

(i o)
U= A
(n—232)20 0

7 1 b

. # i
and «; appears times if 43 — and ——
Z 2 2 \n/2

)timcs if 3= g
is similar to B’ since it has the same elementary divisors. Mo-
reover B” is a matrix with entries in K.

Let us study now the simple algebra C (Q) whose center is

I, since (M : K) has even dimension. We have then
CQ) =K, QR,

where R is a division algebra of center K.
On the other hand we have seen that

C(Q)@xF=C(Qs)=F,,

which shows that F 1s a splitting field for R. Therefore
(F : K) = 2 is a multiple of /(R : K) (see [2] cor. 8. 8. C). This
shows that either (R: K)=1, R=X or (R: K) =4 and R is
a quaternion division algebra over K.

It is immediate to see that both cases are possible. We are
going to consider then separately.

Case 1: R =K, C@Q)= K,

We* have seen that in C(Q;) = 1, the element

ro= > Q) g
can be represented by the matrix

B" = diag (ao, o

2)

&

o

Let B be the image of r, in a representation of C(Q) onto
K. ; B will be also the image of 7, in a representation of

C (Qp) = Fyr = K, ®, F.

Since there exists a representation of C (Q;) onto F,» which maps
#, into B” € K,», B” is similar to B’ in F,»and therefore it is
also similar to B” in K,s. Hence there exists an isomorphism of

C(Q) onto K,» which maps », into B”.

Now we have to find the centralizer of B” in K,». We con-
sider K, as the algebra of linear transformations of a vector
space N over K of dimension 2", As before we suppose that the
characteristic p of K is 0 or greater than n.

The transformation B” is completely reducibie. Its irreducible

» : : 5
components belong to 1 + [ T] classes of non equivalent irreduci-

ble transformations defined by the matrices a,, a;, ..., « s
[:]
Let us consider N as a module over the ring A generated by
the transformation B” and the scalar multiplications and express
the A-module N as a direct sum

|

0

r—
wa

1%

6B N;

I

If

7

no
of its 1 +[9Jhomogeneous components. These components N,

-
as A-modules are isomorphic to vector spaces cver F = K (0) of
7

]if nis odd, and i=0,1,..., =~ —1,

=

”) for i=0, 1,...,[ f:

]

dimension (
Z

it » is even, for in this case the homogeneous component N,
direct sum of the irreducible submodules corresponding to

0 0y . . : i
oyt =(0 0)’ i8 isomorphic to a vector space cver K of dimen-

. n
sion il
/2

The centralizer D of A in the ring of endomorphisms of N
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considered as an additive group coincides with the centralizer in
the algebra of linear transformations K,” since A contains the
scalar multiplications by elements « € K. This means that
D =D (f). Moreover D as an algebra of linea transfmmatmns
is completely reducible and has the same homogeneous compo-
nents that A (see [14] theorem 6.1.1). Therefore

DE-D(]‘)ESEBF(") if 2=2»-+1, and
=10 i
r—i1

D=D(f)= ZEB] E K tfifs 77 — 2.7,

= @) C)

In both cases the dimension of D (f) over K is equal to

S

Case 2: C(Q)=K;—'®x R, where R is a quaternion divi-
sion algebra over K. By Wedderburn theorem for finite fields
this case can occur only when K has an infinite number of ele-

i

ments.

Since F is a splitting field for Reand (F:K) = ¥y(R:K), R
contais a field isomorphic to F (cf. [2] th. 8.83.A (8) and th.
7.8.C (4). We denote by i, the element of R such that i,*> = p.

There exists an isomorphism of R considered as an algebra
over K onto the subalgebra over K of F, with basis

rt oy - (6 0 (01 ( 0 0
(0 1)' "_(n —e)’ « 0)‘ — 0)

where = € K is such that there exists an element i, € R which sa
tisfies 1%, = @, 1,1y, = — i, I;.
Using this representation of R and taking

uﬁff—l)"'fwg.l@g 3‘].,: 1, 2, tehry 2"_1; 7,8 = 1, 2

2i—1)+r
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as matric units we.get a representation of
L]
C- (Q) = I{n”"' ®K R

into a subalgebra S of F,».
If we adjoint to this subalgebra the element 6 I,» € F,», where
I,» is the unit matrix, we get the algebra

Fo=Ku- QR F=C(Q®F =C(Q).

It has been proved before that there exists a representation
ot C(Q;) onto F,» which maps r, into

B'=diag (nf, ...,(n —212)0, ..., — )

and therefore », can also be represented by the matrix similar
to B’

B":—diag(u b, —nb,...,(n—200, — (2 — 2i)ﬂ,...)=

= diag(u iy, (2 — 2) By gy (i——20) B4 ,..)

where there are (u) blocks of the form
i
= — 276
(;z——‘_’i_)i1=((” 7) 0 . ) e
‘ 0 — (n—272)0

=

-

and

1 [ # i 9
_‘7.._(11/2) : :=—2_'

Let E be the image of 7, in a representation of C(Q) onto
Sc Fyn. Then E will be also the image of r, in a representa-
tion of

C(Qe) =Fpn=SQ@F

Therefore E and B” are similar and there exists an invertible ma-
trix M such that

B'=MEM-%; M € F,. (4)
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Let us write M in the form M = M, + 6 M,, where
L ]
M, M, €S = Kyn—1 @R« R.

Substituting this expression in (4) we get

B’ M, - 0B” My =DM, E 4 0 M, E,

where
B M, MEES
and
OB M, 6 M, E€0S.
Therefore

B M,—ME and B’ M,—=M,E

and in general

B” (ay M, - s My) = (@, M, 4 @y M) E,

' where @, and @, are indeterminates.

The determinant of a, M, + a, M, is a homogeneous polyno-
mial in @, and a, of degree 2" and not identically zero since for
a, =1 and a, =0 is different from zero. Since K has infinite
elements, there exists value %, %, €K for a,, a, such that

det (h, My + % My) == 0
therefore
B"= (4 M; + 2, My E (kg My + Ay My)—1,
~ Hence 7, is mapped into B” in a suitable representation of C(Q)

onto S< F,u
In the representation of

C(0) == Kyn1 @k R

= ) =t

onto S that we have defined first, B” is the image of P® i,
where

P=diag (n,2 —2, ..., 20— 21 ...) € Kgn-

S
and the number of elements n — 21 15(

) for any 4, i. e.,
i

) 01 [ul
=01, ..., =1,
2

- . . n . , . M
if » is odd and for any z:l:—‘)— if n is even, since for § = o the

= ]

" N
number of element equal to #—2i =0 ‘s ( )
2 \n/2,

Therefore in this case the algebra D (f) which is the centra-
lizer of P @7, in S= K,-,® R has the following structure,

D(f)zZ@F"‘ it #=2,+41. and

=10 A
f

r—1
DN=D&F SR ., if n=2r.

e

As in case 1 the dimension of D (f) over K is

~ u):= L,(u)( 7 )=(2u‘),
‘L‘(l Z’ i\ —i n )

=10 =0

We sum up these results in:

Turorem 1.—Let f be a non degenerate hermitian form on
the vector space M of dimension n over the field F, J the involu-
tion associated to f and

K=la|d=u, «€F|=ET.




— 99 _

Then if the charateristic of F is zero or greater than », the alge-

2

bra D (f) has dimension_( )over K, and

H

Dmgé@}?c), if n=27r-41,

T

=il
D (f) = é;GBF(T)@T. if 2=27r,

o

r - T

where T can be either K(,,) or Ri(,), R a quaternion division

algebra over K.

§ 3

Now that we know the structure of D (f) when the characte-
ristic of F is O or greater than (M:F) we see that in any of the
possible cases the dimension over K of the certer of D (f) is
»n + 1. Therefore the center is the vector space over K with basis
1, #; #a5 +-s ¥x which coincides with the algebra over K generated
by 1 and ;.

The involutive antiautomorphism of € (Q) * leaves invariant the
homogeneous elements of degree 4m or 4w 4+ 1 and takes the
elements of degree 4m + 2 and 4m + 3 into their opposites. Sin-
ce D (f) is a homogeneous subspace of C(Q) such antiautomor-
phism induces an antiautomorphism in D (f) which we are going

to denote also by *.
¥—"1
s ] = = =l A -
[et us take an isomorphism of D(f) onuto Z@I(") if
=0 k3

n.— 2pr—1, and onto

r—1

MNEF, &T
2O
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if m =2y 1f ¢c€D(f) we called ¢° the spin representation of ¢;
the element »°, must be equal to

r—1

Z‘EB(?;—‘zz)ﬁl(‘)

i=0 1

if n=2r—1or n=2r, or to a sum obtained from this one by
substituting — 0 for some 0. The antiautomorphism * of D () de-
fines an antiautomorphism in the spin representation which we
still denote by * and it is defined by (¢%)* = (¢¥)°.

