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Abstract

Appearance-based Localization (AL) focuses on es-
timating the pose of a camera from the infor-
mation encoded in an image, treated holistically.
However, the high-dimensionality of images makes
this estimation intractable and some technique
of Dimensionality Reduction (DR) must be ap-
plied. The resulting reduced image representation,
though, must keep underlying information about
the structure of the scene to be able to infer the
camera pose. This work explores the problem of
DR in the context of AL, and evaluates four pop-
ular methods in two simple cases on a synthetic
environment: two linear (PCA and MDS) and
two non-linear, also known as Manifold Learning
methods (LLE and Isomap). The evaluation is
carried out in terms of their capability to generate
lower-dimensional embeddings that maintain un-
derlying information that is isometric to the cam-
era poses.

Keywords: Appearance-based Localization,
Dimensionality Reduction, Manifold learning.

1 INTRODUCTION

Images are two-dimensional projections of a 3D
scene, where the intensity of each pixel is orig-
inated by the light captured by the pixel area.
This representation, despite being 2D, is suitable
to provide information about the 3D structure of
the environment (e.g.: walls, objects, etc.). Fur-
thermore, we can also infer some underlying infor-
mation from them, such as the camera pose where
the image was taken at. This is the well-known
Visual Localization [14] problem.

During the last decades, most localization ap-
proaches on Computer Vision and Robotics have
relied on image local features [12, 6] to infer 3D in-
formation, operating by extracting, matching and
re-projecting the most salient elements in the im-
age to produce 3D representations of the land-
marks in the scene.

As an alternative, Appearance-based Localization
(AL) models images as high-dimensional vectors,

Figure 1: Relationships between the involved
spaces: the pose space P ∈ SE(2), the image
space I ∈ R

N |N � 100, and the low-dimensional
descriptor space D ∈ R

3. The imaging function
Φ relates poses and images, while the embedding
function Ψ is in the core of DR and maps images
to descriptors. From these, appearance-based lo-
calization can be performed.

produced by stacking all their pixels into a single
1D array. This way, when the camera moves on a
plane, for example, it is assumed that this image
vector changes following a three dimensional sur-
face embedded on the image space, that is, form-
ing a manifold whose latent variables are those of
the camera pose p = (x, y, θ).

Thus, in Appearance-based Localization, we as-
sume the existence of a certain imaging function
Φ that defines a continuous map I = Φ(p) between
images I and camera poses p. Then, the problem
of localization consists of reverting such function
pq = Φ−1(Iq) to regress the pose pq of a certain
query image Iq, given a map of the environment,
that is, a set of image-pose pairs.

However, the extremely high dimensionality of the
image space (e.g.: ∼ R

3∗105 for 480× 640 images)
renders impossible to find this relationship be-
tween the pose and the image [7]. Consequently, it
is necessary to apply some Dimensionality Reduc-
tion (DR) technique to the image vector in order
to remove non-relevant information from it, thus
making the problem more tractable. DR meth-
ods can be classified depending on whether the
intrinsic space is considered linear or non-linear
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(also known as Manifold Learning (ML)). Option-
ally, we can apply some intermediate transfor-
mation before DR, generating an image holistic
feature vector (typically through Deep Learning-
based methods) which lies into a lower dimen-
sional and less intricate space than that of images.

This work describes and analyzes the problem of
DR in images in the context of AL, evaluating
four different well-known DR techniques (linear
and manifold-based) in terms of the isometry be-
tween their lower-dimensional image embeddings
and the underlying camera pose space, also ex-
ploring the use of a holistic feature vector before
applying DR.

The paper is structured as follows: in Section 2
the problem of Appearance-based Localization is
stated. The fundamentals of DR in general, and
ML in particular, are discussed in detail in Sec-
tion 3. Sections 4 and 5 examine the effect that
DR methodologies have in AL supported by a set
of experiments and related works. Finally, a con-
clusion is given in Section 6.

2 APPEARANCE-BASED
LOCALIZATION

Given an environment, let us define the appearance
map M = {P, I} as the set of images I and the
poses P they were captured at.

The imaging function Φ is the function that maps
poses to images, which we assumed to be bijective,
that is, two images taken at different poses must
be also different. This way,

Φ : P → I
∣
∣ Ii = Φ(pi) and pi = Φ−1(Ii). (1)

As stated before, estimating the localization func-
tion Φ−1 from M is not possible mainly for the
high dimensionality of the images, and some kind
of DR must be performed.

