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This review presents a state of the art in artificial intelligence applied to urban planning and particularly to land-use predictions. In
this review, different articles after the year 2016 are analyzed mostly focusing on those that are not mentioned in earlier
publications. Most of the articles analyzed used a combination of Markov chains and cellular automata to predict the growth of
urban areas and metropolitan regions. We noticed that most of these simulations were applied in various areas of China. An
analysis of the publication of articles in the area over time is included.

1. Introduction

As pointed out by Levy in his urban planning manual [1],
planning is an activity that is highly political and inseparable
from the legislation. Regional and urban planning decisions
often require copious amounts of public and private money,
which can bring great benefits to some and losses to others.
The complexity of modern communities makes the simplest
and most direct approaches inadequate. In recent decades,
several modeling techniques have been developed to un-
derstand and predict urban growth. In this day and age,
much of the planning efforts and modeling are focused on
environmental issues to manage development by mini-
mizing environmental damage.

As mentioned earlier, urban growth is a complex process
[2], and different approaches have been used to model it. AI-
based methods have the advantage of being able to capture
the nonlinearities and heterogeneities that exist in urban
development. However, a method’s superiority depends,
among other factors, on how the algorithm’s configuration
parameters are determined, the size of the teaching and

check sets, the architecture of the classifiers, or the selection
of the teaching and verification datasets.

Examples of approaches using Markov chain models
[3-5], spatial logistics regression [6], cellular automaton
(CA) [7-22], agent-based models [23, 24], and artificial
intelligence (AI) and machine learning methods such as
artificial neural networks (ANNs) [25-28], support-vector
machines (SVMs) [29-31], genetic algorithms (GAs)
[32-35], particle swarm optimization (PSO) rules [36-38],
or data mining [39] can be found in the scientific literature.

The CA is one of the approaches that is most widely used.
The CA’s ability to replicate urban growth assumes that past
urbanism will influence potential trends through interac-
tions with local land use. Its simplicity, flexibility, and in-
tuition, along with its ability to integrate the spatiotemporal
dimensions of the mechanism, make CA models competent
for sculpting complex dynamic systems like metropolitan
systems.

This review article addresses the different applications of
Al in urban planning from 2016 to 2020, and particularly,
the latest AI techniques for land-use prediction are
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organized in detail and summarized. This state of the art
follows a comprehensive search methodology. We use
keywords such as artificial intelligence, urbanism, or urban
growth, for example, to search through Google Scholar and
ResearchGate. We review the articles found and all their
citations, and we collect all relevant information in this
study.

We begin by briefly summarizing the previous state of
the art on the subject and then delving into the different
subsequent articles, which were not included in any of the
previous reviews. Before starting this in-depth study, we can
find in Table 1 a summary of the different topics covered in
the articles mentioned throughout our text. Finally, an
objective analysis of the results is reached, which perfectly
summarizes the most important aspects that can be observed
during the reading, and other relevant aspects. The con-
clusion highlights the issues that remain unsolved thus far
and explains the Al applications that need to be addressed in
future research.

2. Literature Review

In 2010, 33 of these models applied to true-world situations
were researched by Santé, Garcia, Miranda, and Crecente
[63], to show an ordered picture that would facilitate the
selection of a certain procedure for a given implementation
problem. The authors pointed out that the main flaw is the
relative simplicity of CA-based models, while flexibility
conditions the model’s right to replace events in reality,
leading to certain regulatory measures categorized as
follows:

(i) Irregular cell space: such as Iovine et al. [64] with
their hexagonal cells or Semboloni [65] whose
three-dimensional matrices allow to represent the
growth of urban areas around their height, and
using irregular tessellations such as Voronoi
polygons [66] or graphs [67], or cadastral plots
instead of regular cells [68], which can provide a
representation that is more adjusted to reality.

(ii) Nonuniform cell space: considering other attri-
butes of the land, and examples include accessi-
bility, slope, or elevation.

(iii) Extended neighborhood: districts can be described
as adjacent units belonging to spaces made up of
irregular units. For example, units that are at a
certain distance or employing the Voronoi spatial
model [66].

(iv) Nonstationary district: different definitions of
slum space for each cell [69]. Models in which each
cell is weighted within the neighborhood accord-
ing to its state and location [70]. This allows the
application of districts of various shapes and sizes
by adding zero weights.

(v) Transition rules with greater complexity: it may
include suitability for land use, accessibility, urban
planning, or socioeconomic conditions, reflecting
urban theories that are based on theories of

Complexity

microeconomic planning [71], centrality, and
potential models [72].

(vi) Transition guidelines (nonstationary): the transi-
tion guidelines are adapted to the distinctive
properties of the specific periods and areas. This
spatiotemporal modification can be obtained via
calibration [73, 74], SLEUTH self-modification
rules [75], or changes in external parameters and
configuration at each stage as suggested by Phipps
and Langlois [76].

(vii) Growth constraints: urban demand is often de-
fined by economic, environmental, or social lim-
itations, like urban planning or demographic
change, which restrict overall urban development.

(viii) Irregular steps in time: where cells can be aided by
different durations [68] or variable steps in time
[77] to mimic different durations of specific events.