Let y be the antiautomorphism of the spin representation of
D () which takes any matrix belonging to F(,,) into its conjugate

transpose with respect to the automorphism ] of F and a matrix
belonging to T into its transpose if T = K(,,)and into its conju-
gate transpose with respect to any involutive antiautomorphism
i of R leaving invariant the elements of K if T = R, (“)

The product of the antiautomorphisms * and 3 is an automor-
phism of the spin representation of D (f) which leaves invariant
the elements 1 and »,°, for, since 7, has degree 2,

: #\a\T : 0 ;
() =A== ] == iy =n.
Hence the center of the spin representation of D (f) generated
by 1 and », is left invariant elementwise by this automorphism.
Therefore, since D (f) is semi-simple, this antomorphism is inner.
Let

2]
P— ZQ—}(]J};,

i=0

where (P), € F(,,) forz =015 ,|-]— Ik, (P){-:]E F(u)




it n=2¢r+1 and

(P)[;] €T if n=2r,

be an element which defines the inner automorphism *v of the
spin representation of D (f). Then, for every

5]

@=A=D'G(A),
=0

(<] |
(@)1= A"t =P—1AP = > @ (P)~! (A); (P),. |

i=10 |
 If we denote by Q=24 (Q) the element P — % P (P) ‘

=]
A*=QATO= = 36 (0); (A (). |
|

i=0

It is a well known question to show that P can be chosen in
such a way that the (Q); are either hermitian or skew-
matrices with respect to v. For, since * is ap in
morphism

A:(A*}*=(QATQ‘-I)¥:=(2Q_?Q\QT Q‘-ﬂ':__

=2/ & (Q: (AT A QTQ) = Sas (A),

)

hermitian N
volutive antiauto-

that is, (Q)" (Q)~" is a central element of the simple aleréba ts
which it belongs, This implies (Q)*=<(Q), where s €T if |
(@) €5y, and s €K if (). €T. {

1f the matrix (Q); is not skew

-hermitian with
‘ respect to ‘
e 2= —1 and therefore p o

(Q): = (QVf = (1 + <) ()

is a hermitian matrix with respect to v and has an InveaE Mo

reover (Q), and (1 + £) (Q), define the same inper automorphism l
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If (Q); is a skew-hermitian matrix, let us suppose
1) (Q): €F. Then 6(Q), is a hermitian matrix and defines the
same inner automorphism that (Q):.
2) (Q)-€R ("),Then instead of defining the anti-automorphism
induced by vy in R
() A
the involutive antiautomorphism ]’ we define it as the antiauto-
morphism taking any element of R~ into its conjugate transpose
:(7)
with respect to the involutive antiantomorphism J” of R defined
as follows, 0" = a=' bV @ for any b € R, where @ € R is such’ that

by the conjugate transpose with respect to

a’ = —a. Hence we have now
"= — a, B —=ad" a-?
and

(A), = (Q)r (AN, (Q); = (Q)r a (AT), e~ (Q)7 = | (7)
— (Q) a (A= Q) 1, \ |

where (B)’ stands for the transpose of (B). The matrix (Q),6 is
hermitian with respect to the new vy, for

((Q) ) =((Q), a) " =—aa"1(Q"), a =(Q). a

taking into account that (QV), = —(Q),. But (7) shows that for
this v (Q)-a is the matrix which replaces (Q)..

3) (0).€ K(") . Then there does not exist a symmetric matrix
which can replace (Q),.

We have prove then.

TuaroreMm 2. Let us assume that j and T fulfill the conditions
of theorem 1. Then the antiautomorphism * of the spin represen-
tation of D (f) has the following form, if the matrix
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belongs to the spin representation,

5]
A¥ = D' (Q): (A} Q' =Q ATQ
Fr=10
where (A);" is the conjugate transpose of (A): with respect to the

automorphism identity, J or an involutive antiautomorphism of R
leaving K invariant elementwise if (A), belongs to K

Wi o Ll

Rx ("), respectively. Moreover the matrices (Q); € F( ) are hermi-
T\ "

tian with respect to v, as well as (Q), € R

5] =

(" under a suitable choi
-

ce of the antiautomorphism of R. On thc; contrary if (Q),€ K

rnh

(Q), can be either symmétric or skew-symmetric,

In chapter IT § 2 we will see when (Q), € K( is symmetric

and when skew-symmetric.

If all the (Q), are hermitian with the possible exception of
(0), €K (ﬂ) which might be skew symmetric we call

5
Q=2'®(Q):

matrix associated to the

antiautomorphism * in the representa-
tion a.

Let us take a different isomorphism ¢ of D () onto

r—1

Sor

227)

if n =2r—1 and onto

r—I1
DBT, BT
= ()

if » =27, Then each component of the matrix a* = = @ (A), is
similar to the corresponding component of ¢ = ¥ g5 (A), or, if

— 97 —

(A), € F, . might be similar to the conjugate of (A), with respect

(2)

to J. That is,

(A),= (N), (A),(N);* if 2r=n and (N),€R or K

+()

(=

[t

and for any other 1 either

(A); = (N); (A): (N);!
or
(A); = (N); (A1) (N)7*

where (N), € F (")
‘We denote by (A)f," the matrix (A), if (A), is similar to (A,
(A)F = (A1), if (A), is similar to (A!), and make A®* == 5 (A)ir,

where (A)r = (A), if 27 = n. Then

2@ =A=NAN-1= D@ (N); (A)f (N)7'; AT=N-TA*TNT and
(a%)” = A*¥ =N (A N—1=NQ* A Q—*N-1 =N Q¢ NTN 7.
S ASTNTN-TQ-* N-1 = (N Q¢ NT) (N—T A** N7) (N Q¢ Nv)—{ =
— (N Q*NT) AT (N Q: N7)— 1.

If (Q), is hermitian with respect to v, (Q)% is also hermitian
Therefore N Q¢ N is a matrix associated to the antiautomorphism
* in the representation s’. By choosing a suitable s* the matrices
(N), (Q)5F (N)* will be diagonal matrices if 2¢=n: for 2r = n,
e, is the identity and therefore (N),(Q)" (N),” and (Q), are co
gredient relative to v (see [13], p. 149).

Let us suppose that Q is a matrix associated to

representation. Then we see that a matrix associated to * in any
other spin representation is a direct sum of matrices cogredient

to the components of Q relative to y since (Q) =(Q), if (Q)iis a

*

in such 2

diagonal hermitian matrix.
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CaAPTER 11

In this chapter it will be proved that D (f) is the envelopping
algebra over K of the elements of the Clifford group mapped by
¥ into the unitarian transformations of f. Then the simple compo
nents of the spin representation of the unitary group will be known.
As before we assume that the characteristic of F is zero or greater
than (M : ¥) and that f is non degenerate.

First of all we compute the dimension of the subspace of D (f)
of degree 2, h = 1,2, ...,n. It will be always supposed that the
elements #,, x,, ..., +, form an orthogonal basis for f and that
V= 0.2,

§1

The elements

1 INE - g S 550
:rl’ _J‘?' at % . 2y, where g;,3;=0,1 (1)

2 N

and Xe - ¥5,=2/,

form a basis for the subspace of C (Q) of degree 2 /i. Let us write
in the order in which they appear in the expression (1) the subindi-
ces of the elements with exponent 1. We get then for each element
of the basis a set of 2 & numbers between 0 and n + 1 in no de-
creasing order and where each number appear at most twice. We
will call the set of 2/ numbers deduced from an element of the
form (1) the index system of such element and will say that the
system has degree 2 /.

Let us divide the set of elements (1) of degree 2 /i into subsets
with the same index system. We consider the vector spaces over
K generated by each of these subsets and get in this form a de-
composition of the subspace of C(Q) of degree 2/ in a direct
sum of subspaces which will be called the subspaces of the index
system or index subspaces. Of course this decomposition depends
on the chosen orthogonal basis.

— 929 _—

When /i = 1 the elements
T Vis Xidji X i XiXis ViV P WP R R e

form a basis of the space of degree 2 of C(Q).

