
Citation: López, V.; Jove, E.; Zayas

Gato, F.; Pinto-Santos, F.;

Piñón-Pazos, A.J.; Casteleiro-Roca,

J.L.; Quintián, H.; Calvo-Rolle, J.L.

Intelligent Model for Power Cells

State of Charge Forecasting in EV.

Processes 2022, 10, 1406. https://

doi.org/10.3390/pr10071406

Academic Editor: Zhiwei Gao

Received: 19 May 2022

Accepted: 16 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Intelligent Model for Power Cells State of Charge Forecasting
in EV
Víctor López 1,*,† , Esteban Jove 1,† , Francisco Zayas Gato 1,† , Francisco Pinto-Santos 2,† ,
Andrés José Piñón-Pazos 1,† , Jose-Luis Casteleiro-Roca 1,† , Hector Quintian 1,† and Jose Luis Calvo-Rolle 1,†

1 Department of Industrial Engineering, University of A Coruña, 15405 A Coruña, Spain;
esteban.jove@udc.es (E.J.); f.zayas.gato@udc.es (F.Z.G.); andres.pinon@udc.es (A.J.P.-P.);
jose.luis.casteleiro@udc.es (J.-L.C.-R.); hector.quintian@udc.es (H.Q.); jlcalvo@udc.es (J.L.C.-R.)

2 Computer Science Faculty, Pontifical University of Salamanca, C/ Compañía, 5, 37002 Salamanca, Spain;
fpintosa@upsa.es

* Correspondence: v.lope@outlook.com
† These authors contributed equally to this work.

Abstract: In electric vehicles and mobile electronic devices, batteries are one of the most critical
components. They work by using electrochemical reactions that have been thoroughly investigated
to identify their behavior and characteristics at each operating point. One of the fascinating aspects
of batteries is their complicated behavior. The type of power cell reviewed in this study is a Lithium
Iron Phosphate LiFePO4 (LFP). The goal of this study is to develop an intelligent model that can
forecast the power cell State of Charge (SOC). The dataset used to create the model comprises all the
operating points measured from an actual system during a capacity confirmation test. Regression
approaches based on Deep Learning (DL), such as Long Short-Term Memory networks (LSTM), were
evaluated under different model configurations and forecasting horizons.

Keywords: LSTM; forecasting; battery

1. Introduction

The most often utilized solution to overcome the problem of intermittent energy gener-
ation in renewable energy systems is an electrical energy storage system [1]. Electric energy
storage is utilized in renewable energy systems as a technique of storing energy when pro-
duction exceeds demand and returning energy when demand exceeds production. These
systems are also employed to power portable electronics applications or for substituting
fossil fuels in automobiles, such as electric cars [1,2].

A growing amount of research is being conducted to enhance electrical energy storage
devices. Some research is focusing on coping with intermittent energy generation in
renewable energy systems such as solar and wind power systems, intending to use those
technologies in Smart Grid systems [3]. Furthermore, the growing usage of portable devices
such as tablets or smartphones, which increases the quality of life, needs greater autonomy,
shorter charging times, and lighter energy storage components [4].

The driving range of an electric vehicle is now a significant issue tied to the storage
system. Although inefficient, internal combustion engines give an excellent driving range
due to the high energy density of fossil fuels [5].

Li-ion power cells are excellent prospects for use in electromobility and the renewable
energy industry. This battery is suited for electric drive cars due to its high power density
and cell voltage, minimal self-discharge, no memory effect, and extended life cycle [6].
Moreover, Li-ion batteries are available in various chemistry, each with its own set of
characteristics, such as energy or power cells, to meet the various needs of the automobile
sector [7].
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Because of the widespread usage of these batteries in portable devices such as electric
vehicles and the necessity for safety, failure analysis and modeling of these batteries are
critical [8].

