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THE S PI N REPRESENTATION OF THE 
UNITARY GROUP 

por 

~! AR I A .1. \V O NEN BU R GE R ( 1) 

RESUMEN 

Dada una forma hermitiana / no degenerada, definida sobre el 
cuerpo conmutativo F , y siendo el automorfismc involutivo aso 
ciado a / distinto de la identidad, se define una forma cuadrática 
Q asociada a f. E ntonces las transformaciones unitarias y seme­
janzas unitarias respecto a f son transformaciones ortogonales y 
semejanzas respecto a Q. La representación espinorial del grupo 
ortogonal definido por Q induce una representación del grupo uni­
tario definido por f. Llamamos a esta representación del grupo 
unitari0 su represent«ció11 espinorial. 

En el caso de que la característica de F sea cero o mayor que 
12 dimensión de M sobre F, se demuestra que la representación 
espinorial del g rupo unitario es completamente reducible y se ha­
llan sus componentes irreducibles de las que se determinan algu­
nas propiedades . La representación espinorial del g rupo unitario 
puede extenderse a una representación del grupo de semejanzas 
unita rias, obteniéndose para este caso la misma descomposición 
en componen-tes irreducibles . 

Flnalmente, el método usado para el estudio de la representa­
ción espinorial del g rupo unitario permite definir representaciones 
del g rupo proyectivo de semejanzas unitarias en g rupos ortogo­
nales. Es posible que estas representaciones puedan ser oótenidas 
también usando las componentes homogéneas del álgebra exte-

( 1) This_pnper is the lrans lnlio n o f t he nulhor's doctoral d isscrlation presented 
to the Univers ity of Madrid a nd written undertlrn g uidnnce of Professo r G. Ancochcn. 
The r~se(lrch \Vas supporled by the Fundnció n Mnrch. 
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rior del espacio M, pero nuestra definición nos proporciona mejo­
res medios para efectuar su estudio, que será llevado a cabo en 
tin próximo artículo. 

I;qTR ODUCT I ON 

The .Clifford algebra (4) is an algebra defined . by a quadratic 
form. If Q is a quadratic fqrm on the vector space M over the 
field K, we will denote the Clifford algebra of the form Q by 
C (Q) ; C (Q) is a n algebra over K. The definition of this a lgebra 
as well as the subalgebra e+ (Q) and the sludy of their properties 
can be found in [1], [5], (6), [11] and [15], being [5] the most 

complete study. · 
Y.l e will consider only the case of a space M even dimensional 

over K , i. e. (M : K) = 2 n. Then C (Q) is a ¡:entra! simp le al­
gebra over K of dimensión 2:!.11 and, therefore, it is isomorphic 
to a total matric algebra over a sfield R whose ccnter is K. The 
algebra e (Q) contains a subspace over K which is identified with 
the vector space M. Any basis of this snbspace is a set of gene-

rators over K. 
Let e be an invertib!e element of C (Q). Then e defines an 

inner automorphism taking the element b mto c-
1 

b c. The set o f 
invertible elements of C (Q) defi11ing inner automorphisms which 
leave inva riant the s11bspace M form a grottp which is called the 
Clifford g ro up. The transformations induced in M by these auto­
morphisms a re orthogona l tra11sformations wit h respect to Q. 
The mapping x. ,which takes an :lem~nt e of. the Clifford o-roup 
foto the orthogonal transformat1on 111duced 111 M by the inner 
automorphism defined by e is a homomorphisrr- of the Cliff ord 
group 011 the orthogonal group O (Q). The kernel of this homo­
morphism cons ists of the multip'.icative g roup of non-zero ele. 

ments of K. 
Since C (Q) is a simple algebra ali its irredudible representa­

tions a re equiva.lent. Any one of these representations, which ar .. 

called spin representations, induces a representation of the Oif~ 

ford group. 
e (Q ) has a n involutive an ti-automorphism leaving invariant 

the eleme nts of M. This anti-automorphism wilJ be denoted 
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by *. If e is an elemcnt of the Clifford group, e e* is an element 

of K ca lled lhe norm of c. 

Let / be a hcrmitian form on the vector space M of dimension 
IL over the field F. • Let K the subfield of F comisting of the ele­
menls i1l\'aria nt under the involutive a utomorphism J of F asso­
ciated to the hermit ian form. Then there exists a quadratic form 
on M considered as a Yector space over K such lhat the unitarian 
lransformations of M "ith rcspect to f are orthogonal transfor­
rna lions with respect to Q (cf. (12] and (17]). Of comse the con­

Yer e is nol true. 
\h/e take the subgro11p U (/) e O (Q) o f orthogonal transfor­

mations of Q which are unitarian transformations of /. The spin 
representation of ·the Clifford group induces a representation oí 
the subgroup t:. consisting of thc elcments of the Clifford group 
which are mappcd by x. into elements of U (/). We called this in­
duccd representation the spin representation of the unitary g roup 

and its study forms the main subject of this paper. 

J 11 order to find the irreducible components of the spin repre­
senlation of U (f) it is sufficient to know the structure of the 
algebra G over K generated by the elements of t:. . It does not 
seem easy to find directly the structure of G, so that we start 
de fining a subalgebra D (f) of C+ (Q). Then we show that, when 
the charactcristic of K is zero or greater than (M : F). D (/) j .; 

semisimple and we determine its simple components. 

In chapter 1I \\'e make a further study of D (f) in order to 
prove that it coincides with G. Therefore we can conclude that. 
when the characteristic of K fu!fills the conclitions mentioned 
above, the spin representa tion of U (/) is a direct sum of inequi­

valent irreducible representations. 

In [ lG] we have defined in C (Q), considered as a Yector es­
pace over K, a g radation with indices O, 1 , ... , (M : K). Then 
C+ (Q) is the sum of the subspaces of e ,·en degree and the Clif­
ford group is the set of invertible e'.ements which define inner 
automorphisms homogeneous of degree zero . Moreover the inner 
automorphisms of C (Q) which induce in e+ (Q) homogeneous 
automorphisms of degree zero are the automorphims of e+ (Q) 
associated to a similitude of Q. With respect to this gradation 
D (/) is a homogeneous subspace of e+ (Q) and if a similitude 
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of Q is a un itarian simiHtu_de :vi~h- respect to f , the aut omorphism 
of e+ (Q) associated to th1s s1m1htude induces in D (F) an inner 

a utomorphism. 
U sing these results, in chapter III we obtain faithful repre­

sentat ion of the projective group of unitarian similitudes of Q 
into ortbog onal groups. To do -this we define a non degenerate 
quadratic form on the subspaces of D (f) of degree 

2 i , i = 1 , 2 , ... , (M :F), 

a.nd consider the transformations induced in those subspaces b 
the automorphisms of e+ (Q) associated to the similitudes of ~ 
which a re unita rian simili tudes with respect to f. 

C HAPTER I 

We start this chapter recalling the definitions of hermitian 
forms and uni tar ian similitudes and, at the same time, we set 

d Otat ion T hese definitions will be g iven with the ge own our n. · . . • 

l·t needed for our purpose ; m [9] chap. I , §§ 5,6,9 the 
nera 1 y f ... 
reader can fi nd more general de imtions . 

Th ubalo-ebra D (f) of C (Q) is defined and studied, as wel) e s ::, 
as the involutive an ti-automor pbism induced in it by the anti-

automorphism·* of C (Q). 

§ 1 

Let F be a field of characteristic different from 2 and J an 
involuti ve automorphism of F different from the identity. T he 
elements of F '1/ ill denoted by smaJI Greek letters . Let 

K = )a/a.l=a , 

be the subfield of elements of F invariant under J. T hen F is 
a quadra tic extension of K obtained adjoining any element a such 
tha t 01 = - fJ and therefore 02 = p E K. 

L et M be a left vector space over F whose elements wilt be 
denoted by small Latin let ters. It is said t hat f (x , y ) is a her-
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mitian fo rm 011 i\'L relative to the automorphism J if it is a 
function with values in F satisfying the following conditions, 

I) it is biadditive, i. e ., 

f(x1 + ;¡;t,J') = f(,i:1 ,J') + 1(;1.:~, J' ): 

= f (:r, Y1 ) + f (x, y ~); 

II) sesquilinear, 

III) reflex i?e, 

f (.1· , J') = (./(J', x) )1 • 

lf S is a linear transforniation o.f M, u S will be the image 
oI i t E M under S. It is said .that the -linear t ransformation S is 
a uni tarian similitude of ra tio p. with respect t o f- (ar a similitu­

de of /) if 

/(x S , .J' S) = ¡i./ (x, y ) . 

When µ. = 1, the unitarian similitude S is called a unitarian 
transform~tion. Vi/e denote by T «+!lO the untarían similitudes de­
fined by 

which are called uni tarian homot!et ies . 
\tVhen f (.'\:, y) = O .far every y E M implies _,¡;= O. it is said 

that the form .f is non-degener ate. I n what follows M will always 
be a fini te dimensiona.! vector space over F and f a non-degene­
r ate hermitian form 011 M . 

Since M is a vector space over F , it ha an under lying struc­
ture oI vector space over K e F, and (M : K ) = 2 (M : F ) . 

Taking 

(.,¡;, y) is a 11011-degeneratc.: symmetric bilinear fo rm 011 M, con­
sidered as a vector space over K, associated to the quadratic 
form Q (.,¡;) = i (.r . . 1:). 
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A ny U11itarian similitude with respect to f is a similitud;:: of 
t he same ratio with respect ~o Q . T he unitarian similitudes of 
the form f a re the similitudes of Q commuting with the simili­
tude T defined by t~e unitarian homot ecy To (cf. [17]). 

L et C (Q ) ce .the Clifford algebrn o f the quadra tic Iorm Q 
and sv .x-

2
, . .. , .v2 11 ;:¡.n orthog onal basis of NI with res¡;ect to Q. 

If "'e consider C (Q) as a graded vector space, the elements 

0 < lt < 211, 

Iorm a · basis of, the subspace of degree h . As usual, we bave 
identified the subspace of ·degree 1 ,vith .the efements of M . 
e+ (Q) as vector space over K is the sum of the subspaces of 

even degree, 
It is kno.yn _tha t \Ye can associate t o any similitud~ of Q an 

autom~rphism of e + (Q) (cf. [9), pag. 72, [10), [ll)). A com­
plete definition of these automorphisms g iven in an unpublished 
paper by N. J acobson is rep roduced in [16]. It follows from the 
defi nit ion that such automorphisms a re homogeneous of deg ree 
zero with respect to t he grada t ion of e + (Q) . The automorphisms 
assoc-iated to the similitudes of Q, S and S' coincide if c: nd only 
if S' = S T CL , o. E K . Given any similitude S, there exist inverti­
ble elements of C (Q) which define inner automorphism~ of this 
a lgebra inducing in e+ (Q) .the• automorphism associated to s 
(cf. [16)) ; in pa rticula r, if S is an or thogonal t ransformation 
the inner autornorphism defined by any elem~nt of the Clifford 
group m apped by X. in to S induces in C+ (Q) the automorphism 
associated to S. T he mapping which takes· a simili tude of Q into 
the a utomorph ism of e + (Q ) associated .to it is a homomorphism . 

S ince auy unitarian similitude U with respect to f is a s imi:i­
tu de o f Q, we can associate .to U an automorphism of e + (Q~; 
in pa r t icular, if U is a unitarian transformation by its asrocia ted 
au tomorphism \\'e w ill mean the inner automorphism of C (Q) 
defined . by any element of the Clifford group mapped by X. , 

into U . 

DEFr::,.i1nox.- D (/) is the subalgebra of C+ (Q) consis ting of 
the elemen ts invar iant under · the automorphisms of e+ (Q ) as­
soc-iated to t he un itarian bomo~ties . 

' . 
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D (/) is an algebra over K and it follows from its definilion 
that it is a homogeneous subspace of e + (Q) considered as a 
graded vector space. 

lf x 11 .x-2 , ••• , .x,. is an orthog onal basis of M with respect to 
f, the elements 

form a n orthogonal basis with respect to Q . When o. + ~ 6, 

~ =t= O, is an element of F of norm 1 , i. e. , 

let U, be the quasi-symmetry defined as follows, 

and therefore 

LEMMA l. The automorphism of C (Q) associa ted to the uni­
tarian transformation U is the inner automorphism defined by 

the element 

P ROOF. Since C (Q) is generated by its elemeuts of degree 1, 

it is snfficient to prove that on .these elements the automorphism 
associated to U, coincides with the inner automorphism defi­

ned by 111. 
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The inverse of u 1 is 

-1 = ( 2 (1 + a )-J ( 
2t i P.'• 

1-'-

= ( 2 (1 + a) )-J ( (1 + at _ ) = ( 2 (J + a) )-
1 

• 

r,2 r,2 r f,2 

1. + 2 a+ a2 - P r,2 = 1 
r,2 s ince 

Since 111 commutes with !1,"¡, y1 for j =l= i 

/(¡ I .-r:¡ ll ¡ = .l j = .r:¡ U;; 

As to .1·1 and y,, 

., A• 1 a· - P ,,- = . 