The subspace of the index system i, i =1,2,...,n, 1. e., the
subspace generated by &, y, belongs to D (f), for it is obvious that
such element commutes with

and then lemma 3 of chapter I asserts that it belongs to D (f). As
to the elements of the index space ij, i <<j, we are going to find
their images under the automorphismof C (Q) of order 2. %p, asso-
ciated to the homotecy T of ratio —p. We have

() t=—p (@D (3T)=—rpx;

(= —o (DT =—p "5

and since 7p has order 2,

T 1 -1 o g
(—pra)? =2yp; andl (—lo g V)t =
Therefore the elements
pp=— AW — V%5 V=i —p Ly vy

are left invariant by the automorphism =y and the elements
ri= X b yixi  S= AT 0 Vb

are taken by 7o into their opposites and hence they do not belong
to D (f).
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Let us see now that w4, v, are invariant under the automor-
phism .,z of C(Q) associated to any homotecy T.,;s. We have

“1,.;"“ = (w0 — yi) **B0 = (a2 — B2p) ' ((wri+4-By) (e + p B xy) —
— (i 4 p B x) (2 25 5 5.?’;)) = (2 —of) " (('i2 = P -
(95 — Vi 25) + (B —Ba) (p 2725+ J’-’J'j)) =
= X; ¥; — Vi Xj = Uij
Tt — (22— g gy = — B ) (@ - B -
(w; + By — o g+ pBad) (4 pB 2)) =

—1 )
=X, X;— 0 ViV = Yij-

Therefore any element of C(Q) of degree 2 invariant under the
automorphism =y belongs to D (f).

The computation that we have carried out to check that #,; and
»,; are invariant under the automorphism <q.py is independent of
the value of the indices 77. It is immediate to see that this is also
true for the elements of any index space with indices all different.

Lemma 1. Let g be an element of degree 2/ of C(Q). Then
g €D (f) if and only if its projectionson each index subspace be-
longyto D (f).

Proor. Let

e Y & By B g
Xl YTy Py o BE

be any element of degree 2 N, The automorphism of C+ (Q) asso-
ciated to the homotecy Tu.zp of f takes this element into another
element of the same degree given by the expression

(a? —p P * (22 + Byl)el @y, +Bo xs)al R 3 Be xn)a"-

Taking into account that in the result only appear terms of
degree 2 it is easily seen that we get a linear combination of
elements of the set (1) all of them with the same index system
that the taken element.

R

If g € D (f), g is left invariant by the automorphism associated
to any homotecy. For what we have just seen it is clear that this
is possible only if its projection on any index subspace is left in-
variant by such automorphism. This implies that these projections
belong to D (f). On the other hand it is obvious that if each pro-
jection belongs to D (f), g also belongs to this algebra.

We have, then, that the decomposition of the space of C (Q)
of degree 2 /i in a direct sum of index subspaces induces a decom-
position of the space of degree 2/ of D (f) in a direct sum of its
index subspaces. In other words we could say that D (f) is a ho
mogeneous subspace with respect to the decomposition of C (Q)
in index subspaces. The space of degree O is the space of the
vacuous index system.

The dimension of the space of degree 2/t of D (f), h=1, 2, ..., n,
can be computed when we know the dimension of the index sub-
spaces. First of all we remark that the space of degree 2n—2
has the same dimension that the space of degree 2 /4. For, if we
multiply each element of degree 2/t by r, we have a 1 —1 linear
transformation of the space of degree 2/ onto the space of degree
2 —2h. Therefore we need to compute only the dimension of
the spaces of degree 2 when 2/ < n.

We classify the index systems of degree 2 /v into & + 1 families

iy (Cah gy oo Unelgs
G',, being the set of index systems in which there are ¢ and only 1
indices which appear twice,

Lemyma 2. All the index subspaces of D (f) which belong to
the same family of index systems have the same dimension. Mo-
reover the dimension of an index subspace whose index system
belongs to the family G7,, equals ‘the dimension of an index
subspace whose index system belongs to G%¢ury.

Proor. Let us consider first the family G°,,, that is. that fa-
mily whose index systems consist of 2/ different indices. This is
only possible if 2> 2.

Let 4y cvosfant e eensifan be two different index systems of
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G*,, and let us take a basis for the index space corresponding to
the first index system and suppose that each element of this basis
is expressed as a linear combination of elements of the form (1)
belonging to that index system. If in this expression we substitute
¢, for i;, we get linearly independent elements of the index sub-
space corresponding to the second index system. Therefore the
dimension d of the subspace defined by the first index system is
less than, or equal to, the dimension d’ of the index subspace
defined by the second system. By symmetry d° < d and hen-
ce d =id-:

Let us take now an index system of the family G’,, and suppose
that 4., j., ..., j» are the indices which appear twice. Then any
element of the corresponding index subspace can be expressed
as a product of

by an element of degree 2 (h—7) of the index subpace defined
by the system obtained from the index system we started with by
leaving out

VAT ]-[3_721]-21 =02y jr! ]l

Therefore the dimension of an index subspace defined by a system
of the family G7,, equals the dimension of a subspace defined by
an index system of G°%r.

LeEmma 3. The dimension of the subspace of an index system
of G*°,, is (212).
'

7

Proor. We are going to use induction on h, starting with
0
h =1, even though we take ((}) = 1.

If we know the dimension of the subspace of an index sys-
tem of G%, for r <</ we can compute the dimension of the spa-
ce of degree 27, for it will be equal to the sum of the dimen-
sions of the subspaces of all the index systems of degree 2.
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The dimension of any of these subspaces equals the dimension
of a subspace of an index system of G-

The number of different index systems of the family G°, is
( * ), where n = (M : F) is the number of different indices. In
a 7
general the number of different index systems of the family

G5 18
u)( n—=s )
(.s‘ ‘.’.(r—.ﬂ)'

Let d,, be the dimension of the subspace of an index system
of GY,,. Then the dimension of the space of degree 27 is

Ll w—=1
Yy — 1‘.!-——:'
“ ;(5)(2@-—-:3)' =P

1f » =1 it is true that the dimension d, is

FA=Tr

because the elements uy, w; form a basis for the space of indi-
2 1 A

ces ij. If we suppose that for r<<h d=,=( ), the dimension
.

of the space of degree 2, must be

=Sk

78 (2 —1)!
=2 Nm—1)! - 2 — N (12— 27+ )

=0 ’

r

@@FE—z)! £ ! —}
’ "ir;fj!ﬁi)iﬂé n—2r )l (r—2)) &)

’

1 n! (n—17)! 71 iy
=Z 71— )] : t—27r ) (r — i) ’ (r—2)1al

3=0 i

RN N
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i : 27
Now let us prove that if d;, =( )for r<<I the formula is
r

also true for r=h. If (M : F) = 2k by theorem 1 of chapter I
we know that the dimension of D (f) is

B iy 5 Ry PR

On the other hand, since in this case e, = €.¢.»1y. the dimen-
sion of D (f) taking into account (3) is

i= v

= (2 k)2 ,
ng.—2zt’o,+£’u =2Z( ) + a4 (H)

=10 =10 =0

Equating the expresions (4) and (5). which give the dimen-
2/.:)'-'

sion of D (f), we have e,, = ( P

We know also that

S Ty BT

If in (3) we make n = 2} and r = h, comparing the first sum

. 24
with (6) we get d,, = (1) which proves the lemma.
(4

Now that the lemma is proved, expression (3) proves the
following '

TreorEM 1. The dimension of the space of D (f) of degree

. [n)\? .
2h is (/) where n = (M : F).
4

The dimension of the space of D (f) of degree 2/ has been
computed taking into account that this space is the direct sum
of the index subspaces of degree 2h. If we sum the dimensions
of all the index subspaces we get the dimension of D (f). In this
way we are going to get a formula which will be used later on.
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In lemma 2 it has been seen that all the index subspaces
corresponding to any index system where there are precisely 21
indices which appear only once have the same dimension. In

27
lemma 3 we have proved that this dimension is( ) Let us de-
z

note by E, the dimension of the subspace of D (f) direct sum of
all the index subspaces whose index systems contains precisely
2 indices appearing only once.