On the other hand, among the great number of machine learning applications [9–11],
time series analysis can be used for clustering [12,13], classification [14], query by content [15],
anomaly detection, as well as forecasting [16,17], which is the branch of the current study.
Moreover, given the increasing availability of data and computing power in recent years,
deep learning has become a critical component of the new generation of time series fore-
casting models. Overcoming the traditional machine learning disadvantages, being more
robust to missing values, recognizing complex patterns in the data, and working well in
long-term forecast [18–21].

Recurrent Neural Networks (RNN) are the most classical and used architecture for
time series forecasting problems with variable-length sequences of inputs [22–24], such
as unsegmented, connected handwriting recognition [25] or speech recognition [26,27].
LSTM [28] and Gated Recurrent Units (GRU) [29] are evolutions that were developed to
deal with the vanishing gradient problem that involves traditional RNNs training.

This research aims to create an intelligent model that can forecast the SOC of a power
cell. The aforementioned regression approaches, based on LSTM networks, were employed
to take advantage of its capacity to predict long sequences and to test it on multiple study
scenarios. The approach is chosen using the minimum mean squared error criterion.

The document is organized as follows. First, an introduction is provided. Then,
the description of the system under study is presented, describing the test carried out. Next,
the methods used in this study are detailed. After that, the model performance and scores
are displayed in the results section, providing a statistical analysis of such results. Finally,
future efforts and conclusions are shown.

2. Description of the System under Study

The SOC model of an LFP power cell utilized in electric car battery systems is presented
in this study. The tests performed and the power cell are detailed in further depth in
the subsections.

2.1. The Battery

Batteries are one alternative way of storing electric energy. These devices store energy
in an electrochemical medium and are capable of storing and then providing electrical
energy as a result of electrochemical processes [1].

Li-ion batteries are usually built with five distinctive layers: the negative collector (for
negative current), a negative electrode (that is called “anode”), a separator (like a mem-
brane), a positive electrode (called “cathode”), and the positive current collector. There are
different types of positive electrode materials [30]: (1) a metal oxide with layered structure,
like lithium cobalt oxide (LiCoO2/LCO) [31]; (2) a metal oxide with a 3-dimensional spinel
structure, like lithium manganese oxide (LiMn2O4) [32]; (3) lithium nickel manganese
cobalt oxide (LiNiMnCoO2/NMC); and (4) a metal phosphate with an olivine structure,
such as lithium iron phosphate LiFePO4 (LFP) [33]. The anode is generally made of graphite
or metal oxide. Among carbonaceous materials, carbon nanotubes (CNTs) are considered
the most promising materials being developed [34]. The electrolyte can be liquid, polymer
or solid [35]. There are various types of lithium-ion batteries available such as cylindrical,
coin, and prismatic. Cylindrical and coin batteries are used in small products such as
wrist watches, laser pointers, and slide changers [36], and prismatic batteries are used for
high-capacity applications such as automobiles [37].

The internal reactions in a lithium-ion battery are described in [38], and the specific
reactions of LiFePO4 battery cell are explained in [39]. Basically, during charge cycle,
the electrons flow from cathode to anode using a power source to force this flow, and inside
the battery, the reactions take place to increase the SOC. During discharge, the electrons
flow in the opposite way in the electric circuit; the current flow in electric diagrams is the
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opposite of the real flow of electrons, from the positive electrode to the negative one. As it
is described in [40], the membrane separator is a key component in a liquid-electrolyte
battery for electrically separating the cathode and the anode, ensuring ionic transport
between them. Besides these basic requirements, endowing the separator with specific
beneficial functions is now being paid great attention to because it provides an important
alternative approach for the development of batteries, particularly next-generation high-
energy rechargeable batteries.

One reason that decreases the capacity of batteries is the temperature, among other
phenomena. For example, the battery degradation in electric vehicles can be optimized
by reducing the power used to charge it; with a low power charger, the battery does not
increase its temperature [41]. One of the problems in high-power chargers is that the battery
increases its temperature and it reduces its capacity [42]. In [43], a study of the dependency
between the battery’s performance and the temperature is done; in [44], a comprehensive
mathematical model is used to analyze the degradation of the battery. In both papers, it is
possible to conclude that the temperature is one of the reasons that reduces the battery’s
capacity. Also, in [45] an analysis of the depth of discharge (DOD) is performed (and other
analyses of the degradation among the whole life cycle of Li-ion batteries), and one of the
conclusions about the DOD in electric vehicles is that they should work in range from 30%
to 80% to prevent degradation.