(
2.(l +a.) ) ·- l ( ~ª (t + ,1.) ,. 2 (l +a)px,•) = 

1, - l)l•U·= -~-- f,2 .J, + f, 
V • I t P.'> J 

f 1J· 

= U)' i + f, p X; = )'¡ LJ;, , 

which preves the lemma. 

The unitaria□ homot~t y defined by a. + ~ O, if N (~ + ~ o) = 1, 
j<¡ equal to the transformation u = ul u~··· Un and th e automor­
phism of .C (Q) associated to U coincide1, with the inner auto. 
morphism defined by 1t = 1t1 i t ~ •.. 1tr. . 

First of all we are going to study the un itarian homof'ecies 
defined by elements of norm J. We take any element of the form 

- 9 -

µ. + fJ and divide irs square µ.~ +? + :? µ. O by its norm µ.2 - p : 

so we get the element of oorm 1, 

Then 

t + G( 2 112 

= --=11 
~ 2 11 ' 

and the automorphism of C (Q) associated to the unitarian homo­
t'ecy U coincides with the inner automorphism defined by 

u = IT (11 + Q (.:1,;)- 1 .1·,J1;) =p." + 11"- 1 r1 + ... + µ"- •· r,. + ... + r,, 
· = I 

where 

r,,:._ ¿ Q (.a:,.,)- 1 Q(x;2)- 1 ... Q (x;¡)- ' .r;1Y•·1···x,-,,J1;1,, 
l1 < r', < · · · < 1·h 

and the sum e.xtends over ali combinations of /¡ indices. 

LEMMA 2. ·when K has at least n elemenrs, the necessary con­
dition for an element e E e+ (Q1 to belong- to D (/) is that it com­
mutes with r,, ·i = l, 2, ... , n. 

P ROOF. By definition D (f) is elementwise invariant under the 
automorphisms of e+ (Q) associated to the homo~cies of ·¡, 
and therefore, in particular, D (!) is elemenhvise invariant under 
the automorphisms associated to the homotecies of norm 1. This 
means that the elements of D (f) must commute with u for any 
value of µ, E K. Since (J,11 and r,. belong to the center of e+ (Q), 
the elements of D (!) commute with 

· 11" 1 r, + ... ¡1-r,,_ i forevary p .. EK. (1) 

When K has at least 11 clements if we g ive to (J, n -1 different 
values and different from zero, the e.x.pression (1) will give us 
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ti - 1 elements belong ing to the cent ra lizer o f D (f) in e+ (Q). 
These elements belong to •the vector space over K g enerated by 
r 1 , r

2
, ••• , r ,._1 and are linearly independ\;!nt since the deternúnant 

of the matrix fo rmed by the coefficie nts is a determinant of V an­
deermonde different from zero . T herefore tbe 1·1 are linea r com­
binations of t hese elements and commute with the elements 

of D (f) . 
Given a homot'~éy T ~+~ O, where "· + ~ O has a ny norm and 

a :j= O, s ince the automorphism of C+ (Q) associated to this homo­

tecy is the sam!'! that the one associa ted to 

we can suppose t hat ~ = l. Let 

N (a + O) =a.2 -p=o, a nd P =K(lf"f). 

We cons ider M as a vecto r space over K and make the exten­
sion MP = P ® K M, so t hat MP is a vector spate o ver P. If we 
call Üp the extens io n o f Q to MP, it is well know11 tha t 

(d. [5] II.1.5); when .\1'3 E K, P = K and .C (Q) = C (Q p) . E very 
simili t ude S of Q can be extended in only one way to a similitude 

s OÍ ºP• 
By lemma 1 we know tltat the automorphism of e+ (Q P) asso-

ciated to the orthogonal transforma tion 

V u (1. , , + 1 y ·· 11 • U·=-ª-JI·+ p ~· . ,,,; ,- = -Vif .v ,- 1/ a ,, _ , , 'ti a , ¡/ f -~.- , 

coincides with the inner a.utomor-plúsm defi ned by 

,v-
1 + ª' o r.::- . 

1
~ + Q (x-,-)- 1 x ,-y,-= 11 o + a. + Q (:r,-) - 1 :r;y,-. 

1, o 

l1 -

Therefore the a utomo rphism associa ted to U = U , U 2 •• • U ~ is 
the inner automorphism define<l by 

11 = U ¡ 112 ••• 11,, = (lí a+ a)"+ (V a-+ a)"-• r. + .. · 
+ (Va+ a)"- .- ,.,. + ... + r,, . 

On the other batid the a utomorphism of e+ (Q p) associated 
to U is t he same that the automorphism associa ted to U '=UT 1,3 . 

tha t is, 

,1· ,- U' = a. :1:,- + y,- ; y,- U' = ª J'; + ¡, .r;; i= l,2 , ... 11. 

This mea ns tha t the element 1i E _e+ (Q r) defines an inner auto­
morphism of e+ (Qp) which induces in C+ (Q) the automorphism 
a ssociated_ to the homotecy T <t +O· Therefore the elements of 
e+ (Q) which commute w-ith the r, are left invaria nt by t he auto­
morphjsms associa ted to the bomotecies T <t +0, hence t hey be long 

fo D (/) . W e have proved then . 

LEMMA 3. T he conditio n of lemma 2 i!- also sufficient. 

W hen J o EE K it is easy to find the element of (:+ (Q) which 

defines the same inner automorpbism that the one defined by u. 
Far, since r,. is in the center of e+ (Q), u defines the same inner 

a utomorphism tha t 

Taking in account that 

we hnve 

v= u(I + ( u.-pl / f r r,,)=(a+ Va)"+(a- Va°)" + .... 

+ [(a+ Va)" ; + (a - 1ra)" - .-] r.-+ ... + 2 r,,, 

ther efo re V E e+ (Q). 
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Since every element of C (Q) which comm uLes ,, ith r" belongs 
to C+ (Q) we can define D (f) as the centra!izer of the elements 
r1, r2, ... , rn in C (Q). 

L et us suppose now that K has characteristic p > 11, o r zeru . 
If we take s = 1·/, h ~ n, s is a linear combination of the 
r i, .i = 1 , .. . , h. Moreover the coefficient of rh in s is diffe r ent 
from zero, beca use h ! =!= O in a field of characteristic zero or 
p > 1, -:::::,. h . Therefore if a n element commutes \\ ith r, it commu­
tes also w ith r 1, s ince the r 1, i = 1, 2, ... , n, ar e linear combina­
tion of powers of r, . \,VJ1en the characteristic of K is z.er o or 
p > n. K has more tJ1an elements, hence we car1. stablish 

LEMMA 4. If the characteristic of K is zero or g reat<!r t han 
(M : F), the algebra D (f) is the centralizer of 1·i in C (O). 

§ 2 

N ow onr p r oblem is .to find a su itab!e repre, entation of 
e (Q) so that we can determine the centraliz.er o f rl in e (Q ) . 
.i. e., the a lgebra D (/) . \h/e wi.Jl make use o í tensor products 
whose properties can be studied in [3]. 

As befare we suppose that Q is the quadra tic form a ssociated 
to the n on degenerate hermitian for / defined o n the vector space 
M over the field F = K (O) a nd that x 11 .-i-2 , ••• , .-i-,, is an o rthogo­
nal basis of M w ith respect to f. Then we know that 

.x;, }';= O :r; , i =1,2, ... ,71 (2) 

is an or thogonal basis with ,respect to Q. 

'vVe consider M as a ,·ector space oYer K, make the exten­
sion MF = F ®K M and identify 1 ® .i: with .v. T hen the ele­
ments (2) form an orthogonal basis of M F with respect to QF. 

The algebra C (Q) can be expressed as a tensor product o f 
quaternions . o\~er K. V..7e defin e each one of these quat . rnions 
by a bas is of the type J , ·i, j , k. We have then 
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wher e 

(

i- 1 ) 
= II Q (.x1,J- l :Y¡,y;, ;i;¡, 

/ , = t 

Therefo re 

is a lso a tenso r product of quatcrnio ns, but now the quaternions 

a re taken o\·er F, that is, 

Since 

is a square in F , there ex'Ísts an isomorphism of each one of 
these quaternions onto the a lgebra F 2 , the total algebra of 2 x 2 

matrices with entries in F. 
Taking a suitable isomorphism , the element 

,yhose square is egua! to 1 is mapped into the rnatrix 

If we denote by e,1, e,~, e/ . e~2 the matrk units 

l 
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In the algebra 

we wiU denote by 

U,.h , . /,! , ... , t, ,,, 
nr

1
• ,n

2
, ... , m" 

the elements of F~., defined by 

lt¡ , 111 ¡ = 1 , 2 ; j = J , 2, . . . , 11 • 

It is readily seen that the 22 11 elements u ~'.: · · - ~~ forro a set of 
1 .. . " 

matric units for F
2
,.. Let us order the 2" sets 

p; = (m 1 1 /Jl2 1 ••• , lll,,) , 

m = l, 2, in such a way that .the set with s I e lements equal 2 
preceeds the set with s2 elements 2 if s, < S::, and among the 
sets w ith the same number of 2 we take any order. Vve make 

if the sets Pr = (m11 'lll2, ... , 111.,.) and P , = (h¡, /1::, ... , /1") are in 
the r-th and s-th places . respectively, in the given order. 

With the chosen bases for 

and F~., the element 0- 1 Q (zr)- 1 x, y, has the form 

,. 

where &tr is 1 if the set P r has a 1 in the i-th place and &1r is -1 
if it has a 2. 

Then the e lement 
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The coefficient ¿ e:1, of u ,• is a sum of elements 1 and -1 
i = 1 

and the number of -1 is the number b of elements 2 in lhe 
set P , . Therefore the coefficient of ti ' , 1s n - 2 b and 

is represented by the diagonal m atrix 

B = diag (11, 11 - 2, n - 2 , • .. , 11 - 2j, • • · , - n) 

(
") •) . . O 1 where there are j elements equal to n- -J, J = , , ... , ti. 

Then the element 

1s represented by the matrix 

B' = diag (11 O, (u - 2) O, . . . , - 11 O) 

whose characteristic polynomial 1s 

[f ] (".) . (';) [i ] C'1) 
II (x _ (11 - 2 i ) o) ' (:1- + (11 - 2 z) o) = ;Q (x~ - (n - 2 z): p) 
i = O 

[ 
1t ] if n is odd, where 
2 

denotes the greatest integer in 
1l 

2 
and 

,' = O 

if n 1s even. 



.. 
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The matrix 

wbere 

( 
O 1

0
) 

U.;= (¡¿ - 2 it p 

and a.r appears ('~) times ii i =!= _!!__ and -
1
- ( 

11 
) times if i = 11 

z 2 2 n/2 2 
is similar to B' since it has the same elementary divisor:; . Mo­
reover B" is a matrix with entries in K . 

Let us s tudy now tbe simple alg ebra ~ (Q ) whose center is 
K, since (M : K) has even dimension. W e have then 

where R is a division alg ebra of center K. 
On the other band we have seen that 

which shows that F is a splitting field for R. T herefore 

(F : K) = 2 is a multiple of J(R : I()(see [2] co r. 8. 3 . C) . T his 
shows that either (R : K) = l. R = K or (R : K) = 4 a nd R is 
a quaternion clivision algebra over K . 

It is immediate to see tbat both cases are possible. vVe a re 
going to consider then separately . 

Case 1: R = K, C(Q) ~ K~"· 
W f! ha ve seen tha t in C (Q p) ~ F 2 the elem1:11t 

can be represented by the ma tr ix 
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Let B"' be the 1mage of r, in a representation of C (Q) onto 
K~,, ; .8"' will be also the image of r 1 in a repre~entation of 

Since there exists a representation of C (QF) onto F~" which maps 
r, into B" E K,". B" is simi lar to B'" in F 2 ., and therefore it is 
a lso similar to B" in K 2". Hence there exists an isomorphism of 
·e (Q) onto 1(2 ,, which maps r 1 int.o B". 

N ow we have to find the centralizer of 'B" in K ~,, . We con­
s ider K~,, a s the a lgebra of linea r tra nsformal;ons of a vector 
space N over ' K of dimension ~". As befare we suppose that the 
characteristic p of K is O or grea ter than n . 

