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Abstract

Energy storage is one of the challenges of the electric sector. There are several
different technologies available for facing it, from the traditional ones to the
most advanced. With the current trend, it is mandatory to develop new
energy storage systems that allow optimal efficiency, something that does
not happen with traditional ones. Another feature that new systems must
meet is to envisage the behavior of energy generation and consumption. With
this aim, the present research deals the hydrogen consumption prediction of
a fuel cell based system thanks a hybrid intelligent approach implementation.
The work is based on a real testing plant. Two steps have been followed to
create a hybrid model. First, the real dataset has been divided into groups
whose elements have similar characteristics. The second step, carry out the
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regression using different techniques. Very satisfactory results have been
achieved during the validation of the model.

Keywords: Energy storage, Energy management, Fuel cell, SVM, ANN],
BHL

1. Introduction

The country’s electric sector is a very complex system for a number of
diverse reasons [I]. The most important feature that makes it so difficult is
ensuring that energy generation must be equal to that of energy demand.
The different energy generation technologies with their own characteristics,
also make the system more complicated [2]. Even, things like the increase in
energy plants based on renewable energies have contributed to destabilizing
the system [3] [4].

Furthermore, when renewable energies or other possible sources are included
in all types of buildings connected to a grid, even if the final use is not to
generate energy, the network management becomes much more difficult. For
this reason, it is necessary to create tools to ensure the right handling of the
different energy generation and consumption points.

Therefore, the Smart-grid concept [5] [6], comes about for all of the afore-
mentioned reasons, where it is necessary, at least, to measure the generation,
the consumption, and of course, try to predict both of them, with the aim
of making decisions, and then to make the overall system more efficient in
every way. In any case, it is a difficult task to match the generation with the
demand, which makes energy storage a desirable option in this case [7].

For all of the aforementioned reasons, it is justified that the energy storage
systems are desirable in all of the different cases when working with elec-
tric power [8]. There are many technologies available for this purpose, even
though some of them are relatively old and inefficient, such as pumping wa-
ter into a dam [9]. However, because of this great need under the current
scenario, in recent years there have been many research and development
projects and works carried out [I0] [T1]. The electric car is one of the reasons
why electric energy storage systems are being developed so quickly [12].

Of all the technologies, researchers are working especially on two of them,
battery technologies and fuel cells [13]. In the case of fuel cells, which is
what this work focuses on, there are also many proposals in terms of the
primary fuels [14]. For numerous reasons, hydrogen was one of the first fuels



used. This gas is very easy to obtain through a simple hydrolysis process,
and despite its storage not being as easy as for other alternatives, in general
terms, this is one of the most feasible alternatives for this kind of purpose
[15].

As has been commented on previously, given the current trend in the electric
sector, and with the aim of optimizing the overall efficiency of the grids, it
is essential to have a trustworthy forecast to make the right decisions [16].
This prediction will contribute, for instance, to purchasing or selling energy
at the best price when necessary, store energy when it is more convenient,
and so on. The fuel cell systems based on hydrogen and hydrogen generation
itself for storage purposes, obviously needs an effective prediction.

During the modeling process, it is possible to take several different alter-
natives into account although the performance could be different. One of
the most used techniques based on traditional regression models is the MRA
(Multiple Regression Analysis) [I6] [I7]. There are several applications in
which this method or others with small variations are used [17] [18] [19].
However the MRA technique has some limitations in several cases [20] [16]
[21]. One of the reasons why its performance is not suitable is the non-
linearity of the problem to be modeled. Intelligent systems are used in some
different applications with very satisfactory performance in general terms
[22] [23] [24] [25] [26]. Of course the non-linearity problem could be solved
in many cases with the use of soft-computing techniques [27] [28] [29] [30].
The problem when the system is non-linear could be the same, even by using
simple intelligent systems. When it occurs, it is possible to divide the prob-
lem using clustering techniques such as K-means [31] [32] [33] [34] [35].

In this work, the performance of a fuel cell is modeled based on hydrogen
prediction, from several variables measured at a real storage system plant.
The proposals deal with the method for a model creation, with the aim of
predicting the amount of hydrogen consumed by the fuel cell. Two datasets
from different real fuel cell-based systems were used.

Due to its non-linearity, clustering has been achieved before the regression
step. To do so, a novel method based on the novel neural projection method
for dimensional reduction, known as Beta Hebbian Learning (BHL), is ap-
plied to visually analyze the internal structure of the dataset for clustering
purposes. The main advantage is that it is possible to take human expert
knowledge into account during the creation of the groups and finally generate
more simple and accurate models than by using just one general model for
the whole dataset. After that, some intelligent regression techniques have
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been carried out.

The present research work is organized as follows. After the introduction,
the case being studied is explained. Then, the next section describes the
proposed model approach. After that the materials and the methods taken
into account for the present research are detailed. The work is continued
with the experiments carried out and their results. Finally, conclusions and
future works are presented.

2. Case being studied

The case study consists of an experimental system located in the “Centro
de Investigaciones Energéticas, Medioambientales y Tecnoldgicas” (CIEMAT)
in Spain. In this specific case, the system is used to store the energy gen-
erated through two renewable sources: wind and solar. A schematic of the
system is shown in Figure 77, in which the local power bus is exposed to the
generation and the consumption connections of the storage system.