Lithium-Ion batteries are the most often used batteries in portable gadgets. They are
often seen in electronic products and, more lately, electric automobiles [46]. Li-ion cells are
distinguished by their high energy density, owing to the high voltage they can be produced
compared to other battery types while weighing less [1]. They have a long life cycle, a low
self-discharge rate, and no memory effect [46,47].

2.2. Capacity Confirmation Test

The capacity confirmation test, done on the battery, measures the capacity of the
battery in ampere-hour [48]. The measurement of the battery capacity is done at a constant
current. The test begins with the battery fully charged, so the SOC is at its highest. Then,
the battery produces a steady current until it achieves the discharge voltage set by the
manufacturer [48]. Then, the battery is put to rest until the voltage is restored, and the
charging process may continue. Once the voltage has returned to a certain level, the battery
is charged to its maximum voltage, as set by the manufacturer [48]. These operations are
carried out with a continuous current, and the current SOC is determined at each moment.

The capacity confirmation test was performed using a battery tester. This gadget can
charge and discharge the cell within the test settings, in this case employing a constant
current and taking the necessary measurements. The battery voltage, the current provided
or absorbed by the battery, the temperature at two different times, and the length of the test
are all measured.

A current source i(t) is the testing equipment that delivers or absorbs the current.
The power cell employed in this study carbon/LiFePO4 (material of the anode/cathode)

cell. It has a nominal capacity of 8000 mAh and a typical voltage of 3.3 V; its datasheet [49]
mention also the maximum charging voltage (3.65 V), the cut-off discharge voltage (2.0 V),
and maximum charge and discharge current, 32 A and 200 A respectively. This battery has
a cylindrical shape with 38 mm diameter and a height of 123 mm.

2.3. Dataset

As previously stated, the whole dataset utilized in this study was gathered via testing a
power cell during its capacity confirmation test. Table 1 displays the total samples collected
with the sample time and the scope of values for each magnitude. Different devices such as
an ammeter, voltmeter, and temperature sensors were engaged in measuring the intensity
(A), voltage (V), and temperature (T1, T2) variables, respectively.
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Table 1. Measured variables and range of values.

Variables Values

Samples Sample-Time (s) Amps (I) Volts (V) T1 (◦C) T2 (◦C)

16,370 1 [−32.04, 32.05] [2, 3.65] [37.43, 41.80] [36.15, 40.56]

While the test is ongoing, four different stages can be distinguished: Charge: by the
time the initial voltage is 3 V and it is increased up to 3.65 V. Rest after the charging:
without current flowing, the battery voltage reaches its nominal value, 3.3 V. Discharge: the
voltage is decreased from 3.3 V to 2 V. And rest after the discharging: having no current
flowing, the voltage of the battery goes from 2 V to 3 V, thus letting a new cycle be ready to
begin anew.

Hence, the SOC of the battery is calculated at each stage using current and time.
While temperature sensors record measurements in two different points (T1, T2) in order to
identify a battery failure during the test. Thereby, a problem can be discovered if readings
are significantly outside of a usual range. Besides, their values and the voltage change
cyclically depending on whether the battery is charging, discharging or resting. Thus, all
the data collected during the capacity confirmation test was labeled to determine the SOC.
The measured data was recorded with a sampling frequency of 1 Hertz.

3. Methods

In this section, the technical procedures used across the study are exposed, such as the
feature engineering to preprocess collected data, the window sliding technique to build up
a suitable dataset of sequences, and the LSTM units.

3.1. Feature Engineering

Data has not been randomly shuffled before splitting but after. This ensures that
chopping the data into windows of consecutive samples is still possible, and the test
results are more realistic, being evaluated on the data collected after the model was trained.
A proportion of 80–20% for training and test set, respectively, has been selected (see
Figure 1).