The t ra nsformation JJ" is completely reducibie. Its irreducible 

compone1~ts belong to 1 + [ ; ] classes of non equivalent irreduci-

ble t 1·an sfo1·111ations defined by the matrices a. a. a. 
- º' ¡, .•. , [ :l 

L et us consider r as a module over the ring A generated by 
the transformation B" and the scalar multiplications and express 
the A-module N as a direct sm1.1 

[ /{, ] of its 1 + 2 homogeneous components. These cornponen ts N 1 

a!' A-modules are isomorphic to vector spaces cver F = K (6) of 

dimensio~ (':.) fc, r i= O, l , ... ,r _!; ] if n is odd , a nd i=O, 1, .. . , ; -1, 

i t n is eYen, for in this case the homogeneous component N ,,12 , 

d1rect sum of the · irreducible subm odüles correspo nding t o 

a - (º 0
0
), is isomor1)hic to a vector space over K of dimen-,,¡, - o 

sion ( 
11 

) · 
11/2 

The centra\izer D of A 111 the ring of endomorphisms of N 
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considered as an additive group coincides with the centralizer in 
the algebra of linear tra!]sformations K 2 " sine~ A contains the 
scalar multiplications by elements u E K. This means that 
D ~ o ·(j). Moreover D as an algebra of linea1 t ransformations 
is completely reducible and has the same homogeneous compo­
nents that A (see [14] theorem 6.1.1). Thereforr~ 

D :::::::·D (f) ::::::: ¿ EB F ,, if n = 2 r + 1, and 
i= O C) 
r - 1 

D = D (f) = 2 EB F,, EB K,. if ·1t = 2 r. 
í = O C) C) 

In both cases the dimension of D (f) over K is equal to 

Case 2 : C (Q) ::::::: K, .. - 1 ® K R, where R is a quaternion divi­
sion algebra over K. By Wedderburn theorem far finite fields 
this case can occur only when K has an infinite number of ele­
ments. 

Since F is a split ting field for R • and (F: K) = A/ (R: K), R 
contais a field isomorphic to F (cf. [2] th. 8.3.A (3) and th. 
7 .3.C (4). We denote by i1 the element of R such that i 1

2 = p. 

There exists an isomorphism of R considered as an algebra 
over K anta the subalgebra over K of F 2 with basis 

( 1 O). ..,. ( O O) (·º 1) ( O O) 
O 1 ' L¡ = O - O ' a O ' - a O O 

where a E K is such U1at there ex ists an element i 2 E R which sa 

t isfies Í2
:i. = a., i1 i 2 = - i2 i 1 . 

Using this repr esentation of R and taking 

u i<~- 1)+ s::::::: e~® e', i,j = 1, 2, ... , 2" - 1; r, s = 1, 2; 
2p- J)+,. , ,. 
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as ma tric units we ,get a representation of 

• C (Q) ::::::: K2,,-, ®" R 

into a subalgebra S of F z" • 

If we adjoin1: to this subalgebra the element 8 I~~ E F 2 ~ , where 
I 2 " is the unit matrb.:, we get the algebra 

It has been proved befare that there exis ts a representation 
ot C (Q") onto F 2 .. which maps r 1 into 

B' =diag(nO, ... ,(u-2z)O, . . . , - n O) 

and therefore r 1 can also be represented by the matrix similar 
to B' 

B" = diag (n O, - 11 U, ... , (n - 2 z) O, - (n - 2 z) O, .. . )= 

= diag(n i¡ , (n-: 2) i~, .. . , (11 - 2 i ) ii,, .. ) 

where ,there a re {J blocks of the form 

. -: ((" - 2 i ) O O ) (u- 21) tl = o - (11 - 2 i) o 
and 

J ( 1L ) 

2 n/2 
if 

• 11 
l=-. 

2 

if 
n 

i ± ­' 2 

Let E be the image of r 1 in a representation of C (Q) anta 
S e F 2 ... Then E will be also the irnage of r, in a i:epres.enta­
tion of 

The.r.efore E and B" a re similar and there exists an invertible ma­
trix M such that 

B" = ·ME M- l ; (4) 
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Let us write M m the form M = M1 + O l\1[ 2 , where 

• 
M1, M2 E S:::::: K2"-I ®K R. 

Substituting this expression in (J) we get 

where 

B"M1 ,MEES 

and 

Therefore 

B" M1 = M1 E and B" M! = M~ E 

and in general 

where a,
1 

and a2 are iudeterminates . 

The determinant of ª1 Ml + ª2 M2 is a homogenepus polyno­
mial in a

1 
and a 2 of degree 2n and not identically zero since far 

a
1 

= 1 and a
2 

= O is different from zero. Since K has infinite 
elements , there exists value Ap A2 E K for at> a: such tha,t 

ther efore 

Hence r
1 

is mapped into B" in a suitable representation of C (0) 
onto S e F 2 ... 

In the representation of 
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onto S that we have defined first, B" 1s the image of P ®K ( 
where 

P = diag(n, u - 2, ... , ,i - 2 i, . . . ) E K2 .. - , 

a nd the number of elements n - 2 i is ( 
1
;) for any i, i. e., 

• /l • 11 
1f n is odd and for any i =I= 

9 
if n is even, since for 1, = - the 

- 2 

m1mber of elernent equal to n - 2 i = O 's .2._ ( ,i ) . 
~ 11/2 

T herefore in this case the al'gebra D (f) ~ hich is the centra-

1izer of P ®K 11 in S ~ K,.,_, ® R has the fo llowing structure, 

D (/) ~ ¿ E9 F ,, , ir 11 = 2 r + 1 . and 
i = O (,.) 

, - 1 

D(f) :::::: _¿ EB F E9 R , if 11=2r. 
i =,I (';) ~ ( : ) 

As in case 1 the dimension of D (f) over K is 

± (1~ )1 = ± ('~) ( ~ .) = (2 "). 
¡ = 0 t ,- = O I ll l 11 

Wr: sum up these results in : 

THEOREM 1.-Let f be a non degenerate hermitian form on 
the vector space M of dimension n over ·the fielc.1 F , J the involt1-
tion associated to f and 

K = 1 a.J a' = a, u. E F ¡ =t= f'. 
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Then if the charateristic of F is zero or gTeater tha n n, t h e a lg e ­

bra D (j) has dimension. (~:
1

) o,·er K , and 

D (j) ::::: ¿ EB F n , if 71 = 2 r + 1 , 
; =o (,.) 

r - 1 

D (j) ::::: ¿ EB F " EB T . if u = 2 r, 
; ,,, o (,.) 

where T can be e ither K(:) o r R-H:) ' R a quaternion d ivision 

algebra over K. 

§ 3 

Now that w e kno w t he structure of D (/) when the ch a r a cte­

r1stic of F is O or g reater than (M: F) we see t hat in a ny o f t h e 
p ossib le cases the dimension over K of the cer.ter o Í D ( f) is 

11 + 1. Ther efore the cen ter is the vector spacc over K w ith basis 

1, r
11 

r
2

, •• • , ,-
11 

which coincides wi th the a lgebra over K generated 

by 1 and 1·1 • 

The involutive antiautomor phism of C (Q) * leaves invaria nt the 
homoo-eneous elements oÍ degree 4 1n o r 4 m + 1 a nd takes the 

b 

elements of degree -! m + 2 an d 4 m + 3 into their o ppos ites . Sin-
ce D (/) is a homoge neous subspace of C (Q) such antiautomo1-­

plúsm induces an antiautomo rphism in D (f) whic..h we a re g o ing 

t0 denote a lso by *. 
I - 1 

Let us ta ke an i omor phism e of D (f) onto 6 EB \ •;) if 

11 = -J.r -:- L an<l onto 

r - 1 
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if n = 2 r. If e E D (j) v.,-e calJed eº the spin representation of e; 
the element r"1 must be equal to 

r-1 

if n = 2 r -1 or 1~ = 2 r , o r to a sum obtained from ~his one by 
substitu"ting - o for sorne o. The antiautomorphism ;.:. of D (f)_ de­

fines an antiautomorphism in the SJ?in r epresentation which we 
still denote by -:1- and it is defined by (eº)*= (c•:1-)0

• 

Let y be the a ntiautomorphism of the spin representation of 

D (f) which takes a ny matrix belonging to F(;) into its conjugate 

transpose with r espect to the a utomorphism J of F and a matrix 
belong ing t o T into its transpose if T = K ( :.) an<l into its conju-

ga te transp ose with respect to a ny involutive an tiautomorphism 

i ' of R leaving inva riant t he elements of K if T = R ¾ C). 

The pr ocluct of t he antiautomorphisms * and "'l is an a utomor­

phism OÍ the ~pin r epresentatio n of D (f) w hich leaves invariant 
the elements 1 a nd r1º, for, since r 1 has clegree 2, 

Hence the cen ter of the sp in r epresenta tion oÍ D (f) generated 

by 1 and r 1 is left invariant element\\"-ise by th::- automprphism. 
T herefore, since D (f) is semi-sim ple. this a utomorph ism is inner. 

Let 

[:) 
P= ¿ EB (P);, 

i = O 
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ii n = 2 r + l and 

be an elernent which defines the inner automorphism *y of the 
spin representatio~ of D (j) . Then, for every 

[i ] 
a"_=A = _¿ EB(A);, 

i = O 

[;] 
(a0 )* T = A'" T = P - 1 A P = ¿ EB (P);:-- 1 (A); (P), . ' 

,·=o 

If we denote by Q = L EB (Q), the eleme nt p,- = L ffi (P),\ 

[;] 
A*= Q AT Q- 1 = _¿ ffi (Q),-(A)J (Q);:-- 1. 

i =O 

It is a well known question to show !hat p c:an be chosen in 
such a way that the (Q), are either herm"iti~n 0 ,- skew-h~rmitian 
matrices w ith res_pect to y. For, since * is an involutive antiauto­
mor phism 

i 
A = (A*)* = (Q ATQ - 1)"' = Q Q-·, Á QT o', 1·= 

= 4 EB (Q)¡ (Q);:--T (A),- (Q)J (Q);:-- 1 = ¿' ,ffi ( A);, 
' ' i 

that is , (Q),,. (Q) ,- 1 is ~ c~ntr~I element "O( the sii-nple a lgebra ·,:~ 
which it belongs. Th1s tmphes (Q),,. = e (Q),, w h e r e & E F if 
(Q), E F(;). and e E K if (Q), E T. 

If the ma trix (Q), is not skew-hermitia n · h w,t respect to ,, 
i; ::f:: - 1 a nd therefore 

(Q),-+ (Q)] = (1 + e) (Q),-
1 

is a hermitian ma trL, with respect to r a1

nd ¡h~s' a·n ' invei!s'¿~· Mo 
re o ver (Q) , and (1 + e) (Q), define the same inner automorphism. 
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If (Q )1 is a skew-herm1t1an matrix, let us sup pose 
1) (Q), E F. Then O (Q ), is a hermitian m atrix and defines "tbe 

same ínner a utomorphism that (Q), . 
2) (Q), E Rf C)'Then instead of defin ing the a n ti-automorphism 

índuced by y in R-HJ by the conj~1gate transp ose with respect to 

the im·olutiYe an t iautomorph ism J' we define it as the ant iauto­
morphism taking any element of R ~-( ") into it s conjuga te transpose 

2 , 

wit h r espect to the involutive ant íau tomorphism J" of R defined 
a s follows, bJ" = a-: 1 bJ' a- for any b E R, w he re a. E R is such· tha·t 

a'' = - a,. H ence we have now 

a•"=-n, b1' = a bl'' a - 1 

and 

(A);• = (Q),. (A'\ (Q);- i = (Q),. a (AJ"}; a- i (Q);-1 = l 
= (Q),. a (A); a - 1 (Q);- 1, ~ 

{7)-

where (B)' stands for the t ranspose of (B). The matrix (Q), a is 
hermitian with r espect to the new y, for 

( (Q),. a )1 = ( (Q)~ a f = - a a- 1 (QI')~ a= (Q),. a 

t aking into account that (Q1t = - (Q) ,. But (7) show s that for 

this y (Q), a is the matrix which replaces (Q), . 
3) (O), E K . T hen ther e does n ot exjst a symmetric matrix 

..., C) 
which can replace (Q) ,. 

W e have p rove then . 