Wind
turbine

Photovoltaic
panel

Power
network

Energy
Management
System (EMS)

Figure 1: Energy Management System (EMS)

Both, solar and wind generation, and the fuel cell are the power input
points to the power bus, while the hydrogen generation equipment is the only
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Figure 2: System configuration

consumption point shown. The energy storage system, in this case, consists
of an electrolyzer, a hydrogen tank and a fuel cell. The Energy Management
System decides on the operation of the whole system: how much energy is
provided to the power network or to the storage system. In the periods of
high generation and low demand, it would be better to store the energy so
it can be used when it is necessary.

2.1. Storage System analysis

The energy storage system is analyzed to calculate the overall perfor-
mance of the energy storage system.



2.1.1. Electrolyzer

The electrolyzer produces the hydrogen that feeds the fuel cell, which is
in charge of producing the electric power when it is necessary.

The equipment uses HyO; firstly, the water goes through a deionizer. The
deionized water is mixed with potassium hydroxide - KOH (around 20-30%),
creating the electrolyte. After that, by applying an electric current between
the negative and positive electrodes in the electrolyte, the Hy and O, are
obtained. The operating temperature should be between 70-80°C. The O,
in this case, is not stored and it is emitted directly to the atmosphere. The
H, is filtered to eliminate the Oy that may remain mixed. The hydrogen
is stored in a tank for later use in the fuel cell. If the pressure increases, a
safety valve opens to reduce the pressure.

To increase the efficiency, the voltage should be slightly above 1.48V,
depending on the flow rate of H,. Nitrogen is used in the electrolyzer to
compensate the operating pressures.

2.1.2. Hy Tank (compressor)

Hydrogen is stored in tanks at 10 bar of pressure. The size of the tanks
depends exclusively on the amount of energy to be stored; the more hydrogen
stored, the more electrical energy can be produced.

As the system is experimental, the size of the deposit is not relevant,
but it needs a compressor to store the hydrogen at the specific pressure.
This compressor uses electrical energy so, it has to be taken into account
incalculating the overall performance.

2.1.3. Fuel cell

The fuel cell generates energy from H,, which is obtained in the elec-
trolyzer. The energy obtained is represented by the chemical reaction of the
equation [I]

Anode : Hy0 — 2HT + 2e~
Cathode : 1/205 +2H* +2e~ — H,0 (1)
Final result : —Hy +1/205 — Hy0 + Energy

This reaction occurs in each cell. If some cells are connected in series, the
accumulated voltage is the sum of the individual voltages of each cell. The
reaction, represented in equation [T, takes place when each cell is filled with
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Figure 3: Schematic of a fuel cell

Hy and O, (obtained from the air). A simplified scheme of the fuel cell is
shown in Figure

The anode is fed with hydrogen, where a catalyst accelerates the reaction,
as shown in equation [I, The H, releases an electron of each atom and a
molecule of 2H™ is created. This molecule will react with 1/2 Oy from the
air that accesses the cathode. The result of this reaction is a water molecule.

For each molecule of water formed, two electrons, which provide the elec-
trical energy are released. These reactions occur as long as H2 is supplied.
Figure [4| shows the real storage system.

3. Followed steps and methods

In this section the steps followed for modeling the behaviour of the fuel
cells is presented. The model used consists of a 3 step system:

e First, the dataset is preprocesed, outliers and wrong values are removed
and the final dataset is normalized.

e Secondly, a clustering technique (the Beta Hebbian Learning algorithm)
is applied to identify the internal structure of the dataset and the pos-
sible clusters.

e Finally several regression techniques are applied to the samples of each
cluster in order to get the most suitable model for each cluster.
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Figure 4: Real storage system

3.1. Preprocessing

Before using the collected dataset, a preprocessing step is applied, con-
sisting of removing outliers and wrong data samples (for instance negative
values), to finally apply a normalization of the dataset. The normalization
criterion is the Maxmin Scaler [36], presented in Eq.:

X; — min(x)

(2)

max(x) — min(x)

The main goal of this normalization step is to avoid the very early con-
vergence in the first iterations, when the training process of a particular
regression method begins [37].

3.2. Clustering: Beta Hebbian Learning

The Beta Hebbian Learning technique (BHL) [38] is an unsupervised
neural network from the family of EPP that employs the Beta distribution



to update its learning rule and fit the Probability Density Function (PDF)
of the residual with the distribution of a given dataset.

Thus, if the PDF of the residuals is known, the optimal cost function can
be determined. By using B(a, ) parameters of the Beta distribution, the
residual (e) can be drawn with the following PDF (Eq. [3):

p) =1 — o) = (- Wy 1+ Wy (3)

Where a and [ are used to adjust the shape of the PDF of the Beta
distribution, z is the input of the network, e is the residual, W is the weight
matrix, and y is the output of the network.

Then, using Eq. {4 gradient descent is performed to maximize the likeli-
hood of the weights:

8]? a—2 —2 =
o = (61— e) (e = DI —e) +e5(8 - 1)) =

(e§72(1 =) (1 —a+ej(a+ 5~ 2)))

(4)

In the case of BHL, the learning rule allows the PDF of the residual
to be fitted by maximizing the likelihood of this residual with the current
distribution.

