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Abstract

Dynamic models typically have unknown parame-

ters that must be estimated from data, and they

may also have unknown inputs (disturbances).

The concept of observability, which describes the

possibility of inferring the internal state of a sys-

tem by measuring its output, can be extended to

account also for the possibility of inferring its

unknown parameters and inputs. Such an ex-

tension leads to a property that may be called

FISPO (Full Input, State, and Parameter Observ-

ability). Its analysis is particularly relevant in

systems biology, since models from this area of-

ten have a large number of unknown parameters,

as well as state variables that cannot be measured

due to experimental limitations. It is usually chal-

lenging to assess the FISPO of nonlinear models,

which has motivated the development of specialized

software such as the MATLAB toolbox STRIKE-

GOLDD. However, despite the increasing popular-

ity of Python among the biological modelling com-

munity, there was a lack of computational tools for

FISPO analysis in this language. To fill this gap,

we have developed an open source software toolbox,

StrikePy, which implements the core functionali-

ties in STRIKE-GOLDD.

Keywords: nonlinear systems, observability,
identifiability, dynamic modelling, biosystems.

1 INTRODUCTION

The concept of observability describes the theo-
retical possibility of inferring the internal state
of a system from observations of its outputs [5].
Observability is a classical control-theoretic prop-
erty that is commonly assessed in control engi-
neering applications. A concept closely related
to observability is structural identifiability (SI),
which refers to the possibility of inferring the un-
known parameters in a model. Initially, the study
of SI was motivated by biological modelling ap-
plications [1], and since then it has been studied
with particular interest in the research community
working in dynamic modelling and systems biol-
ogy [3, 15].

Observability and SI can be studied jointly [12] by
considering parameters as constant state variables
[11]. Note that this makes a linear model nonlin-
ear; a number of classical mathematical results are
available for the analysis of nonlinear observabil-
ity [4], which have been recently extended to con-
sider problems with unknown inputs [6]. While
a number of methodological approaches exist for
this purpose, they are mathematically involved
and their application is far from trivial. The chal-
lenging nature of these analyses has motivated the
development of a number of specialized software
tools [2, 7, 9, 12, 15].

One such tool is the Matlab toolbox STRIKE-
GOLDD, which was originally presented in
[13] and extended to analyse “Full Input-
State-Parameter Observability” (FISPO) in [14].
STRIKE-GOLDD casts the structural local iden-
tifiability problem as a nonlinear observability
problem, and it adopts a differential geometry ap-
proach – also known as geometric control – for
its analysis. Essentially, the observability of all
model variables (states, parameters, and unknown
inputs) is determined by calculating the rank of
a generalized observability-identifiability matrix,
which is built using Lie derivatives. When the
matrix does not have full rank, the model con-
tains unobservable variables. If these variables are
parameters, they are called (structurally) uniden-
tifiable.

Here we present StrikePy v1.0, a Python imple-
mentation of the FISPO algorithm from the MAT-
LAB toolbox STRIKE-GOLDD. It analyses the
structural local identifiability and observability of
nonlinear dynamic models, which may have mul-
tiple time-varying and possibly unknown inputs.
StrikePy implements the core functionalities of the
FISPO algorithm included in STRIKE-GOLDD.
It determines the subset of identifiable parame-
ters, observable states, and observable (also called
reconstructible) inputs. This approach is directly
applicable to many models of small and medium
size; larger systems can be analysed using addi-
tional features of the method. One of them is
to build observability-identifiability matrices with
a reduced number of Lie derivatives. In some
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cases, these additional procedures allow to deter-
mine the identifiability of every parameter in the
model (complete case analysis); when such result
cannot be achieved, at least partial results – i.e.
identifiability of a subset of parameters – can be
obtained.

The remainder of this paper is structured as fol-
lows. In Section 2 we summarize the main theo-
retical results about nonlinear observability anal-
ysis. In Section 3 we describe how StrikePy im-
plements said analyses. In Section 4 we assess its
performance by applying it to a set of problems
and providing the computational results. Finally,
in Section 5 we discuss the most relevant aspects
of this work.