T HEOREM 2. Let us as<ume that f and F fulfill the conditions 
of theorem l. Then the antiautomorphism * of the -spin represen­
tation o f D (j) has the foll owing form, if the ma trix 

[ ; l 
A=¿ EB(A), 

i =O 
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belongs to the spin representation , 

[ ; ] 
A*=¿ ffi (Q); (A); (Q);:- 1 = Q AT Q 

; = o 

w here (A)1_-r is ~he c~njugate transpose of (A)1 w ith respect to the 
auto_morpht~m t~entity, J or an involutive antiautomorphism of R 
leav1ng K mvanant elementwise if (A)1 belongs to K F _ 

. C) ' C) º· 
R 1 (") , r espect1vely. :iVIoreover the matrices (Q) E F h • 

'ii" , 1 (~) are ermt-

tian with respect to y, as well as (Q), E R under ' ·t bl h • +C) a su1 a e e 01-

ce of tbe a ntiautomorphism of R. On the contrary if (Q),. E K 

(:), 
(Q), can be either symmé tric or skew-symmetric. 

In chapter II § 2 we will see w hen (Q), E K 

and when skew-symmetric. (:) 

1s symmetric 

If ali the (Q)1 are hermitian "th th 
wt · e possible exception of 

(Q), E KC) which might be skew symmetric we call 

[f ] 
Q = ¿ EB(Q); 

,·= n 

matrix a/isociated to the antiaut0,,11or¡,hi·sm * · ,. · m _the representa-
tion a. 

L et us take a diff erent isornorphism e/ of D (f) onto 

r - l 

~ ® F(;) 

if n = 2r-J and onto 

if n = 2 r. Then each component of the matrix aº' = :E EB (A)1 1s 
similar to the corresponding component of a" = :E EB (A), or, if 

- 27 -

(A), E F(;) might be similar to the conjugate of (A), with respcct 

to J. That is, 

(A),.= (N),. (A),. (N)-; 1 if 2 r ~ n and 

a.nd for any other i either 

(A),·= (N),· (A), (N)¡- 1 

or 

where (N), E F(;} 

We denote by (At ,- tbe matrix (A)1 if (A.)1 is similar to (•A),, 
' 

(A)~,- = (Ai), if (A), is similar to (A1 )t and make Aª = l: l'.]3 (A):.-, 

where (A)Er = (A), if 2r = 111. Then , 

aª'= A.= NA" N- 1 = ¿ EB (N),- (A);,-(N)¡- 1
; AT = N- T A"T NT and 

(a*)0 ' =A*= N (A*)• N- 1 = N Q• AT• Q-• N- 1 = N Q• NT N·- r . 

. NT NT N- T Q-• N- 1 = (N Q· NT) (N- T A"T NT) (N Q• NT)- 1 = 

= (N Q• NT) A,T (N Q' Nr)- 1
• 

If (Q), is hermitian with resp ect to y, (Q)!.- is also hermitian 

Therefore N Q" N-r is a matrix associated to the antiau tomorphism 
* in tbe representatiorf cr'. By choosing a suitable a' the matrices 

(N), (Q)~,- (N)t-r will be d iagonal matrices if 2 i =!= n : for 2 r = n, 

e:, is t he identity a nd therefore (N), (Q)~ (N),-r a nd (Q),. are co 

g~edient relative to y (see [13] , p. 149). 

Let u s suppose that Q is a matrix associated to * in _,;uch a 
representation. Then we see that a matrix asso,ciated to * in any 
other spin representation is a direct sum of matrices cog redient 

to the components of Q r elative to y since (Q):,. = (Q)1 if (Q), is a 

diagonal 1-Íermitian· matrix . 

\ 
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.CHA PTE R II 

In this chapter it will be pro,·ed. that D (f) is tbe envelopping 
algebra over K of tbe elements of the Clifford group m ap ped by 
x into the unitarian transformations of f. Then the s imple campo 
nents of the spin representation of the unitary group w ill be kno w11. 
As befare we assume that the characteris tic of F is zer o o r o-r ea te1· ;:, 

than (M : F) and that f is non degenerate. 
F irst of alJ we compute the dimension of the subspace of D (f) 

of degree 2 lt , /,, = 1, 2, .. . , n. It wi ll be always s upposed t bat the 
elements .i-1> .i ·2 , •.• , x ,, for m an orthogonal basis for f a nd t hat 

y,= O.x-1 • 

§ 1 

T he elements 

where E;, 'i; = 0 , 1 ( 1) 

a nd ~E; + ~~,.= 2 h, 

form a basis for the subspace of C (Q) of degree 2 h. L e t us write 
in the order in which they appear in the ex pression (1) t he s ubindi . 
ces of the elements w ith exponent l. We g et the n for each e lemen t 
of the basis a set of 2 h numbers between O and n + l in no de­
creasing order and w here each number appear at most twice. We 
,'V'ill cal! the se t of 2 h numbers deduced from a n elem ent of the 
form (1) the index system of such element and will say t hat the 
system has degree 2 h. 

Let us divide t he set of elements (1) of degree 2 /1 into subset:; 
with the same iodex system. W e cons ider tbe v ector spaces over 
K generated by each of these subsets a nd get in ti1is form a de ­
composition of the subspace of C (Q) of degree 2 h in a dire ct 
sum of subspaces which will be calJed the subspaces of the in dex 
system or index subspaces. Of co11rse thi s decompos ition depends 
on the chosen orthogonal basis . 
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\.Vhen /¡ = 1 the elements 

i, j =l , 2, ... , n. ; > i 

form a basis of the space of degree 2 of C (Q). 

The subspace of the index system .¡ i . i = 1, 2, . .. . n, i. e ., tbe 

subspace gene rated by x , }', belongs to D (f), for i~ is obvious that 

s 11ch element comm11tes with 

7' 1 = ¿ Q (.1';)- I X ;.11; 

; 

and ,. ben lemma :~ of chapter I asserts that it belongs to D (f). As 
to the elements of the index space i j , i < j . we are going to find 

their imag es unckr tht a utomorphism of C (Q) of order 2. -ro, asso­

ciated to the homotecy T of ratio - p. Vve have 

(x ; y¡)T.º = - p- 1 (x; T) (y¡ T) = - J' ; .x¡ ; 

(x;y¡)T.~ = - p- 1 (.1'; T ) (z¡ T ) = - p- J )'; Y¡ 

and since -ro has o rder 2 , 

Therefore the eJemenls 

a re left invariant by the automorphism -ro a nd the elements 

are taken by , 0 into their opposites and hence they do not belon!; 

to D (/) . 



.- so -

Let us see now that u 11, v,1 are invariant under the automor­

phism "ix +PO of C (Q) associated to any homotecy T « +a o. W e h ave 

u~.;+po = (,"t";y¡ - y;z¡)'a+po = (a2 - r,2 p)- 1 ((a Z; + f,y,-) (ay¡+ p f, x¡) -

- (ay;+ p f, ,t:,-) (a z¡ + f,y¡)) = (a2 - p f,1)- 1 ((a2 - p r,2) 

- (.x;y¡ - JI; z¡) +(a~ -J a.) (p X; .t:¡ + y;J'¡)) = 

V~~ + po = (.x; z¡ _ p-1 } ' ;J'¡)'a+po = (a2 _ r,2 p)- 1 ((a z,- + f, y;) . 
' I 

. (a ;I:¡ + f,y¡) - p- 1 (a.y;+ p f, X;) (a.Ji¡+ p f, .:t:¡)) = 
= %; Z¡ - p- 1 J' ;Y¡ = V;¡. 

Therefore any element of .C (Q) of degree 2 invariant under the 
auton:iorphis m -ro belongs to D (f). 

The computation that we bave carried out to check that 11,11 a nd 

v,1 are invariant under the automorphis m "ix+P O is indepe ndent of 
the value of the indices i j . It is immediate to see that this is a lso 
true for the elements of any index space with indice, ali different. 

LEMMA l. Let g be an element of degree 2 h of C (Q). Then 
g E D (j) if and only if its projectiom on eacb index subspace be­

lon~ to D (f). 

PROOF. Let 

be any element of degree 2 h. The automorphism of e+ (Q) asso­
ciated to the homotecy T a.+ao of f takes this element into another 
element of the same deP"ee g iven by the expression 

Taking into account that in the result only appear terms of 
degree 2 h it is easily seen tbat we get a linear combination of 
elements of the set (1) a ll of them with the same index system 

that the taken element. 
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If g E D (f), g is left invariant by the automorphism associatcd 
to any homotecy. For what w·e have just seen it is clear that this· 
is possible only if its projectio n ou a ny index s11bspace is left in.­
variant by s uch a utomorphism. This implies that these projections 
belong to D (f). On the other hand it is obvious that if each pro­
jection b elongs to D (f), g also belongs to this algebra. 

W e have, then, t hat the decomposition of the space of C (Q ) 
of degree 2 /1 in a direct sum of index s ubspaces induces a decom­
pos ition. of the space of degree 2 /~ of D (f) in a direct sum of its 
index subspaces. In other words we could say t hat D (f) is a ho 
mogeneous subspace with respect to the decomposition of C (Q) 

in index subspaces. The space of degree O is the space of the 
vacuous index system. 

The dimension of the space of degree 2 Ji of D (f) , h=l , 2, .. . , n, 
can be computed \\:hen we know the dimension of t he index sub­
spaces. First of a li we remark that the space of degree 2 n - 2 h 
has the same dimensio n that the space of deg ree 2 h. For, if w e 
m ultiply each element of degree 2 h by r ,. we have a l - l linear 

trans formation of the spac;e of degree 2 /¡ ont o the space of degree 
2 n - 2 /¡. Therefore we need to compute only the dimen sion of 
the spaces of degree 2 h when 2 h ~ n. 

vVe classify the index systems of deg ree 2 h into h + 1 fa milies 

G ' zi, he ing the se t o f index 5ystem- in which there are i a nd only ,¡ 
indices which appear hvice. 

LEMMA 2. Ali the index subspaces of D (f) which belo ng to 
the same family of index systems have the same dimension. Mo­
reover the dimen sion of an index subspace whose index system 
belongs to the ·family G' e h equals · the dimension of an index 

subspace w hpse index system belong~ to Gº z<-~- r> • 

PROOF. Let us cons ide r first the family Gº~h• tha t is. that fa­
mily whose index system!i consist of 2 h differe nt i1idices . This is 

only possible if n ~ 2 h , 

Let i 1 •••• • i ,,, : i'¡ .... , i', 0 be two diffe renr index systems of 
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G0
21, and let us take a basis for ºthe index s pace correspo11ding to 

the: first index system and suppose that each e le 11,1ent of this basis 
is expressed as a linear combination of elements of t he for m (1) 
belonging to 1:hat inde.., system. If in th is exprcssio n we substitute 
i'1 for i1, we get linearly independcn t elements of the index s ub­
space corresponding to the second index sys tem. Thc re fore the 
dimens ion d of the subspace defined by the first index system is 
less than, or equal to, the dimension d' of the index sub space 
defined by the second system. By symmetry d' ~ d and hen ­

ce d' = d. 

L et us take now a n index system of the family G' 2 ,. and suppose 
that j 1 , j 2 , •• • , j, are the indices_ which appear twice. "T hen any 
element of the corresponding index subs pace can be expressed 
as a product of 

r 

l1 .'t"· JI · I s /; 
J.= l 

by an element of degr ee 2 (h- r) of the u1dex subpace defined 
by the system obtained from the index ;ystem we started w ith by 
leaving out 

Therefore tbe dimension of an index subspace defined by a system 
of the family _G' 2 h equals the dimension of a subspace defined by 
an index system of Gº2 ch- r)• 

LEMMA 3. The dimension of the subspace of a n index system 

of Gº~h is (
2 h)· 
h 

PROOF. W e a re going :to use incluction on h, starting w ith 

h = 1, even thoug h \ye take ( ~ ) = l. 

If we know the dimensio_n of th~ s ubspace of an index sys­
tem of Gº 2 , for r < h ,ye can com pute the d imension o f the spa­
ce of degree 2 r, for it will be equal to the sum of the dimen ­
sions of the subspaces of a,11 tbe index systems of degr ee 2 r. 
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The dimension of any of these subspaces equals the dimension 

of a subspace of an index system of Gº z<r-O • 

T he num ber of different index systems of the family _Gº ~' is 

( 

11 
) , \\"he re n = (M : F ) is the number of differen t indices . In 

2r 
general tbe number of different index systems of the family 
G' ~r I S 

(ll) ( 11 - S ) 

s 2 (r - s) · 

Let d2 , be the dimension of _the subspace of an index system 
of Gº z r• T hen _t he dimension of the space o f deg ree 2 r is 

r (n) ( JI - i ) e2, = _¿ . :\ d~ rr -n 
i = O I 2 (r - l¡ · 

l f r = 1 it 1s true that the dimension d~ is 

h.eca use the elements 1i,1, •v,1 form a basis for the sp?..ce of indi-

(
2 r) d. . ces i j. If we suppose tbat for r < h d~, = r , tbe 1mens1011 

of the space of degree 2 r must be 

1t! 
= " --,-,---....,......,.. L.., i ! (u - i) ! 

i = O 

(1l - i)! 
(2 (r - i)) ! (n - 2 r + i) ! 