For that, we explore the alternative of applying
DR to holistic representations of the images by
means of an embedding function Ψ : I → D, ob-
taining descriptors Di that lie in a lower dimen-
sional space but where the essential information
of the image still remains.

We claim that, if Ψ is an appropriate embedding
function, the information needed to obtain the
pose of the image is still present in the descriptor,
that is, the function (Ψ ◦ Φ)−1 can be estimated,
and, not only that, the problem of AL becomes
more tractable because of the reduction of dimen-
sionality.

Consequently, the resulting framework (see Fig. 1)
depends on two fundamental elements: i) the de-

Figure 2: General scheme of performing DR and
AL from 1) images (I) and 2) DL-based image
holistic feature vector (V).

scriptors, or equivalently the embedding Ψ, and ii)
the estimation of (Ψ◦Φ)−1. In this work, we focus
on the first element, studying, for different cases,
how distinct embeddings maintain the underlying
pose structure.

Finally, we also study the effect of the application
of DR to Deep Learning (DL)-based description [1]
of the images, which became prominent in recent
years due to their visual invariance and abstrac-
tion capabilities. This way, our study explores two
scenarios: applying DR to whole reduced images
and applying DR to DL-based characterizations,
depicted as V in Fig. 2.

3 DIMENSIONALITY
REDUCTION

The situation where the dimension of the sam-
ple data points is comparable or even larger than
the amount of existing samples is called the curse
of dimensionality, and represents one of the main
challenges of working with images for AL.

The general approach to handling this is to reduce
the image dimensionality while trying to keep as
much information as possible.

This leads to two sets of strategies denoted as
feature selection and feature extraction (refer to
Fig. 3). The first approach selects a representa-
tive subset of the data, such as keypoints, lines or
planes [6] in the images, effectively reducing the
images dimensionality by means of working with
a selection of these local characteristics. On the
other hand, feature extraction builds new features
from the whole image by combining the original
data through either linear or non-linear transfor-
mations. This work explores some of the most
popular methods within this second category.

3.1 LINEAR DIMENSIONALITY
REDUCTION

Principal Component Analysis (PCA) [13] or Mul-
tidimensional Scaling (MDS) [9] are well-known
DR algorithms that successfully retrieve the un-
derlying lower-dimensional representation of data
provided it has a linear structure. In short, PCA
looks for the linear combinations of the initial fea-
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Figure 3: Classification of Dimensionality Reduction techniques

Figure 4: Example where the intrinsic dimension-
ality is recovered. Isomap proves to be able to
unroll the Swiss Roll and to find its intrinsic ge-
ometry.

tures that explain the largest variance of the data.
The objective of MDS, in turn, is to reduce the
dimensionality of the input while preserving dis-
tances (typically Euclidean) between data points.

3.2 MANIFOLD LEARNING

In a nutshell, Manifold Learning (ML) [15] rep-
resents the set of techniques for non-linear DR
grounded on the manifold hypothesis [17], which
claims that high dimensional data tend to lie on
low dimensional manifolds embedded in such high-
dimensional spaces. Driven by this theory, ML
methods try to recover the underlying geometry
of the manifold that contains the data, which re-
ceives the name of intrinsic space, and which can
thoroughly characterize the data by itself. The
idea behind ML can be better understood visu-
ally with 3 dimensional manifolds (surfaces) which
are embedded in the plane as it happens with
the Swiss-Roll dataset illustrated in Fig. 4. Even
though this figure lives in the three dimensional
space, only two dimensions are needed to describe
its structure.

In general, the dimensionality of the intrinsic
space is unknown and, to this day, its retrieval
has only been suitable for few particular datasets

[19]. But, even though this is not yet feasible with
most complex data, ML algorithms are still capa-
ble of finding more compact and tractable repre-
sentations of the data while preserving important
properties of the structure.

In this work, we will consider Isomap and Locally
Linear Embedding (LLE) as representative meth-
ods within ML.

3.2.1 Isomap

Isomap [19] upgrades MDS by replacing Euclidean
distances with geodesics, i.e. distances in the
manifold. Geodesics are estimated from the
known points of the manifold, first by construct-
ing a weighted distance graph with K-Nearest-
Neighbours (KNNs), and then by approximating
the geodesic as the shortest path between the ver-
tices in the graph. The geodesic distance between
two nodes is the sum of the edge weights between
them. Finally, MDS is applied to the estimated
geodesics to get the lower-dimensional embedding.