Since there are n different indices the index systems can be
divided into sets of index systems where each set consists of all
the systems with precisely 2i indices appearing only once,

B 0 1 [n:l
=01, ..., | —1I
2

Hence

—
w2
e

=l

(21:
=)

If we choose an index system of degree 2i with 24 different
indices we can get index systems where these 24 indices are the
only ones which appear only once by adding to the chosen system
0,1,...,n— 2 pairs of indices picked up among the n—21 in-
dices different from the given ones. In general we can add 7

1l
(-]

)

b7 .
pairs of indices in ( ) different ways; therefore from an

=
index system of degree 2: with 21 different indices we get

oL i

r=1>0

index systems in which the indices appearing only once are the
the chosen 2i indices. Since these 2{ indices can be chosen in
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n 3 A n ’ - s
(2 ) different ways we will get (9 ) 2" different index systems
z 21

in which there are 21{ indices which: appear only once. Hence

" (217
E:= =31 "
(a2 ()

Summing up the E, we get

LEmMa 4.

It will be proved now that the elements of D (f) of degree 2
form a set of generators. In order to do so we will start defining
by induction canonical bases for the different index subspaces.
To simplify the notation when we refer to a subspace of the
index system of degree 27 with 27 different indices we assume
that these indices are 1,2, ..., 2r. In doing so there is not loss
of generality since we get the subspace of indices 7,, 7a, ..., for by
substituting 7, for ¢ and the computations that we carry out do
not depend upon the particular value of the indices.

Chosen a basis of C*(Q) of the form (1), the index subspace
of indices 1,2, ...,2m has as basis the set of 2°™ elements ob-
tained from

i T (7)
writing #;, or y, instead of z;, j=1,2...., 2m.
Since the number of factors is even we can write the product

in the form

(2123) ... (Bai—i 22 e o (Z2em -1 Z2.m) (7")

= g7 =
where s.,_; 2, can take one of the 4 different forms,
o iy oy Yoi 1 Vas Voja Fapr Vg g Vayie

We adopt the following notation,

U=y 0i= Fa; 1 Yoy — Vai_1%ais
.E’f_i' 1—!.2¢='1 f —1 I“r i P_l—:}”‘-’;_l-yﬂi;
= "'r—l,ﬂ:_ :_‘z l-"‘ll ! J.’f—l 'Y‘Jr';
e o R [’_1-"'9;—1-]"2.“

and we get

1 1
Haj—y Xoi = G} (7 -+ s3); Xas— | Va; = > (2, —+ 73);

Hai—1 Vei = 9 (r: — u); iy Yaj=——

=

(31' =3 7“"1') '

1\9‘-:;

Substituting these values in (7) we see that any element of

(7) is a linear combination of elements’

2 (8)

where #; can be any of the four terms w,, »,, » or Si-
any element obtained form (8) writing instead of ¢, gy ‘ong of
the terms u, oy, ror s, i =1,2,..,m, is a linear combination
of elements of the form (7). Therefore the elements obtained
from (8) by different substitutions of #, generate the subspace
of indices 1,2, ..., 2 m.

Conversely

The number of such elements is 4™ = 2™ This number being
equal to the dimension of the subspace of C*+(Q) of indices

1,2, ..., 2m, these elements must be linearly independent.
Let 1s denote by

w w;

igigy et TU'.'.E m—172m (9)

11 l'l)
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the set of 27 different elements obtained by substituting ;. 4

or v; . s . for w; . ;. As to the indices we assume that
27—1 27 2 27—1 3J

%45 Bay <oy dam i a reordenation of 1,2, ...,2m such that
el =1 vy

Since for different values of j the wy . .
each other we will not take into account the order in which they

are written.

's commute with

We will say that an element of D (f) belonging to the sub-
space of indices 1, 2, ..., 2/m is canonical if it can be written as
a linear combination of elements of the form (9). It will be said
that such a linear combination is a canonical expression of the
element. It follows from its definition that a canonical element
of D(f) belongs to the algebra generated by .y, Yip,

D= P R I e &

Given a canonical element ¢ € D (f) of the subspace of indi-
ces 1, 2, ..., 2m writing instead of

N By yiay T Fiajg Vig; T Vigj g Fiaj

Wia: o =—
2;—17'2; . " b %
‘v'g.f- —1 25 - x'?}‘—L :L;Bj P -}/"2}'_ 1 ‘p'.'.!j

its value in terms of the #,’s and 9,’s and taking into account
only that C*(Q) is an associative linear algebra we get an ex-
pression of ¢ as linear combination of elements

21, igy +or Fig,y (10)
which differs from the expression in terms of the elements
21 321 veny Bn

only in the order of the factors what can give place to a change
in the sign.

e —
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In the canonical expression of ¢ let us write instead of

S U"e,-'—l dg; T Sigy g Ting = Tig;y Sia;

W

tep ==ty vV gy i = 5:.21__. i 5"2;' —pt i "z’;;j
and express this sum of products of W,,’s as a sum of products
of elements s,;, 7y using only the fact that we are operating in
a linear associative algebra. Then the element that we obtain is
the element derived from the expression of ¢ as linear combina-
tion of elements (10) substituting s; for x; and 7, by 9.

But since

Uji= 857 — 7;5: = (Vaj—1 Taj+ 07 aj—1 ¥25) (Rai—1 Voi+Vai—1 Xai) —
— (#2j—y Vot e —1 Faj) (Fa; 1 Koyt P Haimy Foi) =
= Vg;—1,2—1 Maj i+ Haj—1,2i—1 Vaj,2: € D (f)

and

Vi=sisi—p triri=

= — (Vaj—1,2i—1 V2j,2: -+ o7 #ajy 01 aj,95) € D(f)

the element of C*(Q) obtained ‘by putting W, instead of wp
belongs to the subspace of D (f) of indices 1,2, ..., 4m. Moreo-
ver, since 7, (or s;) commutes with any 7, and s if 137, we
get the same element if we substitute s, and », for x; and y,, res-
pectively, in the expression of ¢ as linear combination of ele-
ments (10) or as combination of elements (7).

Levmma 5. From linearly independent canonical elements of
degree 2m belonging to a subspace of 2sm different indices we
can derive canonical elements of a subspace of 4m different in-
dices, which are linearly independent.

Proor. As before we suppose that the canonical elements of
degree 2m belong to the subspace of indices 1,2, ...,2m. We
have just seen that if in the expression of these elements as li-
near combinations of elements (7) we substitute §; for #;, and
r, for y, we get canonical elements of the subspace of indices
1,2, ...,4m. Therefore we only need to prove that if the cano-
nical elements of degree 2m are linearly independent the ele-



=

ments of degree 4 obtained from these elements are also li-
nearly independent, The linear independence of the elements of
degree 4 m so obtained follows from the fact that for any m the
4™ different elements obtained from (8) by substituting u,, w,
r; or s; for ¢, are linearly independent. For, if the lincar com-
binations of elements (7) which express the given canonical ele-
ments of degree 2m are linearly independent substituting in these

elements s, for x, and 7, for y, we get linearly independent
elements.

LeEmMma 6. Every subspace of an index system of degrec 2#
with 2 different indices has a basis consisting of canonical ele-
ments. Therefore such index subspaces belong to the algebra
generated by uy, vy, i<7.

Proor. Let 1,2, ...,2r be the index system. Since for r=1,
Uy, T, form a 'basis for the subspace of indices 1, .2, we are
going to use induction on 7. Therefore we assume that the lem-
ma is true for 27 << 2k, Then it will be seen that it is true for
27 =2h or to bhe precise, we will see that the lemma is true
for 27 = 2 &, if it is true for any » such that 2» < /.

We take the 47 elements of the form (8) as a basis for the

" subspace of C*(Q) of indices 1,2,....,2h for m = h. Among

these the 2* elements containing only u;’s and z,’s belong to
D (f) since uy, 7, € D(f). Moreover these elements are linearly
independent.

