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Resolving sets tolerant to failures in
three-dimensional grids
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Abstract. An ordered set S of vertices of a graph G is a resolving set for
G if every vertex is uniquely determined by its vector of distances to the
vertices in S. The metric dimension of G is the minimum cardinality of
a resolving set. In this paper we study resolving sets tolerant to several
failures in three-dimensional grids. Concretely, we seek for minimum
cardinality sets that are resolving after removing any k vertices from the
set. This is equivalent to finding (k+1)-resolving sets, a generalization of
resolving sets, where, for every pair of vertices, the vector of distances to
the vertices of the set differs in at least k+ 1 coordinates. This problem
is also related with the study of the (k+1)-metric dimension of a graph,
defined as the minimum cardinality of a (k + 1)-resolving set. In this
work, we first prove that the metric dimension of a three-dimensional
grid is 3 and establish some properties involving resolving sets in these
graphs. Secondly, we determine the values of k ≥ 1 for which there exists
a (k + 1)-resolving set and construct such a resolving set of minimum
cardinality in almost all cases.
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1. Introduction

Resolving sets can be used to distinguish the vertices of a graph G comparing
distances to fixed vertices. Fault-tolerant resolving sets were defined to dis-
tinguish the vertices of G even though one of the vertices of the set fails. Here
we consider a more general case, concretely, resolving sets that distinguish
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the vertices of a graph when any k vertices of the set fail, where k is a fixed
integer.

The notion of resolving sets in graphs was defined independently by
Harary and Melter [13] and Slater [25] and have since received a lot of at-
tention due to their applications in several areas, such as network discov-
ery and verification [3], robot navigation [17], chemistry [5] or games [7].
Fault-tolerant resolving sets were introduced in [14] and have been studied
in [2,6,15,19,21,23,24,27]. For more applications and properties on metric
dimension and its variants, the reader is addressed to the surveys [20,26] and
the references herein.

Let G be a simple finite connected graph. For two vertices u, v ∈ V (G),
let d(u, v) denote the length of a shortest path from u to v. A vertex u of G
resolves two vertices x and y if d(u, x) �= d(u, y). A set of vertices S ⊆ V (G)
is a resolving set for G if for every pair of different vertices x and y of G there
is a vertex u in S that resolves x and y. The metric dimension of G, denoted
by dim(G), is the minimum cardinality of a resolving set, and a metric basis
is a resolving set of cardinality dim(G). If S = {u1, . . . , uk} ⊆ V (G), we
denote by r(x|S) the vector of distances from x to the vertices of S, that
is, r(x|S) = (d(x, u1), . . . , d(x, uk)). Thus, S is a resolving set if and only if
r(x|S) �= r(y|S) for every pair of distinct vertices x, y ∈ V (G). The elements
of r(x|S) are the metric coordinates of x with respect to S. A resolving set
S ⊆ V (G) is fault-tolerant if S − {u} is a resolving set, for every u ∈ S.

Resolving sets can be used to locate nodes in a network modeled as
a graph, and fault-tolerant resolving sets can be used to locate nodes even
though one of the nodes of the resolving set fails. Here we consider the possi-
bility of more than one failure. Note that the set obtained after the removal
of any k vertices of a resolving set S remains resolving if and only if every
pair of vertices of the graph is resolved by at least k + 1 distinct vertices of
S. This last concept was introduced in [9], concretely, a set S of vertices of
a graph is a k-resolving set if for every pair of vertices x and y, the vectors
r(x|S) and r(y|S) have at least k different coordinates. Hence, a set S remains
resolving even though k vertices fail if and only if S is a (k +1)-resolving set.
The k-metric dimension and k-resolving sets of a graph and, concretely, of
some product graphs have been studied in [2,9–12,18,22,28]. In the survey
[20], an extensive summary of known results and applications of the k-metric
dimension is given.

It is worth mentioning that, in contrast to resolving sets or fault-tolerant
resolving sets, k-resolving sets do not always exist for k ≥ 3 [9]. Whenever
a graph G has at least one k-resolving set, a k-resolving set of minimum
cardinality is a k-metric basis, and its cardinality is the k-metric dimension of
G, denoted by dimk(G) [9]. With this terminology, 1-resolving sets correspond
to resolving sets and 2-resolving sets correspond to fault-tolerant resolving
sets.

Here we are interested in finding resolving sets tolerant to k failures,
that is, (k + 1)-resolving sets and, more precisely, (k + 1)-metric bases and
the (k + 1)-metric dimension of three-dimensional grids. Grid graphs have
been proven to be very useful in diverse areas such as robotics, video games
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and telecommunications [1,8,19]. The value of the k-metric dimension of two-
dimensional grids is determined in [2].

Since a superset of a resolving set is also a resolving set, the following
result is obvious and provides a necessary and sufficient condition for the
existence of a k-resolving set.

Remark 1. A graph G has a k-resolving set if and only if V (G) is a k-resolving
set.

Next result gives a lower bound on the k-metric dimension of a graph,
whenever it is defined.

Proposition 2 [9]. If a graph G has a k-resolving set, then dimk(G) ≥ dim(G)+
k − 1.

The paper is organised as follows. In Sect. 2, some properties concerning
resolving sets for three-dimensional grids are given. Concretely, we prove that
the metric dimension of a three-dimensional grid is exactly 3 and establish
lower bounds on the number of vertices resolving a fixed pair of vertices.
These bounds will be very useful in Sect. 3, devoted to the study of resolving
sets tolerant to k failures in three-dimensional grids. Concretely, we determine
the (k + 1)-metric dimension and describe (k + 1)-metric bases of these grids
in almost all cases.

2. Resolving Sets in Three-Dimensional Grids

In this section we calculate the metric dimension of three-dimensional grids
and prove some new results concerning resolving sets in these grids. We also
point out sets of vertices resolving a fixed pair of vertices, that will be very
useful in Sect. 3.