Therefore, the neural architecture for BHL is defined as follows:

N
Feedforward : y; = Z Wiz Vi (5)
j=1
M
Feedback : e; = xj — Z Wiy (6)
i=1

Weightsupdate : AWi; = n(e? (1 —e;)" (1 —a+ej(a+ B—2))y (7)

3.3. Regression techniques

Once the BHL has identified the different clusters present in the dataset,
three well-known regression techniques are applied for each cluster to model
the behaviour of the fuel cell.
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3.3.1. Support Vector Machines

Support Vector Machines (SVMs) are a machine learning technique very
popular for classification, regression and data analysis. SVMs work by con-
structing hyperplanes in high or infinite dimensional spaces, where it is pos-
sible to consider a good separation if a hyperplane has the largest distance
to the nearest training data point of any class. Thus, the larger the margin,
the lower the error. The SVC method (Support Vector Classifier) can be
extended to solve regression problems. In contrast to SVC, Support Vector
Regression (SVR) [39] depends only on a subset of the training data, because
the cost function ignores any training data close to the model prediction in
order to build the model. The SVR solves the following primal problem,
given z training vectors and a vector y € {—1,1}™

n

L 7
min —w'w+ C i+ ¢
w,b,(,¢* 2 — G+ )

subject to y; — wl ¢(x;) — b < e+ ¢,
w(x;) +b—y; < e+,
C’L?C’L* Z 077/ = ]_,...,n

The parameters of Support Vector Regression are detailed below:

e Kernel function: this is the similarity function chosen for the SVR
algorithm.

e (C: controls the margin and misclassification. Higher C is equivalent to
a small margin, and lower C is equivalent to a large margin.

e Gamma: defines how far the influence of a single training example
reaches. A higher value of gamma means more influence of a training
example. The 'Linear’ kernel ignores this parameter.

e Degree: degree of the polynomial kernel. The other kernels do not use
this hyper parameter.

3.3.2. Extra Trees Regressor
This regression technique is an ensemble method based on a meta esti-
mator, that fits a number of randomized decision trees working with a set
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of sub-samples of the dataset, to improve accuracy and control over-fitting
issues later, thanks to an averaging approach [40] [41]. Therefore, this tech-
nique is able to offer the importance of a feature for establishing a feature
ranking of the regression model. The parameters of the Extra Trees Regressor
(ETR) are described below:

e Number of estimators: number of trees in the forest.

e Bootstrap: the number of samples used in order to build the trees.

Max depth: maximum depth of the tree.

Min samples leaf: minimum number of samples that are required to be
at a leaf node.

Min samples split: minimum number of samples required for splitting
the internal node.

e Max features: number of features for the best split.

3.3.3. Multi- Layer Perceptron

This is a supervised learning Artificial Neural Network that is able to
learn thanks to function: Fun(-) : R* — R0. In this work, MLP has been
implemented for regression with Python Scikit-Learn [42]. This has been
trained using back-propagation containing the output layer; the linear acti-
vation function. The implemented MLP has the following parameters:

e Early Stopping: setups as True with the aim of finishing training stage
sooner if the validation score is not improving.

e Learning rate: rate schedule for weight updates.

e Learning rate init: indicates how the learning rate is utilized initially.
It is able to control step size when the weights are updated.

e Hidden layer sizes: number of neurons in the hidden layer.

e Nesterovs momentum: option for using Nesterov’s momentum [43]. It
defines how the GD (gradient descend) momentum can be implemented
in two stages. First stage: make a significant jump in the direction
which matches the direction of the previously calculated accumulated
gradient. Second stage: make a measure of the gradient where it ended
up before making the pertinent correction.
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e Activation: activation function included in the hidden layer.

e Solver: defines how weight optimization is managed, with the following
three options. ‘LBFGS’, oriented to use the quasi-Newton method
family algorithm [44]. ‘SGD’ for using the stochastic gradient descent
algorithm. [45]. And ‘ADAM’, oriented to the stochastic gradient-
based optimizer algorithm [46]

e Warm start: when its value is True it implements a reusing of the
solution made in the previous call, for fitting as initialization.

e Batch size: mini-batches for stochastic optimizer size.

3.83.4. Tuning hyper-parameters techniques
With the aim of encapsulating the transformations in the raw input

data, the Pipeline tool from Python Scikit-Learn is used [47]. This technique
makes it easier to define a set of steps for pre-processing the raw dataset and
carry out the training and validation test in the validation model step.

Pipeline is a Scikit-Learn tool for carrying several steps, these being,
handled together within a Ten-fold Grid Search Cross Validation process.
In this way, the cross validation is able to train the algorithms explained
previously in with different parameters, choosing a combination of the
best ones when wishing to obtain the best regression model [4§].

The set of parameters combined and tested in each iteration of Grid
Search Cross Validation are called hyper-parameters [49)].