Other challenges cited for the urban CA models are the
need for data and the lack of easily configurable and useable
software. Uses of urban CA models were mostly limited to
academic exercises because of these shortcomings. The
authors concluded that implementing CA models with
different techniques, for example, transport models or
multiagent systems, could lead to mixed models overcoming
some CA difficulties [78].

In 2016, a new literature review on urban cellular au-
tomaton (CA) models was published by Aburas et al. [79].
The authors analyzed the data and the most important
factors used in CA studies to simulate and predict urban
growth patterns and concluded that the model limitations,
such as its inability to include the driving forces of urban
growth in the simulation process [80] and its imple-
mentation with other quantitative models, can be mini-
mized; for example, through the analytical hierarchy process
(AHP) [81, 82], the Markov chain models [83, 84], and
frequency relationship [85], realistic simulation is achieved
when socioeconomic and spatial and temporal factors are
integrated into the simulation process.

2.1. Latest Articles (2016-2020). The CA is a discrete cell in
which states characterize each cell. The state of each cell
depends on its previous state and on neighboring cells
according to a set of transition rules. For urban simulation,
the different types of the possible cellular automata are as
follows: binary values (urban or nonurban); qualitative
values representing different land uses; quantitative values
representing the degree of development, population density,
value of buildings, elevation, or number of roads, for ex-
ample; or a vector model with several attributes [63].

We will focus our study on the direction taken by land-
use prediction research conducted in recent years, as
summarized in Table 1, where 19 of the 24 studies have
employed some CAs.

Tong published a model in 2016 [40] describing the
pattern of distribution of building construction in green
spaces that complied with Chinese regulations. The author
presented the distribution index (DAI) based on the
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TaBLE 1: Summary table of research cited.

Author/s Year Objective Method Location Results
Planning and Yuhuatai and . I
Tong [40] 2016 management of building GA Qingliangshan Parks in IOD is the only criterion used for

Naghibi et al. [41] 2016

Feng et al. [31] 2016

Perez-Molina

et al. [42] 2017

Chen et al. [43] 2017

Jat et al. [44] 2017

Li et al. [45] 2017

Liu et al. [46] 2017

Feng and Tong

[47] 2018

Traore et al. [48] 2018

Pazos-pérez et al.

[49] 2018
Fu et al. [50] 2018
Feng et al. [51] 2018
Lipinget al. [52] 2018
He et al. [53] 2018

Yuliantoe et al.

[54] 2019

Lu and Wu [55] 2019

Devendran and

Lakshmanan [56] 2019
Huang et al. [57] 2020
Khawaldah et al.

(58] 2020
Mohamed and

Worku [59] 2020
Nurwanda &

Honjo [60] 2020

layout in green zones
Predicting urban growth
from satellite images
Predicting urban growth
from satellite images
Simulation of urban
growth scenarios and
their consequent
flooding

Simulation of urban land
changes

Predicting urban growth
from satellite images

Predicting urban growth
from satellite images
Future land-use
simulation (FLUS)
Predicting urban growth
from geometric maps
and satellite images
Predicting urban growth
from satellite images

Prediction of urban
vertical growth

Land-use simulation

Land-use simulation

Land-use simulation
Predicting urban growth
and land-use simulation

Land-use simulation

Land-use simulation
Predicting urban growth
from satellite images

Land-use simulation
Land-use simulation

Land-use simulation

Prediction of urban
growth and land surface
temperature

Nanjing (China) assessing results

CA + artificial bee

Urmia (Iran) Overall accuracy: 90.1%

colony
Shanghai Qingpu- Maximum accuracy of 81.2% in the
CA+LS-SVM Songjiang (China) 16th iteration
Overall accuracy: 97% y 98%. Edge
CA Kampala (Uganda)  index differential of 0.10 (with a land-
cover map index of 49.05)
Higher average accuracy: 73.08%.
Coeflicients of correlation of 0.902,
. 0.883, and 0.881 between the
Lp-CA Shenzhen (China) industrial, residential, and
commercial land change areas
observed and simulated
. . Overall accuracy: 80% urban area,
CA (SLEUTH Ajmer, R?) asthan 83% urban borders, and 60% for
model) (India)
urban clusters
Segmentation- . .
Patch-CA Guangzhou (China) Overall accuracy: 96%
CA +ANN China Overall accuracy: 84.7%
DE-CA Kunming (China) Overall accuracy: 92.4%
CA-Markov Conakry (Guinea) Overall accuracy: 92%
Overall accuracy number of buildings:
GA+EC Minato, Tokyo (Japan) 100%, with a 19.5% deviation in
building height
Hamilton County, ) 0
CA-Markov Ohio (USA) Overall accuracy: 91,07%
CA+GA
CA+PSO Yangtze River Delta Qo
CA +GSA (China) Overall accuracy: 88%
CA+LR
CA-Markov Jiangle (China) Overall accuracy: 92.33%
CA + UMCNN Pearl RlYer Delta Overall accuracy: >93%
(China)
Overall accuracy in the most
Citarum Watershed, optimistic scenario: merit figure
CA-Markov West Java (Indonesia) 72.5%, accuracy of producer 78.5%,
and accuracy of user 79.6%
Overall accuracy: 90,48%, 87,76%,
CA-Markov Hefei (China) 85,1%, and y 82,36%, for the 3-, 5-, 10-
, and 15-year intervals, respectively
CA- . . a0
Markov + NNACA Chennai (India) Overall accuracy: 84%
CA-Markov Beijing (China) Relative error on construction land
<0.3%
CA-Markov Irbid (Jordan) Overall accuracy: 78.4%
Addis Ababa - amo
CA-Markov (Ethiopia) Overall accuracy: 87%
ANN-Markov Bogor City (Indonesia) Overall accuracy >90%
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TasLE 1: Continued.
Author/s Year Objective Method Location Results
1[\6r11§md & Oinam 2020  Land-use simulation ANN-Markov Manipur River (India) Overall accuracy: 88%-93%
Predicting urban growth . 1
Mansour et al. 2020 from satellite images and CA-Markov Nizwa, Al Dakhiliyah, Overall accuracy >80%