0 2000 4000 6000 8000 10,000 12,000 14,000 16,000

−20

0

20

40

60

80

100

Amps (A) Volts (V) T1 (
oC) T2 (

oC) Capacity (%)
Samples

Training (80 %) Test (20 %)

Figure 1. Traces and unit ranges for metrics measured during the capacity test: Intensity (Amps),
Voltage (Volts), T1 (◦C), T2 (ºC) and Capacity (%).
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Normalization is a common way of scaling features: subtract the mean and divide by
the standard deviation of each feature.

xi =
xi − µx

σx
∀i, ..., n (1)

where xi intends to the value i normalized, being µx the mean and σx the standard deviation
of the feature x, whose number of samples is inferred as n.

The mean and standard deviation have only been computed using the training data so
that the models cannot access the values in test sets. Thereby, the test splits are normalized
using this mean and standard deviation likewise.

3.2. Data Windowing

The models trained in this article will make predictions based on a window of consec-
utive samples from the data. Various data windows were generated to build and compare
models in different scenarios.

The number of time steps of the input and label sequences is attached to the window
size and horizon of prediction, respectively. Several widths were considered according
to the sample time of 1 Hertz. Therefore, models could be trained on different window
configurations (Figure 2).

The overlapping of the window slides was fixed to the label width.
The models developed make single-output and multi-time-step predictions using every

feature previously explained as inputs and the capacity as the label.

𝑥𝑡−𝑤 𝑥𝑡−𝑤−1 … 𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1 𝑥𝑡+2 … 𝑥𝑡+ℎ−1 𝑥𝑡+ℎ

HorizonWindow size

Total width

Label width

⋮

Dropped Inputs Labels

Slide 1

Slide 2

Slide n

Window

𝑥0

𝑥1
⋮

𝑥𝑤

𝑥𝑤+1

⋮

𝑥𝑤+2
⋮

Overlapping Features
Batch

Time

𝑥𝑤+ℎ

Training

Input width

Figure 2. A fixed window slides on the available time series data in agreement with the overlapping,
to build a dataset of input and label sequences, according to window size and forecasting horizon,
respectively.

3.3. LSTM

LSTM Networks have been developed to overcome the vanishing gradient problem
in the standard RNN by improving the gradient flow within the network [28]. This was
achieved by using a LSTM unit in place of the hidden layer. As shown in Figure 3, a LSTM
unit is composed of [28,50]:

Cell State: brings information along the entire sequence and represents the memory of the
network.

C(t) = σ( f (t)� C(t− 1) + i(t)) (2)
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Referring to C(t) as the cell state at current time-step t, whereabouts σ alludes to
sigmoid activation function, f (t) the output of the forget gate, C(t− 1) the cell state at
previous time-step t− 1 and i(t) the output of the input gate. The operator � refers to
Hadamard product [51].

Forget Gate: decides what is relevant to keep from previous time steps.

f (t) = σ(x(t)U f + h(t− 1)W f ) (3)

Being f (t) the output of the forget gate at current time-step t, x(t) the inputs to the
cell at current time-step t, h(t− 1) the hidden state at previous time-step t− 1 whereupon
the recurrent connection is fed back into the cell. U and W are the weights of the inputs
and recursive state each.

Input Gate i(t): manages what information is relevant to add from the current time step.

i1(t) = σ(x(t)Ui + h(t− 1)Wi) (4)

i2(t) = tanh(x(t)Ug + h(t− 1)Wg) (5)

i(t) = i1(t)� i2(t) (6)

where i1(t) and i2(t) are hereby the main components of the input gate i(t) output at
current time-step t. tanh infers to hyperbolic tangent activation function.

Output Gate: computes the value of the output at current time step.

o(t) = σ(x(t)Uo + h(t− 1) Wo) (7)

h(t) = tanh(Ct)� o(t) (8)

Here, o(t) at current time-step t, derives from merging the inputs x(t) with the hidden
state h(t− 1). Concluding h(t) as the output of the cell.