3.3.5. Error metrics
The following, error metrics for evaluating the quality of the models are
explained:

e Mean Absolute Error (MAE). This metric is oriented to measure the
difference between the real value and the predicted value. This error
measurement has several advantages over other error measurement [50],
equation [§

] — .
MAE = = Y; — Y,
-y Y- (®)

=1

where Y] is the real value and )A/l is the predicted value.
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LMLS (Least Mean Log Squares). This error measure can be used as a
regression loss function in the training process or as a validation error
measurement [51], equation [9]

1 & 1 N2
LMLS—Eizllog <1+§(m—3@) ) 9)

where Y] is the real value and )A/l is the predicted value.

sMAPE (Symmetric Mean Absolute Percentage Error). This metric
is oriented to show relative errors due to the percentage of use [52],

equation [I0]

2~ Y Y
sMAPE:—ZQ (10)
o Yty

where Y; is the real value and Y; is the predicted value.

MASE (Mean Absolute Scaled Error). This is a typical measure of the
accuracy of regressions [53], equation [11]

RS Y = Vi
MASE = ~ - 11
nZ(inzzm—mO )

i=1 n—1

where Y; is the actual value and Y; is the predicted value.

MSE (Mean Squared Error). This metric measure is able to include
the variance of error, it is applicable to a wide variety of problems [54]

equation [I2]

n

_ 1 O\ 2
MSE =~ ;‘m Yi) (12)

where Y; is the real value and Y; is the predicted value.

MAPE (Mean Absolute Percentage Error). This metric is one of the
most popular measurements in forecasting accuracy [55], equation .

100% <~ [Y; — Vi
MAPE = 13
- ; v (13)

7

where Y; is the real value and Y; is the predicted value.
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4. Datasets

Three different fuel cells (A, B and C) over the same configuration system
(see Fig.1), have been used to perform different experiments and to validate
our proposal, and the same parameters for both fuel cell were measured.
Fuel cells A and B are from the same manufacturer (Horizon) and C from a

different one (MES-DEA).

Characteristic Fuel Cell A Fuel Cell B Fuel Cell C
Type of fuel cell PEM PEM PEM
Number of cells 120 48 60
Rated Power 5000W 200W 1500W
Performance 72VQT70A 28V@QT7.2A 63V@45A
H2 Supply valve voltage 12V 12V 12V
Purging valve voltage 12V 12V 12V
Blower voltage 24V 12V -
Flow rate at max output 65 L/min 2.6 L/min 20 L/min
Start up time <30S Immediate Immediate
Efficiency of stack 40%Q72V 40%Q72V 40%QT72V
Low voltage shut down 60V 24V 56V
Over current shut down 90A 12A 95A
Over temp. shut down 65°C 65°C 67°C
External power supply | 24V(£1V'), 8A 12A | 13V (£1V), <5A | 9.6-12V, <2.5A

Table 1: Main characteristics fuel cells A, B and C

15




(c) Fuel cell (MES-DEA 1500W)



These datasets consists of a total of 281 (fuel cell A), 471 (fuel cell B)
and 945 (fuel cell C) samples with 6 input variables and 1 output variable,
with a sample rate of 1 min:

e Input variables:

— Process temperature
— Voltage

— Current

— Power

— Anode pressure

— Cathode pressure
e Output variable:
— Hy generated

In all cases the procedure carry out to create the dataset consist on sample
the system following these steps:

e All fuel cells were operating with controlled output current.

e Output current was changing by steps starting from 0A to 65A, TA
and 35 for fuel cells A, B and C respectively, with increments of 5A,
1A and 0.5A for each one.

e Following, output current was decreasing to 0A by steps of 5A (fuel
cell A), 1A (fuel cell B) and 0.5A (fuel cell C) every step.

e Steps were lasting approximately 10 minutes.

Figures [0] [7] and [§ show the previously described process for fuel cells A,
B and C.
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Figure 8: Fuel cell C output current

5. Experiments and Results

This section addresses how the set of experiments are implemented, and
how the grid search is associated to each one of them. After that, the pa-
rameters used for each experiment and the results are detailed.

5.1. Ezxperiments

In a first step, the BHL algorithm is applied as a clustering technique
to identify the internal structure of the datasets and clusters present in the
datasets. The values of the BHL parameters were chosen in an experimental
process of trial and error. The tuning of the parameters is a task that is very
dependent on the dataset to be used, several initial experiments were carried
out with a range of combinations of these parameter values.

In a second step three regression techniques were applied on each of the
clusters identified in the previous step by BHL, with the aim of obtaining the
best regression model for each cluster. For each experiment a split into two
slices was made. The first split retains 80% of the preprocessed dataset for
training purposes, which has the purpose of obtaining the error values and
finding out which is the best model. The second split with the remaining
20% of the preprocessed data is used to test the model and show the final
error values.
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Figure [0, presents the structure of the hybrid system, and the steps fol-
lowed to obtain the final model.

DATASET CLUSTER 1

MODEL PERFORMANCE
CLUSTER 1
MAE, MSE

TRAIN:
80%

VALIDATION:
20%

DATASET CLUSTER 2
MODEL PERFORMANCE
CLUSTER 2

TRAIN:
6 MAE, MSE

80%

VALIDATION:

DATASET CLUSTER 3
MODEL PERFORMANCE
CLUSTER 3

MAE, MSE FINAL HYBRID MODEL
’ PERFORMANCE:
SA and WA

TRAIN:

CLUSTERING 80%

VALIDATION:
20%

DATASET CLUSTER N

TRAIN:
80%

MODEL PERFORMANCE
CLUSTER N
MAE, MSE

VALIDATION:
20%

Figure 9: Hydrid system structure.