[62] land-use simulation

(Oman)

geostatistical methods to explain the pattern of distribution
of houses in natural areas, and a model based on genetic
algorithms that generated the building plan in correlation
with a specific DAL The Nanjing Yuhuatai and Qin-
gliangshan Parks were used as cases for verifying the IOD’s
effectiveness. The author claimed that the model provided
outstanding flexibility in the location of the buildings and
that there is organic uniqueness and wide variety in the
result of the calculation. He proposed to use it as a guide and
reference when planning green spaces during the con-
struction of the building layout. By using just the IOD, the
limitation required of the model is relatively restrictive,
making the results random and difficult to apply. Besides,
the building project will also be influenced by different
factors in practical projects, for example, the surface, the
shape of the natural zones, the entrances and paths, the
terrain and the location of existing buildings, and the
practical conditions were not considered under the model
presented.

To overcome this disadvantage, the new integrated CA
models were recently proposed that were optimized via
methods based on the swarm intelligence algorithms.

In 2016, Naghibi et al. [41] proposed a new urban growth
model based on CA, using an artificial bee colony (ABC)
algorithm to extract optimal transition rules. The ABC is an
advanced algorithm based on meta-heuristic swarm intel-
ligence that performs well in solving optimization problems.
The authors applied the ABC-CA model to project urban
growth with Landsat images from 1997, 2006, and 2015 in
Urmia (Iran). The year 1997 was chosen as the base year for
simulating future urban growth, and 2006 and 2015 land
uses were used, respectively, to evaluate and validate the
results. Finally, results for urban growth in 2016 were ob-
tained from the simulation.

The reproduction results were tested using various
statistical methods, for instance, overall accuracy, total
operating characteristics (TOCs), and total operation Ant
colony optimization (ACO) calibrated the CA model to
evaluate the productivity of the model raised against similar
methods with swarm intelligence algorithms. The authors
noted that the ABC-CA model’s overall accuracy and merit
figure are 90.1% and 51.7%; 2.9%; and 8.8% higher than the
ACO-CA model, respectively. In relation, the disparity in the
ABC-CA model’s allocation of simulation results is 9.9%,
which is 2.9% lower than the ACO-CA. To conclude, with
fewer allocation errors the ABC-CA model exceeded the
ACO-CA model (Figure 1).

In 2016, Feng, Liu, and Batty [31] presented an automatic
CA learning model (called MachCA) with nonlinear tran-
sition rules based on the LS-SVM to simulate city growth. By

launching the input data using the LS-SVM method in a
high-dimensional space, a perfect hyperplane is built to
move away from the more complex limits between the two
terrains (urban and nonurban), allowing the recovery of
transition rules from nonlinear CA. For each iteration of the
model implementation, the transition rules are dynamically
updated in the MachCA model. Applying MachCA to
simulate metropolitan growth on China’s Qingpu-Songjiang
surface in Shanghai revealed that rural-urban trends can be
translated into spatial structures. A comparison of the
MachCA model with a traditional log-adjusted CA model
(called LogCA) resulted in fewer failures and more hits with
the MachCA model because of its capability to capture the
spatial complexity of urban dynamics (Figure 2). This
translated into improvements in the accuracy, however, with
a deviation of less than 1% in overall errors produced be-
tween the MachCA and LogCA models. However, the way
the MachCA model is used to retrieve the rules of transition
provided a new way to project the active procedure of
metropolitan growth.

Feng and Tong [47] later developed a new mixed model
(called DE-CA) that integrated differential evolution (DE) in
CA to decipher the objective function and rescue the perfect
CA parameters. The DE-CA has been adjusted through
spatial data from the past to mimic land use at Kunming in
2016 and to predict many environments for 2026. The
quantitative accuracy evaluation showed that the NA-DEC
gives an overall accuracy of 92.4%, where 6.8% is the suitably
collected growth of the urban area. Besides, the model only
reports 2.6% failures and 5% false alarms. The authors
projected three scenarios for 2026 with the use of DE-CA to
adequately collect reference district development, conser-
vation of the environment, and metropolitan design to
explain their new model’s robust predictive capabilities
(Figure 3).

A comparative study of four CA models incorporating
logistic regression (LR) and three metaheuristics was pub-
lished by the same researchers [51] to simulate the land-use
change in the Yangtze River Delta from 2005 to 2015. The
metaheuristic methods were driven by an objective function
representing the transformation rules’ root mean square
error (RMSE) and were considerably diverse in terms of
optimization iteration, algorithm structure, and computa-
tion time. The authors argued that in cases where the
complexity of the algorithm and the computation time are
not of immense importance, any of the three metaheuristics
could be used to build CA models for land use, as equivalent
results can be attained (Figure 4).