Let us choose 27 indices, 27 < I, 1,, 14, ..., 1y among 1, 2, ..., I,

2 . : ; :
In the( '_]) canonical elements that by the induction assumption
Y

form a basis for the subspace of indices 1,2,...,27 we write

$;.» instead of x, and r,}instead of yp, m,p=1,2,...,27, Lemma 5

¢

2

asserts that in this form we get( _])linearly independent canonical
J

elements of degree 4 j. Now let ¢/, ¥,, ..., ©'y_,; be the complemen-
tary set of iy, ..., i, with respect to 1, 2, ..., h. If we multiply each
one of the 2"~ different elements obtained from

t;i tié' s

(11)

th
i —ay

= gt =

substituting Wy, OF Vp for tyr o mo= 1,2, ..., h—27, by each one
o

of the elements obtained before we get(‘_”)?”*“ canonical ele-
)

ments of the subspace of indices 1,2, ...,2 1k We say that such
elements belong to the index family i, i, ..., i». These elements
are lineariy independent, for if there exists a linear combination
which equa’s zero the partial sums extended over the elements
with the same factor of the form (11) must be zero, since the
elements containing u, can not be cancelled with the elements con-
taining vy, In each one of these partial sums the factor of the

form (11) is multiplied by a linear combination of the ( '_") cano-

nical elements mentioned above and it has been seen that such
elements are linearly independent. Therefore all the coefficients
of the linear combination which equals zero must be zero. In

2 " .
other words, the ( ; ) 22 canonical elements of the index fa-
J . ‘

mily i,, ..., 1, are linearly independent.

e bl N > /!
The 24 indices ¢ G i iffe /
i can be chosen in 5 ; different ways, hence for

=

o i\ (2 ‘
each value of j we get (2 ])( ; ) 2% elements. If we take all pos

sible values of j we have
2=
271\ j J

i=0

elements according to lemma 4.

24
Moreover thes 2 i : .
Moreove e ( ,"z) canonical elements are linearly indepen-

dent because if a linear combination of such elements is zero
each one of the partial sums extended over all the elements of an
index family should be zero. Since we have just proved that the

elements of an index family are linearly independent, the (2 !z)

: /]
canonical elements are linearly independent and form a basis of

e 1S 9
the subspace of indices 1, 2, ..., 2 which has dimension (_ 1:).
p
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Tueorem 2. The algebra: D (f) is generated by its elements of
degree 2.

Proor. By lemma 6 we know that the subspace of any index
system of degree 27 with 27 different indices belongs to the al-
gebra generated by the elements uy,, #, i <7, of degrece 2.

If d is an element of a subspace of an index system in which
there are 24 indices appearing only once and #” indices appea-
ring twice, d is the product of an element of the subspace whose
index system consists of the 27" indices appearing only once by
the element '

"

d = Hﬂ-'-'\ Vi

s=1

where i,, ..., i,» are the indices appearing twice. Since d’ belongs
to the algebra G generated by the elements of D (f) of degree 2,
d belongs to G.

Since (a;3:)* &= 0 belongs to the subspace of the vacuous index
system, the elements of degree zero also belong to G. Therefo-
re G contains all the index subspaces and coincides with the alge-
bra D (f) which is direct sum of such subspaces.

TreoreM 3. The algebra D (f) is generated by the elements
of the Clifford group of C(Q) mapped by y into the symmetries
of the hermitian form f. Moreover D (f) contains also the elements
of the Clifford group mapped by y into the unitary transforma-
tions as well as the elements of C(Q) which define inner automor-
phisms which induce in C*(Q) automorphisms associated to the
unitarian similitudes.

Proor. To prove the first part, by theorem 2, it suffices to
show that the algebra over K generated by the elements of the
Clifford group mapped by y into the symmeries of f contains the
space of degree 2 of D (f) and that, conversely, this space contains
all such elements.

Tet H be the hyperplane orthogonal to the non-isotropic vec-
tor » with respect to f, and let # be the symmetry with respect
to H. Then the symmetry # as a transformation of M over K is
the involutive orthogonal transformation which takes the vectors

of the non-isotropic plane P generated by x and y = 6 # in their
opposites and leaves invariant the vectors of the subspace PL or-
thogonal to P with respect to Q.

The elements of the Clifford group mapped by y into this ortho-
gonal transformation are of the form zxy, 0 £« € K. Since a2y
is of degree 2 and is invariant under 7y it belongs to D (f).

On the other hand, if K has more than 3 elements it is possible
to find = 3= 0 such that 2, = 2y + =, 45 is a non-isotropic vector.
Then the elements of the Clifford group mapped by y into the
symmetries of f with respect to the hyperplanes orthogonal to
the vectors xy, 2, 1,7 =1, 2, ..., n, i < j, are

;375 (o oy ) (0 @y ) = 2 3 @iy 25 35w (2505 — 35 %7);

where 3, = 04;. The algebra generated by such elements contains
a basis of the space of degree 2 of D (f), for

(w5 — 2i73) X595 == 15 % ;= Q () (#; 25 — 0~V 3 y)) = p Q (%) 0.

Therefore if K has more than 3 elements, the elements of the
Clifford group mapped by y into the symmetries of .J genera-
te D (f).

If K has only 3 elements, ¥ is the field with 9 elements and
there exists then an orthogonal basis of M with respect to f
such that f(x, ) =1 for any i; since we suppose that (M :J)
is less than the characteristic of F, n< 3, If (M:F) =1 the
theorem is obvious and if (M:F) = 2 we can take ., =1 and
apply the preceding argument.

Now let us see that D (f) contains the elements mapped by y
into the quasi-symmetries of f. The quasi-symmetry which leaves
invariant elementwise the hyperplane H orthogonal to the non-
isotropic vector x and take'sl ¥ into (= + B 60) x, where
N (= + 80) =1, is the image under y of the elements of the
form

v(i-\-u

e (5 2),




— TE

where
y=0x 0Fv€K.

Since these elements belong to D (f) the second assertion is pro-
ved because the unitary group is generated by the quasi-sym-
metries (cf. [8]-or [9], p. 41).

It only remains to see that D (f) contains the invertible ‘ele-
ments of C(Q) defining inner automorphisms which induce in
C*(Q) the automorphisms associated to the unitarian similitudes
of f. Such elements are defined up to an invertible factor of the
form « + B r,, since the algebra K+XKr, is the center of C*+(Q).

Since the automorphism ¢ of C*(Q) associated to a unitarian
similitude of f is homogeneous of degree zero, it must take the
element r,, which is a basis of the space of central elements of
degree 2, into «r,. But the component of degree zero of (r,%)°,
ne 3= 0, must be equal to the component of degree zero of

(7';')"’ = (a rl)z, a@® 72 p;

therefore «? =1, o« = + 1.

}n}l
If = = —1, since 7, is the component of degree 2/ of /11 ;
e
(72042)° = — 7314, and 7%, = 7. Let ¢ € CH(Q) and let us apply

to ¢ the automorphism associated to the homotecy defined by
the element

pE—op . AT
p2—p pt—op

=a‘+’Bﬂl =0

of norm 1, and then the automorphism s. We get (cf., Ch. I,
p. 9):
e RN (s Wt S i
se(wr Tty ) = (W — =y
v (= i (=L))ot - (— 1)) =
=((—w+ .= )
s (= )=,

= MR

that 1s,

!FHa":C“‘u-pa. (12)

On the other hand if S is a unitarian similitude of f and Tq,gp
a homotecy,

STaspo= TasgeS.

Let ¢ andiza,se be the automorphisms of C+(Q) associated to
S and Te.ze, respectively. Then since S Te.s0 = Toipe S we must
have ¢ Ta.z0 = 7z.50 ¢ and therefore

ca+B0? — PTatpo (13)

From (12) and (13) we get

(Caj—‘a+_‘ill = {Ca)%-—ﬁ

and this can not be true for any ¢®€ CH(Q) sinte z + B0 and
»— B0 do not differ by a factor 3 € K. Hence the assumption
2 = — 1 leads to contradiction. Therefore = = 1 and any element
of C(Q) which defines an inner automorphism inducing in C+(Q)
the automorphism s associated to a unitarian similitude commutes
with #,. Then the lemma 4 of Ch. 1 shows that such element be-
longs to D (f).

In Ch. I, theorem 1, we have seen that D (f) is a semisimple
" n
subalgebra of C(Q) direct sum of 1 + l =

]simple algebras. The

=

theorem that we have just proved shows now that the spin re-
presentation of the elements of the Clifford group mapped by y
mto unitarian transformation of f decomposes in a direct sum

. / -
of 1+ l7] irreducible representations,

We get the same decomposition in simple representations if
we consider only the spin representation of the elements of the
Clifford group mapped by 7 into elements of the group Ut (7)
generated by the symmetries of f or if we consider the spin re-
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presentation of the group of invertible elements of C (Q) which
define inner automorphisms inducing in C*+(Q) the automor-
phisms associated to the unitarian similitudes. Each unitarian si-
militude defines one of this invertible elements up to an inver-
tible factor of the form o + §7,.

§ 3

Let us take a spin representation ¢ of D(f) and let Q be a
matrix of the antiautomorphism * in the representation s. Then
Q is a direct sum of hermitian matrices, with the exception of
the component (Q), which when # =27 and T = K(”) can be
either symmetric or skew-symmetric (Ch. I, theorem 2).