(2 (r - i)) ! ~ 1l ! 
(r-i)!(r-i) = f="'o i ! (n - 2r+i)! ((r~ t)!) -

,. 
11! (n - r) ! 

= ~ r! (n - r) ! · (u - 21· + i) ! (r - i) 
, =O 

1· ! 
------
(r - i) ! i! 

= (n)_¿ (n· - 1:) (~) = (n)2 
1 r . r-z 1 r , 



- 34 -

Now let us prove that ií d2, = (2: ) for r < h t !:e formula is 

also true for r = h. Jf (M : F ) = 2 h by theorem 1 oí chapte r I, 
we know that the dimension of D (f) is 

(4) 

On ihe other hand, since in this case e21 = e2 c2 h_,,. the dimen ­
sion of D (f) taking into account (3) is 

(5) 

Eqnating the expre ions (4) a nd (5), which give the dimen-

(211/t)2 sion of D (f), we have e2 ,. = " 
We know also that 

(2 h)2 = .. = ~ (2 h) ( 2 h - i) (2 (/z - i)) d.,·.. ( fi) 
l. e lh ¿;_, . 2 ( , ') /. . + ",. 
l i ,= I Z ll-2 l-Z 

l f in (a) we make n = 2 Ji and r = h, comparing the first sum 

wi th (6) we get d~n = (
2
} ) which proves the lemm:1. 

Now that t he lemma is proved, expression (3) pr oves the 
following 

THEOREM l. T he dimension of the space of D (f) of degr ee 

2 h is cr where n = (M : F ). 

The dirnension of the space of D (f) of degree 2 h has been 
computed taking into account :tha:t this space i s the dir e c.t sum 
of the index sub paces of degree 2 h. lf we sum the dimensions 
of all the index subspaces we get the dimension of D (f). In this 
way we are going to get a formula which will be used later on. 
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In lemma 2 it has been seen that ali the index subspaces 
corresponding to a ny index sys:tem where ther_e are precisely 2 i 
indices which appea r only once have the same dimension. In 

. 2i 
le mma 3 we have proved that this dimension is ( i ) . L et us de-

note by E, the dimension of the subspace of D (f) direct sum of 
a li the inde'X. subspaces whose index systems contains precisely 
2 i indices appearing only once. 

S ince there are II different indices the index systems can be 
divided into sets of index systems where each set consists of all 
the systems with precisely 2 i indices a ppearing only once, 

i= O, l, ... ,[; J 
Hence 

If we cho ose an index system of degree 2 i with 2 i different 
indices we can get index sys_tems where these 2 i indices are .the· 
only on es which appear only once by adding to the chosen system 
O, 1, ... , n - 2 i pairs of indices picked up among .the n-2 i in­
dices different from the g iven ones . In general we can add f" 

(
n,2i) . 

pairs of indices in r d1fferent ways ; therefore from an 

index system of degree 2 i with 2 i different indices we g et 

n -2 i 11, _ 2 Í 
L ( r )=2"-2,' 
r = O 

index systems in which the indices appearing only once are tbe 
the ch osen 2 i indices . Sin ce these 2 i indices can be ch osen in 
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(~i) different ways we will get {;zi) 2"_,, diffe rent index systems 

in which there a re 2 i indices which· appear only o nce. Hence 

( 
ll ) (2 Í) E, = 2 i 2" - , ' i . 

Summing up the E, Vfe get 

LEMMA 4. 

§ 2 

It will be proved noVf that trye elements of D (f) of deg ree 2 
form a set of generators . In order to do so we will start defining 
by induction canonical bases for the different index subspaces. 
To simplify' the notation when we refer to a subspace of the 
index system of degree 2 r with 2 r different indices we a ssume 
that these indices are 1 , 2, ... , 2r. In doing so there is not loss 
of generality since we g et the subspace of indices ji, j2, .. • , f 2r' by 
substituting j, for i and the computations that we carry out do 
not depend upon the particular value of the indices. 

Chosen a basis of e+ (Q) of the form (1) , the index subspace 
f · dº 1 2 ?. n· has as basis the set of 2 2 m elements ob-o 1n 1ces , , ... , _, . • 

tained from 

(7) 

'Yriting x 1 or y, instead of z¡, j = 1, 21 , ... , 2 m. 

Since the number of factors is even we can write the product 
in the form 

(7' ) 

' 
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where =~,-, :::21 can take one of the 4 different forros, 

VVe adopt the follO\ying notation, 

~, - V - X' X' - p- 1 JI · JI ' '-;- 21' - J
1
2i-.2i - l .,. 2t' 2 : - 1 2i' 

r.=r0 ._1 0 .=:1:.,. _ , J1
0 .+Y., ·_

1
x •. ; 

I -1 • - 1 - 1 _, •' .:JI 

and we get 

p 
Y • ·- J )lo·= - (S · - V·) .:I . ...t 2 I t • 

Substituting these values in (7') we see that any element of 
(7) is a linear combinat ion o'f elements' 

l1 l2, ... l t ,,, , (8) 

where t, can be any of tb:e four terms 1ct,, v, , r1 or s,. Conversely 
any element obtained form (S) ,3/riting instead of t

1 
any one of 

the terms •11,, , v,, r, or s,, i = 1, 2, ... , m,, is a linear combination 
of elements of the fo rm (7). Therefore the elements obtained 
from (8) by different substitutions of t, g enerate the subspace 
of indices 1, 2, ... , 2 m . 

The number of such elements is 4m = 22"'. This number being 
equa l to the dimension of the subspace of e+ (Q) · of indices 
J , 2, . .. , 2m, these elements must be linearly ina.ependent. 

L et us denote by 

(9) 
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the set o f zm different elements obtained by subs titut ing u ,- . ,- . 
2 ./ - > 2 / 

or v,- . ; . for w.- . ,- .. As to the indices we a ssume that 
%/ - 1 l/ ' 2 /- 1 2 / 

i ,, i
2

, • •• , i 2 m is a reordena tion oí 1, 2, ... , 2 1n such t ha t 

Since for clifferent values of j thc w ,- . ; . s commute ,yith 
2/ . 1 2/ 

each o_ther ,ye \yill not take into account the arder in w hich they 
a re written. 

( 

We 'Yill say that an element of D (J) belonging _to the sub­
space of indices 1, 2, . .. , 2m is canonica l if it can be -»'ritten a s 
a linear coml:>ination of elements of the forro (9) . It ,yill b e said 
that such a linear combination is a canonical expression of :the 
elemen.t. Jt follo ws from its definition tha t a canonical e lement 
of D (f) belongs to ~he alg ebra genera ted by 14,11; v ,1, 

i, j = 1,2, ... , n, i < fl. 

Given a canonical element e E D (f) of the subspace of jndi­
ces 1, 2, .. . , 2 m writing instead of 

its value in terms of the ·.x, 's and y, ' s and t aking into a ccounj 
only that e+ (Q) is an associative linear a lg ebra »'e g et an ex­
pression of e as linear combina tion of elements 

(10) 

which differs from the expression in terms of the elements 

only in the order of the factors ,;yhat can g ive place to a chan ge 

in tbe sig~. 
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I n the cano nical e.xpression of e let us write insjead of 

1.U¡ . ; . 
! / - 1 '! / 

and express this sum of products of W h, 's as a sum of producls 
o f e lements s hr , r,,1 using only the fact tbat 'Ye are operating in 
a linear associative algebra. Then the element that wt. objain is 
the elemen t derived from the expression of e as linear combina­
t ion of eleme_nts (10) substituting s, for .x-1 aod r1 by y, . 

But since 

U¡;= s¡ r ,- - r¡s; = (x2¡ - 1 z 2¡ + p- 1 )'2¡ - 1 J'2¡ ) (:i:2;- 1)'2.- + Y~ i-1 X-2;) -

- (x2¡-1J'2¡ + )12¡ - 1 z2¡) (~:2;- 1 Z 2; + p-1 )'2 ; -1 )'2;) = 
= V 2¡ - 1. ~ i - l 1t2¡ , 2 i + U2¡ - 1, 2 i - 1 V 2¡ , 2i E D (/) 

and 

V¡;= s¡s,-- p- 1 r¡ r; = 

= - (v 2¡ - 1, 2;-1 V 2¡ , 2; + p- 1 tt2¡ - 1,:!; - 11t2¡ , 2 .-) E 0(/) 

t he e lement of C+ (Q) obta ined 'by pu_tting W 1, instead of w" 
belong s to the. subspace of D (f) of indices 1, 2, ... , 4 m. Moreo­
ver, since r, (or s ,) commutes with any r1 and s1 if i =t= j, _,;ye 
get the same element if we substitute s, aod t·, for .-i;-1 and y, , res­
pective ly, in the expression of e as linear combination of ele­
ments (10) or as coml:>ination of elements (7) . 

LEMMA 5. F rom Jinearly independent canonical elemeñts of 
degree 2 m belonging to a subspace of 2m different indices we 
can derive canonical elemeots of a subspace of 4- m different in­
dices, which are linearly independent. 

P ROOF . As before -.ye suppose that the canonical elements of 
degree 2 m be long to the subspace of indices 1 , 2, . .. , 2 m. We 
have just seen that if in the expressioo of these elements as li­
near combinations of elements (7) we substitute s1 for .'V1 and 
r , for y, we get canonical elements of the subspace of indices 
1, 2, .. . , 4 111. T herefore we only need to p-rove that if the cano­
nical elements of degree 2m are linearly independent the ele-



- 40 -

ment s of degree 4 m obtained from these elem ents a re a lso li­
nearly independent. The linear independence o f the elements of 
degree 4 m, so obtained follows from the fact that for any 1n the 
4m clifferent elements obtained from (S) by substitutin g 1,¡,1, v 1, 

r 1 or s 1 for t, are linearly independent. For, if the linea r com­
binations of elements (7) which express the g iven canon ical ele­
ments of degree 2 m are linearly independent s ubstituting in these 
elements s 1 for :., and r, for y, we get linearly independent 
elem ents: 

LEMM:A 6. E very snbspace of an index system of .degree 2 r 
with 2 r different indices has a basis consisting of canonical ele­
ments. There fo~e such inclex subspaces belon g to the a lgebra 
generated by 1.¡.11 , v 11, i < j. 

PROOF. Let 1, 2, .. . , 2r be the index system . Since for r=l, 
u 12, 'llu form a ·basis for th e subspace of indices 1 , -2, we are 
going to use induction on r . Tberefore "Ye assume that the lem­
ma is true for 2r < 2 h. Then it w ill be seen tha t it is true for 
2 r = 2 h or to be precise, ,ye ,-yill see that the lemma is true 
for 2 r = 2 h, if it is true for any r such that 2 r ~ h. 

We take the 4,;m elements of the forro (8) as a basis for the 
· subspace of e+ (Q) of indices 1, 2, ... , 2 h for m, = h. Amon g 

these the 211 elements containing only it, 's and v , 's belo ng to 
D (f) since u1, v 1 E D (f). Moreover these elem ents are lin ea rly 
independe nt. 

L et us choose 2j indices, 2j ~ h, i 11 i2 , •• • , i 2, a mong 1, 2, . . . , h . 