In 2017, Perez-Molina et al. [42] merged a cellular au-
tomaton model with the flood modeling tool openLISEM to
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FIGURE I: Results of Urmia town prediction for 2016. (a) ABC-CA model; (b) ACO-CA model; and (c¢) ACO-CA and ABC-CA models’

comparison [41].

project district growth and subsequent flooding scenarios.
This model was adjusted for the upper Lubigi (Kampala,
Uganda), a sub-basin that had rapid metropolitan growth
from 2004 through 2010. The model of the cellular au-
tomaton has been validated at Nalukolongo (Kampala,
Uganda). Then, the authors employed the adjusted model set
to project the upper Lubigi district growth contexts by 2020.
There were simulations of two atmospheres, predilection
requirements, and a strict policy for the protection of
existing wetlands. The result of the upper Lubigi-projected
scenario showed the ineffectiveness of a policy of exclusive
wetland protection; likewise, a significant rise in the impacts
of floods due to metropolitan growth is expected for 2020.

The authors stated that the tool demonstrated its utility in
creating significant land-cover change scenarios and in
analyzing flood mitigation measures in a low-data number
environment and that this strategy could also be applied to
other spatially differentiated hazards that are seen affected by
changes in the land cover. Liu et al. also studied simulation
models for land-use and land-cover changes (LCCs) con-
sidering the background climate effects and proposed [46] a
coming land-use simulation model (FLUS) that mimics the
long-term spatial trajectories with multiple LCC’s. During
the projection period, the top-down system dynamics and
bottom-up cellular automata interactively docked, and
within the CA model, a self-adaptive competition and inertia
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FIGURE 2: In 2008, metropolitan growth in the Qingpu-Songjiang area was projected using LogCA and MachCA models. Land use whose
nomenclature is “excluded” shows water masses and wetlands. Hits (H) show that the increase observed was projected like growth. Misses
(M) show that increase observed was projected like persistence. False alarms (FAs) show that the persistence observed was projected like
growth. Correct rejections (CRs) show that persistence observed was projected like persistence (after Chen and Pontius 2010) [31].

mechanism was developed to conduct complicated tasks and
interactions between several types of land uses. The model
was introduced from 2000 to 2010 in China to a LUCC
projection where the results indicated a promising agree-
ment between the networks about the actual use of the land,
and the precision was higher than other accepted systems
like CLUE-S and CA. The model was even better applied to
situations from 2010 to 2050 that encompassed various
augmentation techniques that consider climatological,
natural, and socioeconomic factors. The authors claimed
that the simulation results indicated the correct use of the
FLUS model in the hot spot regions and examined the causes

and effects of potential active uses of land, which could assist
academics and judgment-makers to develop correct policies
to improve acclimation in the context of global warming to
the rapidly changing natural setting.

Chen et al. [43] studied the reliability of fine-scale Earth
simulations for raster cellular automaton (CA) models,
because regular pixels/grids cannot accurately represent
irregular geographic entities and their interactions. The
authors proposed that vector CA models can overcome these
deficiencies due to the vector data structure’s ability to
represent realistic urban entities. In their 2017 study, they
presented a model of cellular plot automation (LP-CA) to
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simulate changes in urban land, where the model’s inno-
vation lies in the use of the automatic calibration joint-
learning method. Three commonly used classifiers, Naive
Bayes, neural retro-diffusion networks, and decision trees
were chosen to create a joint classifier as the base classifiers.
The proposed model was applied in Shenzhen (China), and
the experimental results showed the maximum calibration
accuracy produced by bagging Naive Bayes among a selected
set of classifiers (Figure 5). District sensitivity assessment
suggested that the LP-CA model with a neighboring radius
r=2 achieved the highest simulation accuracy. The cali-
brated LP-CA was used to challenge future changes in urban
land use in Shenzhen, and the results were consistent with
those specified in the official city plan according to the
authors.

Li et al. [45] proposed a new model of metropolitan
growth centered on patches with heuristic regulations that
used a basin segmentation algorithm (Segmentation-Patch-
CA) of the logistic CA model. Section objects derived from
the properties of the metropolitan CA model were con-
sidered potential conversion patches, when determining a
useful function that perceived the suitability and hetero-
geneity of the internal pixels. Two distinct kinds of met-
ropolitan  development were then recognized and
individually recreated: organic growth and spontaneous
growth, via the implementation of a neighborhood density
analysis-based landscape expansion index (LEI). This pro-
posal was applied to the city of Guangzhou, China (Figure 6).
The results revealed an improvement in the landscape
similarity index (LSI) that reached 20%-50% since the
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FIGURE 4: Simulation of 2015 LR-CA patterns and three metaheuristic CA models [51].

proposed system generated a more credible district land-
scape (96 and 97.38%) than the pixel-based one (45.14% and
74.82%) for two 2003-2008 and 2008-2012 modeling
periods.