Each of the three techniques addressed in section [3.3) has been imple-
mented to be trained with each cluster, Therefore, each machine learning
regression technique and its associated own pram-grid is applied to each
cluster identified by BHL.

The Cross-validation technique has been implemented by applying Ten
fold with the goal of getting the best combination of parameters and hence,
the best model. The measurement error chosen for optimizing the test-split
within the Grid Search as Cross-Validation has been the Mean Absolute Er-
ror (M AE). the best combinations of the param-grid found, will have the
minor MAE, obtaining the best model. The hyper-parameter set of the three
implemented machine learning techniques are described at [56], [57], [58] and
[59].
One model was created for each fuel cell using the obtained datasets
after a monitorization process. The testing procedure consist on dividing the
dataset A into training and validation (80% and 20%) and for training k-folds
technique were applied (training-testing). Validation was performed over
validation dataset (never previously used in training). Training procedure
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was repeated 10 times (10 folds, training-testing) and average errors were
obtained (in order to avoid bias measures). For dataset B and C, the same
process was followed independently from the other datasets. In figure [10| the
training and validation procedure is summarized.

DATASET
TRAIN:

[Ttz [

e
P
»
& MODEL WITH BEST
- COMBINATION OF
» PARAMETERS
-
P
)

Crramics s
»

VALIDAnTION: VALIDATION MODEL PERFORMANCE
20% MAE, MSE

Figure 10: Training and validation procedure.

5.2. Results

5.2.1. Clustering results

Figures [11] present the best projection of BHL algorithm by using
the parameters presented in table 2] Four main groups are clearly presented
for fuel cell A and B and three groups for fuel cell C. Clusters obtained by
the projection of BHL are presented in compact groups and well separated
from each other. These groups correspond to the different working states of
the process, and therefore demonstrating different behaviours, so different
models are needed in order to obtain the best approach.

As can be seen in the three figures, the internal structure of each dataset
is different due to their corresponding to distinct fuel cells.

21



BHL (dataset A) iters=1000, lrate=0.05, « = 3.2, 3 = 4.3
BHL (dataset B) iters=10000, Irate=0.01, « =3, f =3
BHL (dataset C) iters=50000, Irate=0.05, a = 3.5, § = 4.1

Table 2: BHL parameters for dataset A, B and C
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Figure 11: BHL projection for dataset A
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Figure 13: BHL projection for dataset C.
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5.2.2. Regression results
Dataset A

The combination of parameters (param-grid) 361 tested for the ETR, SVR
and MLP regression techniques are shown in tables [3], [4], 5}

Number estimators: [50, 100, 200, 400, 600, 700, 800, 900]
Bootstrap: [False, True}
Maximum depth: [5,10,20,40,50, 60, 70]
Minimum samples leaf:  [2,3,5,7]
[2-

¢

Minimum samples split:

Table 3: Paramgrid for Extra Trees Regressor method

Kernel Linear Poly RBF
Tol 0.1, 0.01, 0.001, 0.1, 0.01, 0.001, 0.1, 0.01, 0.001,
0.0001 0.0001 0.0001
Gamma - 1,0.1 ,0.01 ,0.001 1, 0.1, 0.01, 0.001,
,0.0001 0.0001
Degree - 2,3,4,5,6, 7. - .
C 1, 10, 100, 1000, 1, 10, 100, 1000, 1, 10, 100, 1000,

10000, 100000

10000, 100000

10000, 100000

Table 4: Paramgrid for SVR method

Early Stopping:
Hidden layer sizes:

Nesterov momentum:

Solver:

Learning rate init:
Activation:

Warm start:
Batch size

[False, True]

[5-20]

[False, True]

[Ibfgs, sgd, adam]
0.9, 0.5, 0.01, 0.15]
[relu, tanh]

[True, False]

[5, 10, 15, 20]

Table 5: Paramgrid for MLP Regressor method

The best combination of parameters for the best regression technique
extracted from the Ten-fold Grid Search Cross Validation are summarized in

table [G}
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CLUSTER 1: ETR, MAE: 1.0451, Number estimators : 600, Bootstrap
: False, Maximum depth: 20, Minimum samples leaf: 2,
Minimum samples split: 2

CLUSTER 2: ETR, MAE: 1.2814, Number estimators : 50, Bootstrap
: False, Maximum depth: 20, Minimum samples leaf: 2,
Minimum samples split: 5

CLUSTER 3: SVR, MAE: 1.2184, Kernel: RBF, Tol: 0.1, Gamma: 0.01,
C: 1000

CLUSTER 4: MLP, MAE: 0.0103, Early Stopping: True, Hidden layer
sizes: 19, Nesterovs momentum: True, Solver: Ibfgs,
Learning rate init: 0.9, Activation: tanh, Warm start:
False, Batch size: 5

Table 6: Parameters for the best model for each cluster for dataset A

The results are defined shaped like the most common error measurement

of the twelve experiments. These are grouped by regression techniques ap-
plied to four clusters. Tables [7] [§] and [9] show the results.