If ceD(f)c C+(Q) defines the inner automorphism associa-

ted to the unitarian transformation U, let (C),; 1= 0,1, ”_,[_:)i]
denote the i-th component of the matrix C = ¢°. In particular, if
€K, «° =X (1), where (I), is the i-th component of the
unit matrix.

If an element ¢ belongs to the Clifford group its norm
cect =« €K, When ¢ € D (f) in the spin representation ¢

- 2] ]
6 ) = (%P — T O (0 N Z P (C): (Q): (C) (Q) ' = @j (1)
which implies
(C): (Q): (C)f = = (Q)s. (14)

If n=2r+1, then (Q):€ F(n), i=0,1, ..., and the (Q),
are hermitian matrices with respect to 7. Each one of these ma-
trices can be considered as the matrix of a hermitian form relati-
ve to a basis (cf. [13], pp. 149-50) where ] is the involutive auto-
morphism associated to the hermitian form. Then the (C), re-
present linear transformations of the vector spaces on which the
hermitian forms (Q), are defined relative to the given bases.

VAT

Relation (14) shows that these transformations are unitarian si-
militudes. Given s, the (Q), are defined up to a factor &€ K.
Therefore we can say that the hermitian forms (Q); are d<fined
by D (f) up to a factor 3, because if we take another spin re-
presentation we have seen in Ch. I, § 3 that the new matrices
(Q); are cogredient with the (Q), and therefore define the same
hermitian forms with respect to new bases.

When 2 = 27, what we have just said is still true for the
(Q); if i+ r. As to (Q), we know that there are two possible
cases: _ .

1) (Q):€ l\} ( ) Then we can applied what has been said for

the (Q), €F ) with the only difference that now we have a her-

mitian form on a vector space over a sfield of quaternions (see
[71, pp 75) and ]’ is the involutive anti-automorphism asso-
. ;

ciated to the hermitian form. _
2) (Q)r€ K( ) In this case we are going to see that (Q),

is symmetric if » = 2s and skew-symmetric if = 25 + 1. Then

a) if (Q)r is symmetric we can applied what has been said
and the (C), define similitudes with respect to the symmetric bi-
linear form (Q)r

b) if (Q)r is skew-symmetric we have an alternate bilinear
form. The (C), define sympletic similitudes.

To prove that (Q), is symmetric (skew-symmetric) if » = 25
(r=2s + 1) we compute the dimension over K of the space of
elements of D (f) invariant under the anti-automorphism *.

Let d, be the dimension of the space of elements of D (f) in-
variant under * when n = 2. Since the elements of degree 4i
are invariant under the anti-automorphism * and the elements of

degree 4i+ 2 are changed by this anti-automorphism in their
opposites, by theorem 1, we get

s Z (2”2')“'

To compute this sum we compute first

o= Znl=Ze )LL)

i=0 i=0 n—1




Hence B is the coefficient of " in

{—1 R [ T B e 1 v
('.é‘n( 1)(’)3)(2‘(j x7 (1—a)"(1-42) (1 — )",

F=0

/s
and therefore B = (—1)7 ()

7

4 AL AP
Since A=Z();) =( - ),

=0

[

dy = Z" (;5)2: (A4 B)2= 1 ((2”") i = 1)‘(7))

=0

T.et us determine now the space of invariant elements of F
with respect to the anti-automorphism (A)* = (Q), (A)," (Q)%

#\*
where (Q), = diag (u.,,a'.a, e )) The (:) elements

(%

== .]‘; . 1.9 ¢
Crmenj - wieinay , Oe—Ooiezon s )=1,2, ...,

Z.);/z<\_/.

where ¢, is the matrix with 1 in the intersection of the h-th
row and the j-th column and 0 elsewhere, form a basis over K
of the space of elements invariant under the anti-automor-
phism *,

If (Q)-€K

s = 2 and (Q)r = diag (‘11‘ Uy eney O the

space of elements of K (“ invariant under the anti-automorphism
i
. )+
(A)* = (Q), (A)/ (Q),~*, has as basis the 2 elements e

en + o ejpuy~t. Therefore when (Q), = diag (0.1, . a( ))

space of elements of the spin representation of D (f) invariant
under the anti-automorphism * has dimension

the

(7).

This value coincides with d, only when r is even. Therefore
if =25+ 1, the matrix (Q), is skew-symmstric. When r = 25,
the matrix (Q), must be symmetric, otherwise a straighforward
computation will show that the subspace of D (f) ef elements in-
variant under * should have dimension

S

Let us remark that when an element ¢ € D (f) belongs to the
group of invertible elements defining inner automorphisms of
C(Q) which induce on C*(Q) the automorphisms associated to
unitarian similitudes, ¢ ¢* is an element of K if # =27 + 1 and
it belongs to the space over K generated by 1 and #, if n = 2¢
(cf. [9], p- 72 or [16], taking into account that (M : K) = 2#).
Since 7, belongs to the center of D (f) and for n = 2, 72 = ",
o T is a direct sum of matrices each one equal to the unit matrix
or to its opposite. Therefore for any =,

(C), LQL ( )3 (Q)r_l = G ([)il

thﬂt iS,

(C): (Q) (CO)f = «; (Q);.

What has been said for the components of the matrices ima-

ges by ¢ of the elements of the Clifford group mapped by y into.

unitarian transformations is also true for the components (©),
of a matrix C image by ¢ of an element of the group mentioned
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above. That is to say, the (C), are unitarian similitudes of the
hermitian form (Q), defined on a vector space over IF if 2i = n;
for 2i =n (C); is a unitarian similitude of the hermitian form
(Q): defined on a vector space over a sfield of quaternions if
(C),GRJ(”), and, if (C)IGK(”). (C); is a similitude with res-
pect to the quadratic form (Q), if » =25 or a similitude with
respect to an alternate bilinear form if v = 25 -+ 1.

CHAPTER III

In this chapter the algebra D (f) will be used to obtain repre-
sentations of the projective group of unitarian similitudes of f
into orthogonal groups. The spaces of the representations are
the subspaces of D(f) of degree 2i, i=1,2,...,n —1, which
are vector spaces over K. We map the unitarian similitude S
into the linear transformation induced in the subspace of D (f)
of degree 2i by the automorphism of C*(Q) associated to S. It
will be seen that in this form we get a representation of the
projective group of unitarian similitudes.

In § 1 we define a symmetric bilinear form on the subspaceas
of degree 2i of D(f), i=1,2,...,n—1. Then it will be shown
that for any i this form is non-degenerate and the linear transfor-
mation induced in one of these subspaces by the automorphism
associated to a unitarian similitude is an orthogonal transforma-
tion with respect to this symmetric bilinear form,

As before it will be assumed that the hermitian form f is non-

degenerate and the characteristic of I¥ is zero or greater than
(M : F).

§ 1

We define a symmetric bilinear form (&, y) on the subspace
of degree » of C(Q) in the following way: _

llet @ and b be any two elements of the subpace of degree #»
of C(Q). Then we take as value of (a, b) the component of degree
zero of a b*. It is obvious that the form so defined is bilinear.

Since a and p are homogeneous elements, the anti-automorphism
* leaves them invariant if » = 4m or r = 4m + 1 and takes them
into their opposites if r=4m + 2 or r=4m i 3. Therefore,
since the component of degree zero is left invariant by the homo-
geneous anti-automorphism ¥, ab* has the same component of
degree zero that (a b*)¥ = b a*. Then (a, b) = (b, a), which shows
that (a, y) is a symmetric form.

Lemuma 1. The symmetric bilinear form defined on the spaces
of degree r of C(Q) is non-degenerate if and only if Q is non-

de generate.

Proor. Let 2,, 23 ..., & be an orthogonal basis with respect
to Q, of the vector space on which Q is defined. Then the elements

Zh S"a 250 3"‘1‘ -‘;1 < iﬂ < " < ?.r'
form an orthogonal basis of the space of degree » with respect to

the form (x, ). If all the vectors 2, ¢=1,2,..., N are non-

isotropic and

@ = Zj Ziy e Fipy (@ @) =Q (2:) Q (2) ... Q(e;) 0

and the form (x,y) is non-degenerate. But, if one of the vectors
gz, is isotropic, there are isotropic vectors in the chosen orthogo-
nal basis of the space of degree 7.

The form (#, ¥) induces a symmeric bilinear form on the sub-
spaces of degree 2i of D (f). It will be proved that this induced
pilinear form is non degenerate.