In 2017, Jat et al. [44] presented a study to evaluate the
performance of the CA-based SLEUTH model to project the
metropolitan rise of a complicated and slightly more het-
erogeneous area, the city of Ajmer in Rajasthan, India, which
is different from the other areas tested by SLEUTH. Seven
multispectral satellite images covering more than 21 years
were processed and used for the parameterization of
SLEUTH. The results of the urban growth predicted by
SLEUTH were compared with other land-use/land-cover
extraction methods. The authors stated that the study was
successful in offering a meaningful insight into the issues
benefiting to the risks in forecasting urban development in
heterogeneous metropolitan areas. They have, however,
identified some issues related to SLEUTH’s sensitivity re-
garding the scale and spatial resolution of the input vari-
ables. Furthermore, the effects of the model indicated that
SLEUTH is not capable of capturing the development of
small size units, i.e., how unfragmented outdoor expansion
is common in developing countries (Figure 7). The model
underestimated the fragmented urban growth that can be
compared to the approximate resolution implemented
throughout the phases, and to the smallest average size
below the resolution of the units created and errors in the
input data due to classification errors in satellite images. This
can be attributed to the heterogeneity of the procedure and
the material used for construction.

With the use of the cellular automaton and Markov (CA-
Markov) model incorporated with the geographic infor-
mation system (GIS) and remote sensing (RS) [48], Traore,

Mawenda, and Komba simulated land-cover change in
Conakry, Guinea. Old information on land-cover modifi-
cation was taken from Landsat data for the years 1986, 2000,
and 2016.

The simulated result was compared for evaluation with
the use of the relative operating characteristic (ROC) curve
to the land-cover map of 2016. The ROC outcome dem-
onstrated a substantial degree of agreement between both
maps. Based on the result, using the CA-Markov model, they
simulated the land-cover change map for 2025. The result
showed that the metropolitan area ratio was 49% in 2016 and
is anticipated to rise to 52% by 2025. On the contrary, the
vegetation will fall from 35% in 2016 to 32% in 2025. The
authors are optimistic about that study’s results. They believe
that the model will provide a basis for assessing the sus-
tainability and urban area management and taking measures
to mitigate urban environmental degradation.

Liping et al. [52] also used the CA-Markov model to
predict potential land-use patterns through remote sensing
and geographic information systems based on dynamic
changes in usage patterns. They obtained a map predicting
land use for 2014 in Jiangle County, China, based on the CA-
Markov model, which was validated with actual 2014 results
with a Kappa index of 0.8128. The authors also set the 2025
and 2036 land-use patterns.

In the upstream Citarum River Basin (West Java),
Yulianto et al. [54] with the inclusion of remote sensing data
and the CA-Markov model studied the dynamics of land-use
reform and its estimation for the coming year.

Lu & Wu [55] used the method of spatial-temporal data
fusion (STF) to obtain summer-scale images of Landsat over
the past 30 years in Hefei, China. They used the CA-Markov
model to simulate and predict future maps of land-use/land-
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cover change (LULC). The authors showed that merged data
can improve the accuracy of LULC detection and prediction
by shortening the year-to-year interval and obtain results for
a specific year from LULC predictions. In their research, they
observed that the areas of cultivated land, vegetation, and
water declined by 33.14%, 2.03%, and 16.36%, respectively,
and the area of land under building extended by 200.46%
from 1987 to 2032.

Similar research was conducted by Huang et al. for the
Beijing Territory [57]; Khawaldah et al. in Irbid, Jordan [58];
Mohamed and Worku in Addis Ababa and its environs [59];
and Mansour, Al-Belushi, and Al-Awadhi in the Nizwa
mountain area of Oman [62].

Anand & Oinam [61] centered their research on the
Manipur River Basin (India) wetlands and developed a
tuture area LULC map using the Markov chain and an
artificial neuron network. In Bogor City, Indonesia, Nur-
wanda & Honjo [60] applied the combination of multilayer
perceptron and Markov chain (MLP-MC) to predict the
future expansion of the city and land surface temperature
(SST).

In the multicriteria evaluation (MCE), the Markov
model of cellular automaton (CA) was used as a tool for
decision-making about land use, analysis, and simulation
[50]. Fu et al. explored the possibility of using historical data
from a specific area for factor selection, scoring, and
quantification. The authors created logistic regression
models calibrated to choose and score every potential factor
for historical land-use modifications and used the entropy
technique for selecting the weights of the chosen variables.
The SCM output is used as an input to the CA-Markov
model to simulate changes in land use from 2001 through
2011. The simulation result was compared with the land use
observed in 2011 to examine the method’s performance. The
result showed that the use of the SCM factors derived from
old data creates a fitness of fit. The biggest advantage of this
method is that it derives the selection of variables, ratings,
and weights from local data that reflect the actual pattern.
This numerical approach leaves for effective adjustment of
the CA-Markov model and the growth of various land-use
planning scenarios by adapting the rankings and weights of
the various issues with the understanding of global change.
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overall results, and fusions of (d), (e), (f) and (g), (h), and (i) are zoomed-in viewpoints, respectively, of local areas A and B [45].

Devendran & Lakshmanan [56] used an urban growth
model with cellular automata based on agent-coupled neural
networks (NNACA) and historical datasets to forecast the
growth of the Chennai metropolitan area (India). The
prediction model used eight different urbanization agents,
including transport, access points, and industries. Validation
of the results showed that the most influential agent was the
neighborhood. The authors measured urban expansion
through Shannon entropy, and the values obtained sug-
gested the need for more careful planning in the future
development of the area.