σ σ tanh

x +

x

tanh

σ

x

Forget Gate

𝑈𝑓𝑊𝑓

Input Gate

𝑊𝑔 𝑊𝑖 𝑊𝑜
𝑈𝑔 𝑈𝑖

𝑈𝑜
Output Gate

𝑓(𝑡)

𝑖(𝑡)

𝑜(𝑡)

𝑖1(𝑡) 𝑖2(𝑡)

𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

𝑪(𝒕)

𝒉(𝒕)

𝒙(𝒕) 𝒚(𝒕)

𝑉

Figure 3. A LSTM unit scheme. It is composed of the cell state, forget gate, input gate and output gate.
U and W represent the weights of inputs and recurrent connections for the internal layers within
each gate. σ and tanh alludes to sigmoid and hyperbolic tangent activation functions each.

As a type of RNN, LSTM networks have loops, allowing information to persist [22–24].
Figure 4 considers how it flows between time steps by looking at some input xt and
computing an output value yt, feeding back the internal state (C(t), h(t)) of the unit from
one step to the next.
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𝑥1
𝑥2
⋮
𝑥𝑡

𝑥1
𝑥2
⋮
𝑥𝑡

LSTM
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𝒚(𝒕)
𝒉(𝒕)

𝑪(𝒕)𝑪(𝒕 − 𝟏)

𝒉(𝒕 − 𝟏)

=

𝑦1 𝑦2 … 𝑦𝑡−1 𝑦𝑡

𝒙(𝒕)

𝒚(𝒕)

LSTM LSTM LSTM
𝐶2

ℎ2

𝐶𝑡−1

ℎ𝑡−1

𝐶1

ℎ1

𝐶𝑡−2

ℎ𝑡−2

𝑥1
𝑥2
⋮
𝑥𝑡

𝑥1
𝑥2
⋮
𝑥𝑡

𝑥1
𝑥2
⋮
𝑥𝑡

𝑦1
𝑦2
⋮
𝑦𝑡

Features
Batch

Time

Figure 4. An unrolled LSTM network. The LSTM unit places the hidden layer and computes inputs
recursively for each time step.

4. Experiments and Results

Throughout this point, it describes all the experiments proposed and the results
obtained for each simulation carried out.

4.1. Experiments

As introduced in Section 3.2, the proposed models will make single-output predictions
of the capacity of the battery and multi-time-step forecasting according to two different
approaches as shown in Figure 5: Single-shot (SS), making predictions all at once and
Autoregressive (AR), making one prediction at a time and feeding the output back to the
model [52,53].

𝑥1 𝑥2 … 𝑥𝑡

…

Inputs

Predictions

Model Single-shot

Warmup ො𝑦𝑡+1 ො𝑦𝑡+2 … ො𝑦𝑝

𝑥1 𝑥2 … 𝑥𝑡

…

Inputs

Predictions

Model Autoregressive

Warmup ො𝑦𝑡+1 ො𝑦𝑡+2 … ො𝑦𝑝

Figure 5. Model configurations are considered to forecast multiple time steps: Single-shot (SS) and
Autoregressive (AR).

The sequence of steps involved in creating the intelligent models has been conducted
through an Application Programming Interface (API) specifically developed for this pur-
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pose. Mainly written in Python language [54], it deals with all of the functionalities required
for launching the experiments proposed throughout the workflow. From constructing the
datasets of windowed samples to the training and evaluation stages. Therefore, celebrated
software libraries for machine learning and artificial intelligence, such as TensorFlow and
Keras were used [55] to build the models according to the architecture based on LSTM
units. With this, a specific class integrated into TensorFlow through a Keras module deals
with the layer’s behavior but also for the optimization stage. After that, the KerasTuner
optimization framework is employed.

Besides, different window widths were used to build up datasets (as stated in Figure 2)
employed to train the models to output predictions in varied scenarios, using the previous
time step feature values to forecast the capacity across the horizon of prediction.