We are going to use the notation of chapter II; in particular
w6, Tis 7> S; have the same meaning that in chapter TR,

3 § 1, where 4,
gy =04, i =12, ..., is an orthogonal b

asis with respect to Q.
LeEMMA 2. Let

a= Tuil ZU,- ven Wy

. and b= Wi W ... w;
Tere w;,, w;, stand for u; or v. . The
where w;,, W;, ¢ i i HAcn

(a’ b) = (?U'-l., TU:-I) (zviz’ ﬂ"{e) e ("‘U’.m1 w; )

! m
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" and is different from zero if and only if @ = &, that is,
Wy, = Wi Re—=L s sims AP

Proor. The elements v, and v, h == f, commute with each

other and v, = — v, for any . Therefore
ab* =1, w. W, w . w, w (1)

The product w, w,* has one of the following forms,

-3

|

VU= — U

2 Q) (#aj—1) Q(#ag) + 207" Fuj—y Vajday

- 7, 1 Py
wii = — ut=—20Q (x5;—1) Q (.1.'.3{-) -—

— 2y g Faj—y XejYaj = 0V ' (2)

|

; ‘IJ}" — 2 Q (.‘L‘.Jj_. ]) Ko Vaj "'{— 2 (/2 (’l_; ;‘} Xaj—1 Voj—q

gt o o
Uj Uy = ny 5.

~

The subindices 2i,—1, 24, of + and vy in the product i phs
" "
are different of the subindices 27, —1, 24, of x and y in wit

if h== k. If the index systems ol two elements of the form

. ~
Oy LT

g g
S1 En
iyt xSy,

have no common indices the degree of their product is the sum
of the degrees of these elements. Therefore the zero component of

"

L=
;. W]
]:[. T

=1

(s 200
i’y “'z; .
/

is the product of the zero components of each factor

3
-

<

Equating the zero components of (1) we have

r r ’
(a, b) = ('w',-l‘l 'ze)l_l) ('::',‘2, I’L’J’.?) - (ZU;m, 'fﬂ,’;”‘).
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On the other hand the equalities (2) show that

=0 if w3 w;

(201, 20%)

( =0 if Wi == Wi

and therefore

=10 it e
7 ) .
& %) :!: 0 if a= b
[LEMMA 2. If in lemma Z e assumne that 7v,, and @}, stand
: 7 ma is also true.
for s;, or 7y, the lemr .
The proof is the same as before, but instead of (2) we have

H

20 (xaj—1) Q (gy) 20 P @05 e Xy Vaj

j — — 20 Q (v - 1) Q (#a)) —

I

I

Dy Vaj 1 FejVar— — (5 ) (27)
- ] i At == 200 () Vajoqy Vi
_ri,;'i_—;:t-l(r, (#aj—1) Feidzj T 2Q (vgs) Vaj g Vaj—y
g ]
ris; T Sy

In the proof of lemma 6 of chapter II we have defined by
induction ofl Ji a basis of the space of 21 dlfferent- indices. To
<implify the notation we had supposed there that the indices were
1,2, ...» 2k and had pointed out how to.deduce a basis for any
space of 2/ different indices from the basis of the space of indices
12 ..., 2nh. The bases so defined for the index spaces of any
<ystem of 2 ) different indices will be called the canonical bases.

We are going to recall the form of these bases and, at the same
time, we introduce a new notation which will be used later on
Let us assume that we know already the form of the element.::
of the canonical basis of a space of an index system formed by

9 different indices, 27 <h, Let 4, Ly er iy "BE 27 B

: Y
pers chosen among the numbers 1,2, ..., /. The ( '.1) Slemexts




e

€15 Cos -1 €, Of the canonical basis of the space of indices
(%)
iys%gy -.-» 1y €N De written as follows,

v.=1
i
u v, v . . <

Cr= “3:; Pl pE . pd. where o ., € K, (3)

— 27 1 2 L B 1 "7 e

‘J'._O

] X if Ve = 0
pi=1 "

- _}‘f‘k 1f Ve = 1

“and the sum extends over the 2 different j-tuples deduce from

(V15 Va5 «-05 Vo) letting v, = 0, 1.

If we change the meaning of p:: taking

S -fr'* ir Ve = {)

pE= . . (4)
£ g r’-k if Ve = 1
we get a canonical element of the space of indices 27, —1, 2 By iy
2iy—1, 2iy. This element will be denoted by C,.
Let i, <7/, < ... <1y, be the complementary set of SO S

with respect to 1, 2, ..., . Let us mulpiply each C, by each one of

the elements D,, g =1, 2, ..., 2*2/ deduce from Wyt Wil . WO
i — 27

© sustituting ;2 or v;; for each w;;. The elements C, D, form the

canonical basis for the subspace of the index family i, 4,, ..., iy,
which is a subspace of the space of indices 1, 2, ..., 2 i. The union
of the canonical bases of all the subspaces belonging to the diffe-
rent index families of the space of indices 1, 2, ..., 2 % is the cano-
nical basis for this index space.

It will be proved first that if the spaces of degree less than 2 A
have an orthogonal basis of non-isotropic vectors, the space of
degree 2 h has an orthogonal basis with the same property. This
conclusion will be reached through a sequence of lemmas.

Lemma 3. The subspaces of the same degree defined by two
different index systems are orthogonal to each other,

1 Bb—

Proor. The elements a and & of degree 2 /i are linear combi-
nations of elements

x:*_r?' .1:;=_r'3-‘ -r:"_x'z", g, 0, = 0,1; and Z g - 3= 24 (5)
:

The product of two elements of the form (5) is a homogeneous
element and it has degree zero if and only if both elements are
equal. If @ and b belong to two index subspaces with different
index systems the elements (5) which appear in the expression of
a do not appear in the expression of b. Therefore the component
of degree zero of the product ab is zero. Since

a b* = (— 11(”)n/), (@, b) =0.

It follows from this lemma that if we have an orthogonal basis
of nomn-isotropic vectors for each one of the index subspaces of
decree 2 I, the union of these bases is an orthogonal basis of non-

t=1

isotropic vectors for the space of degree 2 /.

Lemya 4. If the index spaces of degree 2 (h—1) have ortho-
~onal bases of non-isotropic vectors the same is true for the sub-
= - - =
spaces of an index system of degree 2 /i in which at least one index

appears twice,

Proor. Let k be an index which appears twice in a given index
system of degree 2/i. We consider the index system of degree
2(h—1) deduced from the given system of degree 2 i by leaving
out the pair of indices k k. If we multiply each element of any
basis of the subspace of the index system of degree 2 (1 —1) by
ap e We get a basis for the subspace of the given index system.
Let us denote by my;, 7 =1,2 ..., N the elements of an ortho-
gonal basis of non-sotropic vectors of the index subspace of
degre 2(h—1), i e, (m,m) =0 if it i, (m,m) £ 0. Since

[ . PSS - ’ T L £ e
i Xp Ve (B X0 R = Xp Vi Vi X m; = — 0O ()2 m; 115
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equating the components of degree zero of the right hand and left

hand expressions we get

=0 if iy
;

(m2; 25 ypy 185 25 Y2) = — 0 Q (x2)? (s, m2;) 6 it s
i i

+
I

which proves the lemma.

Now we need to find orthogonal bases of non-isotropic vectors
for the index subspaces of any system of 2] different indices.
Without loss of generality we can assume that we are dealing
with the subspace of indices 1, 2, ..., 2. We are going to consider
this subspace as the direct sum of the subspaces of the different
index families (see chapter II, proof of lemma 6).

Lemma 5. The subspaces of the different index families of the
space of index 1,2, ..., 2/ are orthogonal to each other.

Proor. Let @ and b be two elements of the canonical basis
of the space of indices 1,2, ..., 2%, belonging to two different
subspaces of the index families. Let & be an index which belongs
to the family of indices of the subspace containing b and does not
belong to the family of indices of the subspace containing a.

Let us express ¢ and b as linear combination of elements of
the form

L Oganiily (ﬁ}

where ¢, stands for wu, v;, #, or 55, =1, ..., . Then, in the terms
which appear in the expression of b, # stands for s, or v, whereas
in the terms which appear in the expression of a, #, stands for
Up OF 2.

On the other hand the antiautomorphism * takes the element
2t ty... 1, into (—1)*at, t,... t, for ¢, and ¢, commute if i &= § and
t* = —1t,, since f; has degree 2.