2 OBSERVABILITY OF

NONLINEAR MODELS

2.1 MODELS AND CONCEPTS

In this work we analyse deterministic models of
ordinary differential equations,

M =






ẋ(t) = f (x(t), θ, u(t), w(t)) (1)

y(t) = g (x(t), θ, u(t), w(t)) (2)

x0 = x(t0, θ) (3)

where f and g are nonlinear functions whose
variables are states x(t) ∈ R

nx , known inputs
u(t) ∈ R

nu , unknown constants (i.e. parameters)
θ ∈ R

nθ , and unknown inputs (i.e. disturbances)
w(t) ∈ R

nw . The output vector y(t) ∈ R
ny con-

tains the measurable functions of model variables.
Both types of inputs, u(t) and w(t), are infinitely
differentiable functions. In the following, we may
omit the dependency of a variable on time (t)
whenever it is convenient to simplify the notation,
as long as it is obvious from the context.

Definition 1 (Structural local identifiability). A

parameter θi of model M is structurally locally

identifiable (SLI) if for almost any vector of values

θ∗ ∈ R
nθ there is a neighbourhood N (θ∗) where the

following condition is fulfilled [3]:

θ̂ ∈ N (θ∗) and y(t, θ̂) = y(t, θ∗) ⇒ θ̂i = θ∗i (4)

If (4) does not hold, θi is structurally unidenti-

fiable (SU). A model is said to be SLI if all its
parameters are SLI. If it has one or more SU pa-
rameters, it is called SU.

Parameter identifiability can be considered a par-
ticular case of observability, since parameters can
be seen as constant states. Accordingly, in [14]
the acronym FISPO – Full Input-State-Parameter
Observability (or Observable, if used as an adjec-
tive) – was introduced to describe this property:

Definition 2 (Full Input-State-Parameter Ob-
servability, FISPO). For a model M described

by equations (1), (2), (3), let us denote the vec-

tor of its states, parameters, and unknown in-

puts as z(t) =
(
x(t), θ, w(t)

)
. We say that

M has the FISPO property (or, equivalently, that

it is FISPO) if the value of every variable zi in-

cluded in z can be determined from knowledge

of y(t) and u(t), with t ∈ [t0, tf ]. This means

that M is FISPO if, for every z(t0) and for al-

most any vector z∗(t0), there is a neighbourhood

N (z∗ (t0)) in which the following condition holds

for all ẑ(t0) ∈ N (z∗ (t0)):

y (t, ẑ(t0)) = y (t, z∗ (t0)) ⇒ ẑi (t0) = z∗i (t0) ,

where 1 ≤ i ≤ nx + nθ + nw.

The FISPO property encapsulates parameter
structural identifiability, state observability, and
input observability. Conceptually, a state variable
at time τ , xi(τ), is (structurally locally) observable
if it can be distinguished from all other neighbour-
ing states by observing the output y(t) and input
u(t) in a finite time interval t0 ≤ τ ≤ t ≤ tf . Oth-
erwise, xi(τ) is unobservable. A model is said to
be observable if all its states are observable. Sim-
ilarly, model M is called input observable if it is
possible to reconstruct its unknown input w(t) –
which is also called observable in that case – from
observations of its output.

We remark that the properties described above
are local, i.e. they refer to the possibility of dis-
tinguishing the true value of a variable – be it
a parameter, input, or state – from other values
in its neighbourhood, but they do not guaran-
tee their uniqueness outside this neighbourhood.
Thus, even for a locally identifiable parameter
there may exist several indistinguishable solutions
in the parameter space. However, for many practi-
cal purposes it is sufficient to have a locally identi-
fiable and observable model, because locally iden-
tifiable parameters are often globally identifiable,
and even when they are not, there is sometimes
only one solution within the admissible range of
values.

2.2 ANALYSING NONLINEAR

OBSERVABILITY

To analyse the FISPO property we consider the
unknown parameters of the model, θ, as addi-
tional state variables; since they are constant,
their time derivatives are equal to zero, θ̇(t) = 0.
In this way we obtain an augmented state vector
x̃ = (xT , θT )T [11].