He et al. [53] also focused on the effects of the neigh-
borhood on the prediction of urban growth and used a CA
coupled with a neural convolution network for united
mining (UMCNN) and Markov chains to improve the
performance of the simulation of urban expansion pro-
cesses. They chose the Pearl River Delta (China) as a study
area with the aim of verifying the effectiveness of deep
learning in urban simulation, compared with three machine
learning-based CA models (LR, ANN, and RFA). The
proposed method achieves the highest simulation accuracy
(>93%) and similarity to the landscape index (>89%).
However, the authors warn that, although the accuracy of
the model is greatly affected by the size of the training
window, its lowest result is still higher than the traditional
CA model.

Pazos-Pérez et al. investigated the use of evolutionary
genetic algorithms to predict metropolitan vertical evolution
scenarios in the big central districts [49]. Tokyo’s Minato
district was used for the case study, as it has rapidly grown
over the past 20 years. A genetic algorithm that replicates
vertical urbanization was used to make predictions based on

initial set parameters, calculating not only the number of
potential high-rise structures but also the specific locations
most probable to support new high-rise advancements in the
future. To assess the accuracy of the genetic algorithm in
projecting future vertical district growth, the results of the
evolutionary model were compared with continuous high-
rise evolutions. After the test, the genetic algorithm’s pre-
dictions for the period 2016-2019 (Figure 8), and sharing the
results with the actual ongoing projects now, the researchers
concluded that the algorithm’s growth projections were
accurate in terms of a complete number of properties and
their likely location (+6.67 percent). On the other hand, the
algorithm did not accurately determine the year of growth
(1 year) with exactitude and building height (19.5% de-
viation), indicating that more studies must be carried out in
the areas. This experiment proved that the use of evolu-
tionary genetic computation is a method to predict vertical
metropolitan growth with a lot of possibilities concerning
space and the number of potential edifications.

As seen in the previous section, there are different
variables that affect the prediction. The studies mentioned
above have used different input variables for their predic-
tions. These data can be seen in Table 2. Although the
variables used are different depending on the study, there are
a number of factors that stand out because they are present
in many of them: population, race, diffusion, elevation,
slope, environment, density, accessibility, constraint factors,
stochastic or random factors, probability of development,
socioeconomic changes, DEM, and historical land use
through neighborhood factors and distances (between urban
or nonurban spaces), roads, rivers, railroads, etc. We can
appreciate the predominance of qualitative and quantitative
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FIGURE 7: Modeled and actual urban growth in Ajmer (India) [44]. (a) Stimulated change by LR-CA. (b) Stimulated change by PSO-CA.
(c) Stimulated change by GSA-CA. (d) Stimulated change by GA-CA. (e) Enlarged area of LR-CA. (f) Enlarged area of PSO-CA.
(g) Enlarged area of GSA-CA. (h) Enlarged area of GA-CA. (i) Stimulation success and error by LR-CA. (j) Stimulation success and error by
PSO-CA. (k) Stimulation success and error by GSA-CA. (1) Stimulation success and error by GA-CA.

CA models, to the detriment of the use of binary or vector
CA models or other methods (ANN, GA, etc.).

2.2. More Relevant Data. The implementation of Al for urban
planning is a flourishing field with an increasing number of
researchers studying and publishing papers in this field. If we
consider the different articles mentioned, we can see that since
2016 the number of research articles published in this regard

has been increasing, with a decrease in 2018, which equals the
number of publications with 2016 (3), but again the course of
studies on the subject is redirected in 2020. We have not
included the year 2021 within this state of the art, since it is the
year of data collection and no results were found in this
regard. The year with the highest number of publications was
2018 (7) followed by 2020 (6).

In addition, when it comes to the use of Al for urban
planning, it is worth highlighting the countries used in the
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FIGUure 8: Genetic algorithm prognostications on a probabilistic grayscale in Tokyo’s Minato district. Darker tones indicate a greater
probability of new high-rise advancements (130 m approximately). Dots constitute discharge structures already planned for completion
between 2016 and 2019 [49].

TaBLE 2: Variables used for prediction in the articles of this review.

Author/s Variables
IOD is the only criterion used. The study mainly focuses on the geometric importance of the building, and the
Tong [40] building types are ignored. The existing buildings in green spaces should also be taken into account in the

calculation, but these constraints and practical conditions are not taken into account.

Remote sensing image (Landsat images) to land-use maps; distance to roads map; distance to business center
map; distance to population center map; environmental-sensitive area map; slope map; and elevation map.
Conversion label; distance to urban center; distance to town center; distance to commercial housing area;

distance to main roads; distance to agricultural land; and stochastic.
Spatial factors: calibrated model suitability, neighborhood factor, travel time to CBD factor, and wetland

factor + 0,25 * random.

Chen et al. [43] Model control parameters: diffusion, breed, spread, slope, and roads.