In the (
2
/ ) canonical elements that by the 

1

induction assumption 

form a basis for the subspace of indices 1, 2, ... , 2 j we write 
s,,,, instead of X m a nd r,1 instead of y r,, m,, p = 1 , 2, . .. , 2 j. L emma 5 

9· 
asserts that in this form we get ( G/; )1inearly independent canon ical 

elements of degree 4 j. N ow let i\, i'2 , ••• , i',1_ 2 , be the complemen­
tary set of iu ... , i2, witb respect to 1, 2, ... , h. If we multiply each 
one of t he Zh-zJ different elements obtained from 

( 11) 

41 -

substi tut111g u;•,,, or V;•,,, for t;;,,, 1n = l , 2, ... , /¡ - 2 j, by each one 
' ') . 

oI the elemen ts obtained be fare we get_ (a,: ) 2h- 21 canonical ele-
./ 

men ts of the subspace of indices l. 2, ... , 2 /J. We say that such 
ele ments be long to the index family i 11 i2 , .• • , i,,. These element5 
are lineariy independent, for if there ex ists a linear combinatio ;: 
which eq ua:s zero the partial sums extended o,·er the e~ernents 
with the same factor of the forro (ll) must be zero. since the 
elements conta ining 11;•. ran not be cancelled with the elem en ts con-

. taining ,Jr , In each eme o f these pa rtía! sums the factor of the 
K 

form (11) is multiplied by a linear combination of the (
2
/ ) cano-

nical elements ment ioned above and it has been seen that su ch 
elements are linearly independent. Therefore ali the coefficients 
of the linear combina tion w hich equals zero must be zero. In 

(2 ' ) other words, the > 2/'- 2
' canonical elements of the index fa-

rnily i ,, ... , i 21 are linearly independent. · 

The 2 j indices can be cbosen in ( /¡ .) cliffe rent ways, hence fo r 
2; 

each value of j we get (: ~.) (::) 2h-21 elements . If we take nU pos 

sible values of j we have 

elements according to lemma 4. 

. (2 /¿) Moreover these /¿ canonical elernents are linearly indepen-

dent because if a linear combinat ion of such elements is zero 
each one of the partial sums extended oYer ali the elements of an 
index family should be zero. Since we have just proved that the 

elements of an index family are linearly independent, the (2 11) 
. h 

canonical elements are linearly independent a nd form a basis of 

the subspace of indices 1, 2, ... , 2 h which has dimension (
2
/ ) . 
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THE0REM 2. The algebra • D (/) is generated by its eleq1en ts of 
degree 2. 

PROOF. By lemma 6 \Ve know that the subspace of any index 
system of degree 2 r with 2 r different indices b~longs to the al­
gebra generated by the elements H,1, v ,1, i < j, of degr ce 2. 

If d is an element of a subspace of an index system in which 
there are 2 .,/ indices appearing only once and r" indices appea­
ring twice. d is the product of an element of the s ubspace · whose 
index system con sists o f the 2 r' indi::e s appearing only once by 
the element 

,.,, 
d' = II ,1',:,Y;r , 

s = t 

where i 1 , ••• , i,,, are the indices appearing twice. Since d' belongs 
to the algehra G generated by the elements o f D (f) of clegree 2, 
d belongs to G. 

Since (.'li', y 1)
2 =!= O belongs to the subspace of the vacuous index 

system, the elements of degree zero also belong to G. Therefo­
re G contains aJJ the index subspaces and coincides with the alg e­
bra D (f) w hich is direct sum of such subspaces. 

THEOREM 3. The algebra D (f) is generated by the elements 
of the Clifford group of C (Q) mapped by Y. into the symmetries 
of the hermitian form f. Moreover D (f) contains also the elements 
of the Cliff ord group mapped by Y.. into the unitary transforma­
tions as welJ as the elements of C (Q) which define inner· automor ­
phisms which induce in C+ (Q) automorphisms associated t o the 
unitarian similitudes. 

PRoOF. To prove the first part, by 1:heorem 2, it suffices to 
show that the algebra over K generated by the eleme11ts of the 
Clifford g roup mapped by y_ into the symmeries of f contains the 
space of degree 2 of D (f) and that, conversely, this space contains 

a ll s uch elements. 
L et H be the hyperplane orthogonal to the non-is otropic vec­

tor x with respect tp f , and let .i' be the symmetry váth respect 
to H. Then the symmetry .x as a transformation of M over K. is 
the involutive orthogonal transformation which takes the vectors 
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of the non-isotropic plane P generated by x and y = O x in their 
opposites and leaves invariant the vectors of the subspace p..1 or­
thogonal to P wit h respect to Q. · 

The elements of the Clifford group mapped by x. into this ortho­
gonat transformation are of the form o. _,¡; :V, O=!= a. E K. Since a. x y 
is of degree 2 and is inva riant under "º it belongs to D (f). 

On the other hand, ii K has more than 3 elements it is possible 
to find a.11 =!= O sucJ1 that z11 = _,¡;, + ¿ 11 x 1 is a n on-isotropic vector . 
Then the elemen ts of the Clifford g roup mapped by x. into the 
symmetries of f with r espect to the hyperplanes orthog onal to 
the vectors .'t'1, z11, i, j = 1, 2, . . . , n, i < j, are 

where :}l1 = O.'\.",. The atgebra generated by such elements contains . 
éi basis of the space of degree 2 of D (f), for 

Therefore if K. has more than 3 elements, the elements of the 
Clifford group mapped by x into the symmetries of J genera-
te D (j). . 

If K has only 3 elements, F is the field with 9 elements and 
there exists then an orthogonal basis of M with respect to f 
such tbat / (.-.1 , .'li',) = 1 for a ny i; since we suppose that (M: ;F) 
i? less than the characteristic of F , n < 3. If (M: F ) = 1 the 
theorem is obvious and if (M: F) = 2 we can take ("l

1 2 
= 1 and 

apply the preceding argument. 

N ow !et us see that D (f) contains the elements mapped by X 

into the quasi-symmetries of f. The quasi-symmetry which Jea ve~ 
invaria nt elementwise the hyperplane H orthogonal to the non­
isotropic vector _-i- and takes , x into (a. + ~ O) .-., where 

N (u. + ~ O) = 1, is the image under y_ of the elements of the 

form 
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where 

Since these elements belong to D (f) the second assertion is pro­
ved because tbe unitary group is generated by the quasi-sym­
metries (cf. [8]-or [9], p . 41). 

lt. only remains to see that D (f) contains the invertible "ele­
ments of .C (O) defining inner automorphisms which induce in 
e+ (Q) the automorphisms associa ted to the u~itarian similitudes 
of f. Such elements are defined up to an invertib!e factor of the 
form :,. + ~ r,., s ince the algebra K+ K rn is the center of C+ (Q) . 

Since the automorphism a of C+ (Q) associated to a unitarian 
similitude of f is bomogeneous of degree zer o, it must take the 
element r 1 , which is a basis of the space of central elements of 
degree 2, into rJ. r 1 . But the component of degree zero of (r / )º, 
n p =!= O, must be equa l to the component of degree zero of 

therefore r,.2 = 1, cz = ± l. 
,, 1, 

If r,_ ;,, -1, since rh is the component of degree 2 h of 
1
/

1 
, 

(1 21+1)° = - r 21+1 and r° 21 = r2 ,. Let e E C+ (Q) and let us apply 
to e the automorphism associated to the homotecy defined by 
the element 

2,i0 
---=--- = a + ~ O, 11 =!= O p.2 - p 

of norm 1, and then the a utomorphism a. We get (cf., Ch. I , 
p . 9) : 

'ta+~ o
0 

( ( n + ,,_t + + ,, _ ¡ . + + )- 1 e = 11 11. r 1 . • . 11. 1 ; • • • r,, 

· e (11.11 + 11." - 1 r 1 + ... + r,,))" = (11" - 1111
-

1 r 1 + ... 
.. . +(-1),. µ11- i r;+ ... + (-l)"r,.)-1 • c"(ii."+ .. . + (-l}"r,,)= 

= ( (- 11.)" + ... + (-µ)"-i r ; + ... + r,.t i 

· eº ((- 11.)"-!- ... + rn) = cª'a- PO, 
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that is , 

(12) 

ün the other hand if S is a uni tarian similitude of f and T«+PO 
a homotecy, 

Let a and, -.«+PO be the automorphisms of .C+ (Q) associated to 
S and T «+~ O, respectively. T hen since S T «+PO = T a:+PO S we must 
ha ve a"«• ~o = ""•~º a and therefore 

(13) 

F r om (12) and (13) we get 

and thi s can not be true fo r any eº E e+ (Q) sinte a. + ~O and 
·,. - ~ o do not ·differ by a facto r o E K. H ence tbe assumption 
:1. = - 1 leads to contradiction. Therefore a. = 1 and any element 
of C (Q) wh ich defines an inner a utomorphism inducing in C+ (Q) 
the automo rphism cr associa tecl to a unitarian similitude conu11utes 
with 1: , . T hen t he lcmma J of Ch. I shows that such element be­
long:; to D (/) . 

fn Cll. l. theorcrn 1, \\"C haYe seen that D (f) is a semisimple 

subalg-ebra o f C (Q) direct sum of l + [ ~:_] simple algebras. The 

theore rn that we have just proved sho ws now that the spin re­
presen tation of the elements of the Clifford group mapped by x 
1nto unitarian transforma tion of f decomposes in a direct sum 

[ 

¡¿ ] • • of 1 + 2 irreducible representat1ons. 

W e g et the same decomposition in simple representations if 
\\"e consider only the spin representation of the elements of the 
Cli ffo rd g roup mapped by z. into elements of the group U * (/) 
generated by the symmetries of f or if we consider the spin re-
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presentation of tbe g roup of inver.tible elements of C (Q) which 
define inner automorphisms inducing in e+ (Q) the automor­
phisms associated to the unitarian similitudes . Each unitarian si­
militnde defines one of this invertible elemen.):s up to an inver­
tible factor of the form a. + ~ r.,. 

f 
§ 3 

Let us take a spin representation e of D (f) and let Q be a 
matri:x' of the antiautomorphism * in the representation a. Then 
Q is a direct sum of hermitian matrices, with the exception of 
the component (Q), which when n = 2 r and T = K can be 

(':) 
e ither symmetric or skew-symmetric (Ch. I, theorem 2) . 

If e E D (f) e e+ (Q) defines the inner automorphism associa-

ted to the unitarian transformation U , Jet (C),; i = O, 1, ... , [ ~~] 

denote the i-th component of the matrix C = eº. In particular, if 
:i. E K, a.º = l: E9·:,. (!),, where (I), is the i-th component of the 
unit matrix. 

If _ an element e belongs .to .the Clifforcl group its norm 
e e* = :i. E K. When e E D (!) in the spin represen.tation a 

[f ] [f ] 
(e e*)° = eº (e*)°= e Q C1 Q - l = 2 E0 (C); (Q); (C)J (Q);1 = 2 E0 a. (I); 

i = O i =O 

which implies 

(C); (Q); (C)J = a. (Q),.. (14) 

If n = 2 r + l, then (Q), E F(7)' i = O, 1, ... , r, and the (Q), 

are J:Íermitian matrices with respect to y. Each one of these ma­
trices can- be considered as the matrix of a ñermitian form relati­
ve to a basis (cf. [13'], pp. 149-50) where J is the involutive auto­
morphism associated to the hermitian form. Then the (C), re­
present linear transformations of .the vector spaces on which .the 
hermitian forms (Q), a re defined rela tive to the given bases. 

- 47 -

R elation (14) shows that these transformations are unitarian si­
militudes. Given cr, the.. (Q), are defined up to a factor 6 E K. 
Therefore we can say that the hermi tian forrns (Q), are de-fined 
by D (j) up to a factor o, because if we take another spin re­
p resen ta tion we haye seen in Ch. I, § 3 that the new- matrices 

(Q), a re cogredien.t with the (Q), and therefore define the same 
hermitian forros with respect to new bases. 

When n = 2 r, what we have just said is still true for the 
(Q), if ¡ ::f:: r. As to (Q), we know' that there are two possible 

cases : 
l ) (Q ), E R + C)' Then we can applied what has l:>een said for 

the (Q) , E F t) with the only difference that now we have a her­

mitian form on a vector space over a sfield of quaternions (see 
[7 ], pp. 74-75) and J' is the involutive anti-automorphism asso­
cia ted to the hermitian forro. 

2) (Q)r E K (;)' In this. case we are going to see that (QJ.,-

is symmetric if r = 2 s and skew-symmetric if r = 2 s + l. Then 
a) if (Q)r is symmetric we can applied wha.t has been said 

and the (C), define similitudes with respect .to the symmetric bi­
linear form (Q)n 

b) if (Q), is skew·-symmetric we have an alternate bilinear 
form. The (C), define sympletic similitudes. 

Tci prove that (Q)r is symmetric (skew-symme_tric) if r = 2 s 
(r = 2 s + 1) we compute the dimension over K of the space of 
elements of D (f) invariant uncler the anti-automorphism *. 

Let d0 be µie dimension of the space of elements of D (f) in­
variant under -i. when n = 2 r . Since the elements of degree 4 i 
are invarfant under the anti-automorphism * and the elements of 
degree 4 i + 2 are changed by tbis anti-automorphism in their 
opposites, by theorem 1, we get 

To compute this sum we compute first 
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Hence B i~ the coefficient of x" in 

(JZ) and therefore B = (-lY r 

" (1t)2 (2 n) 
Since A=~ i = ,z , 

, =O 

do= t (;lir = (t\ + B)/2 = ! ( (2,:z) + (- lYC)). 
,.. 