We proceed in a similar way with the unknown
inputs, w(t), with the difference that their deriva-
tives may be nonzero. Thus we need to augment
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the state vector not only with w as additional
states, but also with their derivatives up to some
predefined order, l:

x̃(t) =
(
x(t)T θT w(t)T . . . w(t)(l)

T
)T

,

(5)

Thus, the l−augmented dynamics are given by:

˙̃x(t) = f̃ (x̃(t), u(t)) =





f (x(t), θ, u(t), w(t))
0nθ×1

ẇ(t)
...

w(l+1)(t)




,

and the l−augmented model is:

Ml =

{
˙̃x(t) = f̃(x̃(t), u(t)) (6)

y(t) = g(x̃(t), u(t)) (7)

We adopt a differential geometry approach to as-
sess the property FISPO. To this end, we build
an augmented observability-identifiability matrix
using Lie derivatives, which are defined as [14]:

Lf̃g (x̃, u) =
∂g

∂x̃
(x̃, u) f̃ (x̃, u) +

∂g

∂u
(x̃, u) u̇.

The expression above is the first order Lie deriva-
tive. The zero-order Lie derivative is the model
output, L0

f̃
g = g. Higher (i−order) Lie derivatives

are calculated recursively as:

Li

f̃
g (x̃, u) =

∂Li−1

f̃
g

∂x̃
(x̃, u) f̃ (x̃, u)

+
i−1∑

j=0

∂Li−1

f̃
g

∂u(j)
(x̃, u)u(j+1).

Thus, the observability-identifiability matrix ofM
(6) is defined by:

OI (x̃, u) =
∂

∂x̃





L0
f̃
g (x̃, u)

Lf̃g (x̃, u)

L2
f̃
g (x̃, u)

...

Lnx̃−1

f̃
g (x̃, u)




, (8)

Matrix (8) can be used to assess the FISPO prop-
erty using the following condition:

Theorem 1 (Observability-Identifiability Con-
dition (OIC) [14]). A model M given by equa-

tions (6)–(7) is FISPO around a (possibly generic)

point in the augmented state space x̃0 if the

observability-identifiability matrix defined by (8)
has full rank, that is: rank(OI (x̃0, u)) = nx̃ =
nx + nθ + nw.

If the matrix is not full rank, there are uniden-
tifiable parameters and/or unobservable states or
inputs. However, some of the model variables (pa-
rameters, states, and unknown inputs) may still
be observable. To determine the observability of
the jth variable, we remove the jth column of the
observability-identifiability matrix (8) and recal-
culate its rank. If the rank remains constant after
removing the column, the jth variable is unob-
servable, and if the rank decreases, the variable is
observable.

3 IMPLEMENTATION OF

StrikePy

3.1 DESCRIPTION AND

AVAILABILITY

The Python implementation of StrikePy follows
closely the original MATLAB implementation of
STRIKE-GOLDD. Thus, the main algorithm is
implemented in a script called strike goldd,
which loads the model, builds the observability-
identifiability matrix, calculates its rank, and
stores the results. If the model is not fully FISPO,
an additional function elim and recalc analyses
the observability of each variable following the
procedure described in the end of Section 2.2. Fi-
nally, the user can specify options by editing a file
named options.

StrikePy is structured in several directories. Mod-
els are stored in a folder called models, the doc-
umentation in doc, and auxiliary functions in
functions.

StrikePy can be downloaded from two software
repositories, GitHub and from PyPI:

https://github.com/afvillaverde/StrikePy

https://pypi.org/project/StrikePy/

Detailed instructions of how to use StrikePy are
provided in the documentation that accompanies
the toolbox. Figure 1 shows an screenshot of the
execution of StrikePy.

3.2 COMPARISON WITH BMSS2

We note that a partial implementation of
STRIKE-GOLDD in Python was recently made
available as part of BMSS2, a sowftware tool
for model selection and identifiability analysis [8].
However, the BMSS2 implementation of STRIKE-
GOLDD has a number of limitations.
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Figure 1: Screenshot of an execution of StrikePy.