SLEUTH parameterization with supervised classification (land use and urban) and the use of statistical
measures: sng (cumulative number of urbanized pixels by spontaneous neighborhood growth), og
(cumulative number of urbanized pixels by organic growth), rt (cumulative number of urbanized pixels by
road influenced growth), area (total number of urban pixels), edges (number of urban to nonurban pixel
edges), clusters (number of urban pixel clusters), rad (radius of cluster, which encloses the urban area), slope
coefficient, spread coeflicient, breed coefficient, road gravity coeflicient, percent urban (percent of urbanized
pixels divided by the number of pixels available for urbanization), urban growth rate, and number of growth
pixels each year.

Two different urban growth types: organic growth (based on segment) and spontaneous growth (based on
pixels), which where identified and separately simulated introducing a landscape expanse index (LEI) that
built on neighborhood density analysis. CA components: suitability surface, neighborhood, stochastic
perturbation, and development probability.

Naghibi et al. [41]
Feng et al. [31]

Perez-Molina et al. [42]

Jat et al. [44]

Li et al. [45]
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TaBLE 2: Continued.

Author/s

Variables

Liu et al. [46]

Feng & Tong [47]

Traore et al. [48]

Pazos-Pérez et al. [49]

Fu et al. [50]

Feng et al. [51]

Liping et al. [52]

He et al. [53]

Yulianto et al. [54]

Lu & Wu [55]

Devendran & Lakshmanan

[56]
Huang et al. [57]

Khawaldah et al. [58]

Mohamed & Worku [59]

Nurwanda & Honjo [60]

Anand & Oinam [61]

Mansour et al. [62]

Socioeconomic and natural climatic factors: climate change, socioeconomic changes, historical land use, and
interactions between variables to obtain land-use demand in each decade. Later, to ANN for land use in 2010:
neighborhood influence, weight factor, self-adaptively land inertia, and converting cost. These combined
probabilities with probability-of-occurrence surfaces and with roulette wheel selection detect the land use in
time.

Constrained relations among factors were applied in DE to generate different sets of CA parameters for the
prediction of future scenarios. Variables that affect land-use changes: distance to urban center; distance to
district center; distance to main roads; distance to the roads along Dianchi Lake; distance to protected areas;
and DEM.

Prior to classifying the images using a supervised classification algorithm, unsupervised classification and
normalized difference vegetation index (NDVI) were calculated to help select suitable polygons as training
sites and to improve the overall classification process. The classification scheme was established based on
auxiliary information from the field survey, local knowledge of the study area, and visual interpretation of the
images. Image classification was performed using the maximum likelihood classification (MLC) algorithm,
which is a supervised classification, and one of the most widely applied parametric classification algorithms.
A series of grayscale probabilistic maps with different parameters were produced to be used as the basis for the
evolutionary model. The parameters were captured in the following gradient maps: land ownership,
regulatory master plans, vertical urban consolidation, accessibility, and allocation. Land ownership: public vs.
private; land redevelopment master plans; vertical density; accessibility; allocation parameters; and economic
and real estate parameters.

They used the entropy method to determine weights for the selected factors. Potential factors for multicriteria
evaluation: population change; change in employment; population density; median housing income; and
highway accessibility, transit accessibility, slope, distance to each of the existing land use types, administrative
constraints, and natural constraints.

Criteria for comparing CA metaheuristic models: best objective function value; iteration or generation;
computational time; initial urban area; hit; correct rejection; failure; false alarm; assignment; and quantity.
Spatial input variables: distance to city center; distance to country center; distance to main road; distance to
railroad; distance to coast; DEM; and restricted areas.

This study uses remote sensing and geographic information. From 1992 and 2003 Landsat 5 TM images, and
2014 Landsat 8 OLI images and DEM, a land-use classification map was obtained for each year. The cell
automaton model is mainly composed of cell, cell space, neighbor, ruler, and time. The closer the distance
between the nuclear cell and the neighbor, the higher the weight factor. The weight factor is combined with
transition probabilities to predict the state of adjacent grid cells so that land-use change is not a completely
random decision. The Markov chain model component controls the temporal dynamics between LULC
classes based on the transition probabilities, while the spatial dynamics are controlled by local rules
determined by the CA spatial filter or transition potential maps.

They use spatial variables in UMCNN. For RFA-CA, the factors used are neighborhood effects, constraint
factors, development suitability, and stochastic factors.

Inputs for the training phase of the CA-Markov model: time-1 land-use map; time-2 land-use map; simulated
n-time transition area matrix; and simulated n-time Markov conditional probability image. Inputs for the
simulation phase of the CA-Markov model: simulated n-time transition area matrix and simulated n-time
Markov conditional probability image.

Preprocessing tasks, such as radiation calibration, FLAASH atmospheric corrections, image mosaicking, and
image cropping, were applied before classifying the images with the ENVI tool.

Agents of urbanization: existing built-up; hot spots; commutation, high-preference roads; medium-
preference roads; least-preference roads; railways; red category industries; orange category industries; green
category industries; white category industries; high land prices; low land prices; medium land prices; places of
public interests; public utility centers; and population.

Driving factors: DEM, slope, aspect, GDP, population, highway, rail, river, road, and roc index.
Image preprocessing techniques include the following: layer stacking; mosaicking; and subsetting or clipping
to study area boundaries. The LULC classification scheme comprised seven LULC classes, identified by codes,
to prepare different LULCs to simulate future land use.

The research described the continuing historical increase in built-up space through the consumption of other
ecologically valuable LULC classes. Driving factors: elevation, slope, road distance, highway distance, rail
distance, and urban centers.