Formally, an r-dimensional grid, or rD grid for short, is any graph ob-
tained as the cartesian product of r non-trivial paths, that is, Pn1� · · · �Pnr

,
with n1, . . . , nr ≥ 2. We can assume that the set of vertices of Pn1� · · · �Pnr

is:

V (Pn1� · · · �Pnr
) = {(x1, . . . , xr) : 0 ≤ xi ≤ ni − 1 for every i ∈ {1, . . . , r}}

and two vertices (x1, . . . , xr) and (y1, . . . , yr) of V (Pn1� · · · �Pnr
) are ad-

jacent if and only if yi ∈ {xi − 1, xi + 1}, for some i ∈ {1, . . . , r}, and
xj = yj , whenever j �= i. Hence, the degrees of the vertices of an rD grid
are r, r + 1, . . . , 2r, and the distance between two vertices (x1, . . . , xr) and
(y1, . . . , yr) in Pn1� · · · �Pnr

is:

d((x1, . . . , xr), (y1, . . . , yr)) =
r∑

i=1

|yi − xi|.

There are some vertices that play an important role in resolving pairs
of vertices of a 3D grid, concretely, vertices with degree different from the
maximum degree, 6. The vertices of degree 3 are called corners. A vertex of
degree 6 is an interior vertex. With the specified labeling of the vertices, the
set of corners of a 3D grid is {(x1, x2, x3) : xi ∈ {0, ni − 1} for i ∈ {1, 2, 3}}.
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A face of a 3D grid is a set of vertices with a constant coordinate xi0 equal
to either 0 or to ni0 − 1, for some i0 ∈ {1, 2, 3}. Let F (n1, n2, n3) denote the
set of vertices belonging to any face, that is, F (n1, n2, n3) = {(x1, x2, x3) :
xi ∈ {0, ni − 1} for some i ∈ {1, 2, 3} }. We write simply F if the values n1,
n2 and n3 are clear from context. Note that F consists of all non-interior
vertices and |F (n1, n2, n3)| = n1n2n3 − (n1 − 2)(n2 − 2)(n3 − 2) = 2(n1n2 +
n2n3 + n1n3) − 4(n1 + n2 + n3) + 8.

It is known that the metric dimension of an rD grid is at most r [17].
Also in this paper, it is said that it is exactly r and the proof is left to the
reader. However, in general this is not in true. For example, it is known that
the metric dimension of the hypercube, that can be viewed as a rD grid with
n1 = · · · = nr = 2, is less than r for r ≥ 5 [4]. It remains an open problem
to determine the exact value of the metric dimension for general grids. A
discussion on asymptotic values of the metric dimension of a grid is included
in [16]. Next, we prove that the result stated in [17] holds for 3D grids.

Theorem 3. If n1, n2, n3 ≥ 2, then dim(Pn1�Pn2�Pn3) = 3. Moreover, a set
formed by three corners of a face is a metric basis.

Proof. We begin by proving that dim(Pn1�Pn2�Pn3) ≥ 3. Paths are the only
graphs with metric dimension 1 [5], thus, it is enough to prove that the metric
dimension of Pn1�Pn2�Pn3 is different from 2.

Suppose to the contrary that dim(Pn1�Pn2�Pn3) = 2 and S = {u, v}
is a resolving set for G. Then, the degree of u and v is at most 3 [17]. Hence,
u and v must be corners in Pn1�Pn2�Pn3 . We can assume without loss of
generality that u = (0, 0, 0) and v ∈ {(n1 − 1, 0, 0), (n1 − 1, n2 − 1, 0), (n1 −
1, n2 − 1, n3 − 1)}.

But, if v = (n1 − 1, 0, 0), then r((0, 1, 0)|S) = r((0, 0, 1)|S) = (1, n1);
if v = (n1 − 1, n2 − 1, 0), then r((0, 1, 0)|S) = r((1, 0, 0)|S) = (1, n1 +

n2 − 3); and
if v = (n1 − 1, n2 − 1, n3 − 1), then r((0, 1, 0)|S) = r((1, 0, 0)|S) =

(1, n1 + n2 + n3 − 4), which is a contradiction.
In [17], the authors prove that the set {(0, 0, 0), (n1 − 1, 0, 0), (0, n2 −

1, 0)} is a resolving set for Pn1�Pn2�Pn3 . Hence, dim(Pn1�Pn2�Pn3) = 3.
By symmetry, we have that every set formed by three corners of a face is a
metric basis. �

The following lemma describes some resolving sets of cardinality 4 for a
3D grid. Notice that similar resolving sets can be given by interchanging the
role of the three coordinates.

Lemma 4. If h, h′ ∈ {0, . . . , n3 − 1}, with h �= h′, i ∈ {0, . . . , n1 − 1} and
j ∈ {0, . . . , n2 − 1}, then S = {(0, 0, h), (n1 − 1, 0, h), (0, n2 − 1, h), (i, j, h′)}
is a resolving set for Pn1�Pn2�Pn3 .

Proof. Let G = Pn1�Pn2�Pn3 . By Theorem 3, the set S′ = {(0, 0, h), (n1 −
1, 0, h), (0, n2 − 1, h)} is a metric basis for the 3D grid formed by the vertices
{(x1, x2, x3) ∈ V (G) : x3 ≤ h} and for the 3D grid formed by the vertices
{(x1, x2, x3) ∈ V (G) : x3 ≥ h}. Hence, if h ∈ {0, n3−1}, then S is a resolving
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Figure 1. The sets R−−(a1, a2), R++(a1, a2), R−+(a1, a2)
and R+−(a1, a2)

set for G. Otherwise, by symmetry, two different vertices u and v of G have
the same coordinates with respect to S if and only if u = (a, b, c1) and
v = (a, b, c2), with c1 �= c2 and c1 + c2 = 2h, for some integers a, b, c1, c2. We
claim that u and v are resolved by (i, j, h′). Indeed, suppose to the contrary
that (i, j, h′) does not resolve u and v. In such a case, since d(u, (i, j, h′)) =
|i − a| + |j − b| + |h′ − c1| and d(v, (i, j, h′)) = |i − a| + |j − b| + |h′ − c2|, we
have |h′ − c1| = |h′ − c2|. But this equality is true if and only if c1 = c2 or
c1 + c2 = 2h′. Hence, h = h′, a contradiction. �

Now, we give a sufficient condition for a set not to be resolving in a
3D grid. First we need some terminology. For every a1 ∈ {1, . . . , n1 − 1} and
a2 ∈ {1, . . . , n2 − 1}, we define the sets of vertices in Pn1�Pn2 :

R−−(a1, a2) = {(x1, x2) : 0 ≤ x1 < a1, 0 ≤ x2 < a2},

R++(a1, a2) = {(x1, x2) : a1 ≤ x1 < n1, a2 ≤ x2 < n2},

R−+(a1, a2) = {(x1, x2) : 0 ≤ x1 < a1, a2 ≤ x2 < n2},

R+−(a1, a2) = {(x1, x2) : a1 ≤ x1 < n1, 0 ≤ x2 < a2}.

Notice that these sets form a partition of the set of vertices of the 2D grid
Pn1�Pn2 (see Fig. 1).

Let pr3(S) be the projection of S onto Pn1�Pn2 , that is, pr3(S) contains
all the vertices of the 2D grid Pn1�Pn2 obtained by deleting the third coor-
dinate from the vertices of S. Analogously, the projection pri(S), i ∈ {1, 2},
contains all the vertices of the 2D grid obtained by deleting the i-th coordi-
nate from the vertices of S.

Lemma 5. If there exist a1 ∈ {1, . . . , n1−1} and a2 ∈ {1, . . . , n2−1} such that
pr3(S) ⊆ R−−(a1, a2) ∪ R++(a1, a2) or pr3(S) ⊆ R−+(a1, a2) ∪ R+−(a1, a2),
then S is not a resolving set for Pn1�Pn2�Pn3 .

Proof. If pr3(S) ⊆ R−−(a1, a2)∪R++(a1, a2), then the vertices (a1 −1, a2, 0)
and (a1, a2−1, 0) are not resolved by S. Analogously, if pr3(S) ⊆ R−+(a1, a2)∪
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Figure 2. If pr3(S) ⊆ R−−(a1, a2) ∪ R++(a1, a2), then S
is included in the white region and circled vertices are
not resolved by any vertex of S. Analogously, if pr3(S) ⊆
R−+(a1, a2) ∪ R+−(a1, a2), then S is included in the gray
region and squared vertices are not resolved by any vertex
of S

R+−(a1, a2), then the vertices (a1−1, a2−1, 0) and (a1, a2, 0) are not resolved
by S (see Fig. 2). �

Note that, by symmetry, the preceding result can also be stated for
pr1(S) and pr2(S).

Now, we prove some properties for general graphs that provide vertices
resolving a fixed pair of vertices under certain conditions.

Lemma 6. Let u and v be vertices of a graph G. If d(u, v) is odd, then every
vertex of a shortest path between u and v resolves u and v. If d(u, v) is even,
then all but one of the vertices of a shortest path between u and v resolve u
and v.

Proof. For every vertex x belonging to a shortest path from u to v, the
equality d(u, x) + d(x, v) = d(u, v) holds. If d(u, v) is odd, then there is no
vertex x in the shortest path satisfying d(u, x) = d(v, x). If d(u, v) is even,
then there is exactly one vertex x in the shortest path satisfying d(u, x) =
d(v, x) = d(u, v)/2. �
Lemma 7. Let u and v be vertices of a bipartite graph G.

If d(u, v) is odd, then every vertex of G resolves u and v.

Proof. The distance between two vertices of the same partite set of G is even,
and the distance between vertices of different partite sets is odd. If d(u, v) is
odd, then u and v belong to different partite sets of G, and for every vertex
x ∈ V (G), the distances d(x, u) and d(x, v) have different parity. Hence, x
resolves u and v. �

Next results establish a lower bound on the number of vertices in F
resolving a pair of fixed vertices u and v, taking into account the number of
different coordinates of u and v.
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Since grids are bipartite graphs, by Lemma 7, all the vertices of a grid
resolve a pair of vertices u and v, if d(u, v) is odd. Thus, we focus on the case
d(u, v) even. For n1, n2, n3 ≥ 2, we define

αM (n1, n2, n3) = min{n1(n2 + n3 − 2), n2(n1 + n3 − 2), n3(n1 + n2 − 2)}.

It is easy to check that αM (n1, n2, n3) = ni(n1 + n2 + n3 − ni − 2), for
ni = min{n1, n2, n3}.

Lemma 8. Let u = (x1, x2, x3) and v = (y1, y2, y3) be two different vertices
of Pn1�Pn2�Pn3 with xi �= yi for exactly one value i ∈ {1, 2, 3}. Then, there
are at least αM (n1, n2, n3) vertices in F (n1, n2, n3) resolving u and v.

Proof. Assume without loss of generality that x1 = y1, x2 = y2 and x3 �= y3.
A vertex z = (z1, z2, z3) does not resolve u and v if and only d(z, u) =
|x1 − z1|+ |x2 − z2|+ |x3 − z3| = |x1 − z1|+ |x2 − z2|+ |y3 − z3| = d(z, v), that
is, if and only if |x3 − z3| = |y3 − z3|. Hence, the set of vertices not resolving
u and v is {(a, b, (x3 +y3)/2) : 0 ≤ a ≤ n1 −1, 0 ≤ b ≤ n2 −1} (note that this
set is empty when x3 and y3 have different parity). In any case, there are at
least |F | − (2n1 + 2n2 − 4) vertices in F resolving u and v. But

|F | − (2n1 + 2n2 − 4) − n3(n1 + n2 − 2)

= 2(n1 − 2)(n2 − 2) + (n2 − 2)(n3 − 2) + (n1 − 2)(n3 − 2) + 2(n3 − 2) ≥ 0.