Let us determine now the space _ºf invariant elements of F ('n , 

with respect to the anti-automorphism (A),·Y-· = (Q)r (A) 1-r (Q) r-1
, 

(
rz)2 

where (Q), = diag ( c,.1 , a.2 , •. . , ~ (';)). The i . elements 

1 ('¿) e,,,,,e,,¡ + u.¡e¡,, u.;;\Oe,,¡ -ú(J.¡ e¡1,a.1~ ;lt,j= l,2, ... , i ;h < J , 

where e,,, is the matrix with 1 in the intersection of the h-.th 
row a nd the j-th column and O elsew-here, form a basis over K 
of tbe space of elements invariant under the anti-automor­

phism *. 
If (Q)r E K(;)' •Ji = 2r and (Q), = diag (c,.v C1.2 , ••• , \;.)) the 

space of elements of K invariant under the anti-automorp-hism (;) 

((n) ) 1· + 1 
(A)/i• = (.Q), (A) / (Q),-1, has as basis the 

2 
elements e,,,., 

e,,1 + a.1 e1 ,, rJ.,,- 1
. Therefore when (Q), = diag (c,.1 , •.• , a.t))' the 

space of elements of the spin representation of D (f) invariant 
under the anti-automorphism 'k has dimension 
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This value coincides with d0 only when r is even. T herefore 
if r = 2 s + 1, the matrix (Q) , is skew-symme.tric. When r = 2 s, 
the matrix (Q), must be symmetric, otherwise a straighforward 
computation will show .tha.t the subspace of D (f) ef elemen~s in­
variant under -~- should have dimension 

Let us remark that when an element e E D (f) belongs to the 
g roup of invertible elements defining inner automorphisms of 
e (Q) which induce on e+ (Q) the automorp-hisms associated to 
unitarian similitudes, · e e;+ is an element oí K if n = 2 r + 1 and 
it belongs to the space . over K g enerated by 1 and rn if n = 2r 
(cf. [9], p. 72 or [16], taking into account that (M : K) = 2n). 
Since r,, belongs .to the center of D (f) and for n = 2 r, r ,,2 = p", 
p-' rr. is a direct sum of matrices each one equal to the unit matrix 
or to its opposite. T herefore for any n, 

(C),- (Q),- (C)J (Q);:-.t = a,- (I); , 

that is, 

(C),· (Q),- (C)J = U.; (Q),. . 

What has been saicl for the components of the matrices ima­

ges by a of the elements of the Clifford group mapped by X into­
unitarian transfprmations i s also true for the components (C)

1 

of a matrix C image by a of an element of th~ group mentioned 
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above. T hat is to say, the (C), .are unitarian sim ilitudes of the 
hermitian form (Q), definecl on a vector space over F if 2 i =l= n,; 
for 2 i = n (C), is a uni tarian s imilitude of the her m itian form 
(Q), defined on a vector space over a sfield of qua ternions if 

(C), E R ¾-(';)' and, if (C), E K(;)' (C), is a s imilitude with res-

pect to the quadratic form (Q)r if r = 2 s or a s imilitude wi.th 
respect to an alternate biliJ1ear form i f r = 2 s + 1. 

CHAPTER III 

In this chapter the a lgebra D (f) will be used to obta in repre­
sentations of the projective g roup of unitarian similitudes o f f 
into orthogonal g roups. The spaces o f the representations are 
the subspaces of D (f) of degree 2 i, i = 1, 2, ... , n - 1 , w hich 
are vector spaces over K. W e map the unitarian s imilitude S 
into the linear transforma tion induced in the subspace of D (f) 
of degree 2 i by the automorphism of C+ (Q) associated to S. It 
will be seen that in this form we get a representation of the 
projective group o f unitarian s imilitudes. 

In § 1 we define a symmetric bilinear fo rm pn the sub spaces 
of degree 2 i of D (f), i = 1, 2, ... , n -=-i. Then it will )Je shown 
that for any i this form is non-degenerate and the linear transfor­
mation induced in one of these subspaces by the au_tomorphism 
associated to a unitarian similitude is an orthogonal trans forma­
tion with respect to this symmetric b ilinear form . 

As before it wi ll be assumed that t he hermitian form f is no n­
degenerate and the characteristic of F is zero or g r eater than 
(M : F). 

§ 1 

We define a symmetric bi!inear forin (x, y ) on the subspace 
of degree 1· of C (Q) in the fo1low1ng way: 

Let a and b be any two elem ents of the subpace of degree r 
of C (Q) . Then we take as value of (a; b) the component of degree 
zero of a b* . It is obvious that the form so defined is bilinear. 
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S ince a and b a r e homogeneous elements, the anti-automorphism 
* lea ves them invariant if r = 4 tn or r = 4: m + l and takes them 
into their opposites if r = 4 m, + 2 or r = 4 1n + 3. Therefore, 
since the component of degree zero is left invariant by ~he homo­
o-eneous anti-automorphism *, a b* has the same component of 
~ . 
degree zero that (a b*)* = b a*. Then (a, b) = (b , a), which shows 

that (.,;, y ) is a symmetric form. 

LEMMA 1. The symmetric bilinear form defined on the spaces 
of degree r of C (Q) is non-degenerate if and only if Q is non-

degenerate. 

PROOF. Let e
1

, s
2

, ••• , si; be an orthogonal basis with respect 
to Q, of the vector space on which Q is defined. Then the elements 

form an orthogonal basis of the space of degree r with respect to 
the form (.-i-, y). If ali the vectors s , , i = 1, 2, ... , N are non-

isotropic and 

(a, a) = Q (z,-1) Q (z;,) .. , Q (z,-,.) -=t= O 

and the form (.x, y) is non-degenerate. But, if one of the vectors 

31 
is isotropic, there are isotropic vectors in the chosen orthogo­

nal basis of the space of degree 1· . 

The form (.:i--, y) induces a symmeric bilinear form on the sub­
spaces of degree 2 i of D (/). It will be proved that this induced 
bilinear form is non degenerate. 

We are going to use the notation oí chapter II ; iii particular 

11, , v,, -r,, s; have the same meaning that in chap-ter II § 1 whe . 
. 1 2 . ' ' r e .<J;, • 

y , === o .-i-, , i = , , ... , n 1s an orthpgonal basis with respect to Q . 

LEMMA 2. Let 

and 
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and is different from zero if and only if a= b, t hat 1s, 

k = J , 2 , ... , '" . 

PROOF. The elem ents w ,. a nd W1, fl =f= / , commut c: with e a ch 
otber and w ,.* = - wh for any h. T h erefore 

ab* = w ;, w'. "' w;, io '. '1• ••• -.,,,- ,v'. 
I¡ 1, lll 1 111 • ( 1 ) 

The product w 1 w/* has one of the fo llov.ing- forms, 

./ . 

v¡ vj = - u} = 2 Q (x ú - 1) Q (.i::i¡) + 2 p- 1 
Xú- 1 .I":!¡ .l':! i _ 1 _1·:!i, l 

u¡ 1tj = - u~= - 2 p Q (x 2¡- 1) Q (.1,2¡) -

, -2 :r.,¿¡- JYti-1 ·'1:2¡Y•ii = - r, v¡v; 

1

(2) 

ltj vj = - 2 Q (;1::!¡ - 1) :C-ij ) ' t i + 2 Q (X2j) X2 i - 1 .. 1':! i- 1 

v¡ uJ = - tt¡ vJ. 

The subindi ce5 2 i,. - 1 , 2 i 11 of .1." an cl y in the product w - w-" 
'" '" are clilferent of the s ubíndices 2ik- 1 , 2 ·i1.- of .1,· and v in w.k w'.'" 

- I I I J.• ) 

if Ji =f= k . If t he index syste m s o f two e lem e nt s of the form 

have no common indices the clegree of the ir procluc t is the sum 
of the degrees of these e lem ents . Therefore the zero component of 

>11 

Ilm ; . w ;'' 
J ./ 

J= I. 

1s the product of the zero compone nts of each factor 

Equating the zero compon_e n ts. o f (1) we have 

(a, b) = (w;, u/. ) (w,·. , w'.) ... (iu,- , w:- )-
1 ' • • •2 ,,, 111 
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On the othe r hand the equalities (2) s how that 

and t here f o r e 

l=O 
(Wi ., W~.) 

' ./ =J= O 

¡-o 
(a' b) i =l= O 

jf 

if 

'ti'; . =f= W ; . 
J J 

'iCJ; . = 1lJz' 
I ./ 

if n =1= b 

if n =h 

l 
9 , lf ·111 lemma 3 we a ss ume that w ,.,_ and w;.L stand 

,Er.l M/\ "-'. n n 

f _ or r · t he lemma is also true . 
01 S¡¡, ' k 

· The proof is the same as before, but instead o f (2) we have 

In the p roof of lemrna G of chapter II ~V'e have defined by 
. d ti·on 011 h a basis of the space of 2 h d iffer ent indices T o 
1n uc · 
s imp.Jify the notation we had supposed there that t he indices ,vere 
l, 2, ... , z /¡, and had pointed out how to deduce a basis for any 
space of 2 h different indices from the basis of the spqce of indices 

1 2, ... , 2 h. The bases so clefined for the index spaces of any 
s~stem of 2 /¡ different indices will b e called th e canonical bases . 

We are going to recall the form of these bases and, a t the sam e 
tirne, we introduce a new notation which will be used ·later 0 11 
T et us assume that we know alreacly t he foi·m of th 1 · 
~ . . . e e ements 

o f th~ canom ~al. bas1s ~f a space of an inclex sys~em formed by 
,, 1· d1fferent 111d1ces, 2 J ~ h L et i <; < <; be· 2 · 
.., · 1 • 2 • • • • 2/ J num-

bers chosen amone· the numbers 1 2 ¡, T I '-' ) l (') -) 
~ , , • .. , •· 1e j e ernents 
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C¡, C2, • · ·• e(; ) of the canonical basis of the s pa ce of indices 

ii> i2 , • •• , i2 , can be written as follo ws, 

ir 

ir 

w h e re a.! ,, . E K , 
1 . . . ! , 

''k = Ü 

(3) 

and the sum e.xtends over the Z2' different j-tuples deduce fro in 
(v1, v2 , • •• , v21) letting "' = O, l. 

If we change the meaning of p".1c ta king 
' A, 

if 

if 

we get a canonical element of the space of indices 2 i , - 1 , 2 i
1

, 

2 i2, -1, 2 i 21• This elem ent will be denoted by e,. 

(4) 

Leti'¡ <i'2 < ... <i'h_21 be the comp~em e n tary set of.; .- ; 
. " 1' "2t · • •, ' ' ':J/ 

w1 th respect to 1, 2, .. . , h. Let us mulpiply each C, by each one o f 
the elements D11, g. = l, 2, ... , 2h- 2 J deduce from w , w., ... w ., 

11 12 11: - 2} 

sustituting tt¡ j, or V¡~ for each w ;~- The e lements e, Du form the 
canonical basis for the subspace of the index family i ·z· ,; 

l J 21 • • 0 1 "2/1 

which is a subspace of the space of indices 1, 2, . . . , 2 h. The union 
of the canonical bases of a ll the subspaces belonging to t h e diffe­

rent index famili es of the space of indices 1, 2, ... , 2 h is the cano­
nical basis for this index space. 

It will be proved first that if the spaces of degree less than 2 h 
have an orthogonal basis of non-isotropic vectors, the space of 
degree 2 h has an orthogonal basis with the sam e prpperty. This 
conclusion w ill be reached through a sequence of lemmas . 

LEMMA 3. The subspaces of the sam e degr ee defined by two 
clifferent index systems are orthog-onal t o each other , 
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PnooF. Thc elements a, and b of degree 2 /, a re linea r co rnbi-
11ation s of eiem ents 

The product of two e lements of the form (5) is a homogeneous 
e lem ent and it has degrec zero if a n d only if both elements are 
cq na l. If a a nd b belong to two index snbspaces wi t h different 

index system s the elements (5) which appear in the expr ession of 
a do not a ppcar in the exp ress ion of b. The refore the component 

o f degree zero of the prncluct a b is zer o . Since 

. Cr,) 
n b* = ( - 1 ) 2 

n b, (a,h) = O. 

It follo ws fr o m this lemma tha t if we have a n orth ogona1 basis 

of non-isotropic vectors for each one of the index subspaces of 

degree 2 h, the union of these bases is an orthogonal basis o f n on ­

isotropic vectors for the space o f degree 2 h. 