The pipeline followed to obtain models steadied to forecast incoming data is summa-
rized in Figure 6. During the optimization stage, the performance of different versions of
model configurations (Figure 5) was evaluated using the Cross-Validation (CV) resampling
method to estimate the generalization at long therm and Mean Squared Error (MSE) metric
as the objective function to minimize.

Search space

⋮

Training data

Cross Validation

𝑀𝑆𝐸 =
1

𝑛


𝑖=1

𝑛

(𝑡𝑖−𝑦𝑖)
2

Training Validation

Model

Build hypermodel

Save results

Model

Trial hyperparameters

Random search

𝑛𝑡𝑟𝑖𝑎𝑙𝑠

𝑛𝑡𝑟𝑖𝑎𝑙𝑠 < max
trials

Optimization = 𝑓(𝑀𝑜𝑑𝑒𝑙, 𝑆𝑒𝑎𝑟𝑐ℎ 𝑠𝑝𝑎𝑐𝑒, max
trials

)

Start

Stop

Training data Test data

Training Test

Model

Build best model

Best hyperparameters

Figure 6. Optimization, Training and performance stage procedure for the models evaluated for each
configuration and case of study.

The best hyperparameters obtained were used to build up the final models and fit them
on the whole training set. Then, the performance was evaluated on the hold-out unseen
test set simulating new incoming data. The search space design by the hyperparameters
range of the models and the training settings are presented in Table 2.

Table 2. Hyperparameters space and Training parameter settings.

Hyperparameters Space Training Parameters

LSTM UnitsLSTM UnitsLSTM Units NeuronsNeuronsNeurons Batch SizeBatch SizeBatch Size K-FoldsK-FoldsK-Folds EpochsEpochsEpochs

[1–3] [32–40] [32–40] 10 50

4.2. Results

Several simulations were carried out, with the considerations mentioned above, for the
window widths representing each scenario. These are 15, 30, 60, and 120 samples, meaning
in terms of real-time, lookup historical data and forecasting horizons of 15 s, 30 s, 1 min.,
and 2 min. according to the time step stated by the sampling time of 1 Hertz.
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Table 3 shows the metric scores for each model configuration in every case of study de-
scribed by different window sizes and forecasting horizons. Several metrics were necessary
to deal with potentially biased comparisons between models that can mislead meaningful
interpretations.

Table 3. Metric results for model and window case of study.

Windows

Model Metrics 15 30 60 120

SS MAE (%) 0.148933 0.250346 0.366923 0.766663
MSE 0.000299 0.000600 0.001315 0.005677

MAPE (%) 7.259039 9.656219 9.977581 54.853806
R2 0.999738 0.999473 0.998836 0.994919

AR MAE (%) 0.152125 0.251448 0.446577 1.281911
MSE 0.000248 0.000666 0.001812 0.013689

MAPE (%) 4.797170 5.755136 11.760392 77.755592
R2 0.999782 0.999416 0.998395 0.987729

Observing Figure 7, the SOC value for confirming the battery capacity can be predicted
in real-time. The goodness of the fit in terms of the coefficient of determination (R2) appears
to be quite regular even for the largest window settings, despite the invaluable fact that
the robustness and oscillation around real values are considerably much more stable upon
conservative horizons.

13.5k 14k 14.5k 15k 15.5k 16k

−1.5

−1

−0.5

0

0.5

1

1.5

Capacity SS15 AR15

13.5k 14k 14.5k 15k 15.5k 16k

−1.5

−1

−0.5

0

0.5

1

1.5

Capacity SS30 AR30

13.5k 14k 14.5k 15k 15.5k 16k

−1.5

−1

−0.5

0

0.5

1

1.5

Capacity SS60 AR60

13.5k 14k 14.5k 15k 15.5k 16k

−1.5

−1

−0.5

0

0.5

1

1.5

Capacity SS120 AR120

Figure 7. Predicted scaled values for the Capacity of the battery over the hold-out test set for the SS
and AR model configurations in each window scenario.