Hence, |F | − (2n1 + 2n2 − 4) ≥ n3(n1 + n2 − 2) ≥ αM . �

Lemma 6 shows when a vertex of a shortest path between two fixed
vertices u and v resolves the pair u and v. Next, we analyze which vertices
not belonging to the shortest path resolve u and v. We denote by S(u, v) the
set of vertices belonging to a shortest path between u and v in a 3D grid.
Concretely, for every pair u = (x1, x2, x3) and v = (y1, y2, y3) of distinct
vertices of the grid Pn1�Pn2�Pn3 , S(u, v) is the set of vertices:

[min{x1, y1},max{x1, y1}] × [min{x2, y2},max{x2, y2}] × [min{x3, y3},max{x3, y3}].

Hence, S(u, v) induces a 3D grid such that u and v are corners, if the three
coordinates of u and v are different; a 2D grid, if u and v have exactly 2
different coordinates; and a path, if u and v differ by exactly one coordinate.

Next, we associate a vertex not in S(u, v) with a vertex of the subgrid
S(u, v) (belonging to one of its faces, whenever S(u, v) is a 3D grid) so that
either both vertices resolve u and v or neither of them resolves u and v. The
result is stated for the first coordinate, but it holds similarly for the second
and third coordinates.

Lemma 9. Let u = (x1, x2, x3) and v = (y1, y2, y3) be two distinct vertices of
Pn1�Pn2�Pn3 . Let z = (z1, z2, z3).

(i) If z1 ≤ min{x1, y1}, then z resolves u and v if and only if vertex
(min{x1, y1}, z2, z3) resolves u and v.

(ii) If z1 ≥ max{x1, y1}, then z resolves u and v if and only if vertex
(max{x1, y1}, z2, z3) resolves u and v.
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u u

v v

y1x1 x1

x2 x2

y2y2

y1

Figure 3. Vertices (a, b, c), with c = x3, of the 3D grid are
represented. Left, case y1 −x1 = y2 −x2 and right, y1 −x1 �=
y2 − x2. Vertices in the striped region do not resolve u and
v. In both cases, there are at least n1 +n2 −2 vertices in the
boundary resolving u and v (gray region)

Proof. We prove only the first item, because the second one is derived anal-
ogously. Assume without loss of generality that x1 ≤ y1. Let z = (z1, z2, z3)
be such that z1 ≤ x1 and let z′ = (x1, z2, z3). Then, d(z, u) = |x1 −
z1| + |x2 − z2| + |x3 − z3| = d(z, z′) + d(z′, u). Similarly, we have that
d(z, v) = |y1−z1|+|y2−z2|+|y3−z3| = |y1−x1|+|x1−z1|+|y2−z2|+|y3−z3| =
|x1 − z1| + (|y1 − x1| + |y2 − z2| + |y3 − z3|) = d(z, z′) + d(z′, v). Hence, z
resolves u and v if and only if z′ resolves u and v. �

Note that the preceding lemma implies that a vertex z not in S(u, v)
resolves u and v if and only if the vertex in S(u, v) closest to z resolves u and
v.

Lemma 10. Let u = (x1, x2, x3) and v = (y1, y2, y3) be two different vertices
of Pn1�Pn2�Pn3 with xi = yi for exactly one value of {1, 2, 3}. Then, there
are at least αM (n1, n2, n3) vertices of F (n1, n2, n3) resolving u and v.

Proof. We may assume without loss of generality that x1 < y1, x2 < y2 and
x3 = y3. Then, d(u, v) = y1−x1+y2−x2. If d(u, v) is odd, then all the vertices
in F resolve u and v by Lemma 7. Now suppose that d(u, v) = y1−x1+y2−x2

is even. If y1 −x1 = y2 −x2, then, using Lemma 9 we derive that the vertices
in F belonging to the set

{(0, b, c) : 0 ≤ b < y2, 0 ≤ c ≤ n3 − 1}
∪ {(n1 − 1, b, c) : x2 < b < n2 − 1, 0 ≤ c ≤ n3 − 1}
∪ {(a, 0, c) : 0 ≤ a < y1, 0 ≤ c ≤ n3 − 1}
∪ {(a, n2 − 1, c) : x1 < a < n1 − 1, 0 ≤ c ≤ n3 − 1}

resolve u and v, and the number of vertices of this set is (y2 +(n2 −1−x2)+
y1+(n1−1−x1)−2)n3 = (y2−x2+y1−x1+n1+n2−4)n3 ≥ (n1+n2−2)n3

(see Fig. 3, left).
If y1 − x1 �= y2 − x2, we may assume y1 − x1 < y2 − x2. Let r =

(y1 − x1 + y2 − x2)/2. Then, the following vertices in F resolve u and v:

{(0, b, c) : b �= x2 + r, 0 ≤ c ≤ n3 − 1}
∪ {(n1 − 1, b, c) : b �= y2 − r, 0 ≤ c ≤ n3 − 1}
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∪ {(a, 0, c) : 0 ≤ a ≤ n1 − 1, 0 ≤ c ≤ n3 − 1}
∪ {(a, n2 − 1, c) : 0 ≤ a ≤ n1 − 1, 0 ≤ c ≤ n3 − 1}.

and this set has at least (2n1 + 2n2 − 4)n3 vertices. Hence, there are at least
(n1 +n2 − 2)n3 ≥ αM vertices in F resolving u and v (see Fig. 3, right). �

Lemma 11. Let u = (x1, x2, 0) and v = (y1, y2, n3 − 1) be two vertices of
Pn1�Pn2�Pn3 . Then, there are at least n3(n1+n2−2) vertices in F (n1, n2, n3)
resolving u and v.