LEMMA 4.. If tbe index s paces of degr ee 2 (lt -1) have ortho­

gon al bases of 11011-isotropic vectors the sam e is true for the sub ­

spaces of an index system of degrec 2 h in w h ich at least one index 

appears twice. 

PROOF. Let Ji be an index w hich ap pear s twice in a given index 

5ystem of degi-ee 2 h. W e con s ider the index system of deg ree 
2 (11, -1) deduced from the given system of degree 2 ¡1 by leavin g 
out the p air of indices k li. If we multiply each element of any 

basis of t~e subspace of t he index system of degree 2 (/i - 1) by 

X.t '.Vt ,ve get a basis for the subspace of the given index system . 

Let os de note by m¡, j = 1 , 2, ... , N thc e1ements o{ an ortho­

gonal basis of non-isotropic vectors of the index subspace of 

degre 2 (h -1), i. e., ('111¡, 1n1) = O if i =l= j, (m, 1n1) =l= O. Since 
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equating the coinponents of degree zero o f the right ha nd and left 
hand ex:pressions we g et 

í o if i =l= j 
(m;z;,y;, ,'lll¡X¡,Jl;,)=-¡,Q(:r;,)Z (m;,111._¡) 1 =!= O ir /= / 

which proves the lemma. 

N ow we need to find orthogonal bases of n on-isotropic vectors 
for the index subspaces of any system of 2 h d ifferent indices . 
Without loss of generality we can assume tha t we a re dealing 
with the subspace of indices 1, 2, ... 1 2 h. W e are going to cons ider 
this subspace as the direct sum of the subspaces of the di fferent 
index families (see chapter II, proof of lemma 6). 

LEMMA 5. The subspaces of the diffe rent index famil ies of the 
space of index 1, 2, .. . , 2 h a re orthog-onal to each othe1·. 

PROOF. Let a and b be t wo elemen ts of the canonical basis 
of the space of indices 1, 2, ... , 2 h, belonging to two different 
subspaces of the index families. Let k be an index which belongs 
to the family of indices of the subspace containing b a nd does n ot 
belong to the family of indices of the subspace containing a. 

Let us express a and b as linea r combina tion of e lements of 
the form 

(fi) 

where t1 stands for tt•¡, v1, r, or s1, j=l, ... , h. Then, in the terms 
which appear in the expression of b, t1c stands for s1c or ·1·1:, whereas 
in the terms which appear in the expression of a, t1: stands for 
tli, or V 1; . 

On the other hand the antiautomorphism ·* takes the element 
a t 1 t2 ••• t,. into (-1) 11 a. t1 t 2 ••• t,. for t, and t1 commute if ·i =I= j and 
t1* = - t1, since t1 has degree 2. 

Then a b* = (- 1)" a b is a sum of product5 and each one of 
these products contains one of the follo wiJ1g pairs of factors, 
Ut, rk; iti:, sk; V1c, ri, or v1: , s1: among other factors wich c ommute 
with these ones. Since 

ab*=(-1)1'ab=O 

and therefore (a, b) = O, 

I 
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LEMMA G. lf tlie canonical bases of the spaces of 2 j different 
indices, 2 j ~ h, are orthogona l bases of non-isotr_opic vect~rs, 
the canonical basis of a subspace of any inde,-x f~mily be]~ngmg 

·) ¡ · •t i g onal basts of non-tsotro-to the index system 1 , .... :, 1 1s a n 01 10 

pie vectors . 

1 t f the canonical 
PHO OF. J t ha~ been seen that the e eme_n ~ o . 

·¡ z have the basis o f thc subspace of the index Iam, Y 1" 1~• . .. , ' 21 

form .C1 D11. any tw-o elements of the ca_nonical 
It will be first proved tha t 

. h other. We consider two d1ffere11t basis a re orthog onal to eac 
cases 

that the two elernents are E 1 = e_,. D ... , 
C ASE I Let us suppose ·¡ ., ., ·-

. =I= This mea ns that 1 i" ... , 1 h-21 i,, 

<l E _ C . D wher e g l g2. . 
::t.n o - J, : , f . • ¡ the factor D 11 wh1ch has the 

¡ tary set o 11, 1 ~, · · ·• ~, 
the comp em en , is different fo r the two given elements. 
fonn W ¡ ' 1.v;~ · · · w;,,-~¡ . 

1 
• . f the elements of the subspace of an mdex 

In the express,on ºh. h appear in the factor C1 have different 
·¡ t i r 0 1" S¡: W tC f C fa1m Y 1e " . which appear in D p. There ore any 1 . . ti at tbe 1l-m 01 Vm indices 1 T I ··th any D i,- ien, commutes w1 

d t e C.r. is a linear combination of elements (5) The pro uc / , , . . 
9 

. . 

1 the indices 2i1 -l, 2 ·11 , .• . , .. .i~,-1, 2101 may appf-ar. 
wbere ofnt~ese indices appears in the product of D ... D_; ; there-
l'J'one o . . , , 

the component of degree zero of E 1 E 2* 1s the product of 
fore f d ·f C e-,·. ·1d D D* tl t . ml)onents o egree zero o 1 ,j a1 ~ ,; , 1a 1s, 
the ~o ' ' . ' . ' 

Now lemma 2 asserts that 

if g l * g2 
if g1=g2 
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CASE II. El= Cr D11, E2 = el D9. Since we suppose that 
., 1 • 

E 1 =I= E 3 we must have / 1 =I= / 2 • 

The .C, are defined by (3) where the p''.k have the meaning 
' lt 

g1ven by (4) and if we take 

if 

if 

'J" = () 
ºJ k = l 

we get tbe element e, of the canonical basis of thc spacc of indice. 
i., i2 , ••• , i21• Since we assume tbat the canonical basis of such 
space is an orthogonal basis of non-isotropic vectors, the com­
ponent of degree zero of cf. cJ must be zero if f, =I= / 2 _and different 

1 J 

from zero if f, = f 2. In the product 

we only get elements of degree zero when we multiply t~·o te rms 
with the same set of values for v., vz . ... , ,1 21 • Thcrefon.: 

(c¡,, c¡.) =(¿ al, . ,ri!' .. (- r/y') x 1 "1 . '' Jr./ ' 1 . '. 12/ 
(7) I , l = º if Í 1 =I= 1; 

\ X Q ( x;.) ... Q ( .1\) =J= O 
ir _;; =/2 

If we compute the component of degree zero of the product 
Cf. e; taking into account lemma 2' ancl the ec¡ualities (2') we get 

1 ' 

(Cr,,C¡,)= C(-i t ., • a,1 2 
., . p¡1,p;1 ... p,-2~, p,.21_ = ¿ / f ( ., •1 ) ( v • V · ) 

1 º ' º 2/ 1 º • º 2/ 1 1 2/ ~., 

(8) 
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2¡ 

for II Q (.x-2 ,-,. - 1) Q (.:i:-2 ,·,.) =I= O, and (7) shows that 
k= I 

2
., ; 

,,.', u. ,~ (- p) 
·,, ... "2, ·>, .. . ·,~; 

\= º 
l =I= o 

jf ./~ =l= /2 
if ./~ = h 

Thcrefore il has been proved thaL the vector::; C1 D!T a re ortho­
gona l to cach other. It remains to be pro ved that they are n0n­

isotropic . This is immediate, for if 

s ince (8) proves that (C, . C,) =I= O and lemma 2 asserrs t hat 

(E, E) =1= O. 

Lemmas 5 and 6 prove t·hat if the canonical basis of any spare 
of a system of 2 j different indices, 2 j ~ h, is an orthogonal b:isis 
of 11011-isotropic vectors , the same is true for the canonica 1 basis 
of a space of a sys tem of 2 h clifferent indices . If j = 1, •u, and v, 
form the canonical basis for the space of indices 1, 2 and from 
this basis ,ve get by induction and substitution of indices tbe cano­
nical bases of a l! the spaces of 2 h different indices. The ·equali­
ties (2) show that 1t, and v 1 form a ca nonical basis of non-isotropic 
vectors. TJ1erefore the canonical basis of any inde.x space of ,1 

system of 2 h diffe.r ent indices is a n orthogonal basis of non-i,;o­
tropíc elements. 

If we determine no w orthogonal bases of non-isotropic vector-, 
for each space of an index system o f degree 2 h in which at Jea<;t 
an index appears twice., lemma 3 asserts that tbe union of these 
bases and the canonical bases of the spaces of index systems. of 

2 /¡, different indices fonn an orthogonal basis of non-isotropic 
vectors for the spacc of D (f) of degree 2 /t. U sing now lemma 4, 

it suffices to prove that the space of degrce 2 has a basis w1th 

this property. Since the element .1·, y, is non-isotropic. for 

(:-c¡y ,-, ,1,:,-y;) = - p Q (x,-) =I= O, 
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the elements 

%¡ )';, u,-¡ . V¡¡ , i,j = J, 2, .. . , 11 , i <.!, 

form an orthogonal basis o f 11011-isotropic elements for the sp:wr. 
of degree 2. T herefore we ha,·e established 

THEOREJIJ l. Let Q be the quadratic form associated to t hc 
non-degenerate hermi tian form f. Then the symmetr ic bilinear 
forms (a, b) that hart been defined on the spaces of deo-ree ,. 0 f 
C (Q) induce non-degenerate symmetric bilinear fo rm: 0 11 the 
spaces of clegree 2 i of D (/), i = J., . .. , n. 

§ 2 

In chapter I we have associa ted to any unitarian similitude of 
/ an a utomorphism of .C+ (Q), where Q is the quadratic form 
associated to/. If the invertible element e E C (Q) defines a n inuer 
automorphism inducing in e+ (Q) the automorphism associated to 
a unitarian similitude S, then theorem 3 of chapter II asserts tha t 
e E D (/) . Therefore the automorphjsm of C+ (Q) associated to a 
unita rian similitude induces in D (/) an inner autom orphis:n . 
Moreover it is known that such automorphi sm is homoo-eneo ;:, 11 S 

of deg:ree O and therefo re induces linear tra nsformatio ns 111 tlH·: 
spaces of D (/) of degree 2 -i, i = O, 1 , ... , n. 

THEOREM 2. T he linear transfo rrnation of the space of deg,·<;,~ 
2 h of D (/), h = O, 1, ... , n, induced by an automorphism of e+ (O ) 
assoc.iated to a unitarian similitude is an or thogonal t ransform--:;_­
tion with respect to the symmetric bilinear form (a , b ). 

P ROOF. Let a and b be t wo elements of degree 2 '1 o f D (/j 
By definiti on (a, b) is the component of degree zero of a b*. 

Let e be tbe automorphism associated to the unitaria n =>irni­
litude S. Since e is homogeneous of degree o, if commutes with 
the antiautomorphism *. Moreover e leaves K invarian t ele­
menfwise; therefore the zero component of (a b*)" = a," (b")* 
coincides with the zero component of a, b*, which im plies (a,, b) = 
= (a", bª). H ence the linear transformation induced by cr in the 
space of degree 2 h of D (/) is an ort hog onal transfo rmat ion. 
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T he quadratic form associated to the bilinear form (a, b) 

defined on the space D 2 h o f D (/) of degree 2 h will be denoted 

by Q~II · 
The mapping c;i2 h ,,.hich takes the elernellt U of the group of 

unitarian similitudes of f, S (f), into the or.thogona l .transforma­
t ion induced in D 211 by the automorphism of e+ (Q) associated to 
U is a hom omorphism of _the group S (j) into .t11e or.thogonal 
group O (Q

2 1
,) . l\iforeover, s ince D (f) has been defined as th~ 

subalgebra of e+ (Q ) consis ting of -the elemen.ts invarianJ under 
the automorphisms of e+ (Q ) associated to the homotecies of f , 
q,

2
h maps these hp motecies into the identity of O (Q 2 h). T herefore 

by means of <p211 we get a homomorphism <J,2 ,, of the factor g ro11p 
of S (f) by the g roup of homotecies into the or thogonal g ronp 
o (Q

2
,,) . Since the factor g roup of S (/) by the group of homotc­

cies, which is its center, is the p rojective group of unita rian 

sim ilitudes P S (f), we g et. 
Ta:E0REJ\l 3 . For h = 1 , 2, ... , n - 1, <1'.:ih defines a represen­

tation of P S (f) into the orthogonal group of tbe space D 2 ,, with 

respect to the form (a, b ) . 
It is not difficult .to p rove now that wheo K has more than 

5 
elements each one of these representations is fait,hful. We omit 

here this proof since we ,Yiil p ublish a more refi ned result in :1 

paper where the irreducible components of each one of these 
representations w ill be detenn ined. 
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