Then a b* = (—1)*a b is a sum of products and each one of
these products contains one of the following pairs of factors,
Hey ¥y Uiy Sk Uy 1% OF Ty, ¢ among other factors wich commute
with these ones. Since

Z&,e?’,{.:ﬂksk:t-k?‘;‘::y&jk:o ﬂb*=('—1)"db=0

and therefore (a, b) = 0,

[

Limma 6. 1f the canonical bases of the spaces of 2; different
indices, 2j <k, are orthogonal bases of non-isotr.opic vectc.urs,
the canonical basis of a subspace of anmy index family beh?ngmg
to the index system 1, ..., 2/t is an orthogonal basis of non-isotro-
pic vectors.
at the elements of the canonical

Proor. It has been seen th :
o 3 .. 1oy have the

basis of the subspace of the index family i, 1,
form C; D,.

It will be first proved that any tw
basis are orthogonal to each other.

o elements of the canonical
We consider two different

cases

et us suppose that the two elements n-revE; =.’Cr, “;c-,
where £, =4 ga- This means that if D Viopy 15
OFE 58y woe5tal the factor D, which has the _
is different for the two given elements,

Case I. I
and E, = C._,-’ D,
the complementary set

form zvjr gl oo Wil :
L 1 of the elements of the subspace of an index
hich appear in the factor C; have different

. which appear in D,. Therefore any C;

In the expressiol
family the 7 or S W
indices that the #y; OF Un

commutes with any Dj. Then,

D E:.: — C/ D (Cfl Dca)* == C’fr [)A'I D::’a C}i 1 C.fll F}: DA‘: D.x:r
Y1 R ' £1 .

he product C, C, is a linear combination of elements (5)

The CAE _ e A =

e only the indices 24, —1,2%,, ..., 21, — 1,24, may appear.

wie of these indices appears in the product of D, D ; there-
one s il

A e component of degree zero of E, E,* is the product of

th
o ts of degree zero of C, C; and D, Dz, that is,

the componen

{55 Bg) = (G 'C)UD,,. D).
Now lemma 2 asserts that

=0 if g %g

Dy B
P Dl 10 i g1=g,

’fhet'efOI‘e (EpE)=0 i g, 4.2,
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Case II. E, = Cf‘ D,, iiz = C_,2 D,. Since we suppose that
E, £ E, we must have f, & £,.

The C; are defined by (3) where the p,f have the meaning
given by (4) and if we take '

we get the element ¢; of the canonical basis of the space of indices
iys 1y ..oy 1y, SiNCe we assume that the canonical basis of such
space is an orthogonal basis of non-isotropic vectors, the com-
ponent of degree zero of ¢f, ¢, must be zero if f, & f, and different
from zero if f, = f,. In the product

1 % 1
=l f ¥, v N | o/ Y v
wi=(S e ) (3, 0 0)
e 4

— 2, i 9
)‘-_.0

we only get elements of degree zero when we multiply two terms
with the same set of values for v,, v,. ..., v,,. Therefore

E",‘
(€nn i€r) = Z wt o owr o (——p) ><
Vl STer e ‘u’ ‘I e )21 B =

. y (7)
. =0 if fiEf
><Q (%) - Q (%)) i +0 il fi=£ \

If we compute the component of degree zero of the product
Cr C; taking into account lemma 2’ and the equalities (2) we get
1 2

(Cf'ncﬁl)':z a;? vve Vgt a\{;z-..,-az'j (p::’ P::) '(p:Zj' P:_,‘:‘:) -

S,
N e o ' B
—(Z L, wE (=) )2219 (vsi-1) | ®)

=0 if f, =+ f
Qi) @ (Pa) Q(*) § Lo i 1 1

— 39 —
2J
for H Q (‘r‘-?r'g- -l) Q (2«".’,'&‘) $ 0'. and (T} shows that
=1
E";
N o =0 if L= f
>1 q_’| q.’g . (_ P) 1l .fl—|—.f_

— ) Yy T e

=0 if A

Therefore it has been proved that the vectors C, D, are ortho-
gonal to each other. It remains to be proved that they are non-
isotropic. This is immediate, for if

E=C/D,, (B E)=(C,,C)(D,,D,;

since (8) proves that (C,, (;) % 0 and lemma 2 asserts that

(De D) =0, (B, E) = 0.

Lemmas 5 and 6 prove that if the canonical basis of any space
of a system of 2j different indices, 2 < I, is an orthogonal basis
of non-isotropic vectors, the same is true for the canonical basis
of a space of a system of 2 different indices. If 7=1, u, and ».
form the canonical basis for the space of indices 1,2 and from
this basis we get by induction and substitution of indices the cano-
nical bases of all the spaces of 2 different indices. The -equaii-
ties (2) show that #, and », form a canonical basis of lion-isotropic
vectors. Therefore the canonical basis of any index space of a
system of 2/ different indices is an orthogonal basis of non-izo-
tropic elements.

If we determine now orthogonal bases of non-isotropic vectors
for each space of an index system of degree 2/ in which at least
an index appears twice, lemma 3 asserts that the union of these
bases and the canonical bases of the spaces of index systems.of
9, different indices form an orthogonal basis of non-isotropic
vectors for the space of D (f) of degree 2 1. Using now lemma 4,
it suffices to prove that the space of degree 2 has a basis with
this property. Since the element v, is non-isotropic, for

(e 2039 = — p Q () % 0,



-_ 60 —

the elements

BNy wibege W Ty =2 e By T

form an orthogonal basis of non-isotropic elements for the spare
of degree 2. Therefore we have established

TreorEMm 1. Let Q be the quadratic form associated to the
non-degenerate hermitian form f. Then the symmetric bilinear
forms (a, b) that hawe been defined on the spaces of degree r of
C (Q) induce non-degenerate symmetric bilinear forms on the
spaces of degree 27 of D(f), i =1, ..., .

§ 2

In chapter I we have associated to any unitarian similitude of
f an automorphism of C*+(Q), where Q is the quadratic form
associated to f. If the invertible element ¢ € C (Q) defines an inner
automorphism inducing in C* (Q) the automorphism associated to
a unitarian similitude S, then theorem 3 of chapter 1T asserts that
c €D (f). Therefore the automorphism of C*+(Q) associated to =
unitarian similitude induces in D (f) an inner automorphism.
Moreover it is known that such automorphism is homogeneons
of degree 0 and therefore induces linear transformations in the
spaces of D (f) of degree 24, i =0, 1, ..., n.

TreorEM 2. The linear transformation of the space of degres
2hof D(f), h=0,1, ..., n, induced by an automorphism of C+ ()
associated to a unitarian similitude is an orthogonal transforma-
tion with respect to the symmetric bilinear form (a, b).

Proor. Let @ and b be two elements of degree 21 of D (/)
By definition (a, b) is the component of degree zero of a h*.

Let s be the automorphism associated to the unitarian sirai-
litude S. Since s is homogeneous of degree o, it commutes with
the antiautomorphism *. Moreover & leaves K invariant ele-
mentwise ; therefore the zero component of (abh¥)® = g° (po)*
coincides with the zero component of a b*, which implies (a, b) =
= (a% b°). Hence the linear transformation induced by s in the
space of degree 2/ of D (f) is an orthogonal transformation.

gl = :

The quadratic form associated to -the bilinear form (g, )

| defined on the space D,, of D (f) of degree 2/ will be denoted
by Quu- 7

The mapping ¢, which takes the element U of the group of
{ unitarian similitudes of f, S(f), into the orthogonal transforma-
{ tion induced in D,, by the automorphism of C* (Q) associated to
U is a homomorphism of the group S(f) into the orthogonal
group O (Q.x). Moreover, since D (f) has been 'defin_ed as the
subalgebra of C*(Q) consisting of -the elements invariant under
the automorphisms of C*(Q) associated to the homotecies of #,
o, maps these homotecies into the identity of O (Q.,.). Therefore
by means of g., we get a homomorphism ¢, of the factor group
of S(f) by the group of homotecies into the orthogonal group
O (Q,»). Since the factor group of S(f) by the group of homote-
cies, which is its center, is the projective group of unitarian
similitudes P S (f), we get.

TuaeorEM 3. For h=1,2..,n—1, Y., defines a represen-
tation of P S (f) into the orthogonal group of the space D,, with
respect to the form (a, b).

It is not difficult to prove now that when K has more than
5 elements each one of these representations is faithful. We omit
here this proof since we will publish a more refined result in a
where the irreducible components of each one of these

paper ;
ations will be determined.
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