Proof. We claim that for every pair a and b, such that a ∈ {0, n1 − 1} or
b ∈ {0, n2 − 1}, there is at most one vertex in the set Ta,b = {(a, b, c) : 0 ≤
c ≤ n3 − 1} not resolving u and v. Indeed, if there were at most two vertices
not resolving them, then by Lemma 9 there would be two vertices z and z′

belonging to some set T ′
a′,b′ = {(a′, b′, c) : 0 ≤ c ≤ n3−1} not resolving u and

v, where x1 ≤ a′ ≤ y1, x2 ≤ b′ ≤ y2 and either a′ ∈ {x1, y1} or b′ ∈ {x2, y2}.
But this is a contradiction by Lemma 6, because there is a shortest path
between u and v that goes through both z and z′. Notice that there are
2n1 +2n2 − 4 sets of type Ta,b, with a ∈ {0, n1 − 1} or b ∈ {0, n2 − 1}. Hence,
there are at least (2n1 +2n2 − 4)(n3 − 1) vertices in F (n1, n2, n3) resolving u
and v, and (2n1 +2n2 −4)(n3 −1) ≥ (n1 +n2 −2)(2n3 −2) ≥ (n1 +n2 −2)n3,
where the last inequality holds because n3 ≥ 2. �

Lemma 12. Let u = (x1, x2, x3) and v = (y1, y2, y3) be two different vertices
of Pn1�Pn2�Pn3 with xi �= yi, for every i ∈ {1, 2, 3}. Then, there are at least
n1 +n2 − 2 vertices (z1, z2, z3) resolving u and v with z3 = n3 − 1, and either
z1 ∈ {0, n1 − 1} or z2 ∈ {0, n2 − 1}.
Proof. Assume without loss of generality that xi < yi for all i ∈ {1, 2, 3}.
Let C = {(z1, z2, n3 − 1) : z1 ∈ {0, n1 − 1} or z2 ∈ {0, n2 − 1}} and let
C ′ = {(z1, z2, y3) : z1 ∈ {0, n1 − 1} or z2 ∈ {0, n2 − 1}}. Note that |C| =
|C ′| = 2n1 + 2n2 − 4. By Lemma 9, a vertex z = (z1, z2, n3 − 1) ∈ C resolves
u and v if and only if (z1, z2, y3) ∈ C ′ resolves u and v. Therefore, it is enough
to show that there are at least n1 + n2 − 2 vertices in C ′ resolving u and v.

Consider the sets S1 = {(x1, b, y3) : x2 ≤ b ≤ y2} ∪ {(a, y2, y3) : x1 <
a ≤ y1}, S2 = {(a, x2, y3) : x1 ≤ a ≤ y1} ∪ {(y1, b, y3) : x2 < b ≤ y2} and
S3 = {(x1, x2, c) : x3 ≤ c < y3}. The vertices of S1 ∪ S3 form a shortest path
between u and v as well as the vertices of S2 ∪ S3. Hence, there is at most
one vertex in S1 and at most one vertex in S2 not resolving u and v. Let S
be the set of vertices in S1 ∪ S2 not resolving u and v. Thus, |S| ∈ {0, 1, 2}.

Note that for w = (z1, z2, y3) ∈ S, we have d(w, v) = d(w, u) =
d(w, (x1, x2, y3)) + (y3 − x3) > d(w, (x1, x2, y3))

If |S| = 0, then all the vertices of C ′ resolve u and v by Lemma 9, and
|C ′| = 2n1 + 2n2 − 4 > n1 + n2 − 2.

If |S| = 1, then, since |S1| = |S2|, the vertex in S must be (x1, x2, y3).
By Lemma 9, there are 2n1 +2n2 −4− (x1 +x2 +1) vertices in C ′ resolving u
and v. But 2n1+2n2−4−(x1+x2+1) ≥ n1+n2−2, because xi < yi ≤ ni−1,
for i = 1, 2 (see Fig. 4a).
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Figure 4. Vertices (a, b, c), with c = y3, of the 3D grid are
depicted. Vertices in the striped region do not resolve u and
v. The vertices of C ′ resolving u and v are in the gray region.
a |S| = 1. b–d |S| = 2

If |S| = 2, then (x1, x2, y3) /∈ S, one vertex of S is in S1\S2, the other
one belongs to S2\S1, and both are at the same distance from (x1, x2, y3).

Moreover, there is at most one vertex belonging to S in {(x1, y2, y3),
(y1, x2, y3)}. Indeed, if S = {(x1, y2, y3), (y1, x2, y3)}, then y1 − x1 = y2 −
x2 + y3 − x3 and y2 − x2 = y1 − x1 + y3 − x3, because the vertices of S are at
the same distance from u and v, and this is not possible because y3 −x3 > 0.
If S ∩ {(x1, y2, y3), (y1, x2, y3)} = ∅, then by Lemma 9 there are at least
2n1 + 2n2 − 4 − 2 vertices in C ′ resolving u and v, and 2n1 + 2n2 − 4 − 2 ≥
n1 + n2 − 2 because n1, n2 ≥ 2 (see Fig. 4b, c).

If |S ∩ {(x1, y2, y3), (y1, x2, y3)}| = 1, we may assume without loss of
generality that y2 − x2 < y1 − x1 so that S ∩ {(x1, y2, y3), (y1, x2, y3)} =
(x1, y2, y3). By Lemma 9 there are at least 2n1 + 2n2 − 4 − 1 − (x1 + n2 − y2)
vertices in C ′ resolving u and v, 2n1+2n2−4−1−(x1+n2−y2) ≥ n1+n2−2
because x1 < y1 ≤ n1 − 1 and 0 ≤ x2 < y2 (see Fig. 4d).

In any case, there are at least n1 +n2 − 2 vertices in C ′ resolving u and
v, and so in C, as we wanted to prove. �

We finish this section with a lower bound on the number of vertices
belonging to the faces of a 3D grid resolving any fixed pair of vertices.

Proposition 13. Let u, v ∈ V (Pn1�Pn2�Pn3). Then, there are at least
αM (n1, n2, n3) vertices in F (n1, n2, n3) resolving u and v.