Cluster 1 2 3 4

LMLS 0.4771 0.6266 0.6857 0.0003
MSE 1.5253 29704 2.2844 0.0006
MAPE  0.0600 0.1231 0.2293 Inf

MAE 1.0451 1.2814 1.4021 0.0164
SMAPE 0.0589 0.1219 0.2037 1.0574
MASE  0.0896 0.2457 1.8671 0.0091

Table 7: Extra Tree Regression error measures for dataset A
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Cluster 1 2 3 4

LMLS 1.1093 0.8485 0.6212 0.0018
MSE 9.2785 6.9840 2.0567 0.0036
MAPE  0.0640 0.0273 0.0281 Inf

MAE 2.2364 1.7867 1.2184 0.0522
SMAPE 0.1221 0.1833 0.1784 1.5023
MASE  0.200 0.4180 1.9207 0.0228

Table 8: SVR error measures for dataset A

Cluster 1 2 3 4

LMLS 1.6354  1.6509 0.9118 0.0001
MSE 33.6201 9.7880 3.2027 0.0002
MAPE  0.1768 0.3291 0.2851 Inf

MAE 3.8177 29828 1.7331 0.0103
SMAPE 0.1672 0.2839 0.2492 1.0237
MASE  0.3234  0.5290 83.417 0.0057

Table 9: MLP error measures for dataset A

Graphical representation as real output (dashed line blue) versus pre-
dicted output (in red) per each experiment are presented in Figures ,
and [I7 The ”Y” axis represents the Hydrogen value while the ”X” axis
represents each data sample of 20% cases of the final validation data split for
each cluster.
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Figure 14: Real data vs. Extra Tree Regressor prediction for dataset A
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Figure 15: Real data vs. SVR prediction for dataset A
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Figure 17: Real vs Predicted output for the developed hybrid system in dataset A

Dataset B

For the dataset of the second fuel cell B followed the same procedure
as in the case of the dataset for fuel cell A. After that, the best regression

technique for each cluster is shown, as well as the MAE and MSE measures
for each cluster (Table [10)):
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CLUSTER 1: ETR, MAE: 0.0444, MSE:0.004791, Number estimators: 200,
Bootstrap: True, Maximum depth: 20, Minimum samples leaf:
3, Minimum samples split: 2

CLUSTER 2: ETR, MAE: 0.0348, MSE: 0.002409, Number estimators: 900 ,
Bootstrap : True, Maximum depth: 10, Minimum samples leaf:
2, Minimum samples split: 5

CLUSTER 3: ETR, MAE: 0.0442, MSE: 0.002785, Number estimators: 700 ,
Bootstrap : False, Maximum depth: 5, Minimum samples leaf:
2, Minimum samples split: 5

CLUSTER 4: ETR, MAE: 0.0608, MSE: 0.005693, Number estimators: 50 ,
Bootstrap : False, Maximum depth: 5, Minimum samples leaf:
2, Minimum samples split: 2

Table 10: Parameters for the best model for each cluster fuel cell B

The results for both datasets are defined shaped like the most common
error measures of experiments. These are grouped by regression techniques
applied to four clusters. Tables [I1} [12] and [I3] show the results for fuel cell
B.:

Cluster 1 2 3 4

LMLS 0.0024 0.0012 0.0014 0.0028
MSE 0.0048 0.0024 0.0028 0.0057
MAPE  0.1097 0.0375 0.0206 Inf

MAE 0.0444 0.0343 0.0442 0.0609
SMAPE 0.0809 0.0364 0.0206 0.0290
MASE  0.0668 0.0471 0.2324 0.1822

Table 11: Extra Tree Regression error measures fuel cell B.
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Cluster 1 2 3 4
LMLS 0.0046 0.0026 0.0032 0.0052
MSE 0.0093 0.0053 0.0065 0.0104
MAPE  0.2358 0.0675 0.0364 Inf
MAE 0.0738 0.0627 0.0731 0.1018
SMAPE 0.1770 0.0671 0.0361 0.0524
MASE  0.1111 0.0872 0.3348 0.3478

Table 12: SVR error measures fuel cell B.

Cluster 1 2 3 4
LMLS 0.0023 0.0046 0.0061 0.0419
MSE 0.0047 0.0093 0.0123 0.0868
MAPE 0.1768 0.3291 0.2851 Inf
MAE 0.0453 0.0777 0.1053 0.2550
SMAPE 0.0619 0.0681 0.0515 0.1322
MASE  0.0674 0.1142 1.0561 0.3238

Table 13: MLP error measures fuel cell B.

Graphical representation as real output (dashed line blue) versus pre-
dicted output (in red) per each experiment in dataset B, are presented in
Figures [I8] 20 [19 and 21} The ”Y” axis represents the Hydrogen value while
the ”X” axis represents each data sample of 20% cases of the final validation

data split for each cluster.
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Figure 18: Real data vs. Extra Tree Regressor prediction fuel cell B.
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Figure 19: Real data vs. SVR prediction fuel cell B.
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Figure 20: Real data vs. MLP predictions fuel cell B.
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Figure 21: Real vs Predicted output for the developed hybrid system in dataset B

Dataset C
In the experimental procedure for this dataset of the third fuel cell (C) it has
been followed same steps for fuel cell A and B. Following, the best regression
technique for each cluster is showed, as well as the MAE and MSE measures
for each cluster (Table [14)):