3.2.2 Locally Linear Embedding (LLE)

The idea behind the LLE method [16] is to exploit
the fact that manifolds locally resemble Euclidean
spaces. Based on this, LLE linearly reconstructs
each point from a combination of its closest KNNs,
and later the resulting weights are used to find the
lower dimensional geometry which also minimizes
the linear reconstruction error in the new space.

4 EXPERIMENTS

This section experimentally analyzes the perfor-
mance of different linear and non-linear DR tech-
niques for AL, measuring the isometry between
the resulting lower dimensional spaces and the in-
trinsic pose space for each scenario.

XLIII Jornadas de Automática

723

Robótica

https://doi.org/10.17979/spudc.9788497498418.0721



(a) Unidimensional case, where the camera
trajectory is shown in green and each sepa-
rated room is tagged with a number.

(b) Two-dimensional scenario, a position grid
captured in the kitchen.

Figure 5: Set-ups where the experiments take place, both with the camera orientation depicted in blue.

4.1 Experimental setup

We have employed the synthetic dataset
Robot@VirtualHome [5] to obtain the images
for the experiments, concretely moving the
camera in the House 11. Two different cases have
been considered:

• Set-up 1: The camera visits three different
rooms, moving transversely following a 3 m
trajectory while gathering ∼ 250 images (see
Fig. 5a). This dataset captures the diverse
appearances of the rooms and the occlusions
of the passages between them.

• Set-up 2: The camera is placed within a
unique room, capturing 480 images at a posi-
tion grid of 1.5 m×1 m with fixed orientation
(see Fig. 5b). In this case, the whole image set
has similar appearance, being more devoted
to delve into local changes.

For both scenarios, two appearance representa-
tions of the images have been compared: (i) the
grayscale images, taken as 1D vectors, and, (ii)
using NetVLAD [1], a 4096-sized Visual Place
Recognition learned descriptor. We have then em-
bedded each of these characterizations in simpler
spaces employing two linear DR methods (PCA
and MDS) and two ML methods (Isomap and
LLE). Each resulting embedding has been eval-
uated through the correlation coefficient between
its retrieved geometry and the camera position.

4.2 SETUP 1: One-dimensional motion

As the camera moves along a single direction
without rotation, we should evaluate a one-
dimensional intrinsic space. We have compared
how each DR descriptor recovers the original ge-
ometry both in local and global terms. In this
context, the local perspective consists of recover-
ing the intrinsic space of the camera within each

Table 1: Absolute value of correlation coefficients
for the whole images.

PCA MDS LLE ISOMAP
Room 1 0.87 0.6 0.92 0.96
Room 2 0.3 0.27 0.93 0.99
Room 3 0.97 0.86 0.99 0.998
Globally 0.33 0.06 0.98 0.996

Table 2: Absolute value of correlation coefficients
for the NetVLAD descriptor.

PCA MDS LLE ISOMAP
Room 1 0.94 0.27 0.98 0.997
Room 2 0.14 0.22 0.92 0.998
Room 3 0.96 0.23 0.68 0.98
Globally 0.35 0.29 0.37 0.92

independent room without overlap, thus maintain-
ing a similar appearance. On the other hand, the
global perspective considers the whole sequence,
navigating along the full trajectory.

The isometry between the retrieved low-
dimensional descriptors and the camera positions
using whole images as appearance representations
is depicted in the Table 1, where values closer to 1
represent large correlations between the involved
variables. As can be seen, ML algorithms prove
to recover better the intrinsic geometry in all
cases, while linear methods have more difficulty
to find the relationship between images and
poses, especially on the second room (which has
more occlusions) and in the global case. This
suggests that the relation between position and
image becomes highly non-linear in complex
environments. Table 2 compares the results after
pre-processing the image with NetVLAD (whose
last layer consists on a PCA transform). Such
processing has no significant impact on PCA and
Isomap, while it proves to be inconsistent with
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Table 3: Computation times measured in seconds for images (I) and appearance vectors (V).

PCA MDS LLE ISOMAP
I V I V I V I V

Room 1 12.47 0.012 2.9 0.006 2.84 0.026 3.11 0.015
Room 2 17.846 0.02 5.22 0.02 4.72 0.06 4.91 0.02
Room 3 13.02 0.023 3.051 0.014 2.77 0.03 2.93 0.011
Globally 32.69 0.06 14.38 0.13 13.74 0.19 15.14 0.07

Table 4: Absolute value of correlation coefficients for the whole images.