As well, regarding Table 3, promising scores of Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) are attained, assimilat-
ing other related studies [56]. MAE values vary from 0.1489 to 0.7667 with an increment
of 68, 47, and 109% between window gaps. And 0.1521 to 1.2819 with 65, 78, and 187%
for the SS and AR models. At the same time, MSE exhibits a range of scores from 0.0003
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to 0.0056 with a growth of 100, 119, and 232% amid prediction horizons. This MSE goes
from 0.0002 to 0.0137 by 168, 172, and 655% for the SS and AR models. Likewise, the MAPE
scores follow a similar trend, presenting ©54.8538 for the SS configuration and 4.7971 to
77.7556 for the AR, with the apex at 2 min away in both cases. From the standpoint of the
R², the results are considerably steady, through 0.9997 and 0.9949 for the SS model and in
like manner through 0.9997 to 0.9877 for the AR.

With this exposed, it may be noticeable that the SS configuration achieves better results
than the AR approach, especially for the widest windows, intuiting an elbow around 60 s
width (Figure 8). Indeed, the consistency of such predictions vanishes, conforming to the
window size, and the forecasting horizon increases. In addition, The assessment of the
MAE metric along with the MSE, MAPE, and R² may hint that the SS model works better
than AR, particularly for extremist widows. Even though for the most conservative cases,
no evidence may assure the same.
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Figure 8. Bar chart representing metric results for model and window case of study.

4.3. Statistical Analysis

Table 3 provides a lead to reckon the models’ performance expected facing new data.
These results were obtained by fitting the models over the full training set and evaluating
them on the hold-out test set following the track described in Figure 6.

Nonetheless, to be able to determine if eventually there is any evidence of which
model configuration and window settings work significantly better than the rest, statistical
discrimination is needed.

In line with the aforementioned, Figure 9 shows the boxplot taking advantage of
the metric results obtained for the best models in each fold of the CV applied during the
optimization stage. Variance analysis is carried out to settle if there are significant differ-
ences in the score means. Methods applied such as Kruskall-Wallis [57], and ANOVA [57]
ascertained that the null hypothesis, which states that all models have the same metric
scores, can be rejected with a confident interval of 95%.

In case the null hypothesis is rejected, a step further must be taken to identify which
models are different using multiple comparative analyses, as methods of Tukey [58] and
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Holm-Bonferroni [59], which compare differences between each pair of means with the
proper adjustment for the multiple comparisons.

All the resulting p-values of the multiple comparative analysis are collected in Table 4.
Those under 0.05 and thus, outside the confident interval of 95% are marked in bold,
bespeaking than certainly there is a significant difference between that pair of models.

SS15 AR15 SS30 AR30 SS60 AR60 SS120 AR120

0.5
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1 R2

Figure 9. Boxplots of the metric results obtained for the best models cross-validated in each win-
dow width.

Table 4. p-Values determined by the muti-comparison methods of Tukey and Holm-Bonferroni for
each metric and pair of models.