CLUSTER 1: ETR, MAE: 0.3385, MSE:0.2610, Number estimators : 100,
Bootstrap: True, Maximum depth: 20, Minimum samples leaf:
3, Minimum samples split: 2

CLUSTER 2: ETR, MAE: 0.8161, MSE: 2.1536, Number estimators : 200 ,
Bootstrap : True, Maximum depth: 10, Minimum samples leaf:
2, Minimum samples split: 2

CLUSTER 3: SVR, MAE: 0.1176, Kernel: RBF, Tol: 0.01, Gamma: 1, C: 1000

Table 14: Parameters for the best model for each cluster fuel cell C
Following most common error measures of experiments are grouped by
regression techniques applied to three clusters. Tables [I5] [16] and [I7] show
the results for fuel cell C.:
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Cluster 1 2 3

LMLS 2.6372 23981  0.5939
MSE 0.2610 2.1536  0.1852
MAPE  0.5140 Inf Inf
MAE 0.3385 0.8161 0.1648
SMAPE 0.4441 0.5114  Inf
MASE  0.9413 01.0175 0.8199

Table 15: Extra Tree Regression error measures fuel cell C.

Cluster 1 2 3

LMLS 2.6295 2.4722 0.54642
MSE 0.2851 3.6985 0.0494
MAPE  0.5114 Inf Inf
MAE 0.3777 1.3088 0.1176
SMAPE 0.4420 0.5275 1.9683
MASE  0.9547 1.0156 0.8900

Table 16: SVR error measures fuel cell C.

Cluster 1 2 3

LMLS 2.6406 2.3787 0.5320
MSE 0.2624 2.1822 0.1036
MAPE 0.5151 Inf Inf
MAE 0.3525 0.8922 0.1273
SMAPE 0.4452 0.5075 1.97215
MASE  0.9475 0.9644 0.9465

Table 17: MLP error measures fuel cell C.

Graphical representation like real output (dashed line blue) versus pre-
dicted output (in red) per each experiment, can be seen in Figures ,
and 25l The ”Y” axis represents the Hydrogen value while the ”"X” axis
represents each data sample of 20% cases of the final validation data split for
each cluster.
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Figure 22: Real data vs. Extra Tree Regressor prediction fuel cell C.
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Figure 23: Real data vs. SVR prediction fuel cell C.
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Figure 24: Real data vs. MLP predictions fuel cell C.
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Figure 25: Real vs Predicted output for the developed hybrid system in dataset C

5.2.3. Comparative Results

Finally in tables and it is shown the MAE and MSE results
for:

e General global model without clustering process for each regression
technique (ETR, MLP, SVR).

e Local model defined by the cluster process using the same regression
technique (ETR, MLP or SVR) for all clusters and showing the simple
average and weighted average for each algorithm.

e Local best model defined by the clustering algorithm, using the best
regression technique for each cluster and showing the simple average
(SA) and weighted average (WA).

Such combination of MAE and MSE errors for each cluster has been
performed in two different ways:

e Simple average (SA): Each cluster has the same weight so the average
MAE and MSE for each cluster is calculating as the sum of each MAE
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and MSE divided by total number of clusters, 4 in Cell Fuel A and B,
and 3 in fuel Cell C.

e Weighted average (WA): Each cluster has a weight, proportional to the
total size of the cluster, C1 (53.7%), C2 (30%), C3 (10.5%) and C4
(5.8%) for Cell Fuel A. C1 (76.82%), C2 (12.44%), C3 (8.36%) and C4
(2.36%) for Cell Fuel B. And, C1(58.86%), C2(33.75%) and C3(7.4%)
for Fuel Cell C. So the average is calculated as the sum of each MAE
or MSE weighted by its size (in %).

Model MAE MSFE
GLOBAL ETR 2.195 7.916

GLOBAL SVR 2.203 10.797
GLOBAL MLP 2.467 10.810

LOCAL BEST MODEL (SA)  0.888  1.638
LOCAL BEST MODEL (WA) 1.074 1.925

Table 18: Comparison of global and local models based on MAE and MSE for fuel cell A

M odel MAE MSE

GLOBAL ETR 0.0652 0.01768
GLOBAL SVR 0.1339 0.07739
GLOBAL MLP 0.0830 0.02124

LOCAL BEST MODEL (SA)  0.0459 0.00434
LOCAL BEST MODEL (WA) 0.0435 0.00391

Table 19: Comparison of global and local models based on MAE and MSE for fuel cell B

Model MAE MSE
GLOBAL ETR 0.5712 1.0976
GLOBAL SVR 1.0714 3.8509
GLOBAL MLP 0.6669 0.9707

LOCAL BEST MODEL (SA)  0.4240 0.8213
LOCAL BEST MODEL (WA) 0.4833 0.8842

Table 20: Comparison of global and local models based on MAE and MSE for fuel cell C

42



Based on MAE and MSE measures summarize in Tables [I§] and [20]
as the most representative from among the measures used in this research,
detailed in Table [7, [8] [0} [T}, 12} [13] [15] [L6] and [17}

It can be concluded that the best solution is based on a procedure where
a clustering algorithm is applied first, for apply after, a set of regression
techniques to each cluster, in order to get a robust hybrid model with the
best regression technique for cluster.