Proof. We proceed by induction on h = n1 + n2 + n3 ≥ 6.
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If h = 6, then n1 = n2 = n3 = 2 and αM (n1, n2, n3) = 4. Besides, all
the vertices of the grid are in F (2, 2, 2) and it is easy to check that, for every
pair of vertices u and v, there are at least 4 vertices resolving them.

Now we prove that the statement of the lemma holds whenever n1 +
n2 + n3 = h, assuming that it is true for grids Pn′

1
�Pn′

2
�Pn′

3
such that

n′
1 + n′

2 + n′
3 ≤ h − 1. Let u and v be two different vertices of Pn1�Pn2�Pn3

and let Rn1,n2,n3(u, v) denote the set of vertices of F (n1, n2, n3) resolving u
and v. If u and v have at least one equal coordinate, then |Rn1,n2,n3(u, v)| ≥
αM (n1, n2, n3) by Lemmas 8 and 10. Now suppose that the three coordinates
of u and v are distinct. We may assume n1 ≤ n2 ≤ n3. Suppose first that
n1 < n3. In such a case, n1+n2+n3−1 = h−1. If u, v are in Pn1�Pn2�Pn3−1,
then by induction hypothesis and using Lemmas 9 and 12,

|Rn1,n2,n3(u, v)| ≥ |Rn1,n2,n3−1(u, v)| + (n1 + n2 − 2)

≥ αM (n1, n2, n3 − 1) + (n1 + n2 − 2)

= (n2 + (n3 − 1) − 2)n1 + (n1 + n2 − 2)

= (n2 + n3 − 2)n1 + n2 − 2

≥ (n2 + n3 − 2)n1 = αM (n1, n2, n3).

If no both vertices u and v are included in a grid Pn1�Pn2�Pn3−1, by sym-
metry it is enough to consider the case u = (x1, x2, 0) and v = (y1, y2, n3−1).
By Lemma 11, |Rn1,n2,n3(u, v)| ≥ n3(n1 + n2 − 2) ≥ αM (n1, n2, n3).

Now suppose n1 = n3, that is, n1 = n2 = n3 = n. Arguing as in the
preceding case, if u, v belong to Pn�Pn�Pn−1, then

|Rn,n,n(u, v)| ≥ |Rn,n,n−1(u, v)| + (2n − 2)

≥ αM (n, n, n − 1) + (2n − 2)

= (2n − 2)(n − 1) + (2n − 2)

= (2n − 2)n = αM (n, n, n)

Otherwise, assume that u = (x1, x2, 0) and v = (y1, y2, n − 1), and by
Lemma 11, |Rn,n,n(u, v)| ≥ n(2n − 2) = αM (n, n, n). �

3. Resolving sets tolerant to k failures in 3D Grids

Recall that a resolving set S of a graph remains resolving after the deletion of
any k vertices if and only if S is a (k+1)-resolving set of G, and the minimum
cardinality of such a set is the (k+1)-metric dimension of G. In this section we
provide exact values and bounds on the (k+1)-metric dimension of 3D grids.
Moreover, in almost all cases, a (k+1)-metric basis, that is, a (k+1)-resolving
set of minimum cardinality, is constructed.

Let αm(n1, n2, n3) be defined as follows:

αm(n1, n2, n3) = 2(n1 + n2 + n3) − 8,

and recall the definition of αM (n1, n2, n3) given in the preceding section:

αM (n1, n2, n3) = min{n1(n2 + n3 − 2), n2(n1 + n3 − 2), n3(n1 + n2 − 2)}.
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Figure 5. Left, αm is the number of vertices lying on the
thicker edges of the grid. Right, αM is the number of vertices
lying on the gray faces of the grid

From now on, we assume n1, n2, n3 ≥ 2 and k ≥ 2. Note that αm and αM

are half the number of vertices lying on an “edge” of the grid and half the
number of vertices lying on the four smallest faces of the grid, respectively
(see Fig. 5).

Proposition 14. If k ≥ αM (n1, n2, n3), then Pn1�Pn2�Pn3 has no (k + 1)-
resolving set.

Proof. Assume without loss of generality that αM = (n1 + n2 − 2)n3. Sup-
pose to the contrary that S ⊆ V = V (Pn1�Pn2�Pn3) is a (k + 1)-resolving
set. Consider the partition {V1, V2} of V , where V1 = {u ∈ V : pr3(u) ∈
R−−(1, 1) ∪ R++(1, 1)} and V2 = {u ∈ V : pr3(u) ∈ R−+(1, 1) ∪ R+−(1, 1)}.
Then, |V2| = (n1 + n2 − 2)n3 = αM (n1, n2, n3) ≤ k. Hence, by removing
from S the at most k vertices belonging to V2 we have a set of vertices of
Pn1�Pn2�Pn3 that is not resolving by Lemma 5, which is a contradiction.
�

Proposition 15. If Pn1�Pn2�Pn3 has a (k + 1)-resolving set, then

dimk+1(Pn1�Pn2�Pn3) ≥ 2k + 2.

Proof. We prove that there is no (k + 1)-resolving set of cardinality at most
2k+1. Let a1 = 
n1/2�, a2 = 
n2/2� and suppose that S ⊆ V (Pn1�Pn2�Pn3)
is a (k + 1)-resolving set of cardinality at most 2k + 1. Consider the parti-
tion {V1, V2} of the set V = V (Pn1�Pn2�Pn3) such that V1 = {(i, j, h) ∈
V : (i, j) ∈ R−−(a1, a2) ∪ R++(a1, a2)} and V2 = {(i, j, h) ∈ V : (i, j) ∈
R−+(a1, a2) ∪ R+−(a1, a2)}. By the Pigeonhole Principle, at least one of the
sets V1 or V2 has at most k vertices of S. Hence, by removing these vertices
from S we have a set of vertices of Pn1�Pn2�Pn3 that is not resolving by
Lemma 5, which leads to a contradiction. �

Proposition 16. If Pn1�Pn2�Pn3 has a (k + 1)-resolving set and k is even,
then

dimk+1(Pn1�Pn2�Pn3) ≥ 2k + 3.