Model control parameters: slope, distance to roads, distance to toll road, and elevation were also used as
variables that influenced land-use change.

The ANN was trained with the driver variable, i.e., distance to roads, distance to settlement, elevation, and
slope.

The analysis was based on three equal interval LULC maps derived from satellite images: Landsat TM for
1998, 2008, and 2018, together with topographic spatial layers (elevation aspects and terrain slopes) derived
from the ASTER digital elevation model. Other spatial parameters (population density, proximity to urban
centers, and proximity to major roads) were also incorporated into the simulation process.
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different works. In the different approaches mentioned in
this review, Al techniques are applied to urban planning in
large metropolitan areas in various parts of the world, al-
though most papers used in this review focus on urban
development in China. For this, Figure 9 is included, which
shows the number of articles related to each country per
year. In the graph of Figure 9, we can see that most of the
works of research urban development in China as men-
tioned. It is the only country in which investigations have
been carried out in all the years included (2016-2020), with 4
of them in 2018. On the other hand, it should be noted the
countries used in the scientific research in 2020 (Oman,
Ethiopia, Jordan, India, Indonesia, and China).

Perhaps one of the most important pieces of data that we
have been able to collect concerns the techniques used in the
different experiments. In the papers used in this review, most
of the systems combine Markov chains and cellular
automata. A less number of papers use other techniques, like
artificial neural networks. This contrasts with the substantial
number of papers related to architectural design using ge-
netic algorithms [86-93]. You can read more about it in a
state of the art that we have previously made [94].

In particular, the AI techniques applied to urban
planning used by the authors of the different works that we
have found are as follows: the combination between CA and
Markov stands out, with three jobs in 2018, two in 2019, and
one in 2020. The rest of the jobs in 2020 also use Markov, but
in this case, combined with ANN. For its part, the other
remaining work from 2019 also uses CA and Markov, but
with the peculiarity that it uses neural networks as well.

We can see in Figure 10 that for the rest of the exper-
iments all the works used CA, except [40, 49], which in 2016
used simple GA and combined with EC in 2018, successively.
On the other hand, the research that uses CA only has two
examples in 2017 of its individual use [42, 44] and the second
with a specific model (SLEUTH). In the rest of the studies,
they use it in combination with other techniques or the case
of [45] use Segmentation-Path-CA.

The best results obtained could be considered by those of
[49] with the use of GA + EC, who in 2018 obtained a global
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precision of the number of buildings of 100%, with a deviation
of the height of the building of 19.5%. The results of [42] were
also very good with the use of CA achieving an overall
precision of 97% and 98%, and an edge index dispersion of
0.10 (with a land cover map index of 49.05), and [45] through
Segmentation-Patch-CA obtained an overall precision of
96%. Both are prior to [49], so the work after 2018 has not
achieved results that improve the union of AC and EC.

3. Conclusions

For years now, CAs have been successfully used in the ex-
ploration of a wide variety of urban phenomena [95], from
regional-scale urbanization and urban development to traffic
simulation [96-98]. The CA models have been developed for
topics as varied as sprawl [99, 100] or gentrification [101-103],
and simulations of city shape, growth, and location [73,
104-107]. This is because CAs have many advantages for
modeling urban phenomena, such as their flexibility, their
decentralized and dynamic approach, the relative ease with
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which model results can be visualized, and also their affinities
with geographic information systems and remote sensing data
[108]. In our opinion, its simplicity may be its most significant
quality. By mimicking the way in which large-scale urban
structures can emerge from the myriad interactions of simple
elements, CAs provide a framework for the exploration of
complex adaptive systems.

We have seen that in recent years these techniques are
being used to simulate the urban planning approach and
changes in land use, considering population migration or
the effects of global warming (such as flooding or the
disappearance of water and vegetation, for example), with
the aim of planning and achieving sustainable urban
development.

Although the best results dating from 2018, it is con-
sidered that the other works also obtain satisfactory results,
since they are very diverse uses, and as mentioned, different
countries and techniques are used.

Among the different deficiencies shown are the
following:

(i) The only technique with published examples from a
sufficient number of countries to compare the re-
sults is the use of CA + Markov.

(ii) This technique has not exceeded the results of the
first experiment carried out in 2018 [48] with data
from Conakry (Guinea). The results were of an
average precision of 92%.

(iii) The only country with which enough techniques
have been used to make a comparison between them
is China.

(iv) Despite being the same country, the location is
different, and therefore, the comparative results will
be less consistent.

(v) The use of GA+EC has not been replicated, al-
though it is the option with the best results so far.

(vi) For the most part, the predictive data have not been
compared to actual subsequent results.

With the above in mind, we recommend that compar-
isons be made with actual results when possible. It also
makes sense to us that the use of CA has been investigated, as
the 2017 results showed its potential. However, following the
contained explanation of the literature review we can un-
derstand that it does not solve the previous problems. That is
why it would also be of interest to show the results of
combining CA and EC since it is a combination that has not
yet been worked on until now.

We also consider it interesting for future research to
carry out more experiments under similar conditions, either
of localization and varying the technique used, or of tech-
niques modifying the location. Finally, we recommend
promoting the use of GA + EC for its satisfactory results.
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