Table Table [6] shows MAE and MSE for each cluster as well as the best
combination of regression techniques (ETR for clusters 1 and 2, SVR for
cluster 3 and MLP for cluster 4) for the fuel cell A. This approach with a
MAE of 0.888(SA) & 1.074(WA) and a MSE of 1.638(SA) & 1.925(WA) out-
performs the global approach based on ETR global model as show Table 13,
where the best global model has a MAE of 2.195 and a MSE of 7.916, being
worse than local model approach.

Results for fuel cell B illustrate that the local approach where the ETR
is applied to each of the clusters optimized the MAE measure. That is true
that in the cluster 1 a better result of MSE equal to 0.0047 can be obtained
applying MLP technique in cluster 1. However the difference using ETR or
MLP is minimum (0.0001), being the MSE using ETR in cluster 1 equal to
0.0048, while the difference from MAE point of view is higher (0.0009), when
MLP is used in cluster 1 (0.0453) versus to use ETR in cluster 1 (0.0444).
For this reason, ETR will be chosen like regression technique for all cluster
for implementing the local model approach in the cell fuel B.

This way, the local model solution where ETR is utilized over the four
clusters gets a MAE of 0.045(SA) & 0.0435(WA) and a MSE of 0.00434(SA)
& 0.00391(WA) while the global model using ETR without clustering, de-
liver a results with a MAE of 0.0652 and a MSE of 0.01768 (Table 14). It is
necessary to consider that the difference of both approaches from MAE and
MSE point of view, might seem minimum in this experiment, however, the
fuel cell B works in very small range of values compared with the fuel cell A.

In case of fuell cell C, the hydrid model outperforms the results obtained
by the global model, by using ETR for cluster 1 and 2 and SVR for cluster
3, it is obtained a reduction in the MAE of 25,7% with respect to the best
global model (ETR) and a reduction of MSE of 15.4%.

Figures [I7], 21] and [25] show how the final hybrid model composed by the
four and three local models works. It can see how in the majority of cases
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the solution purposed in this work has an optimal behavior.
Considering all reflections previously addressed in this section. It can be
said that the use of combination of local models in order to get a robust
final hybrid model is a better approach, that the global model without the
implementation of clustering procedure. Even if the training process is more
complex for the local approach compared to the global one.

6. Conclusions and future works

In this paper, a combination of clustering and modelling techniques are
applied to a real dataset for predicting the consumption of Hy by a fuel cell.
As a result, the combination of both techniques outperforms the result of a
single general model.

Due to the complexity in obtaining a parametric model of a fuel cell system
to find out the amount of hydrogen consumed based on main parameters
such as voltage, current, etc., the use of intelligent techniques seems to be a
suitable option for predicting the amount of hydrogen demanded by means
of experimental data. However, due to the nonlinear behaviour of fuel cells,
the use of only one overall model could not achieve as good results as those
obtained from several local models.

Local models based on clustering and regression have been successfully ap-
plied in previous works over different industrial systems [32], [35], especially
for non-linear systems and with well differentiated states of behaviour. In
particular, when human knowledge of the system’s behaviour is relevant, the
use of projectionist techniques such as BHL has demonstrated good results,
as it allows this human expertise to be included during the clustering phase,
prior to the application of regression techniques [60, 61, [62].

Therefore in this research, we have successfully applied local models outper-
forming the results achieved by a general model during the task of predicting
the consumption of hydrogen by a fuel cell. The results showed that the pre-
dicted output of hydrogen consumed, provide a good idea of the real output
of the hydrogen consumed.

It is also important to highlight that different fuel cells present different be-
haviours and therefore it is necessary to generate one specific model for each
one based on experimental datasets.

Thus, in order to validate the proposed approach and generalize its applica-
bility to any fuel cell, 3 different fuel cells located in different systems have
been tested. In both cases, the results obtained are good, allowing a model
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to be obtained for predicting the consumption of hydrogen when a charge is
demanding energy from the fuel cell.

Based on the results obtained, it can be concluded that the proposed method-
ology outperforms some other classic methods in the task of predicting the
hydrogen consumed in the fuel cell.

To achieve a good performance of the predicted system it is important to ob-
tain a complete dataset containing information on all working states of the
system. This means that the system should be pass through all the differ-
ent states of behaviour, with different combinations of measured parameters
(current, voltage, power, etc.). Therefore a systematic procedure, consisting
of increasing the current demanded up to the maximum and decreasing it
again to zero, should be done in order to generate more accurate and simple
models.

Due to the possible existence of small clusters (with a few samples), it is
possible to get very small error prediction values for such clusters, however
the contribution of these small errors are weighted by its size, so the final
errors are not very influenced by them.

The use of the methodology presented allows the hydrogen consumed for any
real fuel cell system to be predicted, as the procedure can be applied using
different measured variables, such as new temperatures points, pressure in
different parts of the system, hydrogen flow, etc.

As general conclusion, in this research a methodology to predict hydrogen
consumption through hybrid intelligent system that can be applied to any
fuel cell is presented and validated. Therefore, the generated model can be
used in simulation processes, without the need to use the real system, to
carry out different experiments.

Future works will be divided into two objectives: First, generated inverse
models to predict the current generated based on the hydrogen consumed.
Second, develop more sophisticated models using complex prediction tech-
niques such as deep learning models and other clustering techniques.
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