Proof. Let V = V (Pn1�Pn2�Pn3) and let a1 = 
n1/2�, a2 = 
n2/2�, and
a3 = 
n3/2�. Suppose that S ⊆ V is a (k + 1)-resolving set of cardinality at
most 2k + 2. Consider the sets of V :

R−−−(a1, a2, a3) = {(x1, x2, x3) : 0 ≤ x1 < a1, 0 ≤ x2 < a2, 0 ≤ x3 < a3};

R−−+(a1, a2, a3) = {(x1, x2, x3) : 0 ≤ x1 < a1, 0 ≤ x2 < a2, a3 ≤ x3 < n3};

R+−−(a1, a2, a3) = {(x1, x2, x3) : a1 ≤ x1 < n1, 0 ≤ x2 < a2, 0 ≤ x3 < a3};
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C1
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a2 − 1
a2

n2 − 1

0
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C2
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Figure 6. The sets A1, A2, B1, B2, C1, C2,D1,D2 are the ver-
tices of S included in the regions obtained when partitioning
the vertices of V into the eight octants determined by the
chosen values of a1, a2 and a3

R+−+(a1, a2, a3) = {(x1, x2, x3) : a1 ≤ x1 < n1, 0 ≤ x2 < a2, a3 ≤ x3 < n3};

R−+−(a1, a2, a3) = {(x1, x2, x3) : 0 ≤ x1 < a1, a2 ≤ x2 < n2, 0 ≤ x3 < a3};

R−++(a1, a2, a3) = {(x1, x2, x3) : 0 ≤ x1 < a1, a2 ≤ x2 < n2, a3 ≤ x3 < n3};

R++−(a1, a2, a3) = {(x1, x2, x3) : a1 ≤ x1 < n1, a2 ≤ x2 < n2, 0 ≤ x3 < a3};

R+++(a1, a2, a3) = {(x1, x2, x3) : a1 ≤ x1 < n1, a2 ≤ x2 < n2, a3 ≤ x3 < n3}.

Notice that, by definition, these sets form a partition of V . Moreover,
if we consider the vertices of the grid as points of the 3D space, these sets
are included in the eight regions defined by the semispaces x1 < a1, x1 ≥ a1;
x2 < a2, x2 ≥ a2; and x3 < a3, x3 ≥ a3. Consider the following partition of
S (see Fig. 6):

A1 = S ∩ R−−−(a1, a2, a3), A2 = S ∩ R−−+(a1, a2, a3),

B1 = S ∩ R+−−(a1, a2, a3), B2 = S ∩ R+−+(a1, a2, a3),

C1 = S ∩ R−+−(a1, a2, a3), C2 = S ∩ R−++(a1, a2, a3),

D1 = S ∩ R++−(a1, a2, a3), D2 = S ∩ R+++(a1, a2, a3).

If |A1| + |A2| + |D1| + |D2| ≤ k or |B1| + |B2| + |C1| + |C2| ≤ k, then
S is not a (k + 1)-resolving set because, by Lemma 5, the removal of the at
most k vertices of S in A1 ∪ A2 ∪ D1 ∪ D2 or in B1 ∪ B2 ∪ C1 ∪ C2 produces
a non-resolving set, which leads to a contradiction. Hence,

|A1| + |A2| + |D1| + |D2| ≥ k + 1 and |B1| + |B2| + |C1| + |C2| ≥ k + 1.

But, since

|A1| + |A2| + |D1| + |D2| + |B1| + |B2| + |C1| + |C2| = |S| ≤ 2k + 2,

we derive |S| = 2k + 2, and

|A1| + |A2| + |D1| + |D2| = |B1| + |B2| + |C1| + |C2| = k + 1.
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By symmetry, we derive

|A1| + |B1| + |C2| + |D2| = |A2| + |B2| + |C1| + |D1| = k + 1,

|A1| + |C1| + |B2| + |D2| = |A2| + |C2| + |B1| + |D1| = k + 1.

Hence,

|A1| + |A2| + |D1| + |D2| = k + 1 (1)
|A1| + |B1| + |C2| + |D2| = k + 1 (2)
|A1| + |C1| + |B2| + |D2| = k + 1 (3)
|A2| + |B2| + |C1| + |D1| = k + 1 (4)

By subtracting Eq. (2) from Eq. (1), Eq. (3) from Eq. (1) and Eq. (4) from
Eq. (3), we get

|D1| + |A2| = |B1| + |C2| = |C1| + |B2| = |A1| + |D2| = q,

for some q ∈ Z and, consequently,

|S| = |A1| + |A2| + |B1| + |B2| + |C1| + |C2| + |D1| + |D2| = 4q.

Hence, |S| = 2k + 2 = 4q, which implies that k + 1 is even, a contradiction.
�

Note that the preceding lemma provides an alternative way of proving
that the metric dimension of a 3D grid is at least 3 (see Theorem 3).

Next, we describe a (k + 1)-resolving set of minimum cardinality for
some 3D grids. Bearing this in mind, we define the following n1 +n2 +n3 − 4
disjoint sets of four vertices:

S1,i = {(i, 0, 0), (i, n2 − 1, 0), (i, 0, n3 − 1), (i, n2 − 1, n3 − 1)}, for 0 ≤ i ≤ n1 − 1,

S2,j = {(0, j, 0), (n1 − 1, j, 0), (0, j, n3 − 1), (n1 − 1, j, n3 − 1)}, for 1 ≤ j ≤ n2 − 2,

S3,h = {(0, 0, h), (n1 − 1, 0, h), (0, n2 − 1, h), (n1 − 1, n2 − 1, h)}, for 1 ≤ h ≤ n3 − 2.

Proposition 17. If k is an odd integer and k < αm(n1, n2, n3), then

dimk+1(Pn1�Pn2�Pn3) = 2k + 2.