The first one is conceptual, as BMSS2 does not
allow for the analysis of models with unknown in-
puts, which is an important feature of STRIKE-
GOLDD in comparison to other observability and
identifiability toolboxes.

Second, the symbolic calculations performed by
BMSS2 are computationally inefficient due to lim-
itations of the methods from the sympy pack-
age that it uses to calculate the matrix rank
(https://pypi.org/project/sympy/); as a result,
BMSS2 is unable to analyse some models that
can be analysed by StrikePy. Furthermore, while
BMSS2 provides the option to perform the anal-
ysis numerically instead of symbolically (which is
computationally more efficient), in this case its re-
sults vary depending on the choice of numerical
values, which makes it unreliable.

Finally, we found that the use of the STRIKE-
GOLDD implementation provided with BMSS2 is
only briefly described in its documentation, which
makes it difficult to apply the tool.

The reasons summarized above prompted us to

create a new Python implementation.

4 COMPUTATIONAL RESULTS

We have assessed the performance of StrikePy by
applying it to a total of 13 dynamic models of
biological systems and processes. The 13 case
studies were selected from the ones provided in
the STRIKE-GOLDD models folder, and they are
provided in the ‘models’ folder of StrikePy. Their
names are listed in Table 1; their equations can be
inspected by reading the corresponding files.

As a benchmark, we have also analysed them with
the Matlab implementation of STRIKE-GOLDD.
In all cases, StrikePy produced correct results,
i.e. the conclusions of the analyses were identical
to those obtained with STRIKE-GOLDD. These
results were obtained with default settings, i.e.
without the need for tuning the user options.

Another important aspect of the performance
evaluation is the computational cost. The compu-
tation times are given in Table 1, where it can be
noticed that for all but the smallest examples the
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Table 1: Comparison of computation times, in seconds, between StrikePy (Python) and STRIKE-
GOLDD (MATLAB). Each entry shows the mean and standard deviation of five runs. Results obtained
with a computer with Intel Core i7 processor, 2.80 GHz, 8 GB RAM, OS Windows 10. StrikePy was
executed in Python 3.9 using the IDE PyCharm Community Edition version 2020.2.2. STRIKE-GOLDD
was executed in Matlab R2020b.

Model name StrikePy STRIKE-GOLDD

1A integral 0.404± 0.361 0.595± 0.067
1B prop integral 0.324± 0.398 0.511± 0.034
1C nonlinear 26.565± 1.246 2.843± 0.195

Bolie 56.956± 2.193 1.327± 0.065
C2M 1.499± 0.573 0.591± 0.018

C2M unknown input known b 44.21± 1.532 1.556± 0.099
CR 1.814± 0.558 0.663± 0.065
HIV 2.267± 0.647 0.584± 0.108
HIV 1 2641.3± 7.414 36.609± 40283
phos 55.438± 3.547 0.990± 0.159
PK 149.662± 3.468 2.707± 0.541

tumor 791.545± 34.861 28.456± 1.192
sirs 3818.684± 19.294 98.872± 2.748

StrikePy implementation was, as expected, slower
than STRIKE-GOLDD.

Further comparisons can be found in [10], where
the performance of StrikePy was benchmarked
against other 10 tools for structural identifiabil-
ity analysis, using a set of 25 models.

5 DISCUSSION

We have presented StrikePy, a free, open-source
Python tool for analysing the structural identi-
fiability and observability of ODE models. This
toolbox addresses the need for a toolbox capable
of performing said analyses in Python, which is
a popular programming language among the sys-
tems biology community. While another Python
implementation – included in a toolbox named
BMSS2 – was already available, it contained a
number of limitations that are not present in
StrikePy.

Our tests indicate that StrikePy is computation-
ally less efficient than STRIKE-GOLDD, the Mat-
lab toolbox that it implements. This was to be
expected, since Matlab’s symbolic math toolbox
outperforms the currently available Python pack-
ages. In this aspect there is room for improve-
ment, which may be achieved in the future as a
result of new developments in Python routines.
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