PCA MDS LLE ISOMAP
Var 1 Var 2 Var 1 Var 2 Var 1 Var 2 Var 1 Var 2

Coord x 0.24 0.67 0 0.67 0.67 0.65 0.97 0.12
Coord y 0.04 0.34 0.08 0.24 0.14 0.4 0.12 0.91

the underlying idea of MDS and LLE.

On the other hand, Table 3 shows the computa-
tional cost of the Dimensionality Reduction ex-
pressed in seconds, comparing the performance
between using whole images (I) and appearance
vectors (V) for each case. As expected, ex-
tracting the underlying geometry from the image
space takes longer than using appearance vectors,
with the linear methods spending longer times for
all cases, suggesting that non-linear methods are
competitive in such scenarios.

In conclusion, ML techniques (and specifically,
Isomap) demonstrate to outperform the remaining
methods in identifying the relationship between
images and poses for this setup.

4.3 SETUP 2: Bidimensional motion

In this scenario, the camera movement has two de-
grees of freedom (refer to Fig. 5b), therefore each
method is evaluated through a correlation matrix.
Now, the ideal situation occurs if the absolute val-
ues of the elements in one of the diagonals are
equal to 1 and the remaining ones are zeros.

Table 4 shows that, when using whole images as
the appearance representation, Isomap retrieves
the underlying geometry with higher accuracy,
while the remaining methods struggle with the
non-linearities of the scene. This can also be seen
in the first row of Fig. 6 where the structure of
the Isomap result looks more similar to the origi-
nal regular grid.

By contrast, the appearance space in which
NetVLAD features lie demonstrates a more lin-
ear behaviour, since the performance of PCA and
MDS improves substantially, while ML methods
yield worse results as shown in Table 5. This is
illustrated in the second row of Fig. 6, with MDS
standing out among the rest. The computational

cost in this case is higher due to the increased com-
plexity (see Table 6), especially for linear methods
with images. Concretely, in the case of NetVLAD,
the weighting layer of this network proves to ease
the performance of PCA.

5 RELATED WORK

Different DR methodologies [3, 7, 18, 10] have
been previously suggested to address the task of
Appearance-based Localization.

The study carried out in [3] is restricted to lo-
cal environments where the appearance does not
vary substantially. In this situation, PCA cor-
rectly identifies the latent geometry of the data,
which allows the pose to be estimated through lin-
ear interpolation. This is coherent with the results
obtained in our first setup, when the underlying
geometry is retrieved for each individual room.
However, linearity is proved to disappear in larger
domains, as in the global case.

For this reason, some works propose variants
of ML algorithms, as Locally Linear Projection
(LLP) [7], an adaptation of LLE to Visual Local-
ization which has been shown to outperform PCA
in multiple-room environments, as demonstrated
in our results. The authors of [18] propose an iter-
ative model based on Isomap (the technique with
best performance in our experiments), that seeks
to minimize a stress function, accurately retriev-
ing the geometry of a dense indoor environment
with omnidimensional images. Finally, [10] faces
Visual Localization in unidimensional image se-
quences through the Grassman-Stiefel Embedding
(GSE), which grounds on the similarity between
tangent spaces.
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Table 5: Absolute value of correlation coefficients for the NetVLAD descriptor.

PCA MDS LLE ISOMAP
Var 1 Var 2 Var 1 Var 2 Var 1 Var 2 Var 1 Var 2

Coord x 0.06 0.85 0.91 0.25 0 0.46 0.74 0.62
Coord y 0.95 0 0.24 0.96 0.47 0.56 0.56 0.75

Table 6: Computation times measured in seconds for images (I) and appearance vectors (V).

PCA MDS LLE ISOMAP
I V I V I V I V

67.6 0.22 39.92 8.71 35.79 0.51 34.63 0.36

6 CONCLUSIONS

This work has addressed the application of Di-
mensionality Reduction (DR) methodologies for
Appearance-based Localization (AL). We have
stated the mathematical framework for the local-
ization problem, as well as described some well-
known linear and non-linear DR methods.

Two experiments have been presented, testing the
performance in AL achieved by such methods in a
synthetic environment. This performance is mea-
sured by applying DR to the images and measur-
ing the isometry between the resulting geometry
and the camera positions.

Linear DR techniques obtain good performance
in local environments but are unable to generalize
to multiple appearances at wider environments.
However, employing a global appearance represen-
tation (e.g. NetVLAD) before applying DR im-
proves the performance of linear methods. Non-
linear methods, in turn, outperform linear ones
in almost all scenarios, showing promising results
for AL that could be exploited in future works.
This demonstrates that the relationship between
images and the poses where they were captured at
is strongly non-linear.
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