p-Values

MAEMAEMAE MSEMSEMSE MAPEMAPEMAPE R2R2R2

Models Holm Tukey Holm Tukey Holm Tukey Holm Tukey

AR120 AR15 0 0.001 0 0.001 0.0347 0.001 0.0002 0.001
AR120 AR30 0 0.001 0 0.001 0.049 0.001 0.0002 0.001
AR120 AR60 0 0.001 0.0001 0.001 0.3487 0.001 0.0007 0.001
AR120 SS120 0.2262 0.0906 0.7203 0.9 0.6894 0.1168 0.436 0.6574
AR120 SS15 0 0.001 0 0.001 0.049 0.001 0.0002 0.001
AR120 SS30 0 0.001 0 0.001 0.0578 0.001 0.0004 0.001
AR120 SS60 0 0.001 0.0004 0.001 0.1697 0.001 0.0032 0.001
AR15 AR30 0 0.0988 0.0001 0.9 0.6894 0.9 0.0002 0.9
AR15 AR60 0 0.001 0 0.0071 0.2934 0.4679 0 0.0027
AR15 SS120 0 0.001 0.0002 0.001 0.0514 0.0011 0 0.001
AR15 SS15 0.0012 0.9 0.0004 0.9 1 0.9 0.0002 0.9
AR15 SS30 0 0.0042 0 0.1262 0.6123 0.9 0 0.0777
AR15 SS60 0 0.001 0 0.001 0.049 0.8011 0 0.001
AR30 AR60 0 0.001 0 0.1233 0.3478 0.7034 0 0.0728
AR30 SS120 0 0.001 0.0004 0.001 0.046 0.0044 0 0.001
AR30 SS15 0 0.5479 0.0282 0.9 0.6894 0.9 0.016 0.9
AR30 SS30 0.0092 0.9 0 0.6601 1 0.9 0 0.5819
AR30 SS60 0 0.001 0 0.001 0.3478 0.9 0 0.001



Processes 2022, 10, 1406 12 of 15

Table 4. Cont.

p-Values

MAEMAEMAE MSEMSEMSE MAPEMAPEMAPE R2R2R2

Models Holm Tukey Holm Tukey Holm Tukey Holm Tukey

AR60 SS120 0.0001 0.001 0.0009 0.001 0.6599 0.3039 0 0.001
AR60 SS15 0 0.001 0 0.0523 0.0903 0.5032 0 0.0235
AR60 SS30 0 0.0041 0.0282 0.9 0.6123 0.8048 0.016 0.9
AR60 SS60 0.0215 0.7539 0.0021 0.3463 1 0.9 0.0023 0.2844
SS120 SS15 0 0.001 0.0004 0.001 0.046 0.0014 0 0.001
SS120 SS30 0 0.001 0.0008 0.001 0.0651 0.0077 0 0.001
SS120 SS60 0.0002 0.001 0.0066 0.001 0.3487 0.0922 0 0.001
SS15 SS30 0 0.0683 0 0.4552 0.6894 0.9 0 0.3292
SS15 SS60 0 0.001 0 0.001 0.0903 0.8349 0 0.001
SS30 SS60 0 0.001 0 0.0326 0.6894 0.9 0 0.0184

p-vlaues under 0.05, and thus outside the confidence interval of 95%, are marked in bold.

5. Conclusions and Future Works

The obtained results in this study report a system able to predict in advance and with
enough accuracy the SOC of a battery to perform corrective actions to improve the energy
management in batteries (charge, discharge) and its potential applications in different fields
such as an electric vehicle, smart grids, . . .

The simulations launched in this study may present remarkable results like in other
akin studies conducted [56]. Nevertheless, the performance of the model configurations
can differ significantly in agreement with the window settings considered.

In this line, as far as the statistical analysis is concerned, according to Kruskall-Wallis
and ANOVA variance analysis, there are expected differences between the model scores,
which are specifically denoted by Tukay and Holm-Bonferroni multiple comparative analy-
sis. With the help of these methods, it can be stated that statistical variation between models
arises when the window width contrast is emphasized. As long as there are systematically
significant differences among both SS and AR configurations with a sameness of forecasting
horizon, choosing the one with the best scores seems to be a wise approach.

The SOC value for the confirmation of the battery capacity can be predicted in real-
time by both models. When the power cell test gives incorrect results, the model can be
used to verify that it is working properly.

Applications of interest may be fulfilled by these models, supported by the metric
results. These models can provide a beneficial way to optimize the energy management in
power cells during charge or discharge cycles.

Testing its capacity to deal with large sequences throw varied window widths is the
main reason which made LSTM networks the object of study in this article. Even though
GRUs have been shown to exhibit better performance on specific smaller and less frequent
datasets [60,61], there is no consensus on the analogy between LSTM or GRU units in
time series forecasting, leaving the computational cost out. It may open a door for future
multi-comparison analysis employing different model configurations based on these units.

As future works, it is possible to mention that we will try to develop models for
different types of batteries to check if the specific internal battery components affect the
performance of the model.
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