Proof. By Proposition 15, it is enough to construct a (k + 1)-resolving set
of cardinality 2k + 2. Let α = k+1

2 . Note that by hypothesis α = k+1
2 ≤

n1 + n2 + n3 − 4, so we can consider the following set S formed by α of the
previously defined sets of vertices (see an example in Fig. 7, left):

S =
α−1⋃

i=0

S1,i, if α ≤ n1,

S =
( n1−1⋃

i=0

S1,i

)
∪

( α−n1⋃

j=1

S2,j

)
, if n1 < α ≤ n1 + n2 − 2,

S =
( n1−1⋃

i=0

S1,i

)
∪

( n2−2⋃

j=1

S2,j

)
∪

( α−n1−n2+2⋃

h=1

S3,h

)
, if n1 + n2 − 2 < α.
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(0, 0, 0)

(0, 5, 0)

(2, 0, 0)

(2, 5, 6)

(0, 0, 0)

(0, 5, 0)

(2, 0, 0)

(2, 5, 6)

Figure 7. A 18-resolving set (left) and a 17-resolving set
(right) of the grid P3�P6�P7 consists of squared, circled
and crossed vertices. Squared vertices belong to some set
S1,i, circled vertices to some S2,j , and crossed vertices to
some S3,h

Obviously, |S| = 4α = 2k + 2. We claim that S is a (k + 1)-resolving
set of Pn1�Pn2�Pn3 . Indeed, any subset S′ obtained after the removal of
k vertices from S, contains at least three vertices of either one of the sets
S1,i0 for some 0 ≤ i0 ≤ n1 − 1, or S2,j0 for some 1 ≤ j0 ≤ n2 − 2, or
S3,h0 , for some 1 ≤ h0 ≤ n3 − 2, since otherwise we have to remove at least
2α = k + 1 vertices. By Lemma 4, there exists a vertex such that together
with these three vertices form a resolving set for Pn1�Pn2�Pn3 . Hence, S is
a (k + 1)-resolving set. �

Proposition 18. If k is an even integer and k < αm(n1, n2, n3), then

dimk+1(Pn1�Pn2�Pn3) = 2k + 3.

Proof. By Proposition 16, it is enough to construct a (k + 1)-resolving set
of cardinality 2k + 3. Let α = k

2 + 1. Observe that, by hypothesis, α ≤
n1 +n2 +n3 −4. Thus, we can consider the following set S = S∗ −{(0, 0, 0)},
where S∗ is formed by the union of α of the previously defined sets of vertices
(see an example in Fig. 7, right):

S∗ =
α−1⋃

i=0

S1,i, if α ≤ n1,

S∗ =
( n1−1⋃

i=0

S1,i

)
∪

( α−n1⋃

j=1

S2,j

)
, if n1 < α ≤ n1 + n2 − 2,

S∗ =
( n1−1⋃

i=0

S1,i

)
∪

( n2−2⋃

j=1

S2,j

)
∪

( α−n1−n2+2⋃

h=1

S3,h

)
, if n1 + n2 − 2 < α.

Obviously, |S| = 4α−1 = 2k +3. We claim that S is a (k +1)-resolving
set of Pn1�Pn2�Pn3 . Indeed, any subset S′ obtained after the removal ofk
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vertices from S, contains at least three vertices of either one of the sets
S1,i0 for some 0 ≤ i0 ≤ n1 − 1, or S2,j0 for some 1 ≤ j0 ≤ n2 − 2, or
S3,h0 , for some 1 ≤ h0 ≤ n3 − 2, since otherwise we have to remove at least
2(α − 1) + 1 = k + 1 vertices. By Lemma 4, there exists a vertex such that
together with these three vertices form a resolving set for Pn1�Pn2�Pn3 .
Hence, S is a (k + 1)-resolving set. �

Hence, the exact value of the (k + 1)-metric dimension has been deter-
mined whenever k < αm(n1, n2, n3). In the remaining cases this parameter
is defined, Proposition 13 provides us an upper bound on the (k + 1)-metric
dimension.

Corollary 19. If k < αM (n1, n2, n3), then F (n1, n2, n3) is a (k + 1)-resolving
set of Pn1�Pn2�Pn3 and, hence,

dimk+1(Pn1�Pn2�Pn3) ≤ n1n2n3 − (n1 − 2)(n2 − 2)(n3 − 2).

We can summarize the previous results as follows.

Theorem 20. Let k, n1, n2, n3 ≥ 2.

1. If 2 ≤ k < αm(n1, n2, n3), then

dimk+1(Pn1�Pn2�Pn3) =

{
2k + 2, if k is odd;
2k + 3, if k is even.

2. If αm(n1, n2, n3) ≤ k < αM (n1, n2, n3), then

dimk+1(Pn1�Pn2�Pn3) ≤ n1n2n3 − (n1 − 2)(n2 − 2)(n3 − 2)

3. If αM (n1, n2, n3) ≤ k, then Pn1�Pn2�Pn3 has no (k + 1)-resolving set.

Observe that αm = αM , whenever min{n1, n2, n3} = 2. Hence, the value
of the (k + 1)-metric dimension is completely determined for these cases.

We finish by posing a conjecture about the exact value of the (k + 1)-
metric dimension of 3D grids whenever αm ≤ k < αM , based on the ideas
used to construct (k + 1)-resolving sets for k < αm.

Conjecture 21. If αm(n1, n2, n3) ≤ k < αM (n1, n2, n3), then

dimk+1(Pn1�Pn2�Pn3)

= min{4k − 2αm(n1, n2, n3) + 4, n1n2n3 − (n1 − 2)(n2 − 2)(n3 − 2)}.
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Universidade da Coruña
A Coruña
Spain
e-mail: ana.dorotea.tarrio.tobar@udc.es

Received: February 22, 2021.

Revised: November 20, 2021.

Accepted: May 24, 2022.


	Resolving sets tolerant to failures in three-dimensional grids
	Abstract
	1. Introduction
	2. Resolving Sets in Three-Dimensional Grids
	3. Resolving sets tolerant to k failures in 3D Grids
	Acknowledgements
	References




